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The problem of how to optimally deploy a suite of sensors to estimate the oceanographic
environment is addressed. An optimal way to estimate (nowcast) and predict (forecast)
the ocean environment is to assimilate measurements from dynamic and uncertain re-
gions into a dynamical ocean model. In order to determine the sensor deployment strat-
egy that optimally samples the regions of uncertainty, a Genetic Algorithm (GA) approach
is presented. The scalar cost function is defined as a weighted combination of a sensor
suite’s sampling of the ocean variability, ocean dynamics, transmission loss sensitivity,
modeled temperature uncertainty (and others). The benefit of the GA approach is that the
user can determine “optimal” via a weighting of constituent cost functions, which can
include ocean dynamics, acoustics, cost, time, etc. A numerical example with three glid-
ers, two powered AUVs, and three moorings is presented to illustrate the optimization
approach in the complex shelfbreak region south of New England. © 2007 Wiley Periodicals,
Inc.
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1. INTRODUCTION

The problem of accurately predicting the ocean tem-
perature and salinity fields for use by sonar perfor-
mance prediction algorithms is addressed (Abbot &
Dyer, 2002; Heaney & Cox, 2006; Robinson & Lermu-
siaux, 2004; Robinson, Lermusiaux & Sloan, 1998).
Current meso-scale oceanographic models have in-
corporated much of the relevant physics so that if ini-
tial and boundary conditions are known well, these
models can provide useful predictions of the ocean
temperature, salinity, and velocity fields. Recent de-
velopments in data assimilation (optimal interpola-
tion, extended Kalman filtering, and error subspace
methods) have shown that models can predict the
ocean state better with the inclusion of field data, and
the use of models can improve mapped fields gener-
ated from measured data.

The challenge to this situation is limited re-
sources. Working in the ocean is expensive and tech-
nically challenging. Methodologies that determine
ideal ways to measure the ocean with the fewest
wisely placed sensors are needed. An integrated
optimization-assimilation-modeling system is being
developed to perform optimal ocean sampling and
ocean prediction. The system involves the combina-
tion of three subsystems or algorithms: (1) an ocean
model with data-assimilation capabilities [in our case
the Harvard Ocean Prediction System (HOPS) (Haley,
Lermusiaux, Leslie & Robinson, 2006; Lermusiaux et
al., 2006; Patrikalakis et al., 2004; Robinson et al.,
1998)], with the Error Subspace Statistical Estimation
algorithm (Lermusiaux, 2004) (ESSE)); (2) an en-
semble of measurement platforms (i.e., moorings,
gliders, powered autonomous undersea vehicles);
and (3) a nonlinear constrained global optimization
algorithm, which determines the optimal placement
of these sensors. In this paper, we present the mea-
surement subsystems and the nonlinear constrained
global optimization subsystem.

The optimization approach is an application of
the Genetic Algorithm (GA) (Goldberg, 1989). The
GA solves complex global optimization (minimiza-
tion in our case) problems by generating a population
of individuals (possible solutions) and within each
successive population of individuals (iteration)
choosing the survivors based upon the value of the
complex cost-function surface. Mutation and cross-
over, as well as other analogies to natural selection,
are implemented to prevent the solution leading to a
local minimum. The implementation of the GA solu-

tion requires a model for the search parameter space
and the definition of a cost function to be minimized.
The parameter space will involve a vector for each
platform defining its search geometry. Examples of
vector values for a sensor deployment are initial po-
sition, initial direction, range of sample path, and
number and direction of turns. Once a sensor deploy-
ment scheme is defined (an individual in the GA no-
menclature) the cost function is evaluated using the
values from the oceanographic model that this par-
ticular deployment of sensors would sample. The
cost function is evaluated for this individual, and
then the GA generates another set of search laydowns
based upon these results. In order to define the global
cost function for the GA to optimize, a set of scalar
cost function constituents has been developed. The
solutions of the GA optimization are only as optimal
as the cost function that is defining them. It is a cur-
rent research program to build and define the best set
of cost functions for this problem.

Significant work has been done in the past 15
years on developing and deploying AUV sampling
networks (Curtin, Bellingham, Catipovic & Webb,
1993). The issues associated with optimal deploy-
ment and oceanographic sampling have also been
covered (Bellingham & Wilcox, 1996; Wilcox, Belling-
ham, Zhang & Baggeroer, 2001). Real-time, adaptive
experiments using AUVs and ocean models have
been conducted. Other powerful techniques for adap-
tive control of underwater assets based on coverage
metrics are described in Leonard (Leonard et al., 2006;
Ogren, Fiorelli & Leonard, 2004; Paley, Zhang & Le-
onard, 2006).

The outline of this paper is as follows. In Section
2 we use measurements and a fully data-assimilated
model from the ONR Shelfbreak PRIMER Experi-
ment (Linder, Gawarkiewicz & Pickart, 2004) as the
test-bench for the new methods we have developed.
This includes a description of the ocean model runs
that were used for optimization. In Section 3 the Ge-
netic Algorithm optimization for multiple sensor de-
ployment is presented and applied to these data-
driven model runs. Section 4 is the conclusion, where
plans for the future testing of this algorithm are dis-
cussed.

2. MODEL PROBLEM DEFINITION

In this paper, a data-driven model of the ocean in the
Middle Atlantic Bight region (shelfbreak south of
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Heaney et al.: Sensor Planning Optimization For Data Assimilation + 439

Bathymetry
150 0

100

50 —1000

Distance N-5 [km]
=

-100

-150
-100 0 100

Distance E-W [km]

Salinity
150

100

&0

Distance N-8 [km]
o

~100| I O

-150

-100 0 100
Distance E=W ki)

Figure 1.

Temperature

150 26
100 ”

Z 5o

@ 22

z

s 0 20

s

z =50

z 18

16

b
-100 0 100
Distance E-W [km]

T Uncertainty

Distance N=5 [km]

=100 0 100
Distimce E-W [km]

Illustration of the HOPS-ESSE simulations with assimilation of data from the ONR Shelfbreak PRIMER Ex-

periment. Shown are the bathymetry (m) and horizontal snapshots of the surface temperature (°C) and salinity (PSU) on
day 30 and of the modeled temperature uncertainty of the surface temperature (°C) on day 15.

New England) will be used to illustrate the new op-
timal adaptive sampling approach. This is a region of
high oceanographic variability that has been studied
by US oceanographers and ocean acousticians for the
past 15 years (Apel et al., 1997; Gawarkiewicz et al.,
2004). The shelfbreak is located 100 km offshore and
interactions of the shelfbreak front, Gulf Stream me-
anders, and wind-driven response to storms create a
complicated environment. The bathymetry for the re-
gion is shown in Figure 1(a). The model grid has been
rotated to align with the local isobaths.

Using measured environmental data (tempera-
ture, salinity, and density) from the Shelfbreak
PRIMER experiment from July 2006, a 30 day simu-
lation of the shelfbreak south of New England was
generated using the Harvard Ocean Prediction Sys-
tem (HOPS) along with data assimilation via the Er-
ror Subspace Statistical Estimation (ESSE) algorithm.

Journal of Field Robotics DOI 10.1002/rob

A significant amount of measured data went into this
model forecast, including a week of SeaSoar high-
resolution sampling, which resolved the fields in
terms of both the spatial and temporal correlation
scales Gawarkiewicz et al., (2004). The resulting sur-
face temperature and salinity fields (for day 30) are
shown in Figure 1 (upper right and lower left panels).
The remnants of a slope eddy are visible in the sur-
face temperature and salinity maps (at y=
-50 km N/S, x=-100 km E/W). The surface expres-
sion of the shelfbreak front is visible as the high
temperature/salinity gradient line at 0 km N/S in
the western half of the model domain. In the eastern
half, the shelfbreak front extends much further off-
shore, up to 100 km seaward relative to the western
portion of the model domain. To illustrate the HOPS-
ESSE estimate of ocean field uncertainties, the stan-
dard deviation of the surface temperatures of the en-
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semble of model simulations on day 15 is shown in
the lower right panel of Figure 1. On the shelf, the sur-
face temperature uncertainty is around 0.2 to 0.4°C.
Uncertainties are largest (above 1°C) around the sur-
face expression of the shelfbreak front and its eddies,
from about y=0 to —100 km, with a band of localized
uncertainty near y=-100 km N/S, where the shelf-
break front extends far offshore. Such complex time-
and depth-dependent ocean fields (temperature, sa-
linity, velocity) and their uncertainties will be used in
the estimation of an optimal sampling strategy in the
next section.

3. GENETIC ALGORITHM OPTIMIZATION

A numerical experiment was undertaken to demon-
strate the use of the nonlinear optimization algo-
rithm. The task is to optimally deploy eight sensors
for a period of 1 week in this simulation. For this
problem, we optimize the deployment of the follow-
ing assets: three fixed moorings, three slow moving
(30 cm/s) gliders, and two powered REMUS (Re-
mote Environment Monitoring UnitS Autonomous
Undersea Vehicles developed by Woods Hole
Oceanographic Institution) AUVs. The REMUS ve-
hicles are only deployed for the initial 24 h of opera-
tions. The optimization algorithm is tasked with de-
termining the best way to deploy all of these sensors
to optimally sample the simulated ocean variability.
The specifications of each platform for this par-
ticular numerical example are as follows:
® Moorings—fixed position (x,y) temperature
sensor for 7 days
® Gliders—drifting temperature sensor (with a
0.3 m/s velocity in addition to the local cur-
rents) deployed for 7 days. Input parameters
are x, y, and direction vector.
®¢ REMUS powered AUV  vehicles—
temperature sensor with a velocity of 4 m/s
deployed for 1 day (two 12 h legs with a
turn). Search parameters: deployment x, v,
and direction vector and turn at 12 h.

This ensemble of platforms leads to a parameter
search of 23 independent variables. The sampling
constraints for each platform were coded in MATLAB
and the cost function was defined, for use within the
MATLAB Genetic Algorithm Toolbox.

3.1. Cost Function Constituents

There are currently five constituent cost functions,
evaluated for a specific sensor path (x). The first is
the oceanographic variability. The specific function
is the negative average standard deviation [f
=-std(T(x))] of the measured temperature field for
each sensor. Intuitively, the GA optimization (mini-
mization) leads us to sensor sample patterns which
sample the most dynamic ocean regions including
fronts and eddies. Note that this function, as well as
many of the other cost function constituents used, is
not positive definite. The second cost function is the
oceanographic temperature range (related to the
strongest dynamical features). The negative average
of the maximum minus the minimum measured
temperature for each platform is wused [f
=—|max(T(x))—min(T(x))|]. This function seeks re-
gions where there is a very strong change in the tem-
perature field—an indication of strong fronts or
other ocean features. The third constituent cost func-
tion is the negative of the integrated uncertainty
along each platform path [f=-sum(U(x))]. The ESSE
scheme outputs an estimate of the uncertainty for
each region and for each field, in space and time.
This uncertainty-based function seeks to place sen-
sors at positions where the uncertainty estimate is
the largest, helping reduce the largest uncertainties
with subsequent measurements. The fourth cost
function is the transmission loss (TL) sensitivity. For
each platform path, the acoustic field is computed
for the first day of the measurement and for the final
day of the measurement (using the model-only
range-dependent sound speed field). The negative
average TL difference is the value of the cost func-
tion. This function seeks to measure places where
the sound speed field changes in such a way as to
impact the ocean acoustic propagation. Regions of
high ocean variability, where the acoustic field is not
affected, are not important for our use of the ocean
model as an input to sonar performance prediction.
The final cost function option is a distance potential,
where each platform is punished for close proximity
(approximately 1.5 to 2 times the baroclinic Rossby
radius of deformation in the region, or 20 km in this
situation) to other platforms, by the inverse of the
range. This function maintains sensor distance to
physically intuitive lengths and minimizes possible
collisions between sensor platforms.

The global scalar cost function is what the Ge-
netic Algorithm seeks to minimize. It is a function of

Journal of Field Robotics DOI 10.1002/rob
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the search parameters, in this case the positions and
directions of the sensor platforms. In defining the
“optimal” deployment configuration of this diverse
suite of sensors, it is up to the user to linearly com-
bine the defined cost-function components to build a
global scalar cost function for the GA to minimize.
This permits the user to weigh ocean dynamics,
ocean variability, model uncertainty, TL sensitivity,
etc. and produce a platform deployment plan that is
consistent with this view of optimal. The cost func-
tion E we will use is a weighted combination of the
five cost functions described above. The weighted,
normalized cost function E(x) is computed as fol-
lows:

W.f
B =3 0 (1)

where W; are weights and o(f;) are normalization
functions, each explained in the next paragraph. The
underlying principle is that for a specific survey
plan, or sensor geometry (x), a variety of constituent
functions (f) can be used at the discretion of the user,
each evaluated from the modeled values of the field.
In real-time, with data coming in, a residual vector
can be computed between the measured and the
modeled ocean fields can be included. This will re-
duce the value of measurements where the model is
correctly predicting the true ocean, even in dynamic
places.

The primary input by the user are the weights
W,. Prior to a genetic algorithm run, a large sam-
pling of the space is conducted and the variance (en-
ergy) of each of the cost functions is computed. The
cumulative cost function in E is then obtained by
summing the weighting value of each cost function
(W;f;) divided by the prior computation of the stan-
dard deviation of o(f;). This normalization takes care
of the difference in magnitudes of the various cost
functions as well as the units. Each cost function is a
dimensionless, normalized scalar, permitting the
user defined weighted sum to be the global cost
function used for optimization. Many options exist
for the constituent functions. The five that we have
used, which were introduced above, are next de-
scribed in more detail.

3.1.1.

The first constituent cost function is the oceano-
graphic variability. It is computed by taking the

Oceanosgraphic Variability o(T)

Journal of Field Robotics DOI 10.1002/rob

negative of the standard deviation of the measured
temperatures. The underlying principle here is that
we want to measure where the ocean is changing as
a function of space and time. Regions with oscillat-
ing temperature fields or strong fronts will yield
high standard deviations and the GA will prefer to
sample these locations. To illustrate the GA search
for this function, a simplified optimization with a
single REMUS vehicle is computed. The results are
shown in Figure 2 (upper-left panel) for day 30 of
the ocean model simulation. The REMUS vehicle
was placed by the GA such that it transected the
remnant of a warm-core eddying feature and then
moved into colder water. The standard deviation of
the measured temperature for this path was 2.851°,
which is large relative to other possible paths in the
model domain. This solution agrees well with our
intuition for where the most oceanographic variabil-
ity can be expected.

3.1.2. Oceanosgraphic Dynamic Range (Feature
Strength)

The oceanographic dynamics cost function measures
the temperature drop across the sensor path. Specifi-
cally it is the negative of the Max(T)-Min(T). This
cost function is based upon the notion that we want
to measure where the ocean has the strongest
changes in temperature. This cost function works ef-
fectively as a front detector. The results for the single
REMUS case are shown in Figure 2 with the tem-
perature differential across the path of -8.7°. This
path is very similar to the path found using only
oceanographic variability, in Section 3.1.1, except
that the path is moved slightly north to capture the
cold water just north of the eddy.

3.1.3. Oceanographic Uncertainty

One of the outputs of statistical ocean circulation
models (from a model ensemble), such as the HOPS-
ESSE system, is the forecasted uncertainty for each
specific location and variable as a function of time.
In order to improve accuracy, measurements should
be taken at positions (and times) that reduce these
uncertainties the most. This problem has been ad-
dressed for example by Yilmaz (Yilmaz, 2005; Yil-
maz, Evangelinos, Lermusiaux, & Patrikalakis, 2006)
and Lermusiaux (Lermusiaux, 2006). The definition
of the cost function is the negative of the integrated
uncertainty across the path. This makes the mini-
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Figure 2. Single REMUS results for ocean variability, ocean dynamic range, ocean uncertainty and transmission loss
sensitivity. The color maps are temperature (top two and bottom bottom right, °C) with color axis: [15 26] and tempera-

ture uncertainty (bottom left, °C) color axis: [0 2].

mum of the cost function the path in which the high-
est uncertainty is measured. The results for a single
REMUS deployment are shown in Figure 2 (lower
left panel). The REMUS sample position is overlayed
on the uncertainty map for day 15 of the HOPS-ESSE
simulation. Clearly the highest uncertainty at the
surface is where the shelfbreak front extends a large
distance offshore. The uncertainty cost function
complements the previous two cost functions. The
solution is to run the REMUS through the peak of
the uncertainty map both ways. The REMUS vehicle
path doubles back on itself to resample the region of
highest temperature uncertainty. This could be
eliminated by applying the distance potential con-
straints to regions where a single sensor has previ-
ously gone. Current implementation of the distance
potential is between separate sensors.

3.1.4. Temperature Minimum

Following optimal adaptive sensor planning and
data assimilation, one of the final products of the
oceanographic model is the prediction of sound
speed fields for acoustic computations. Acoustic en-
ergy refracts away from warm water and therefore
propagation is best in regions of a sound channel
axis or a sound minimum. An efficient proxy for
acoustic propagation, and therefore a candidate for a
cost function, is the minimum temperature mea-
sured by a particular sensor.

3.1.5. Transmission Loss Sensitivity

The final product of the anti-submarine-warfare
(ASW) system that uses oceanographic predictions is
a sonar performance prediction. It is the stated goal

Journal of Field Robotics DOI 10.1002/rob
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of this work that the oceanography should be accu-
rate enough to permit accurate acoustic propagation
modeling (Abbot & Dyer, 2002; Heaney & Cox, 2006;
Robinson, Abbot, Lermusiaux & Dillman, 2002; Rob-
inson and Lermusiaux, 2004). Ocean acoustic trans-
missions are commonly characterized by their trans-
mission loss (TL) as a function of range (Jensen,
Kuperman, Porter & Schmidt, 1997). TL is the at-
tenuation of an acoustic signal due to geometrical
spreading, absorption, and scattering. TL is sensitive
to the oceanographic environment (sound speed) as
well as the sediment, which along with the surface
forms the boundaries of the ocean sound channel.
Experimentally, TL is measured by taking the re-
ceived acoustic intensity (RL) and subtracting (in
dB) the source level (SL) within any prescribed fre-
quency band. Thus TL=RL-SL. Often in the litera-
ture, TL is positive (SL-RL). With accurate acoustic
predictions in mind, we seek to include acoustic
propagation sensitivity in the cost function for the
platform deployment plan. Clearly regions where
the acoustics are insensitive to the exact nature of the
oceanographic variability need not be measured.

To begin to investigate this problem, the trans-
mission loss (TL) was computed using the parabolic
equation [Navy Standard RAM (Collins, 1993)] for
each platform path (a 40 km path was used for the
fixed moorings). The three-dimensional sound speed
field and bathymetry (Figure 2) were used to gener-
ate two 2-D environments for the acoustic propaga-
tion computation. The TLs computed using the
sound speed profile (SSP) from day 1 and day 5
were then compared (difference averaged over range
and depth), to compute a single measure of the
acoustic sensitivity to oceanographic variability. This
method should be normalized so that bathymetric
differences and geo-acoustic differences between re-
gions are removed from the sensitivity computation.
In order to compare transmission loss and not be
dominated by the interference of multipath [which
Dyer (Dyer, 1970) showed should lead to a standard
deviation around 5.6 dB], we performed range
smoothing (10% of the range). This is equivalent to a
20 Hz bandwidth average at 200 Hz (Harrison &
Harrison, 1995). Range smoothing is significantly
more efficient than computing the broadband acous-
tic field. The cost function metric is the average of
the point-by-point difference for regions with TL less
than 110 dB. This last threshold is put in to limit the
regions of variability to be those where we expect

Journal of Field Robotics DOI 10.1002/rob
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signal. Note that in the nulls of a TL field, the differ-
ences could easily be 10-15 dB, and this result is in-
significant to the problem.

The GA result for a single sensor using only the
TL cost function is shown in Figure 2 (lower right
panel). This is not a location of high surface dynamic
oceanography nor of significant surface uncertainty.
This is because the TL depends on the vertical varia-
tions (not shown) of the temperature, salinity, and
pressure, and not so much on the surface values of
these properties (fields at depths were not used in
the previous GA examples). The value of the cost
function for this path is —11.041 dB, which is a sig-
nificant average TL difference (remember we are do-
ing the equivalent of a 20 Hz band averaging). To
illustrate the magnitude of this TL difference, in
many environments, the TL drops as a function of
range (cylindrical spreading) according to 10 log (r).
In this environment, a 10 dB difference in TL is an
order of magnitude difference in range of detection
of a quiet target (all other variables being fixed).
Thus a target would be detectable at 20 km rather
than 2 km for a 10 dB error in prediction.

To diagnose what happened to produce an aver-
age TL difference of 11 dB, the range- and depth-
dependent oceanography along the path of the ve-
hicle was examined. The mixed layer is deeper
(30-50 m) at t=0, and there is the presence of the
shelf-break front for the last 30 km of the path. The
shelf-break front is not affecting the net TL differ-
ence, however. It is clear that the deepened mixed
layer at t=0 leads to the situation where energy is
refracted towards the bottom and stripped out of the
water column. With a shallower mixed layer at t=5
days, and the presence of some warm water near the
sea-floor at 20-25 km, the sound is able to survive
the bottom interactions and propagation over the
shelf into deeper water.

This example illustrates the need to incorporate
acoustic sensitivity, or at least three-dimensional
ocean fields, in any oceanographic measurement and
model system, usually referred to as Ocean Observ-
ing and Prediction System (Lermusiaux, 2006). If this
particular portion of the environment is not well
modeled, acoustic predictions can be off by as much
as 15 dB.

3.1.6. Distance Potential

In the situation where multiple platforms are de-
ployed it is important to apply a constraint to the
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deployment scheme that does not permit the plat-
forms to overlap each other. Without this sort of con-
straint, the GA will attempt to put all of the sensors
in the same location, which minimizes the cost func-
tion. This constraint can be applied in two different
ways. The first is in the sensor deployment param-
etrization. A scheme could be devised to move a sen-
sor if another one was already there. This leads to
unphysical dependencies between variables in the
search space, in addition to being a challenge to pro-
gram. A simpler approach, the one taken here, is to
apply a distance potential and incorporate this into
the cost function (Leonard et al. 2006). Simply stated,
the distance potential cost function penalizes any
particular individual (a specific deployment scheme
of multiple platforms) if two or more of the plat-
forms come within a certain range of each other. If
the platforms stay beyond the specified potential
distance, there is no penalty. The potential distance
was chosen to be 1.5 times the baroclinic Rossby ra-
dius. The ocean is expected to be coherent within
this range and, if another sensor has measured this
area, there is no value in adding a second one. The
equation for the distance potential cost function is:

flrg) =2 +1 b)
ij

where 7, is the distance potential width and was
taken to be 20 km. The distance between each sensor
pair for all times is r;;. The distance potential there-
fore asymptotically approaches 1 for large r;;, and
grows exponentially when r;; <r,. By adding the dis-
tance potential to the cost function, the GA solution
naturally chooses solutions that have platforms re-

maining beyond the distance potential width 7,.

3.2. Multiple-Platform Combined Cost Function
Run

Prior to running the multi-platform, multi-
parameter cost function, we perform a simple ex-
amination of the topography of the cost function. In
general the cost function is a function of multiple
parameters (launch position, launch direction, turns)
and multiple vehicles. To examine the form of the
cost function, we will search over the initial position
of a single platform, which samples a 20 km path
oriented due North. The cost functions associated
with the temperature dynamics, the minimum tem-

perature, and the integrated uncertainty, as well as
the weighted sum of the normalized cost functions,
are shown in Figure 3. With uniform weighting, the
topology of each cost unction is visible in the com-
bined cost function. In particular, the shelf break
front minima in the STD T panel around (y
=0km, x=-150km) and the strong T-Uncertainty
minima (y=-120 km, x=110 km) are visible.

With the cost function constituents now defined,
a run of the GA for a full suite of eight sensor plat-
forms and a linear combination of all five cost func-
tions is conducted. The sensor suite includes three
moorings, simultaneously deployed with three glid-
ers for 5 days and two REMUS vehicles (for 24 h
only). Each of the first five cost functions ocean vari-
ability, ocean dynamics, ocean uncertainty, TL sensi-
tivity, and sensor range potential, was given an
equal weighting (Wi=1 for all 7). The sensitivity of
the solution to this weighting can be evaluated
through multiple GA runs, or can be estimated from
Figure 3. The ocean variability (and ocean dynamic
range, not shown) cost function is deepest near the
remnant of the gulf stream eddy; the ocean T uncer-
tainty is focused on the shelf-break front and the
temperature minima is generaly spread north-east of
the front.

The full GA solution is shown in Figure 4. The
proof that this is the optimal sensor deployment will
require a significant amount of Monte Carlo model-
ing and ocean data assimilation and is left for future
work. The results are qualitatively appealing, how-
ever. Note that all three moorings have been placed
directly on the shelf-break front (which passes over
them during the 5 days of deployment). The REMUS
vehicles both pass over manifestations of the break
and the gliders track large gradients with time. The
distance potential also appears to be performing its
task of maintaining sensor placement beyond a
Rossby radius (15 km in this example). The temporal
dependence of the ocean field strongly influences
the location of the moorings (which are fixed in
space) and the gliders (which are slowly drifting and
are driven by currents). The REMUS vehicles, on the
other hand, are quickly moving and therefore are
insensitive to time-dependent oceanographic effects.

Note that every sensor begins its survey in cold
water and ends the survey in warm water, highlight-
ing the effect of the min/max value in the cost func-
tion as well as the standard deviation. The exception
to this is platform 4 (a 24 h REMUS deployment),
which does the reverse.

Journal of Field Robotics DOI 10.1002/rob
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4. CONCLUSION

By combining model forecasts, nonlinear optimal
sensor deployment and data assimilation, a coupled
approach to optimally estimating the ocean environ-
ment is presented. The technique involves a nonlin-
ear constrained optimization utilizing the Genetic Al-
gorithm. The technique was applied to a simulated
example involving the placement of eight measure-
ment platforms in a dynamic region. Five different
constituent cost functions were developed and ap-
plied separately to this problem. The functions are
ocean variability, ocean dynamic range, ocean uncer-
tainty, sensor distance potential, and transmission
loss sensitivity. A major advantage of this technique
rests in the ability to add multiple normalized scalar
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cost functions, providing the user with the ability to
weight the final cost function based upon his own
specific needs.

One of the significant questions to be answered in
model-based optimization is how “optimal” is the so-
lution. Without an extensive set of measurements this
is difficult to verify. Note that this is still true if a
model is not formally utilized in the planning: one
cannot quantitatively determine if chosen measure-
ment sites are ideal without additional (large) data
sets. Another question relates to the optimality of the
solution computed by the GA algorithm. Even
though the algorithm is global and designed to avoid
local minima, its final solution is not guaranteed to be
the optimum of the chosen cost function. In addition,
the final generation of the GA depends on the rules
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Figure 4. Genetic Algorithm solution for three moorings,
three gliders, and two REMUS vehicles. Note how the
moorings (o) are located near the shelf-break front, the
REMUS vehicles and the gliders cross over major fronts.
The blue tracks are REMUS vehicles and the magenta
tracks are gliders.

chosen to determine how new generations are
formed during the optimization process. Nonethe-
less, there are counter-arguments to these two ques-
tions. First, the use of computational models to pre-
dict oceanic and acoustic states is quantitative and is
now beginning to provide more skill than guessing at
what the future ocean and acoustic conditions will be.
Similarly, the sampling strategies provided by our
GA approach so far are intuitively pleasing, combine
all of the features we wish to optimize, are consistent
with the deployment constraints and are obtained au-
tomatically and efficiently by a computer.

The examples provided here to to illustrate the
approach all used computationally simulated rather
than experimentally derived fields. To further evalu-
ate the capabilities and validity of the approach, real
at-sea exercises should be carried out. Such exercises
would sample the ocean using GA-based path plan-
ning and the GA would define its cost function based
on the real ocean measurements and the data-driven
real-time model predictions of ocean and acoustic
fields and uncertainties. Pretest surveys would be re-
quired to provide initial conditions for the model.
With the ocean model up and running, a flexible sam-
pling architecture would then be necessary. This
would hopefully include various surface ships for de-

ploying fixed moorings and deploying and recover-
ing AUVs. Glider deployment can be done at the start
of the test and the gliders can be guided via satellite
communications. Redeploying the gliders with sur-
face ships is a significant plus, but for large opera-
tional areas this can be very difficult. Acoustic propa-
gation measurements, both as data for assimilation
and/or post-test verification, would also be part of
this demonstration test. A comprehensive set of
oceanographic measurement (moorings/air XBTs)
could be used to validate the results, after the test.
The suite of measurements will provide the opportu-
nity, after the test, to perform a numerical study to
determine the value added to the ocean prediction for
each measurement.

The example field measurement optimization
that has been described here was designed to sample
variability and to sample regions where the model is
poorly constrained. This is only one of many possible
approaches to survey design. Because the ocean sup-
ports many physical and biogeochemical processes,
optimization of field measurements is not uniquely
defined because various scientific objectives would
each be consistent with different sets of optimization
criteria. Thus, a suitable oceanographic question
must be posed before an optimal survey can be com-
puted.

Note that only features having scales resolved by
the model can enter into the optimization. Consis-
tency between data and model is important, and can
determine the role of unresolved features (such as
nonlinear internal waves). This information can then
be used in continuing data collection, filtering, and
assimilation.

In the absence of a reliable model, the situation
may arise where the importance of a specific dynami-
cal effect or feature is to be determined, sometimes
called the classification process. An example is deter-
mining the scale length of dominant features. In these
cases, the statistical functions used in the example op-
timization do not provide the necessary information,
and other cost functions would need to be employed.
Estimating spatial scales using data from fixed and
moving platforms required careful analysis and is a
problem in its own right. Methods have been devel-
oped for such estimation (Zhang, Bellingham & Bag-
geroer, 2001), and for determining the measurement
capabilities of moving platforms for certain types of
processes (scales) (Wilcox et al., 2001). The capablities
of platforms as defined in prior work can be coupled
with knowledge of the resolved energy-containing
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scales (perhaps through an iterative or feedback
method) to constrain the optimization process. For
example, the distance potential constituent function
may be adjusted based on this, or an AUV /glider sur-
vey generation algorithm (i.e., lawnmower pattern
generator) could be tuned appropriately. In this paper
we have presented a methodology for automated
optimal sensor planning for data-assimilation in
dynamical ocean modeling. The solution involves
performing a Genetic Algorithm optimization simul-
taneously on a deployment of multiple sensors, with
the ability of using multiple platform types. The ver-
satity of the approach is the ability to use multiple
user defined scalar cost-functions with user defined
weights. Thus the user has the control to define what
is meant by “optimal” and the algorithm search for a
deploment scheme which optimizes the user defined
global cost function.
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