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Abstract— We develop and illustrate an efficient but rigorous
methodology that predicts the time-optimal paths of ocean
vehicles in continuous dynamic flows. The goal is to best utilize
or avoid currents, without limitation on these currents or on the
number of vehicles. The methodology employs a new modified
level set equation to evolve a front from the starting point of a
vehicle until it reaches the desired goal location, combining flow
advection with nominal vehicle motion. The optimal path of the
vehicle is then obtained by solving a particle tracking equation
backward in time. The computational cost of this method
increases linearly with the number of vehicles and geometrically
with spatial dimensions. The methodology is applicable to any
continuous flow and in scenarios with multiple vehicles. Present
illustrations consist of the crossing of a canonical uniform jet
and its validation using a classic optimization solution, as well
as swarm formation in more complex time varying 2D flow
fields, including jets, eddies and forbidden regions.

I. INTRODUCTION

Planning a path in a complex environment is a problem
as old as antiquity. Even then, prior knowledge, however
limited, was employed in predictions for such planning.
In contemporary science and engineering, modeling and
computational approaches are utilized to plan paths that
optimize an objective criterion. In many cases, the per-
formance optimization is done for autonomous vehicles;
the optimal plans are then provided to the vehicles which
can further adapt their plans as they execute their mission.
When the environment is the ocean, a highly dynamic and
multiscale system with considerable variability in both time
and three-dimensional space, the planning of optimal paths
is challenging. In addition, currents can be strong and much
larger than vehicle speeds, and the ocean geometry can be
complex, especially in the coastal zone. Finally, the number
and capabilities of ocean vehicles are increasing rapidly. As
a result, our motivation is to develop and illustrate efficient
but rigorous methodologies that predict the optimal paths of
swarms of ocean vehicles in dynamic ocean currents, without
any limitation on the currents or on the number of vehicles.

Path planning for autonomous underwater vehicles
(AUVs) in general aims to optimize at least one of the
following aspects of performance: i) travel time between two
given points; ii) energy spent by the vehicle; iii) safety of
the vehicle. Optimal navigation of autonomous vehicles in
the coastal ocean has become crucial for many applications,
from security and acoustic surveillance to the collection of
ocean data at specific locations for ocean prediction and
monitoring. In all of these applications, AUVs (gliders,
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propelled vehicles and other platforms) must be navigated
so that they optimize one or more of the above mentioned
performance criteria. In what follows, we will show that
if AUVs travel at nominal speed in a time dependent flow
field, our methodology will compute the exact fastest path
between any two locations with a computational cost that
grows linearly with the number of vehicles and geometrically
with spatial dimensions (instead of exponentially).

Results on planning the path of autonomous vehicles for
robotic applications have been obtained for several years
now. However, the literature on path planning in complex
realistic time-dependent flow fields is rather limited. Most
methods for path planning either fail when the environment
becomes complex, or are computationally expensive thus
making them unsuitable for real time applications with large
number of vehicles. Well established methods in robotic
path planning applications have not been designed to handle
situations with dynamic environments. A recent trend in
research on path planning methods has been to develop algo-
rithms which use the dynamic nature of the environment to
reduce the energy expended by the vehicle. A closely related
problem is to obtain paths which minimize the total travel
time of the vehicle when propelled at nominal speed. In [1],
the authors propose a genetic algorithm based on Darwinian
theories of natural selection for path planning in strong ocean
currents. A set of feasible paths is generated and these paths
are iteratively transformed by using genetic operators like
crossover and mutation. The path that minimizes a suitable
cost function is chosen. In [2], a path planning scheme based
on mixed integer linear programming (MILP) is presented.
This work focuses on the problem of adaptive sampling in
the ocean. Adaptive sampling refers to the task of predicting
the types and locations of ocean measurements that would be
most useful to collect [3]. The usefulness of measurements
is governed by an objective function and the path planning
algorithm finds a vehicle path along which the line integral of
this objective function is optimized. This problem is NP-hard
even though uncertainty fields are assumed to be stationary
and ocean currents are ignored. An application of the A*
search scheme for path planning of AUVs in the ocean is
described in [4]. In their work, energy optimal paths are
calculated in a simulated ocean environment with high spatial
variability in the form of different types of eddies. The effect
of different heuristic functions on the performance of the A*
scheme is analyzed. The main drawback of this A* search
is that the ocean currents are assumed to be steady. In [5],
Rapidly-exploring Random Trees (RRTs) are used to solve
the path planning problem. These trees are rooted at the start
and the goal locations and are incrementally built to explore
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the space around them, using a greedy heuristic. RRTs have
been widely used in robotic path planning, particularly in
situations with dynamic obstacles. This randomized approach
to path planning has also been used for underwater vehicles
to obtain obstacle free paths [6].

An alternate path planning technique based on potential
field algorithms is described in [7]. These algorithms employ
artificially generated potential fields on obstacles and on the
goal to compute a safe path for the vehicle. Although this
method works particularly well in avoiding obstacles, it tends
to produce paths which are not globally optimal and that do
not account for all flow variabilities.

Path planning for underwater gliders using a variational
calculus approach is discussed in [8]. The authors derive
‘ray’ equations for routing gliders through steady velocity
fields. Under these restrictions, their method is similar to
ray tracing for non-dispersive waves. In [9], a first order
fast marching scheme is introduced. This scheme solves
the discretized Hamilton-Jacobi equation for a trajectory
optimization problem in steady fields. The fast marching
algorithm for continuous trajectory optimization is similar
to a continuous version of Dijkstra’s algorithm.

Jarvis [10] introduced a wavefront expansion algorithm for
obstacle avoidance using ideas of the ‘distance transform’
methodology [11]. Distance transforms have been widely
used for path planning in stationary fields. This approach
propagates a distance wave through the domain, from start to
goal. The shortest path to the goal is then traced by following
the steepest descent. A comparison of A* search, RRTs and
distance transforms is presented in [12].

A continuous approach to path planning in a field of
currents is presented in [13]. The paper describes a fast
marching algorithm for path planning using anisotropic cost
functions. Directional constraints such as those enforced
by ocean currents are taken into account using these cost
functions. Two main drawbacks of the scheme are that it only
accommodates linear energy cost functions and it can lead
to infeasible paths in the presence of strong ocean currents.
In [14], the scheme is improved to yield better results for
vehicle motion in such strong currents. The technique uses
a ‘symbolic wavefront expansion’ to calculate shortest time
paths and also determines the departure time of the vehicle
from the starting point. More recently, [15] introduces a
‘sliding wavefront expansion’ technique for path planning
in strong currents. The algorithm combines appropriate cost
functions with continuous optimization techniques to guar-
antee the existence of a feasible path.

In [16], the authors study the same problem which we
are interested in. The problem is to steer a vehicle from its
initial position to a desired target position in minimum time.
Optimal vehicle trajectories are computed using a modified
iterative extremal field approach that indirectly solves a
Hamilton Jacobi Bellman equation for the feedback control
law using Euler-Lagrange equations and a two point bound-
ary value problem. Our goal here is to derive a methodology
that solves differential equations, providing the rigorous ex-
haustive solution while still being computationally efficient.

In what follows, in Section II, we formally define the
problem we wish to solve and introduce relevant notation.
In Section III, we describe level set methods and provide
a theorem that we employ for time optimal path planning.
In Section IV, we describe our algorithm and its numerical
implementation. In Section V, we first validate the method
using simple test cases and then present its results for
swarm formation in complex time varying 2D flow fields,
including jets, eddies and forbidden regions. Conclusions and
directions for future work are in Section VI.

II. PROBLEM STATEMENT

Let x denote a position vector in space (Fig. 1). Consider
the motion of a vehicle in a time dependent external velocity
field given by V(x, t). Let xs and xf denote the position
vectors of the starting location and desired goal of the vehi-
cle, respectively. Let the nominal speed of the vehicle with
respect to the velocity field be a constant F . We wish to steer
the vehicle from xs to xf in minimum possible time. In other
words, we wish to predict the headings of the vehicle that
will minimize its travel time. For convenience, we assume
xs to be the origin of the coordinate system. In this study,
we assume that the distance traveled by the vehicle is much
larger than its dimensions and neglect the hydrodynamic
interactions of the vehicle and the flow. We also assume that
the predicted flow is exact. The effects of accounting for
flow uncertainties using dynamically orthogonal equations
[17], [18] will be reported elsewhere.

Fig. 1. Vehicle motion in time-varying flow field

III. PATH PLANNING USING LEVEL SET METHODS

In this section, we describe the level set method and its
application to path planning, and provide a theorem that
sets the foundation of our approach. Consider a front ∂Ω,
in two or three dimensions. A simple example of such
a front is the interface between two fluids. The simplest
way to represent the front is by using a discrete set of
points or ‘markers’. This explicit representation involves
approximating an infinite set of points on the front by a
finite number of points assuming that they characterize the
behavior of the front. This method of front representation
is also called marker or string method [19]. An alternate
representation is to assume that the front is an isocontour
of a suitable function. A level set of a function f(x),
x ∈ Rn is then defined as the set of points at which the
function takes a given constant value. Mathematically, the
level set of f(x) is the set, {x|f(x) = C}, where C is a

167



given constant. This is an implicit representation of the front.

Level set methods are used to add dynamics to the implicit
front and to capture the interaction between surface motion
and the fluid forcing [21]. They were originally designed to
solve problems related to fluid-interface motion [20]. They
enable interface tracking in systems where front evolution is
intricately connected to various physical properties of the
system. These methods use an implicit representation of
the interface and are formulated by an initial value partial
differential equation. A Hamilton-Jacobi approach can be
used to derive this equation that governs the propagation of
the front or interface [19]. Therefore, the level set equation
is a Hamilton-Jacobi equation. Level set methods can also
be used to compute and analyze the motion of an interface
in a velocity flow field. An example of the use of level set
approaches in the ocean is the mapping of ocean data in
complex regions [22]. We will employ an implicit represen-
tation for the front because of the numerous advantages it
offers over an explicit one [21].

In an explicit representation of the front, the trajectory of
each marker particle xi evolves according to (1).

dxi
dt

= U(xi) (1)

where U(xi) is the total marker velocity at xi. We remarked
earlier that the implicit front representation uses the concept
of level sets of a suitable function. The choice of this function
is somewhat arbitrary. The most common type of function
used for this purpose is the signed distance function, denoted
by φ(x). As the name suggests, a distance function, d(x), is
the shortest distance from point x in space to the front ∂Ω.
Mathematically,

d(x) = min
xi

|x− xi|, for all xi ∈ ∂Ω (2)

A signed distance function, is defined as:

φ(x) =

{
d(x), if x is outside the front
−d(x), if x is inside the front

(3)

For every point xi on the front, φ(xi) = 0. Consequently,
the front is implicitly represented as the zero level set of
φ(x). Signed distance is a preferred choice for the implicit
function because it is smooth and avoids steep gradients
in the isocontours. The idea of level set methods is to
evolve φ, whose zero level set always corresponds to the
front. Since φ(x) changes with time as the front evolves,
it is also a function of time t. We shall occasionally write
φ(x, t) simply as φ with the understanding that it denotes a
time-varying scalar field in space.

Theorem: Let T (y) denote the minimum time in which
a vehicle can reach y, if it starts from x = 0 at t = 0, at
nominal speed of constant magnitude F in a velocity field
given by V(x, t). Consider the evolution of φ(x, t) according
to the following initial value partial differential equation:

∂φ(x, t)

∂t
+ F |∇φ(x, t)|+ V(x, t) · ∇φ(x, t) = 0 (4)

Marker

Particle

Fig. 2. Level Sets of φ: Tangential and Normal directions

with
φ(x, t = 0) = ||x||2 (5)

where || • ||2 stands for the L-2 norm. Then,
(a) φ(y, T (y)) = 0 and @ t < T (y) such that φ(y, t) = 0.
(b) The optimal path is governed by:

dx

dt
= −V(x, t)− F ∇φ(x, t)

|∇φ(x, t)|
(6)

integrating backward in time starting from y.
Sketch of Proof: (a) The equation describing the evolution
of a front in an externally generated velocity field V(x, t),
is given by the level set equation, (7), [21]:

∂φ

∂t
+ V(x, t) · ∇φ = 0 (7)

Now, let us assume that in addition to the external velocity
field, the front also moves in a direction normal to itself at
a constant speed, F (> 0). In other words, this component
of the front’s motion can be thought of as an internally
generated velocity field, F n̂. Since n̂ = ∇φ

|∇φ| , we get,
n̂·∇φ = ∇φ

|∇φ| ·∇φ = |∇φ|. Therefore, the governing level set
equation for a front which moves normal to itself at constant
speed F , in an external velocity field V(x, t) is given by (4).

This front is implicitly represented as the zero level set of
the function φ(x, t). The initial condition (5) in the theorem
ensures that the zero level set is initially, a point located
at the origin. The level set is a closed hyper-surface which,
at the initial time, has a singularity at the origin. As time
progresses, this level set evolves according to (4).

Let us introduce an imaginary vehicle P , that stays on
the front at all times. In other words, this point vehicle P
experiences the same flow field V(x, t) as the front and has
a speed F in a direction normal to the level set. This vehicle
is analogous to a fixed ‘marker’ particle on the front. Let the
path of this vehicle be denoted by x(t). Since the vehicle is
advected along with the zero level set, it is always located
on the zero level set, and we have,

φ(x(t), t) = 0 (8)

T (y) is the minimum possible time in which a vehicle can
reach point y. For any path taken by the vehicle to reach
y, we can construct a front which moves in the same way
as the vehicle so that the vehicle always stays on the front,
using (4). Following the discussion in the previous paragraph,
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whenever x(t) = y, i.e. whenever the vehicle reaches y, we
get, φ(y, t) = 0. T (y) is simply the minimum of all such
times, t, and therefore, φ(y, T (y)) = 0. This completes the
proof of the first part of part (a) of the theorem.

For the second part of (a), it suffices to show that T (y)
is minimum when the level set evolves normally to itself.
In other words, we need to show that the heading of the
vehicle at every time is the normal to the zero level set
passing through the vehicle location at that time. To do this,
we assume that the vehicle heading direction is a linear
combination of the unit vectors in the tangential (t̂) and
normal (n̂) directions (Fig. 2). We re-write the level set
equation under such a heading of the vehicle and write down
expressions for T (y). We argue then, that to minimize T (y),
the component of ĥ along t̂ must be zero. This terminates
the proof of (a).

(b) The total velocity of the vehicle P has two compo-
nents: the advection due to the flow field, V(x, t), and its
nominal motion in a direction normal to the level set, F n̂.
This gives:

dx

dt
= V(x, t) + F n̂ = V(x, t) + F

∇φ(x, t)

|∇φ(x, t)|
(9)

with x(0) = 0 and x(T (y)) = y. Thus, if we solve (9)
backward in time, i.e. with x(0) = y and x(T (y)) = 0,
both components of velocity are reversed and this leads to
(6). Hence, the optimal path can be computed by solving (6)
backward in time, starting from y. This completes the proof.

In conclusion, the solution to our fastest path planning
problem is defined by the solution of our modified level set
equation (4) up to time T (y) and by the corresponding head-
ings along a path reaching y at that time, starting at x = 0
and always remaining normal to the evolving modified level
set from t = 0 to t = T (y). We note that there are several
corollaries and remarks to this theorem, considering variable
vehicle speeds, specific flow field properties, multiple arrival
times and feasibility of the paths. For an example of the
latter, in certain flow fields, some end points can not be
reached in finite time and our method would provide this
conclusion. All of these corollaries and remarks, as well
as relations with classic control theory, have been studied
[23] and will be reported elsewhere. Specific relationships
with Hamilton-Jacobi-Bellman equations and applications to
planning in 3D-space time-dependent currents are developed
in [23], [24]. Next, we present a computational algorithm for
path planning using our modified level set equation.

IV. ALGORITHM AND NUMERICAL IMPLEMENTATION

A. Algorithm

We now outline an algorithm for path planning in time de-
pendent flow fields using the level set method. The algorithm
has the following two steps:

1. Forward Level Set Evolution: We evolve a wavefront
normal to itself in the dynamic flow field, from the starting
point of the vehicle (xs = 0) and track the evolution of this
wavefront until the first time it reaches the goal (xf ). For
a given external flow field, this wavefront is a set of points

which are ‘furthest away’ a vehicle can reach at the current
time, from xs. The evolution of the wavefront is governed
by the level set equation (4) with the initial conditions (5).
Initially, the zero level set is a point at the origin. To resolve
this numerically, we can assume the initial level set to be a
circle centered at the origin, with radius approximately equal
to the size of the grid and account for this initial motion
analytically.

2. Backward Particle Tracking: Once the wavefront
reaches the goal, the rest of the algorithm tries to identify
which points on the intermediate wavefronts correspond to
the path which terminates at the destination, in minimum
time. In other words, we ‘track’ the path of the vehicle
by solving particle tracking equation (6) backward in time
starting from x = xf at t = 0 to x = 0 at t = T (xf ).
The trajectory of the particle obtained by solving (6) is the
time optimal path of the vehicle. As concluded earlier, the
normals to the zero level set at the location of the particle,
n̂(x, t) are the optimal heading directions of the vehicle at
every time t. Next, we discuss the details of the numerical
implementation of the algorithm.

B. Numerical Schemes

Forward Level Set Evolution: We discretize (4) in time
using a fractional-step method as follows:

φ? − φ(x, t)

∆t/2
= −F |∇φ(x, t)| (10)

φ?? − φ?

∆t
= −V

(
x, t+

∆t

2

)
· ∇φ? (11)

φ(x, t+ ∆t)− φ??

∆t/2
= −F |∇φ??|, (12)

which can also be written as

φ(x, t+ ∆t)− φ(x, t)

∆t
=− F |∇φ(x, t)|+ |∇φ??|

2

−V

(
x, t+

∆t

2

)
· ∇φ?

(13)

(10) and (12) are spatially discretized using a first-order
upwind scheme. (11) is solved using a second-order Total
Variation Diminishing (TVD) advection scheme, on a stag-
gered C-grid [25]. At every time level, the zero-level set is
extracted as a set of discrete points, pφ(t) using a contour
algorithm. At each of these points, the velocity is also saved,
to be used in the backward calculation for the optimal path.

Backward Particle Tracking: The discrete zero-level set
points, pφ(t), extracted from the forward calculation at each
time step, form a piece-wise linear contour of the maximum
reachable set at time t. Since we only have information on
these contours, the first step is to ensure that the starting
point is on the present contour. Thus, first we calculate x̂f ,
the minimum projection of xf onto the piece-wise linear
level set contour at time T (xf ) (i.e. find the closest point on
the piece-wise linear contour to xf ). Starting at this point,
the backward path from these contours are calculated by
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discretizing (6) as:

x(t−∆t)− x(t)

∆t
= −V(x, t)− F ∇φ(x, t)

|∇φ(x, t)|
. (14)

However, due to the discrete nature of the extracted curves,
each new vehicle location will not fall exactly on our piece-
wise linear level-set representation, and we will have to
perform the minimum projection again. Our solution method
is then as follows:

1) Find x̂(t), the minimum projection of x(t) on to the
piece-wise linear level set contour at time t.

2) Calculate the outward pointing, weighted normal, n̂w,
at x̂(t) on the level set contour formed by pφ(t).
The normal is weighted as follows: if x̂(t) is at the
midpoint of the line joining two points, then n̂w is
exactly perpendicular to this line; whereas if x̂(t) is
exactly on a point in pφ(t), then n̂w is the average of
the normals of the two lines originating from that point.

3) Calculate x(t−∆t) = x̂(t)−∆t [F n̂w + V(x̂(t), t)].
4) Repeat steps 1-3 until the final saved level set is reached.

C. Discussion

(i) In our present scheme, the time discretization of the
forward and backward schemes is not consistent. While the
error will be small O(∆t), accuracy would be improved
if, for example, a fully implicit scheme is used in the
forward equations, and the present scheme (14) is kept for
the backward calculation.

(ii) An alternative approach to extracting the zero-level set
contour at each time is to, instead, save the crossing times at
the grid locations. This approach has a clear memory/storage
advantage in three dimensions and we have implemented it
for real ocean fields [23], [24]. However it complicates the
data-structure if |V(x, t)| > F since multiple crossing times
are stored at some grid points.

(iii) (4) can be solved efficiently by using narrow band
level sets [19]. This scheme has been implemented [23] and
its details and results will be reported elsewhere.

(iv) The worst case computational cost of this algorithm
is of the order of the number of spatial grid points used.
This is a significant improvement over using a network based
approach for path planning in time dependent flows where
the worst case computational cost is exponential with the
number of grid points.

V. RESULTS

In this section, we illustrate the performance of our path
planning algorithm by means of a few simulations. In the first
example, we consider a relatively simple flow field, a uniform
jet. To illustrate the optimality of the algorithm, we compare
the results obtained from the algorithm to those obtained
from formulating the problem as a nonlinear optimization
problem. In the second example, we apply the algorithm to
swarm formation in more complex time varying 2D flow
fields, which include jets and eddies. In the third example,
we add constraints to the planning, specifically, vehicles are
prevented from entering certain regions of the flow. For other

Fig. 3. Parameters involved in optimal crossing of a jet flow: jet speed V
and width d; Start (Circle), End (Star), distances from jet y1, y2; vehicle
speed F and headings θ1, θ2, α; resultant trajectory β.

examples with varied flow conditions and vehicle scenarios,
we refer to [23], [24].

A. Optimal Crossing of a Jet Flow

Consider a flow field (see Fig. 3) in the form of a uniform
jet, from left to right, of constant velocity V . This region
of the flow field is shaded in Fig. 3. There is no flow in
the rest of the domain. We wish to determine the minimum
time path of the vehicle from the starting location (marked
by a filled circle) to the goal (marked by a star). Consistent
with our earlier notation, we denote the nominal speed of
the vehicle with respect to the flow as F . Let us denote the
vehicle heading angles before reaching the flow field, in the
flow field, and after exiting the flow region respectively as
θ1, α and θ2. While the vehicle advances in the jet, it is also
advected due to the flow. Therefore, the actual direction of
vehicle motion is different from the heading. Let us denote
this angle by β. Notations for various distance parameters in
the problem can be read off from Fig. 3.

As per our algorithm, we propagate a wavefront from
the starting position of the vehicle according to the level
set equation (4) until the zero level set reaches the goal.
Then, we solve (6) backward in time to calculate the optimal
trajectory of the vehicle. Fig. 4 shows the shapes of the level
sets for this example. The level sets are primarily radial
expansions outside of the jet and advected to the right in
the jet. By continuity, this advection elongates the level sets
outside of the jet on the downstream side. As the desired
goal is downstream to the jet, the vehicle must make use of
this favorable current in order to reach its destination. The
vehicle path computed by our algorithm is shown by discrete
points on intermediate level sets in Fig. 4.

Validation: In order to verify the results of the algo-
rithm, we formulate this problem as a nonlinear optimization
problem. The constraints of this optimization problem are
obtained as follows. Let U denote the speed of the vehicle
in the flow, as seen by a ground observer. We have,

Ux = F sinα+ V (15)

and

Uy = F cosα (16)
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Fig. 4. Level sets and time-optimal path for jet flow in Fig. (3)

where Ux and Uy are the x and y components of the total
vehicle velocity, U. This gives,

tanβ =
Ux
Uy

= tanα+
V

F
secα (17)

Let X be the total downstream displacement of the vehicle,
i.e. in the x direction. We have, from trigonometry:

X = y1 tan θ1 + d tanβ + y2 tan θ2 (18)

Finally, the total travel time T can be written as the sum of
travel times in each individual regions. Hence, the optimiza-
tion problem we wish to solve is:

min T =
y1

F cos θ1
+

d

F cosα
+

y2
F cos θ2

(19)

s.t. X = y1 tan θ1+d

(
tanα+

V

F
secα

)
+y2 tan θ2 (20)

and
θ1, θ2, α ≥ 0

This optimization problem is solved numerically in
MATLAB R©. We present the results for F = 1, V = 1.2,
y1 = 0.2, y2 = 0.4, d = 0.2 and X = 0.8 in Table I. From
this, we find that the two methods yield the same solution,
up to very small differences. These differences in the angles
are due to small numerical and truncation errors in the level
set computation (e.g. limited grid resolution and so limited
angles precision).

B. Sudden Expansion in Coastal Ocean and Fluid Flows

We now apply our path planning algorithm to a more
realistic ocean flow field with dynamic jets and eddies, and
discuss the results. We consider a uniform barotropic jet (2D
flow in the horizontal plane) exiting a strait or estuary. Such
flows commonly occur in the coastal ocean and generally
lead to meanders and vortices as the jet exits the constriction.
This situation corresponds to a highly unsteady flow field.
If the width of the constriction is small enough, effects of

TABLE I
COMPARISON OF RESULTS OF LEVEL SET ALGORITHM AND

NONLINEAR OPTIMIZATION METHOD

Level Set Method Optimization Method
θ1 22.68◦ 22.66◦

θ2 22.68◦ 22.66◦

β 70.06◦ 69.99◦

α 45.90◦ 45.77◦

T 0.936 0.937

the earth’s rotation (Coriolis acceleration) can be neglected.
We refer the reader to Fig. 5 for two snapshots of the
flow field at two successive non-dimensional times. Shown
are flow streamlines overlaid on the magnitude (in color)
of the velocity field. In what follows, we will consider
the scenario of a swarm of underwater vehicles that are
released from a fixed point near the exit of the strait or
estuary (this start point could correspond to a harbor or larger
platform such as a ship or oil rig). The goal for the swarm
is to reach a predetermined formation in the open ocean in
fastest time, optimally using (or avoiding) the multiscale flow
structures as they occur along the way. The formation can for
example be selected based on security, surveillance, pollution
monitoring or ocean sampling considerations. In all cases,
our methodology will compute the optimal heading time-
series for each vehicle based on our predicted time-dependent
flow field. The computational cost is overall proportional to
the geometric dimensions of the formation pattern.

Another setting where this example can be useful is for the
monitoring of the flow in a pipe or channel which encounters
a sudden increase in cross sectional area. In that situation,
our example would illustrate how mobile sensors released at
the junction would have to be navigated to reach a specific
formation in fastest time. Such a formation could then be
designed to monitor possible pressure drops, release of toxic
material, status of pipe wall conditions or other properties.

In this example, we set the speed of the vehicles in still
water to F = 0.5. The maximum speed Umax of the flow
is 2.5 (see Fig. 5). The width of the inlet is one third of
the total width of the channel. The Reynolds number is Re=
(h2 )Umax

ν = 417 with h = 1
3 and ν = 10−3. In our scenario,

we enforce that the swarm of vehicles take a triangle shape at
final time, as shown in Fig. 6(a). The vehicles are released at
the lower edge of the inlet. Fig. 6(a) shows the optimal paths
of the vehicles computed using our path planning algorithm.
From Fig. 5(b), we can intuitively see that to reach the tip
of the triangle in shortest time, the vehicle must ride along
a favorable current. For the four end-points that are closest
to the inlet, the vehicles clearly utilize the upper and lower
re-circulation eddies. Overall, we find from Fig. 6(a) that the
algorithm correctly predicts the shapes of the optimal paths.

C. Ocean flows with forbidden regions

We now consider the situation where the swarm of vehi-
cles cannot enter specific regions, either because of safety,
hazardous conditions, security or naval considerations. We
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(a) (b)

Fig. 5. Snapshots of the flow field for a jet exiting a strait or estuary (sudden expansion/2D coastal flow) showing color maps of the total magnitude of
the flow velocity overlaid with streamlines (a) at the time of initial vehicle deployment and (b) near the final time of vehicle maneuvers in Fig. 6(a).

(a) (b)

Fig. 6. Optimal vehicle paths for 9 vehicles deployed from a single point (black dot) in the flow illustrated by Fig. 5. Results for two situations are
shown: (a) No constraints or forbidden regions: Vehicle paths then take full advantage of evolving jets and eddies to reach their final positions (colored
dots) in shortest time. (b) Two forbidden regions: Vehicles are denied access to the gray shaded regions. Our algorithm provides seven new time optimal
paths for the paths computed in (a) that are blocked while it correctly leaves unchanged the two paths that are not blocked.

refer to these regions as forbidden regions because they
cannot be entered by vehicles but they have no effect on flow
fields, i.e. currents are not affected by them. To implement
the forbidden regions in the forward calculation we replace
the right-hand sides of (10-12) with zero in the forbidden
regions. In the backward calculation, we only need to mask
V(x, t) in (14) with zeros in the forbidden regions since
the level sets evolved from the modified forward algorithm
have normals that correctly go around the forbidden regions.
Handling such obstacles is thus straightforward, which is a
major advantage of our approach.

Path planning with forbidden regions is illustrated on
Fig. 6(b). The physical setup is as in Fig. 6(a) but we
prevent the paths from entering the two regions shown in
gray. Collectively, these two regions block seven of the nine
optimal paths of Fig. 6(a). The new optimal paths for these
seven vehicles all ride the lower edge of the main jet, just
skirting the bottom of the second forbidden region. They then
ride down one eddy and up an adjoining eddy, Fig. 5(a), to
rejoin the main jet behind the forbidden regions. The two
paths from Fig. 6(a) that did not pass through the forbidden
areas remain unaffected by the forbidden areas.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we derived and described a new methodology
for time optimal path planning of autonomous vehicles nav-
igating through a time varying flow field. The methodology
uses rigorous partial differential equations and obviates the
need for heuristic or ad-hoc assumptions. It employs the level
set method to evolve a wavefront from the starting point of
the vehicle until it reaches the desired goal location, combin-
ing advection by the variable flow with the vehicle nominal
speed. The optimal path of the vehicle is then obtained by
solving a particle tracking equation backward in time. In
some sense, our approach combines fluid dynamic equation
ideas with control theory and path planning schemes. It also
rigorously and easily accommodates for forbidden regions
that only affect vehicles and for real obstacles that affect both
the flow and the vehicles, but can also handle other fluid-
like constraints. Importantly, the computational cost varies
linearly with the number of vehicles and geometrically with
the spatial geometric dimensions of the ocean domain (and
not exponentially). Of course, we focused mostly on the
planning of underwater vehicles but results apply to any other
flows and vehicle sizes, from airplanes or other air-vehicles
in large-scale atmospheric flows to small robotic devices in
quasi-microscopic flows.
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Although we have illustrated only a few examples in this
paper, the present methodology is quite versatile and we
have applied it to many idealized and realistic situations,
including cases with coordinated time-dependent formation
plans and complex coastlines [23], [24]. This latter appli-
cation of coordinated motion of autonomous vehicles has
been extensively developed recently. A first possible future
direction would indeed be to combine our methodologies
with the results of [26], [27], [28], [31], [32] on efficient
coordinated motions. Specifically, using our path planning
algorithm to coordinate the motions of multiple vehicles
only leads to a linear increase in our computational cost.
Secondly, the problem of avoiding physical obstacles that
are time-dependent is also important for the safety of ve-
hicles. This can be easily incorporated into our algorithm
by imposing certain boundary conditions around the time-
dependent obstacles while evolving the level sets forward
in time. Of course, time-dependent obstacles that alter the
flow field itself (such as ships) are also easily accounted
for. Thirdly, we have also started to investigate the effects
of uncertain flow field predictions [17], [18] on our path
planning problem. This is important since forecast flow fields
are uncertain, especially in oceanic applications. Finally,
another extension is to update the plan along the path using
onboard routing [29], [30].
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