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ABSTRACT
Error Subspace Statistical Estimation (ESSE), an uncer-
tainty prediction and data assimilation methodology em-
ployed for real-time ocean forecasts, is based on a charac-
terization and prediction of the largest uncertainties. This
is carried out by evolving an error subspace of variable size.
We use an ensemble of stochastic model simulations, ini-
tialized based on an estimate of the dominant initial uncer-
tainties, to predict the error subspace of the model fields.
The dominant error covariance (generated via an SVD of
the ensemble-generated error covariance matrix) is used for
data assimilation. The resulting ocean fields are provided
as the input to acoustic modeling, allowing for the predic-
tion and study of the spatiotemporal variations in acoustic
propagation and their uncertainties.

The ESSE procedure is a classic case of Many Task Com-
puting: These codes are managed based on dynamic work-
flows for the: (i) perturbation of the initial mean state, (ii)
subsequent ensemble of stochastic PE model runs, (iii) con-
tinuous generation of the covariance matrix, (iv) successive
computations of the SVD of the ensemble spread until a
convergence criterion is satisfied, and (v) data assimilation.
Its ensemble nature makes it a many task data intensive ap-
plication and its dynamic workflow gives it heterogeneity.
Subsequent acoustics propagation modeling involves a very
large ensemble of short-in-duration acoustics runs.

We study the execution characteristics and challenges of a
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distributed ESSE workflow on a large dedicated cluster and
the usability of enhancing this with runs on Amazon EC2
and the Teragrid and the I/O challenges faced.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and En-
gineering; C.4 [Performance of Systems]: [Performance
attributes]

General Terms
Algorithms and performance

Keywords
MTC, assimilation, data-intensive, ensemble

1. INTRODUCTION
Our initial motivation was speeding up the execution of

our stochastic ocean data assimilation ensembles via dis-
tributed computations and thereby allowing the evaluation
of larger ensembles in the same amount of real time. Our
approach resulted in a clear case of a Many Task Computing
(MTC) [17] application.

In what follows, Section 2 describes the application area
of ocean data assimilation and provides details about the
timeline of real-time data assimilation and ocean-acoustic
modeling. Section 3 describes ESSE [10, 11], the data as-
similation and error estimation approach used. Section 4
describes the ESSE implementation as a MTC application
and the options we face in terms of optimizing I/O issues.
This is followed in Section 5 by a discussion of the practi-
cal MTC use of ESSE on local clusters, Grids and Amazon
EC2. We then illustrate scientific results in Section 6 and
discussing future work in Section 7. Conclusions are in Sec-
tion 8.
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2. OCEAN DATA ASSIMILATION
Data Assimilation (DA) is a quantitative approach to op-

timally combine models and observations that is consistent
with model and data uncertainties. Ocean DA can extract
maximum knowledge from the sparse and expensive mea-
surements of highly variable ocean dynamics. The ultimate
goal is to better understand and predict these dynamics on
multiple spatial and temporal scales. There are many ap-
plications that involve DA or build on its results, including:
coastal, regional, seasonal, and inter-annual ocean and cli-
mate dynamics; carbon and biogeochemical cycles; ecosys-
tem dynamics; ocean engineering; observing-system design;
coastal management; fisheries; pollution control; naval op-
erations; and defense and security. These applications have
different requirements that lead to variations in the DA
schemes utilized.

The ocean physics involves a multitude of phenomena oc-
curring on multiple scales, from molecular and turbulent
processes to decadal variations and climate dynamics. Life
takes place in the ocean, from bacteria and plankton cells to
fish and mammals. The range of space scales is from about
1 mm to 10,000 km, and of time scales, from about 1 s to
100 years and more. Features and properties in the ocean
interact over these scales but significant interactions occur
predominantly over certain ranges of scales, which are usu-
ally referred to as scale windows. For example, the internal
weather of the sea, the so-called oceanic mesoscale, mainly
consists of phenomena occurring over a day to months and
over kilometers to hundreds of kilometers. This is one of the
most energetic scale windows in the ocean and the present
MTC study focuses on this window of processes.

A comprehensive prediction should include the reliabil-
ity of estimated quantities. This allows an adequate use of
these estimates in a scientific or operational application. In
a prediction with a model integrating either in time and in
space, errors in the initial data (initial conditions), bound-
ary conditions and models themselves impact accuracy. Pre-
dicted uncertainties then contain the integrated effects of
the initial error and of the errors introduced continuously
during model integration. Mathematically, uncertainty can
be defined here by the probability density function (PDF)
of the error in the estimate. Since ocean fields are four-
dimensional, uncertainty representations are here also fields,
with structures in time and space.

Realistic simulations of four-dimensional ocean fields are
carried out over broad numerical domains, e.g. O(10-1000)
km for O(10-1000) days. The number of grid points and
thus of discretized state variables are very large, usually of
O(105 − 107). On the other hand, ocean data are limited
in temporal and spatial coverage. Commonly, the num-
ber of data points for an at-sea sampling campaign is of
O(104 − 105). For substantial scientific advances and to re-
duce uncertainties, the sources of information, the various
data and dynamical models, are combined by data assimi-
lation [13]. This combination is challenging and expensive
to carry out, but optimal in the sense that each type of
information is weighted in accord with its uncertainty.

2.1 Real Time Assimilation
An important clarification needs to be made regarding the

different times involved in ocean forecasting: the observation
time, forecaster time and simulation time (Fig. 1). New ob-
servations are made available in batches (Fig. 1, first row)

during periods Tk, from the start of the experiment (T0)
up to the final time (Tf ). During the experiment, for each
prediction k (Fig. 1, zoom in middle row), the forecaster re-
peats a set of tasks (from τk

0 to τk
f ). These tasks include the

processing of the currently available data and model (from
τk
0 to τ i

0), the computation of r+1 data-driven forecast sim-
ulations (from ti

0 to ti+r
f ), and the study, selection and web-

distribution of the best forecasts (from ti+r
f to τk

f ). Within
these forecast computations, a specific forecast simulation i
(Fig. 1), zoom in bottom row) is executed during ti

0 to ti
f

and associated to a “simulation time”. For example, the ith
simulation starts with the assimilation and adaptive model-
ing based on observations T0, then integrates the dynamic
model with data assimilation and adaptive modeling based
on observations T1, etc., up to the last observation period
Tk which corresponds to the nowcast. After Tk, there are no
new data available and the simulation enters the forecasting
period proper, up to the last prediction time Tk+n.

Figure 1: Forecasting timelines. Top row: “Observa-
tion” or “ocean” time T during which measurements
are made and the real phenomena occur. Middle
row: “Forecaster” time τk during which the kth fore-
casting procedure and tasks are started and finished.
Bottom row: “ith simulation” time ti which covers
portions of the real“ocean”time for each simulation.
Multiple simulations are usually distributed on sev-
eral computers, including ensembles of forecasts for
uncertainty predictions (ESSE).

2.2 Ocean Acoustics
As one of the major application of underwater acoustics,

sonar performance prediction requires the modeling of the
acoustic field evolution. The parameters include the four-
dimensional ocean and seabed fields. They are complex to
predict and can have significant uncertainties. Methods and
systems that forecasts the ocean, the seabed and the acous-
tics in an integrated fashion have only been developed and
utilized recently. Our approach is based on coupling data-
assimilative environmental and acoustic propagation models
with ensemble simulations, as developed by [12,23].

Having an estimate of the ocean temperature and salin-
ity fields (along with their respective uncertainties) provides
the required background information for calculating acous-
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tic fields and their uncertainties. Sound-propagation studies
often focus on vertical sections. ESSE ocean physics un-
certainties are transferred to acoustical uncertainties along
such a section. Time is fixed and an acoustic broadband
transmission loss (TL) field is computed for each ocean re-
alization. A sound source of specific frequency, location and
depth is chosen. The coupled physical-acoustical covariance
P for the section is computed and non-dimensionalized. Its
dominant eigenvectors (uncertainty modes) can be used for
coupled physical-acoustical assimilation of hydrographic and
TL data. ESSE has also been extended to acoustic data as-
similation. With enough compute power one can compute
the whole “acoustic climate” in a three-dimensional region,
providing TL for any source and receiver locations in the re-
gion as a function of time and frequency, by running multiple
independent tasks for different sources/frequencies/slices at
different times.

3. ERROR SUBSPACE STATISTICAL ESTI-
MATION

3.1 Formalism
Using continuous-discrete Bayesian estimation [8] and the

notation of [7], the spatially discretized version of the deter-
ministic-stochastic ocean model and parameter equations
are combined into a single equation for the augmented state
vector x, of large but finite dimensions. Observations are
taken at discrete instants tk ≥ t0 and are concatenated into
a data vector yo

k. The dynamics, observations and DA cri-
terion are then,

dx = M(x, t) + dη (B1a)

yo
k = H(xk, tk) + εk (B1b)

min
x

J(x , yo
k ; dη , εk , Q(t) , Rk) (B1c)

where M and H are the model and measurement model op-
erator, respectively, J the objective function, and dη Wiener
processes (Brownian motion), i.e. η ∼ N (0,Q(t)) with
E{dη(t)dηT

(t)} .
= Q(t) dt. Note that the deterministic ocean

dynamics and parameter equations are actually forced by
noise processes correlated in time and space. State augmen-
tation [2, 3, 8] is used to re-write equations in the form of
Eq. B1a which are forced by intermediary processes dη white
in time and space. Measurement model uncertainties εk are
assumed white Gaussian sequences, εk ∼ N (0,Rk). The
initial conditions have a prior PDF, p(x(t0)), i.e. x(t0) =
x̂0 + n(0) with n(0) random.

Error Subspace Statistical Estimation (ESSE, [10,15,16])
intends to estimate and predict the largest uncertainties,
and combine models and data accordingly. When the DA
criterion (Eq. B1c) guides the definition of the largest un-
certainties or ”error subspace”, the suboptimal truncation of
errors in the full space is optimal.

ESSE proceeds to generate an ensemble of model integra-
tions whose initial conditions are perturbed with randomly
weighted combinations of the error modes. A central (unper-
turbed) forecast is also generated. The matrix of differences
between each perturbed model realization in the ensemble
and the central forecast is then generated and an estimate of
the conditional mean is produced. A singular value decom-
position (SVD) of the resulting normalized matrix provides
us with the dominant error modes (based on a comparison

of the singular values). A convergence criterion compares
error subspaces of different sizes. Hence the dimensions of
the ensemble and error subspace vary in time in accord with
data and dynamics. The whole procedure can be seen in
Figure 2.

Figure 2: The ESSE algorithm

Acoustic predictions are generated using acoustic propa-
gation models and newly developed parallel software. With
this new parallel acoustic software, we compute the whole
”acoustic climate” in a three-dimensional region, providing
transmission loss (TL) for any source and receiver locations
in the region as a function of time and frequency.

4. ESSE WORKFLOW
The ESSE calculations require the calculation of a very

large ensemble of ocean forecasts. This imposes significant
demands on computational power and storage. ESSE en-
sembles, however, differ from typical high throughput appli-
cations such as parameter scans in more than one way:

1. there is a hard deadline associated with the execution
of the ensemble, as a forecast needs to be timely;

2. the size of the ensemble is dynamically adjusted ac-
cording to the convergence of the ESSE procedure;

3. individual ensemble members are not significant (and
their results can be ignored if unavailable) - what is
important is the statistical coverage of the ensemble;

4. the full resulting dataset of the ensemble member fore-
cast is required, not just a small set of numbers;

5. individual forecasts within an ensemble, especially in
the case of interdisciplinary interactions and nested
meshes, can be parallel programs themselves.

Point (1) above hints towards the use of the any Advanced
Reservation capabilities available; point (2) means that the
actual compute and data requirements for the forecast are
not known beforehand and change dynamically; point (3)
suggests that failures (due to software or hardware prob-
lems) are not catastrophic and can be tolerated - moreover
runs that have not finished (or even started) by the forecast
deadline can be safely ignored provided they do not collec-
tively represent a systematic hole in the statistical cover-
age. Point (4) means that relatively high data storage and
network bandwidth constraints will be placed on the under-
lying infrastructure and point (5) means that the compute
requirements will not be insignificant either.
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Figure 3: The serial ESSE implementation

In the case of the ESSE approach to Data Assimilation,
a central process acts as a job shepherd for the ensemble,
as shown in Fig 3: A loop of N ensemble members is first
calculated, each member consisting of a perturbation of the
initial conditions/parameters and a forecast. After all mem-
bers are calculated, the difference of the resulting forecast
from a central forecast is calculated in a loop, creating a
large file containing the uncertainty covariance matrix. A
Singular Value Decomposition (SVD) of this matrix ensues
followed by a convergence test with the result of the previous
SVD. If convergence is not achieved, the process loops back
to increase N to N2, up to some maximal value Nmax or
until the time Tmax available for the forecast expires. The
process then restarts for the ensemble members N +1 to N2.
This approach suffers from several bottlenecks:

1. The perturb/forecast loop needs to finish for the diff
loop to start (or the two loops can be fused (merged).
Either way there is no exposed parallelism.

2. The diff loop has a serial bottleneck (the same file is
written to). Depending on the variant of the pertur-
bation type employed, it may also expect to add the
perturbations to the uncertainty covariance matrix in
the order they were generated.

3. The SVD/convergence test has to wait for the diff loop
to finish.

4. The SVD and the convergence test are large calcula-
tions requiring a lot of memory and time, especially
for large N .

4.1 Parallelized ESSE
We considered a natural transformation of the ESSE pro-

cess to address these bottlenecks and increase the amount of
exploitable parallelism, transforming the problem into one
amenable to MTC techniques - see also Fig 4. Specifically
we dealt with bottleneck 1 above by replacing the concept of
the loop with that of a pool of ensemble calculations, of size
M ≥ N . These calculations can be done concurrently on
different machines, as there is no actual serial dependence
in the forecasting loop. They would in effect be the MTC
element of the forecasting procedure. We then decouple the
diff loop by having it run continuously, adding new elements
to the uncertainty covariance matrix, as they become avail-
able from the forecast ensemble calculations. Furthermore,
we relax our requirement that elements of the covariance
matrix are in the order of the perturbation number (bot-
tleneck 2) and instead keep track of which perturbation is

added every time for bookkeeping purposes. Unfortunately
we cannot easily do away with the single file bottleneck on
the diff loop and that forces us to limit the diff calculation to
a single machine with access to lots of disk space as the co-
variance matrix tends to be very large (O((N G V)2) where
G is the number of 3D grid points and V the number of
physical fields and biochemical/physical tracer variables).

Figure 4: The parallel ESSE implementation

The SVD calculation and the convergence test are also de-
coupled from the diff loop by running continuously on their
own, using the latest result available from the diff loop. To
fully decouple the loops without introducing a race condi-
tion on the covariance matrix file between its reading for
the SVD and its writing by diff, we employ three files, a
safe one for SVD to use and a live alternating pair for diff
to write to, with the safe one being updated by the the ap-
propriate member of the pair. The SVD calculation and the
convergence test proceed on its own with the requirement
of fast I/O access to the safe file and a machine with large
memory and many processors for the parallel SVD calcula-
tion on a dense matrix (for the time being we are employing
shared-memory parallel LAPACK calls though the use of
SCALAPACK for distributed memory clusters may become
necessary in the future if our ensembles get too large).

If the convergence test succeeds, the remaining ensemble
members (queued for execution or running) are canceled,
and depending on the time constraints (for forecast timeli-
ness) and an associated policy, either the ensemble calcula-
tion concludes immediately or the remaining ensemble re-
sults already calculated are diffed, another SVD calculation
is performed and all available results are used. In theory
one could also spare any ensemble calculations close to fin-
ishing (according to performance estimates for the machines
they are executing on and accumulated runtime), to further
minimize the wasted cycles at the expense of further delays.

If the convergence test fails for a number of ensemble
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members sufficiently close to M < Nmax, the ensemble pool
can be enlarged (in stages) up to Nmax (or even slightly
more) in order to ensure convergence and at the same time
make sure that there is no point during this process where
the pipeline of results drains and the SVD calculation has
to wait (aside from the startup wait).

4.2 Implementation specifics
The ESSE workflow is implemented as a shell script in

variants targeting either Sun Grid Engine (SGE) [4] or Con-
dor [19]. The shell script catches the kill signal in proceeds
to cancel all pending jobs and do some cleanup. This master
script that runs on a central machine on the home cluster
launches singleton jobs that implement the perturb/forecast
ensemble calculations. The differ, SVD and convergence
check calculations proceed semi-independently, either on the
same machine as the master script or on some other machine
with access to the same filesystem and lots of memory. They
wait to ascertain that a multiple of a set number of realiza-
tions has finished and then they run. We allow for variants
where the perturb/forecast ensemble is split in two, first all
the perturbations are generated and then the forecasts are
run. This makes sense only in case that there are very few
machines with good network connections to the storage host-
ing the large files that perturb needs to read. In that case
it makes sense to restrict the execution of pert to those ma-
chines only and split the ensemble workflow. Dependencies
are tracked using separate (per perturbation index) files con-
taining the error codes of the singleton scripts (which are set
on purpose to signify success or failure). These files reside
in directories accessible directly or indirectly from all execu-
tion hosts so that state information can be readily shared.
Moreover the perturbation index number is passed on to
each singleton either by cleverly altering the name of each
job submission to include it or by stripping it off the task
array. The latter approach is more desirable (as it places
less strain on the job scheduler) but if the ESSE execution
gets stopped , it can only be restarted without rerunning all
jobs by switching to a one-job submission per perturbation
index strategy.

5. ESSE AS AN MTC APPLICATION IN
PRACTICE

5.1 Special ESSE needs
ESSE and other similar ensemble-based ocean forecast-

ing methodologies are used a several times a year in a real-
time setting during live ocean experiments lasting weeks to
months. In the past, any calculations that was more in-
volved than a simple serial forecast (possibly employing ob-
jective analysis based data assimilation which could still be
handled by a powerful on-board workstation) had to be per-
formed back on land. Remote computer clusters at partic-
ipating academic/commercial or military institutions were
used, connected via slow links to the ship-borne measure-
ment apparatus. Advances in computer system and net-
working technology have now resulted in the availability of
a ship-borne computing infrastructure (of a rack or even
deskside form factor) to handle pretty large basic ensem-
ble calculations. At the same time the constant drive for
higher resolution, better (and more usually than not - more
complex) models and comprehensive error subspace repre-

sentations have resulted in considerably larger increases of
the computational demands. In practice this means that for
the “real-time” requirements to be satisfied, the use of land-
based clusters is still required for the more involved ESSE
analyses.

This suggests that use of a dedicated home cluster re-
source is definitely worthwhile as such a system is under the
complete control of the PIs and can be devoted entirely to
the needs of the real-time experiment. Such systems are
also necessary because a lot of other incubating computa-
tions are required, either to prepare such experiments and
develop new methods and software for it, or to carry out
other independent research work.

Importantly, the local home cluster resources should be
augmented by remote machines that are not under the direct
control of the user. Such resources can be provided in the
form of batch-controlled allocations on (in the case of the
USA and depending on the sponsoring agency) NSF, DoE,
DoD, NOAA or NASA shared compute resources or more
generally via use of cloud computing based virtual clusters,
such as Amazon’s EC2. Such systems can be utilized on
demand, as a function of the real-time needs over limited
periods.

5.2 Local cluster description
Our local cluster is composed of 114 dual socket Opteron

250 (2.4GHz) nodes (1 with 16G RAM, 2 with 8GB and
the rest with 4GB), 3 dual socket Opteron 285 (dual core
2.6GHz) nodes, all with 4GB RAM (replacement nodes),
and a dual socket Opteron 2380 (Shanghai generation, quad
core 2.5GHz) head node with 24GB RAM. The fileserver
serves over 18TB of shared disk over NFS, using a 10Gbit/s
connection to a 200Gbit/s switch backbone. All nodes have
a Gigabit Ethernet connection to switches arranged in a star
formation, feeding into the central switch. The cluster has
both SGE and Condor installed and active (at the same
time). Condor is setup to consider nodes used by SGE as
claimed by their “owner” so the two systems can coexist
(with Condor giving precedence to SGE). All users tend to
use only one of the two systems at the time.

5.2.1 Timings
For the timings discussed below about 210 of the 240 cores

were available - the rest were in use by other users. We tested
two scenarios: one that uses NFS for the large input files and
another that prestages (to every local disk) all input files so
that all input is local. We did not test the case where both
input and output files live on the NFS server for the duration
of the execution of the singletons as it places too much stress
on the NFS server and is disruptive to other users. Therefore
in all cases the useful output files are copied back to the NFS
server at the end of their job. In all cases the differencing,
SVD and convergence check calculations were happening on
the master node.

This I/O optimization made more of a difference for the
perturbation part of the algorith where CPU utilization
jumped from ≈ 20% to ≈ 100%. The initial conditions gen-
erated thus and used for the ensemble model runs are stored
on the local directory anyway and therefore this (more ex-
pensive) part of the ESSE procedure does not as much of a
performance boost. 600 ensemble members pass through the
ESSE workflow in ≈ 77mins in the all local I/O case and
in ≈ 86mins in the mixed locality case. As all nodes were
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equally close to the fileserver we deed not deem it necessary
to test the ESSE variant where the perturbation calculation
is done in a separate job submission from that of the PE
model. For both SGE and Condor we used job arrays to
lessen the load on the scheduler.

Timings under Condor were between 10−20% slower. Es-
sentially the difference could be seen in the time it took for
the queuing system to reassign a new job to a node that just
finished one. In the case of SGE the transition was imme-
diate - Condor appeared to want to wait. We tweaked the
configuration files to diminish this difference in throughput
which is probably due to the effort put in Condor to function
as a very successful cycle harvester and the resulting care it
takes not to disrupt everyday desktop usage.

The ESSE calculation was followed by more than 6000
ocean acoustics realizations - each of which executed for ap-
proximately 3 minutes - in this case no job arrays were used
and the system handled all 6000+ jobs without any problem
whatsoever.

5.3 ESSE on the Grid
The task at hand is to augment the ESSE ensemble size

by employing remote resources (usually but not always Grid-
enabled). That could be either a departmental cluster within
the same overall organization, a partner institution Grid or
the large-scale national and international Grid infrastruc-
tures such as the Teragrid, Open Science Grid, EGEE etc.

The disadvantage of dealing with Grid resources is that
they come with a wide variety of rather heavyweight mid-
dleware (such as Globus,gLite,Unicore5/6,OMII-UK,ARC,
GRIA) that are not very easy to install and require mainte-
nance over time. In this manner they represent an additional
burden on both the users and the administrators.

5.3.1 Scheduling ensembles
The easiest (while at the same time least flexible) way to

add Grid resources for the execution our ensembles was re-
mote submission/cancellation of jobs (using (gsi)ssh + the
local job manager commands) either individually or as a job
array. Essentially a small part of the ESSE master script
dealing with job submission/cancellation is replicated on the
remote resource. singleton scripts particular to the remote
system in question are submitted and no complicated logic
is needed to make them work as they are not generic. The
directories that keep track of job submissions/completions
etc. on the home cluster are either mounted on the remote
system using XUFS [20], SSHFS [6] etc. or they are updated
using passwordless SCP connections (to avoid requiring set-
ting up Globus or other Grid infrastructure servers on the
home cluster end. This approach gives no easy way for the
user to monitor the progress of one’s jobs (other than to try
to monitor the contents of the submission/completion direc-
tories). One needs to take care to assign a clearly separated
block of ensemble members to these external Grid execution
hosts to avoid overlaps.

A different path is offered by the wide availability of the
Condor software. The existing Condor implementation of
ESSE needs to be slightly adjusted to allow for use of remote
clusters either via flocking, Condor-C or Condor-Glidein.
Unfortunately all of these approaches entail modification
of the configuration of the home Condor cluster and some-
times even of the remote cluster - something we are able to
do locally but in general a non-privileged user cannot do.

Further issues (which can be avoided with careful configu-
ration choices) can arise when other users’ jobs (also sub-
mitted to the local Condor queues) end up on remote Grid
resources they cannot be executed on. The remaining al-
ternative, Condor-G, on the other hand is not as capable of
handling so many jobs as we are envisioning.

One other possibility (which circumvents these problems)
is the use of Personal Condor (in which case all local config-
uration files are owned by the user), connecting via Condor-
Glidein to both the local Condor pool and the remote clus-
ters. A related effort which we plan to investigate further
is the use of the MyCluster [21] software that makes a col-
lection of remote and local resources appear as one large
Condor or SGE controlled cluster. This way we we are not
limited to Condor but we can use our SGE-based setup in-
stead.

5.3.2 I/O issues
There are significant I/O issues that need to be addressed

when considering the use of remote resources for ESSE en-
sembles. As a minimum requirement the shared input files
can be read remotely from OpenDAP servers at the home
institution (using the NetCDF-OpenDAP library) allowing
the immediate opportunistic use of a remote resource that
is discovered to be idling. The performance implications of
such an approach however (hundreds of requests to a central
OpenDAP server make it a less desirable solution. There-
fore one is more likely to employ manual prestaging of the
input files - use of shared filesystems over a WAN can help
speed up such operations (e.g. one copy from home to gpfs-
wan and then a fast distribution from gpfs-wan to local fast
disks. Use of data staging engines such as Stork are another
possibility, provided they work with our scheduler.

When it comes to the output files, one has the choice of
either a push model (from the remote execution hosts back
to the home cluster or a pull model (a pull-agent on the
home cluster fetching files from a central repository for each
of the remote clusters). The former method is the simplest
one requiring the least book-keeping - at the same time it
requires nodes that can talk to the outside world and the
batch nature of the runs results in a very large number of
concurrent remote transfer attempts followed by no network
activity whatsoever. This can seriously slow down the gate-
way nodes of the home cluster. The pull model requires more
work (a separate agent, notifications that files have been
copied so they can be safely deleted etc.) but can pace the
file transfers so that they happen more or less continuously
and perform much better. A third alternative introduces a
two-stage put strategy - with nodes storing their output on
a shared filesystem and an independent agent transferring
them over to the home cluster.

5.3.3 Computational issues
An idea of the speeds of Teragrid hosts running pemodel

and pert vs. the speeds seen on our local home cluster is
shown in Table 1.

As one can see speeds vary appreciably (and a recompila-
tion, however inconvenient it may be - especially for a last
minute change of code) can be well worth it. The slow pert
performance for ORNL appears to be partly related to the
PVFS2 filesystem used. In practice this means that the more
disparate the hosts used to augment the local compute fa-
cilities, the more uneven the progress of the various remote
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Table 1: pert/pemodel performance (time to com-
pletion in seconds) on a few Teragrid platforms
site processor type pert pemodel
ORNL Pentium4 3.06MHz 67.83 1823.99
Purdue Core2 2.33MHz 6.25 1107.40
local Opteron 250 2.4GHz 6.21 1531.33

clusters will be and perturbation 900 may very well finish
well before number 700.

5.3.4 Evaluating ESSE on the Grid
There are many advantages to using the Grid to augment

local compute resources for ESSE:

• There are a great many computational resources avail-
able on the Grid allowing for . Teragrid’s Condor pool
is claimed to be almost 27,000 cores but at the time of
the writing of this paper only about 1828 appeared to
be available for use, with around 100 at a time free to
run a user job.

• Many Grid-enabled systems have been designed with
massive I/O requirements in mind, allowing for fast
access from many nodes to a shared filesystem.

• Similarly large shared Grid-enabled systems usually
have excellent connectivity to the fastest Internet back-
bone and allow for fast file transfers to and from the
home system.

At the same time there are significant disadvantages to
using the Grid:

1. Each remote resource is slightly to very different in
hardware, software (O/S, compilers and libraries) and
filesystem configuration. This means that the user is
faced not only with having to rebuilt and redeploy the
code binaries every time but also with modifying vari-
ables in the singleton execution scripts to match the
particulars of the filesystem/operating system setup
at hand.

2. Due to the shared nature of resources on large external
centers one cannot be sure that there will be enough
nodes on a single resource to reach the capacity needed.
In the absence of advance reservation the jobs submit-
ted may very well end up running on the following
day (or in any case outside the useful time window for
ocean forecasts to be issued). So many different Grid
resources at the same time would have to be employed
(with the resulting increase in complexity).

3. A careful estimate of the duration of the jobs can help
in case backfilling is employed on the queuing system
of the Grid resource but even in that case commonly
used limitations of active jobs (irrespective of total core
count) per user can throttle back performance expec-
tations.

4. Moreover in many cases the queuing system scheduler
has been tuned to prioritize large core count paral-
lel jobs and thereby penalize massive task parallelism
workloads. In that case one needs to refactor singleton
jobs to batches of singletons packaged as a single job

(with all the extra trouble this refactoring can intro-
duce).

Advance reservations (which are not yet widely available
if at all possible) will be necessary to ensure that a sufficient
number of cpu power will be available. Experiments are
planned ahead of time to allow for such reservations to be
made but their daily time boundaries cannot be very tight.

Another issue with the MPP platforms available on the
Grid that offer massive numbers of processors for high
throughput/massive task parallelism type of workloads is
that their I/O configuration and support for running scripts
can be limited. Case in point are the IBM Blue Gene/L sys-
tems (like NCAR’s Frost on the Teragrid) which share one
I/O node for a number of compute nodes and does not offer
a complete O/S environment on the compute node to sup-
port running a script. Full support for running shell scripts
on MPP compute nodes unfortunately may go against the
general philosophy of having them run a minimized O/S in
order to better perform when running closely coupled par-
allel codes.

5.4 ESSE in the Cloud
The emerging Cloud Computing infrastructure offers us a

different avenue we can pursue to augment the ESSE ensem-
ble size. Given our needs we are interested in the IaaS (In-
frastructure as a Service) form of Cloud Computing services.
In particular we have experimented with what is currently
the most easy to use IaaS system, Amazon’s EC2.

5.4.1 Scheduling ensembles
EC2 offers a set of tools that allow the provisioning and

booting of various Linux, Solaris and Windows Xen virtual
machine images (called AMIs) and allows the remote user
to login to them as an administrator and control them ac-
cordingly. There is also control over which ports each live
instance has open to the internal EC2 network as well as
the outside world. This level of complete control allows us a
wide variety of options on how to use EC2 provisioned nodes
for ESSE calculations:

• Creation of an independent on-demand cluster, with
its own master node and queuing system and remote
submission of jobs in the same way as for a generic
remote cluster/Grid environment.

• Addition of the EC2 nodes to the home cluster as extra
compute nodes. This has already been demonstrated
for GridEngine and we have been able to replicate it.
Condor also offers the ability to launch jobs on Ama-
zon EC2 nodes but the way that they are provisioned
(essentially as a job) and controlled is too restrictive
for our needs.

• Creation of a personal (Condor or SGE) private cluster
using MyCluster mixing local and EC2 resources.

• Dynamic addition of EC2 nodes to an existing cluster -
offered in product form by Univa (UniCloud) and Sun
(Cloud Adapter in Hedeby/SDM).

This last option automates the booting/termination of EC2
nodes based on queuing system demand, further minimizing
costs. Most of the options allow for minimal changes to the
generic SGE setup.
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Table 2: pert/pemodel performance (time to com-
pletion in seconds) on various EC2 instance types -
Opt stands for Opteron
site processor type pert pemodel cores
m1.small Opt DC 2.6GHz 13.53 2850.14 0.5
m1.large Opt DC 2.0GHz 9.33 1817.13 2
m1.xlarge Opt DC 2.0GHz 9.14 1860.81 4
c1.medium Core2 2.33GHz 9.80 1008.11 2
c1.xlarge Core2 2.33GHz 6.67 1030.42 8

5.4.2 I/O and computational issues
The I/O issues of the Amazon EC2 option are similar to

the Grid ones but compounded by the fact that neither the
networking nor the disk hardware are geared towards high
performance computing. Similar solutions can be adopted,
with an emphasis on avoiding issues resulting from the rela-
tively low network bandwidth of EC2 to the outside world.
Any common staging areas can be provided either via NFS
exporting a persistent EBS volume or populating an on-
demand created parallel filesystem with data from EBS. In
the latter case extra work needs to be made to ensure that
the AMIs can function as clients for the parallel filesystem.

An idea of the times of EC2 instances running pemodel
and pert for various instance types is shown in Table 2.

In all the cases shown the instance type was fully utilized
(ie. 8 copies of pert/pemodel were run concurrently on a
c1.xlarge instance. The m1.small instance appears as a 1
core but is in fact limited to a maximum of 50% cpu utiliza-
tion, hence appearing as a half-core. The executables (and
software environment) were identical to those on the home
cluster. In each case the worst time of the batch is being
reported.

Cost-wise for example an ESSE calculation with 1.5GB
input data, 960 ensemble members each sending back 11MB
(for a total of 6.6GB) would cost: 1.5(GB)×0.1+10.56(GB)×
0.17+2(hr)∗20∗0.8 = $33.95 Use of reserved instances would
drop pricing for the cpu usage by more than a factor of 3.

5.4.3 Evaluating ESSE on EC2
There are quite a few clear advantages to using EC2 for

larger ESSE ensembles:

• For all intents and purposes the response is immediate.
EC2’s capacity is large enough that a request for a
virtual EC2 cluster gets satisfied on-demand, without
having to worry about queue times and backfill slots.

• The use of virtual machines allows for deploying the
same environment as the home cluster. This provides
for a very clean integration of the two clusters.

• Having the same software environment also results in
no need to rebuild (and in most cases having to revali-
date) executables. This means that last minute changes
(because of model build-time parameter tuning) can be
used ASAP instead of having to go through a build-
test-deploy cycle on each remote platform.

• EC2 allows our virtual clusters to scale at will: There
is a default 20 instance limit (which correspond to a
maximum configuration of 160 cores) but if needed it
can be increased upon request.

• Since the remove machines are under our complete con-
trol, scheduling software and policies etc. can be tuned
exactly to our needs.

At the same time use of EC2 is not without it’s problems:

• Unlike the case of shared state or national resources
that come out of research grant related allocations,
EC2 usage needs to be directly paid to Amazon.

• Amazon charges by the hour - much like cell-phone
charges usage of 1 hour 1 sec. counts as 2 hours. More-
over Amazon charges for data movement in and out of
EC2.

• The performance of virtual machines is less than that
of “bare metal”, the difference being more pronounced
when it comes to I/O.

• Unlike purpose-build parallel clusters, EC2 does not
offer a persistent large parallel filesystem. One can be
constructed on demand (just like the virtual clusters)
but the Gigabit Ethernet connectivity used through-
out Amazon EC2 alongside the randomization of in-
stance placement mean that parallel performance of
the filesystem is not up to par.

• Moreover, unlike national and state supercomputing
facilities, Amazon’s connections to the home cluster
are bound to be slower and result in file transfer delays.

6. EXAMPLE ESSE RESULTS FOR MON-
TEREY BAY

A large Office of Naval Research (ONR)-sponsored, multi-
institution coastal predictive skill exercise,the Autonomous
Ocean Sampling Network-II (AOSN-II), occurred in August-
September 2003 in the Monterey Bay region off central Cali-
fornia.The goal of this exercise was to initiate at-sea research
of an adaptive observing and prediction system, with the in-
tent to assimilate various data types, adapt the deployment
of platforms and allow the relocation of the system to other
regions. The Harvard Ocean Prediction System(HOPS) and
Error Subspace Statistical Estimation(ESSE) system were
utilized in real-time to forecast physical fields and uncertain-
ties, assimilate various ocean measurements(CTD, AUVs,
gliders and SSTdata), provide suggestions for adaptive sam-
pling, and guide dynamical investigations.

To exercise our new MTC implementation of ESSE, we re-
peated the calculations of AOSN-II. The ESSE forecast for
September 5, 00:00 GMT was initialized from an error now-
cast for September 3, 00:00 GMT. The background ocean
field on September 3, 00:00 GMT is a HOPS forecast simu-
lation which assimilates all available and calibrated data up
to September 2, 10:00GMT.

The dominant 600 eigenvectors of the posterior error co-
variance estimate for September 3, 0000GMT were utilized
to perturb the ocean fields. A white noise of an amplitude
proportional to the estimated absolute and relative errors
in the observations is added to this random combination,
in part to represent the errors truncated by the error sub-
space. An ensemble of forecast simulations, each forced by
forecast COAMPS atmospheric fluxes issued on September
2, was then carried out. These ensemble members were then
utilized to compute the standard deviations shown in Figs.
5,6.

Evangelinos, C., P.F.J. Lermusiaux, J.Xu, P.J. Haley, and C.N. Hill, 2009. Many Task Computing for Multidisciplinary Ocean 
Sciences: Real-Time Uncertainty Prediction and Data Assimilation (.pdf). Conference on High Performance Networking and 
Computing, Proceedings of the 2nd Workshop on Many-Task Computing on Grids and Supercomputers (Portland, OR,  
16 November 2009), doi.acm.org/10.1145/1646468.1646482.



Figure 5: ESSE uncertainty forecast for sea-surface
temperature (◦C)

Figure 6: ESSE uncertainty forecast for 30m tem-
perature (◦C)

7. FUTURE WORK
We plan to fine tune our ESSE workflows for production

using the Teragrid as well as test them on the Open Sci-
ence Grid. We would like to investigate the efficacy of a
data scheduler such as Stork to help us with prestaging in-
put data. We also plan to test the feasibility of a mixed
local/Grid/EC2 run employing MyCluster. Future more in-
volved experiments are expected to scale from 1000 to 10000
or more ESSE ensemble members (and even more acoustic
calculations). We are interested in seeing how queuing sys-
tems and resource managers handle such a workload in a
short time interval. Furthermore more realistic model se-
tups are expected to require the use of nested HOPS calcu-
lations which are executed in parallel - thereby introducing
the concept of massive ensembles of small (2-3 task) MPI
jobs. We plan to simplify the use of such setups via the use
of an XML driven validating graphical user interface [1].

Another area where MTC would be most valuable is the
intelligent coordination of autonomous ocean sampling net-
works. To achieve optimal and adaptive sampling [5, 9, 14,
22,24], large-dimensional nonlinear stochastic optimizations,
artificial intelligence and advance Markovian estimation sys-
tems can be required. Such complex systems are prime ex-
amples of MTC problems that can be combined with our
uncertainty estimations [18].

8. CONCLUSION
We described a new type of Many-Task Computing ap-

plication that is very relevant to Earth and Environmental
Science applications (and prototypical of a general class of
ensemble-based forecasting and estimation methods). We
introduced the concept of ocean data assimilation, discussed
the ESSE algorithm and described its MTC implementation
(and its variations along with their justification). Results
on a local cluster were presented along with a discussion of
the challenges of scaling out and solutions for doing so em-
ploying Grids and Clouds. I/O locality issues are among our
main concern. We believe that this type of ensemble based
forecast workflows can in the future represent an important
new class of MTC applications.
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