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Abstract
Complex dynamical models are used for prediction in many domains, and are useful
to mitigate many of the grand challenges being faced by humanity, such as climate
change, food security, and sustainability. However, because of computational costs,
complexity of real-world phenomena, and limited understanding of the underlying
processes involved, models are invariably approximate. The missing dynamics can
manifest in the form of unresolved scales, inexact processes, or omitted variables; as
the neglected and unresolved terms become important, the utility of model predic-
tions diminishes. To address these challenges, we develop and apply novel scientific
machine learning methods to learn unknown and discover missing dynamics in models
of dynamical systems.

In our Bayesian approach, we develop an innovative stochastic partial differential
equation (PDE) - based model learning theory and framework for high-dimensional
coupled biogeochemical-physical models. The framework only uses sparse observa-
tions to learn rigorously within and outside of the model space as well as in that
of the states and parameters. It employs Dynamically Orthogonal (DO) differential
equations for adaptive reduced-order stochastic evolution, and the Gaussian Mixture
Model-DO (GMM-DO) filter for simultaneous nonlinear inference in the augmented
space of state variables, parameters, and model equations. A first novelty is the
Bayesian learning among compatible and embedded candidate models enabled by
parameter estimation with special stochastic parameters. A second is the princi-
pled Bayesian discovery of new model functions empowered by stochastic piecewise
polynomial approximation theory. Our new methodology not only seamlessly and
rigorously discriminates between existing models, but also extrapolates out of the
space of models to discover newer ones. In all cases, the results are generalizable and
interpretable, and associated with probability distributions for all learned quantities.
To showcase and quantify the learning performance, we complete both identical-twin
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and real-world data experiments in a multidisciplinary setting, for both filtering for-
ward and smoothing backward in time. Motivated by active coastal ecosystems and
fisheries, our identical-twin experiments consist of lower-trophic-level marine ecosys-
tem and fish models in a two-dimensional idealized domain with flow past a seamount
representing upwelling due to a sill or strait. Experiments have varying levels of com-
plexities due to different learning objectives and flow and ecosystem dynamics. We
find that even when the advection is chaotic or stochastic from uncertain nonhy-
drostatic variable-density Boussinesq flows, our framework successfully discriminates
among existing ecosystem candidate models and discovers new ones in the absence
of prior knowledge, along with simultaneous state and parameter estimation. Our
framework demonstrates interdisciplinary learning and crucially provides probabil-
ity distributions for each learned quantity including the learned model functions.
In the real-world data experiments, we configure a one-dimensional coupled physical-
biological-carbonate model to simulate the state conditions encountered by a research
cruise in the Gulf of Maine region in August, 2012. Using the observed ocean acidifica-
tion data, we learn and discover a salinity based forcing term for the total alkalinity
(TA) equation to account for changes in TA due to advection of water masses of
different salinity caused by precipitation, riverine input, and other oceanographic
processes. Simultaneously, we also estimate the multidisciplinary states and an un-
certain parameter. Additionally, we develop new theory and techniques to improve
uncertainty quantification using the DO methodology in multidisciplinary settings, so
as to accurately handle stochastic boundary conditions, complex geometries, and the
advection terms, and to augment the DO subspace as and when needed to capture the
effects of the truncated modes accurately. Further, we discuss mutual-information-
based observation planning to determine what, when, and where to measure to best
achieve our learning objectives in resource-constrained environments.

Next, motivated by the presence of inherent delays in real-world systems and the
Mori-Zwanzig formulation, we develop a novel delay-differential-equations-based deep
learning framework to learn time-delayed closure parameterizations for missing dy-
namics. We find that our neural closure models increase the long-term predictive ca-
pabilities of existing models, and require smaller networks when using non-Markovian
over Markovian closures. They efficiently represent truncated modes in reduced-order-
models, capture effects of subgrid-scale processes, and augment the simplification of
complex physical-biogeochemical models. To empower our neural closure models
framework with generalizability and interpretability, we further develop neural par-
tial delay differential equations theory that augments low-fidelity models in their
original PDE forms with both Markovian and non-Markovian closure terms param-
eterized with neural networks (NNs). For the first time, the melding of low-fidelity
model and NNs with time-delays in the continuous spatiotemporal space followed by
numerical discretization automatically provides interpretability and allows for gener-
alizability to computational grid resolution, boundary conditions, initial conditions,
and problem specific parameters. We derive the adjoint equations in the contin-
uous form, thus, allowing implementation of our new methods across differentiable
and non-differentiable computational physics codes, different machine learning frame-
works, and also non-uniformly-spaced spatiotemporal training data. We also show
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that there exists an optimal amount of past information to incorporate, and provide
methodology to learn it from data during the training process. Computational advan-
tages associated with our frameworks are analyzed and discussed. Applications of our
new Bayesian learning and neural closure modeling are not limited to the shown fluid
and ocean experiments, but can be extended to other fields such as control theory,
robotics, pharmacokinetic-pharmacodynamics, chemistry, economics, and biological
regulatory systems.

Thesis Supervisor: Pierre F.J. Lermusiaux
Title: Professor, Department of Mechanical Engineering
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