
J. Fluid Mech. (2013), vol. 734, pp. 83–113. c© Cambridge University Press 2013 83
doi:10.1017/jfm.2013.458

Global analysis of Navier–Stokes and
Boussinesq stochastic flows using dynamical

orthogonality

T. P. Sapsis1,2,†, M. P. Ueckermann1 and P. F. J. Lermusiaux1

1Department of Mechanical Engineering, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA 02139, USA

2Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,
New York, NY 10012, USA

(Received 22 September 2012; revised 23 July 2013; accepted 31 August 2013)

We provide a new framework for the study of fluid flows presenting complex uncertain
behaviour. Our approach is based on the stochastic reduction and analysis of the
governing equations using the dynamically orthogonal field equations. By numerically
solving these equations, we evolve in a fully coupled way the mean flow and the
statistical and spatial characteristics of the stochastic fluctuations. This set of equations
is formulated for the general case of stochastic boundary conditions and allows for
the application of projection methods that considerably reduce the computational cost.
We analyse the transformation of energy from stochastic modes to mean dynamics,
and vice versa, by deriving exact expressions that quantify the interaction among
different components of the flow. The developed framework is illustrated through
specific flows in unstable regimes. In particular, we consider the flow behind a disk
and the Rayleigh–Bénard convection, for which we construct bifurcation diagrams that
describe the variation of the response as well as the energy transfers for different
parameters associated with the considered flows. We reveal the low dimensionality of
the underlying stochastic attractor.
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1. Introduction
The fluid flows encountered in realistic technological and natural settings are

usually characterized by complexity and uncertainty in their form and dynamics. This
complexity is expressed by the presence of multiple temporal and spatial scales on a
single realization, the existence of multiple attractors (e.g. multiple steady states) and
often the continuous transition of the system state between these different dynamical
regimes. An effective framework for the global analysis of systems presenting such
complexity is the probabilistic one, where, in the general case, the response is
characterized not through a single realization but through a continuously infinite set
of possible realizations accompanied with a probability measure that quantifies the
likelihood of their occurrence. However, the efficient computation of those statistical
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responses remains a very challenging problem, since flows with the above features
are usually connected with non-Gaussian statistics, strongly transient behaviour and
spatially inhomogeneous features. Examples occur in fluid mechanics and turbulence
(Monin & Yaglom 1971; Vincent & Meneguzzi 1991; Briscolini & Santangelo 1994;
Jaberi et al. 1996; Li & Meneveau 2005), ocean and atmospheric dynamics (Schertzer
& Lovejoy 1987; CPSMA 1993; Lermusiaux, Chiu & Robinson 2002; Auclair,
Marsaleix & De Mey 2003; Dee & Da Silva 2003; Lermusiaux et al. 2006; Sura
2010), gravity waves (Jansen 2003) and magnetohydrodynamics (Marsch & Tu 1997),
just to mention a few.

Various approaches have been developed for the characterization, description and
quantification of uncertainty in these complex systems. A large class of those
uncertainty quantification (UQ) methods rely on the assumption of ad hoc reduced-
order dynamics (fixed in time) such as the proper orthogonal decomposition (POD)
method (see e.g. Sirovich 1987; Berkooz, Holmes & Lumley 1993; Holmes, Lumley
& Berkooz 1996). Improved variants of POD have also been developed based on
linear-operator-theoretic model reduction methods, such as the balanced POD (Lall,
Marsden & Glavaski 2002; Ma, Rowley & Tadmor 2010) and the bilateral coupling
between variations in the fluctuation growth rate and the mean flow variations (Tadmor
et al. 2010, 2011). In all of the above methods, however, the static character of
the employed modes does not allow for an efficient set-up of a low-dimensional but
adaptive reduced-order model that can reproduce important features of the original
system such as strongly non-Gaussian statistics and transient instabilities.

A different approach is based on the closure of the stochastic problem by assuming
specific statistical structure for the response. The simplest approach along this line
is the Gaussian closure (Epstein 1969), a UQ scheme whose basic assumption is
equivalent with zero nonlinear energy fluxes between dynamical components (see
Sapsis & Majda (2013c) for an overview). Along the same spirit are the polynomial
chaos (PC) method and its variants, with the main difference being that the projection
is not performed over a Gaussian stochastic basis but rather on non-Gaussian elements
that come from a given family of orthogonal polynomials. The PC method has been
applied extensively in fluid flow analysis (Chorin 1974; Le Maitre et al. 2001; Xiu
& Karniadakis 2003; Knio & Le Maitre 2006), and various of its limitations for
intermittent instabilities have been discussed recently in Majda & Branicki (2012).

The purpose of this work is to develop and illustrate a new, efficient, non-
Gaussian order-reduction approach for the UQ of complex flows characterized by
low-dimensional stochastic attractors. The main tool that we will use will be a novel
reduction technique based on the application of the dynamically orthogonal (DO)
field equations (Sapsis & Lermusiaux 2009), a set of closed evolution equations
that describe (compute) the time-dependent reduced-order space where stochasticity
‘lives’ as well as its spatio-temporal and non-Gaussian statistical characteristics. Using
this theory and methodology, for specific initial condition probabilities or family of
perturbations, we can provide a precise and global description of all the possible states
that a flow can evolve into, as well as their relative probabilities. Additionally, we
are able to characterize the flow of energy or probability between these states and
their role on the chaotic character of the flow realizations that one obtains when the
problem is solved deterministically. Of course, our results are linked to uncertainty
quantification, but the present work is not concerned with the estimation of errors in
model equations (Lermusiaux 2006; Branicki & Majda 2012) nor in the errors due to
numerical discretization (e.g. Roache 1997).
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The structure of the paper is as follows. In § 2 we present the DO field equations
for the general case of a Boussinesq fluid in a three-dimensional domain in the
presence of convection and rotation. Special emphasis is given to the treatment of the
stochastic pressure that allows for significant reduction of the computational cost. We
also discuss the case of stochastic boundary conditions and illustrate how to convert a
problem of this kind into an equivalent one having deterministic boundary conditions
and the stochastic part of the boundary conditions acting as interior forcing in the
governing differential equations. Section 3 is devoted to the study of energy exchanges,
in the form of variance, between the mean flow and the stochastic fluctuations,
and among DO modal fluctuations. Specifically, we see that the (stochastic) energy
transfers occur between the mean flow and the DO modes, but also among pairs
and triads of DO modes. Additionally, dissipation acts on the mean flow but also
locally on each mode. In § 4, we study some specific cases of two-dimensional flows
presenting complex behaviour: the flow behind the cylinder and the Rayleigh–Bénard
convection. Both of these flows may develop, depending on the flow parameters,
numerous instabilities leading to stochastic attractors of equal dimensionality (Sapsis
2013). The statistical form of the solution of both configurations presents special
interest, since it leads to finite-dimensional stochastic attractors with strongly non-
Gaussian features. We provide bifurcation diagrams illustrating the transition to these
dynamical regimes in the parameter space as well as the associated energy transfers
between the modes and the mean flow.

2. Dynamically orthogonal Navier–Stokes and Boussinesq equations
In this section, we derive the DO equations for general Newtonian fluids, focusing

on the Navier–Stokes and Boussinesq equations. Let (Ω,B,P) be a probability
space, with Ω being the sample space containing the set of elementary events ω ∈Ω ,
B the σ -algebra associated with Ω , and P a probability measure. Let x ∈ D ⊆ Rn

denote the spatial coordinates and t ∈ T the time. Then every measurable map of
the form Φ(x, t;ω), ω ∈ Ω, will define a random field. In applications, the most
important cases are where n = 2 or 3 spatial dimensions; therefore, we will assume
that x ∈ D⊆ Rn, n= 2, 3. We define the mean value operator

Φ̄(x, t)= Eω[Φ(x, t;ω)] =
∫
Ω

Φ(x, t;ω) dP(ω), (2.1)

as well as the covariance operator

CΦ1(·,t;ω)Φ2(·,s;ω)(x, y)= Eω[(Φ1(x, t;ω)− Φ̄1(x, t))(Φ2(y, s;ω)− Φ̄2(y, s))
T],

x, y ∈ D, t, s ∈ T. (2.2)

In what follows, we will always assume that the stochastic fields involved are square
integrable and the covariance operator is always finite. For every two random fields
Φ1(x, t;ω) and Φ2(x, t;ω), we denote the spatial inner product as

〈Φ1(·, t;ω),Φ2(·, t;ω)〉. (2.3)

This notation is also used for sub-fields for the case of vector fields Φ
(e.g. multivariate state). For multivariate state vectors, a normalized (weighted) form of
the inner product is defined, as exemplified in the main text.

In what follows, we will use Einstein’s convention for summation, i.e.
∑

iaibi = aibi

except if the limits of summation need to be shown. A double index that is not
summed up will be denoted as aı̄ bı̄ .
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2.1. DO representation
Using a generalized form (each term is time-dependent and we do not assume
Gaussian statistics) of the Karhunen–Loève expansion, we have that every random
field Φ(x, t;ω) can be approximated arbitrarily well by a finite series of the form

Φ(x, t;ω)= Φ̄(x, t)+
s∑

i=1

Yi(t;ω)Φi(x, t), ω ∈Ω, (2.4)

where s is a sufficiently large non-negative integer and the Yi(t;ω) are s scalar random
coefficients. We define the stochastic subspace VS = span{Φi(x, t)}si=1 as the linear
space spanned by the s deterministic fields Φi(x, t). This is the set of modes that
describe where the dominant uncertainty exists at every time instant. Initially those
modes can be chosen as POD modes.

Clearly, representation (2.4) with all quantities (Φ̄(x, t), {Φj(x, t)}sj=1, {Yj(t;ω)}sj=1)
varying is redundant, and therefore we cannot derive independent equations from
the stochastic partial differential equation (SPDE) describing their evolution. Hence,
additional constraints are imposed in order to get a well-posed problem for the
unknown quantities. As shown in Sapsis & Lermusiaux (2009), an appropriate
constraint is the DO condition: the rate of change of the stochastic subspace is
orthogonal to itself, expressed as

dVS

dt
⊥ VS ⇐⇒

〈
∂Φi(·, t)

∂t
, Φj(·, t)

〉
= 0, i= 1, . . . , s, j= 1, . . . , s. (2.5)

Note that the DO condition implies the preservation of orthonormality for the basis
{Φj(x, t)}sj=1 itself since

∂

∂t
〈Φi(·, t),Φj(·, t)〉 =

〈
∂Φi(·, t)

∂t
, Φj(·, t)

〉
+
〈
∂Φj(·, t)

∂t
, Φi(·, t)

〉
= 0,

i= 1, . . . , s, j= 1, . . . , s. (2.6)

Inserting the DO representation (2.4) into the original governing differential equations
and using the DO condition (2.5), one can derive a set of independent, explicit
equations for all the unknown quantities. Specifically, we reformulate the original
SPDE to an s-dimensional stochastic differential equation for the random coefficients
Yi(t;ω) coupled with s + 1 deterministic partial differential equations (PDEs) for
the fields Φ̄(x, t) and Φi(x, t). These equations are derived in the next subsection
and, as we will see, they are not based on any assumptions for the form of the
stochastic coefficients or the basis Φi(x, t). In the derivation of the DO equations, the
main assumption is the dynamical orthogonality condition, which comes as a natural
representation constraint without any loss of generality for the representation.

Note that the dimensionality of the representation, s, depends not only on the
stochastic complexity of the response but also on the complexity of the nonlinear
dynamics. In the context of fluids, the dimensionality of the subspace as well as
adaptive criteria for its variation are discussed in Sapsis & Lermusiaux (2012). The
issue of the DO dimensionality in connection with its limitations to specific dynamics
(e.g. non-normal or strong nonlinear energy cascades) is discussed thoroughly in
Sapsis & Majda (2013a), where a simple triad example is considered to illustrate
the dynamical regimes where discrepancies will occur. For the present work, the
parameters considered are chosen so that the solution can be adequately represented
with a moderate number of DO modes.
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In the next subsections we will formulate the DO equations for the stochastic
Navier–Stokes and Boussinesq equations. For simple illustrations of the DO method in
simple systems, as well as comparisons with other methods (e.g. polynomial chaos, or
blended methods), we refer to Sapsis & Majda (2013a) (application of the DO method
on a triad nonlinear model) and Choi, Sapsis & Karniadakis (2013) (application of the
DO method on linear advection and Burger’s wave equation).

2.2. Stochastic Navier–Stokes and Boussinesq equations

We consider the general case of a weakly compressible Newtonian fluid in a rotating
frame of reference and under a Boussinesq approximation, i.e. we neglect the small
density variations in the momentum equations and in the first law of thermodynamics,
except in the buoyancy term and in the linearized equation of state. Rotation is
assumed to have a component only in the vertical direction (e.g. for localized
ocean motions on the Earth’s surface, this is the beta-plane approximation). After
some manipulations (whose details can vary with the application (e.g. Gebhart et al.
1988; Cushman-Roisin & Beckers 2010; Kundu, Cohen & Dowling 2012) – here we
employ the form of Härtel, Meiburg & Necker (2000)), one obtains the following
non-dimensional conservation of momentum, energy and mass for a three-dimensional
fluid in a domain D in a rotating frame at frequency f :

∂u
∂t
=−∇p+ 1√

Gr
1u− u ·∇u− f k̂× u− ρk̂+ τ̄ (x, t)+ τ̃ (x, t;ω)

≡Lu[Φ(x, t;ω);ω], (2.7a)

∂ρ

∂t
= 1

Sc
√
Gr
1ρ − u ·∇ρ ≡Lρ [Φ(x, t;ω);ω] (2.7b)

0= div u. (2.7c)

Here the Langevin notation is used, introducing stochastic forcing and allowing for
stochastic initial and boundary conditions. The non-dimensional random field variables
are: the flow velocity u = (u(x, t;ω), v(x, t;ω),w(x, t;ω)), the density ρ(x, t;ω) and
the pressure p(x, t;ω). (The dimensional variables, denoted with a hat, have been non-

dimensionalized using t̂ = t
√

ĥ/ĝ′, x̂= xĥ, û= u
√

ĝ′ĥ and ρ̂ = ρ̂min + ρ(ρ̂max − ρ̂min).)
The non-dimensional space and time variables are (x, t). The Grashof number
Gr = ĝ′ĥ3/ν̂2 is the ratio of buoyancy forces to viscous forces, and the Schmidt
number Sc = ν̂/κ̂ the ratio of kinematic viscosity ν̂ to molecular diffusivity κ̂ for
the density field, with ĝ′ = ĝ(ρ̂max − ρ̂min)/ρ̂avg being the reduced gravity and ĥ the
vertical length scale. The non-dimensional Coriolis coefficient under the beta-plane
approximation is f = f0+β0y and k̂ is the unit vector in the z-direction. The state vector
is given as Φ = (u,ρ)T. At first order, the Boussinesq flow is incompressible. We note
that the second prognostic equation for density originates from the thermodynamic
energy equation and the linearized equation of state (it arises from another form of
the Boussinesq approximation frequently used in ocean modelling, which retains the
temperature and salinity fields as state variables (see e.g. Cushman-Roisin & Beckers
2010; Haley & Lermusiaux 2010)). If the density is constant,

√
Gr ≡ Re, that is, the

square root of the Grashof number is replaced by the Reynolds number, and one
recovers the incompressible form of the Navier–Stokes equations.
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2.2.1. Stochastic equations and forcing
The solutions to (2.2.1) are random solution variables, driven by the statistics

of the initial and boundary conditions as well as by stochastic forcing in
the equations themselves. Here the latter are included only in the momentum
equation, in the form of an external stress acting on the fluid: the vector
τ̄ (x, t) = (τ̄x(x, t), τ̄y(x, t), τ̄z(x, t)) is its external mean (deterministic) component and
τ̃ (x, t;ω) = (τ̃x(x, t;ω), τ̃y(x, t;ω), τ̃z(x, t;ω)) is its zero-mean stochastic component,
for which we assume known the complete probabilistic information. To define this
stochastic component, we consider its covariance operator

Cτ̃ τ̃ (x, y)= Eω[τ̃ (x, t;ω)τ̃ (y, t;ω)T]. (2.8)

We then diagonalize the probability measure associated with τ̃ (x, t;ω) by solving the
following three-dimensional vector eigenvalue problem:∫

D
Cτ̃ τ̃ (x, y)τ̃ r(y, t) dy= λ2

r τ̃ r(x, t). (2.9)

This provides the principal directions over which the probability measure is spread
in the variance sense. Retaining only the first R terms, we obtain the following
approximation of the stochastic field τ̃ (x, t;ω):

τ̃ (x, t;ω)=
R∑

r=1

Zr(t;ω)τ̃ r(x, t)= Zr(t;ω)τ̃ r(x, t). (2.10)

Here R is defined by the order of truncation of the full series, and Zr(t;ω) are the
stochastic forcing coefficients given by

Zr(t;ω)= 〈τ̃ (·, t;ω), τ̃ r(·, t)〉. (2.11)

2.2.2. Boundary and initial conditions
We assume that the boundary conditions for the state Φ and for the pressure (if

needed) are defined by the linear differential operator B, i.e.

BΦ[Φ(ξ , t;ω)] = Φ̄∂D(ξ , t), ξ ∈ ∂D, (2.12a)
Bp[p(ξ , t;ω)] = p̄∂D(ξ , t), ξ ∈ ∂D. (2.12b)

The case of stochastic boundary conditions is discussed in the Appendix. We also
assume that the initial conditions are stochastic with known statistics given by

Φ(x, t0;ω)=Φ0(x;ω), x ∈ D, ω ∈Ω. (2.13)

2.3. Dynamically orthogonal equations
Using the DO representation, i.e. a generalized Karhunen–Loève (KL) expansion, we
now derive an exact set of dynamically orthogonal Navier–Stokes and Boussinesq
equations that govern the evolution of the mean, modes and stochastic coefficients.
The only approximation arises from the truncation of the DO representation to s(t)
terms. We first substitute the DO decomposition into the governing equations (2.2.1) to
obtain:

∂ū
∂t
+ dYi

dt
ui + Yi

∂ui

∂t
=Lu(ū+ Yiui, ρ̄ + Yiρi, p;ω), (2.14a)

∂ρ̄

∂t
+ dYi

dt
ρi + Yi

∂ρi

∂t
=Lρ(ū+ Yiui, ρ̄ + Yiρi;ω). (2.14b)
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It is from these equations (2.14) that we will derive the equations for the mean, modes
and their coefficients, using the expectation operator, spatial inner product and DO
condition. The spatial inner product for the multivariate state vector field Φ is defined
by

〈Φ1, Φ2〉 = 〈u1,u2〉 + cρ〈ρ1, ρ2〉
=
∫

D
(u1u2 + v1v2 + w1w2 + cρρ1ρ2) dx, (2.15)

where cρ is a positive coefficient. We note that there are several logical ways to
select this constant and that there are also many possible inner-product choices. These
are generic issues associated with reduction methods where some inner product or
norm needs to be heuristically chosen. In this case we choose to define the inner
product with respect to the velocity, since we are more interested in kinetic energy and
larger spatial scales (in contrast to a vorticity formulation, where enstrophy and the
smaller scales would be emphasized). Additionally, the constant cρ defines the relative
importance between uncertainty of the density and the velocity field. Here we pick
this constant so that the two fields involved have equally important contributions to
the inner product and thus to the uncertainty quantification. Such an expected-variance
normalization has been used successfully in many ocean applications (e.g. Lermusiaux
2006) and is logical based on our chosen KL decomposition (2.4).

2.3.1. Stochastic dynamics operator
We first expand the stochastic dynamics operator L in (2.14) to obtain

Lu[Φ(x, t;ω);ω] = −∇p+ 1√
Gr
1ū− ū ·∇ū− f k̂× ū− ρ̄k̂+ τ̄ (x, t)

+Yi

[
1√
Gr
1ui − ui ·∇ū− ū ·∇ui − f k̂× ui − ρik̂

]
− 1

2
YiYj[ui ·∇uj + uj ·∇ui] + Zr(t;ω)τ̃ r(x, t), (2.16a)

Lρ[Φ(x, t;ω);ω] = 1

Sc
√
Gr
1ρ̄ − ū ·∇ρ̄

+Yi

[
1

Sc
√
Gr
1ρi − ui ·∇ρ̄ − ū ·∇ρi

]
− 1

2
YiYj[ui ·∇ρj + uj ·∇ρi]. (2.16b)

Moreover, by inserting the DO representation in the continuity equation, we obtain

div ū+ Yi(t;ω) div ui = 0. (2.16c)

Since the last equation should hold for arbitrary Yi(t;ω), we obtain the equivalent form

div ū= 0, (2.16d)
div ui = 0, i= 1, . . . , s. (2.16e)

An important property of Navier–Stokes equations that allows for the efficient
applicability of the DO method is the polynomial nonlinearities in the evolution
operator L . This form of the operator allows it to be expressed in a polynomial series
that involves the unknown quantities of the DO representation (2.4). It is then possible
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to derive closed evolution equations whose right-hand sides depend on finite-order
moments of the stochastic coefficients, the DO modes and the mean field.

Note that, for the case of a non-polynomial or non-smooth operator L , one would
not be able to expand it into a polynomial series. The DO equations would still be
applicable, but in general it would not be possible to compute their right-hand side
efficiently using moments of the coefficients Yi. In such a case, a change of variable
or other transformations would be needed to remain efficient. If not, one would in
general need moments of the full fields Φ(x, t;ω), which, even though available,
would involve significant computational cost.

2.3.2. Stochastic pressure field
To derive an equation for the pressure, we need to understand its role in the

stochastic context of the operator L given above and DO representation. Pressure
(for a Boussinesq or incompressible flow with a deterministic conservation of mass)
is the stochastic quantity which guarantees that, for every possible realization ω, the
evolved field (u(x, t;ω), v(x, t;ω),w(x, t;ω)) is divergence-free (take the divergence
of the momentum equation (2.16a) and use the family of continuity equations to show
this). Therefore, the stochastic pressure should be able to balance all the non-divergent
contributions from the terms involved in the operator L (equation (2.16a)). To this
end, we choose to represent the stochastic pressure field as

p= p̄+ Yi(t;ω)pi − Yi(t;ω)Yj(t;ω)pij + Zr(t;ω)br. (2.17)

Based on the above discussion, the mean pressure field components should satisfy the
following equations:

1p̄= div(−ū ·∇ū− f k̂× ū− ρ̄k̂+ τ̄ (x, t)), (2.18a)
Bp[p̄(ξ , t)] = p̄∂D(ξ , t), ξ ∈ ∂D. (2.18b)

The stochastic terms in L multiplied with Yi(t;ω) will be balanced through the
following equations:

1pi = div(−ui ·∇ū− ū ·∇ui − f k̂× ui − ρik̂), (2.18c)
Bp[pi(ξ , t)] = 0, ξ ∈ ∂D, i= 1, . . . , s. (2.18d)

Similarly, for the stochastic terms multiplied by Yi(t;ω)Yj(t;ω) we will have

1pij = 1
2 div(ui ·∇uj + uj ·∇ui), (2.18e)

Bp[pij(ξ , t)] = 0, ξ ∈ ∂D, i, j= 1, . . . , s. (2.18f )

Finally, the forcing terms will be balanced through the family of equations:

1br = div τ̃ r(x, t), (2.18g)
Bp[qr(ξ , t)] = 0, ξ ∈ ∂D, r = 1, . . . ,R. (2.18h)

The above set of equations guarantees that, for every realization ω, the evolved field
u(x, t;ω) will be incompressible (in the Boussinesq sense).

2.3.3. Evolution of the mean fields ū(x, t) and ρ̄(x, t)
Taking the expectation of the governing equations (2.14) using the expanded right-

hand sides and continuity equations (2.3c,d), we obtain the set of deterministic PDEs
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for the mean field:
∂ū
∂t
=−∇p̄+ 1√

Gr
1ū− ū ·∇ū− f k̂× ū− ρ̄k̂+ τ̄ (x, t)

−CYi(t)Yj(t)

[
−∇pij + 1

2
ui ·∇uj + 1

2
uj ·∇ui

]
, (2.19a)

∂ρ̄

∂t
= 1

Sc
√
Gr
1ρ̄ − ū ·∇ρ̄ − 1

2
CYi(t)Yj(t)

[
ui ·∇ρj + uj ·∇ρi

]
, (2.19b)

0= div ū, (2.19c)

where CYi(t)Yj(t) = Eω[Yi(t)Yj(t)] and the following boundary conditions hold:

BΦ[Φ̄(ξ , t)] = Φ̄∂D(ξ , t), ξ ∈ ∂D. (2.20)

2.3.4. Evolution of the stochastic subspace basis ui(x, t), ρi(x, t)
If we multiply the governing equations (2.14) with the stochastic coefficients Yj,

then apply the expectation operator and use the DO condition as well as the governing
equations for the stochastic coefficients, we obtain the equations for the stochastic
subspace basis (i.e. DO modes):

∂ui

∂t
= Qu,i − [〈Qu,i,um〉 + cρ〈Qρ,i, ρm〉]um, (2.21a)

∂ρi

∂t
= Qρ,i − [〈Qu,i,um〉 + cρ〈Qρ,i, ρm〉]ρm, (2.21b)

0= div ui. (2.21c)

Here

Qu,i ≡ C−1
Yi(t)Yj(t)

Eω[Lu[Φ(x, t;ω);ω]Yj(t;ω)]

= −∇pi + 1√
Gr
1ui − ui ·∇ū− ū ·∇ui − f k̂× ui − ρik̂

−C−1
Yi(t)Yj(t)

MYj(t)Ym(t)Yn(t)

[
−∇pmn + 1

2
um ·∇un + 1

2
un ·∇um

]
+C−1

Yi(t)Yj(t)
CYj(t)Zr(t)[−∇br + τ̃ r(x, t)], (2.22)

with MYj(t)Ym(t)Yn(t) = Eω[Yj(t)Ym(t)Yn(t)] and

Qρ,i ≡ C−1
Yi(t)Yj(t)

Eω[Lρ[Φ(x, t;ω);ω]Yj(t;ω)]

= 1

Sc
√
Gr
1ρi − ui ·∇ρ̄ − ū ·∇ρi

− 1
2
C−1

Yi(t)Yj(t)
MYj(t)Ym(t)Yn(t)[um ·∇ρn + un ·∇ρm]. (2.23)

Moreover, we will have the following boundary conditions:

BΦ[Φi(ξ , t)] = 0, ξ ∈ ∂D. (2.24)

2.3.5. Evolution of the stochastic coefficients Yi(t;ω)
The set of evolution equations for the stochastic coefficients is obtained by

projecting the governing equations (2.14) onto each mode i, applying the DO condition
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and ensuring that each coefficient is of zero mean. The result takes the form of
coupled stochastic differential equations (SDEs):

dYi

dt
= Aim(t)Ym + Bimn(t)YmYn + Di(t;ω), (2.25)

where

Aim(t)=
〈
−∇pm + 1√

Gr
1um − um ·∇ū− ū ·∇um − f k̂× um − ρmk̂,ui

〉
+ cρ

〈
1

Sc
√
Gr
1ρm − um ·∇ρ̄ − ū ·∇ρm, ρi

〉
, (2.26a)

Bimn(t)=−
〈
−∇pmn + 1

2
um ·∇un + 1

2
un ·∇um,ui

〉
− cρ

1
2
〈um ·∇ρn + un ·∇ρm, ρi〉 , (2.26b)

Di(t;ω)=−Bimn(t)CYm(t)Yn(t) + 〈−∇br + τ̃ r(x, t),ui〉Zr(t;ω). (2.26c)

2.3.6. Efficient pseudo-stochastic pressures
We now show that, for common pressure boundary conditions, the number of

unknown stochastic pressures in (2.17) can be reduced to s + 1 by defining adequate
pseudo-stochastic pressures. Using § 2.3.1, we first note that each velocity DO mode
only needs a single scalar field to enforce the continuity constraint. Inspecting
(2.19) and (2.21), we therefore define new pseudo-stochastic pressures, which are a
combination of the mean, linear and quadratic modal pressures:

p̄′ = p̄− CYiYjpij, (2.27a)

p′i = pi − C−1
YiYj

MYjYmYnpmn + C−1
YiYj

CYjZr br. (2.27b)

With this definition, the quadratic modal pressures are eliminated from (2.19)–(2.21).
However, substituting the pseudo-pressures into (2.25), we find that the right-hand
side of (2.25) still retains terms of the form 〈∇pmn,ui〉, which are projections of
the quadratic stochastic pressure terms in the subspace. At first, this would indicate
that the quadratic modal pressures are still needed, but for commonly used boundary
conditions, the projections cancel, i.e. the inner products 〈∇pmn,ui〉 are zero. To show
this, we use the following form of the Gauss theorem (Zorich 2004). For every scalar
field α and every divergence-free vector field F, we have∫

D
∇α(x) ·F(x) dx=

∫
∂D
α(ξ)F(ξ) ·n(ξ) dξ . (2.28)

In particular, we have
∫

D
∇pmn · ui dD = ∫

∂D pmnui · n dξ . In many cases of interest, the
boundary integral vanishes for classic pressure conditions along the domain boundaries.
That is, for Dirichlet conditions on the mean velocity and Neumann conditions on
the mean pressure (e.g. for wall conditions), we have zero conditions on the velocity
modes and zero Neumann conditions on the pressure modes. For Dirichlet conditions
on the mean pressures and Neumann conditions on the mean velocities (e.g. for an
outlet), we have zero conditions on the pressure modes and zero Neumann conditions
on the velocity modes. Because of this property, the quadratic stochastic pressure term
in (2.25) can be dropped without any penalty. Thus, by defining new pseudo-stochastic
pressures, we have shown that we reduce the number of stochastic pressure unknowns
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from s2 + s + 1 to s + 1. We note that, if pseudo-pressure is used: (i) all quadratic
stochastic pressures can be recovered by solving the Poisson equations given in § 2.3.2;
and (ii) even though it is not necessary to have the three equalities

〈∇pmn,ui〉 = 〈∇pm,ui〉 = 〈∇br,ui〉 = 0, (2.29)

they will hold for the above classic boundary conditions, in which case the right-hand
sides of the evolution equations for the stochastic coefficients can be obtained using
the simpler forms

Aim(t)=
〈

1√
Gr
1um − um ·∇ū− ū ·∇um − f k̂× um − ρmk̂,ui

〉
+ cρ

〈
1

Sc
√
Gr
1ρm − um ·∇ρ̄ − ū ·∇ρm, ρi

〉
, (2.30a)

Bimn(t)=−1
2
〈um ·∇un + un ·∇um,ui〉 − cρ

1
2
〈um ·∇ρn + un ·∇ρm, ρi〉, (2.30b)

Di(t;ω)=−Bimn(t)CYm(t)Yn(t) + 〈τ̃ r(x, t),ui〉Zr(t;ω). (2.30c)

2.3.7. Summary of Navier–Stokes DO equations
We emphasize that property (2.29) allows the integration of the evolving DO fields

without computing the s2 quadratic pressures at each time step. In particular, it allows
efficient application of projection methods (Guermond, Minev & Shen 2006) for
the numerical solution of the DO form of stochastic Navier–Stokes and Boussinesq
equations (Ueckermann, Lermusiaux & Sapsis 2013).

To summarize, the Navier–Stokes DO equations that we solve in this paper consist
of:

(i) the mean-field equation, with the stochastic pseudo-pressure defined previously

∂ū
∂t
=−∇p̄′ + 1√

Gr
1ū− ū ·∇ū− f k̂× ū− ρ̄k̂+ τ̄ (x, t)

−CYi(t)Yj(t)

[
1
2
ui ·∇uj + 1

2
uj ·∇ui

]
, (2.31)

∂ρ̄

∂t
= 1

Sc
√
Gr
1ρ̄ − ū ·∇ρ̄ − 1

2
CYi(t)Yj(t)[ui ·∇ρj + uj ·∇ρi], (2.32)

0= div ū; (2.33)

(ii) the equations for the basis given by (2.21), with an updated Qu,i given by (written
in terms of the pseudo-pressure)

Qu,i =−∇p′i +
1√
Gr
1ui − ui ·∇ū− ū ·∇ui − f k̂× ui − ρik̂

−C−1
Yi(t)Yj(t)

MYj(t)Ym(t)Yn(t)

[
1
2
um ·∇un + 1

2
un ·∇um

]
+C−1

Yi(t)Yj(t)
CYj(t)Zr(t)τ̃ r(x, t); (2.34)

(iii) the stochastic ODE (2.29) with its coefficients given by (2.30a)–(2.30c).

For the solution of the coupled PDEs, we employ a conservative second-order
finite-volume scheme in physical space with new advection schemes based on total
variation diminishing methods. For the stochastic coefficients, we use time-marching
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schemes of first to fourth order. The details of the numerical scheme employed as well
as its convergence properties are presented in Ueckermann et al. (2013).

3. Stochastic energy exchanges
In this section we study energy exchange properties (in the sense of variance)

between different DO modes and the mean flow. By construction, the DO modes
always remain orthogonal, and this spatial orthogonality implies orthogonality of their
spatial Fourier, Gabor and wavelet transforms (Daubechies 1992; Antoine et al. 2004).
Therefore, different DO modes contain different frequency–phase content at the same
spatial locations. The scope of this section is to derive closed expressions for the
rate of energy or variance transfer from a given mode to the mean flow and to the
other DO modes. These energy transfer rates, also known as model energy productions,
have been studied previously in the deterministic context (see Rempfer & Fasel 1994;
Noack et al. 2003). Here we will use a probabilistic framework to prove that this
stochastic energy exchange among different modes and the mean flow occurs in both a
linear and a nonlinear fashion, since the employed decomposition allows us to separate
these two mechanisms. The second, nonlinear, mechanism is directly connected with
the non-Gaussian statistics of the system state and it is also responsible for the triple
interaction of DO modes.

To illustrate these properties, we consider a system with deterministic Dirichlet
boundary conditions and zero stochastic and mean forcing. This set-up is sufficient to
derive expressions for the stochastic energy transfer rates between different modes and
the mean flow. Thus we set

τ̄ (x, t)= τ̃ (x, t;ω)= 0, x ∈ D, ω ∈Ω, (3.1)
BΦ[Φi(ξ , t)] = 0, ξ ∈ ∂D. (3.2)

3.1. Energy exchanges I: general formulation
We begin our analysis by presenting results on energy exchanges for the generic
system (2.2.1) that models the dynamics of both the velocity field and the
density/temperature field. In the next section we will consider the special case of
an isothermal system.

3.1.1. Stochastic energy exchanges between the principal DO modes and the mean
To study the flow of stochastic energy (variance) among the mean flow and the DO

modes, we consider the DO equation (2.25) for the stochastic coefficient Yi(t;ω), since
the fields ui(x, t) remain normalized. We assume that at the current time instant the
covariance matrix CYm(t)Yi(t) has been diagonalized: in this way we have variance on the
diagonal components only and the DO modes are time-evolving principal directions of
the stochastic subspace (i.e. they take the form of a non-Gaussian KL expansion that
has uncorrelated coefficients).

The goal is to study the transfer of energy from the mean flow to each principal
mode i. Multiplying (2.25) with Yi and applying the mean value operator, we obtain

1
2

d
dt

Eω[Y2
i ] = Aii(t)E

ω[Y2
i ] + Bimn(t)E

ω[YiYmYn], (3.3)

Aii(t)=
〈

1√
Gr
1ui − ui ·∇ū− ū ·∇ui − f k̂× ui − ρik̂,ui

〉
+ cρ

〈
1

Sc
√
Gr
1ρi − ui ·∇ρ̄ − ū ·∇ρi, ρi

〉
, (3.4a)
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Bimn(t)=−1
2
〈um ·∇un + un ·∇um,ui〉 − cρ

1
2
〈um ·∇ρn + un ·∇ρm, ρi〉. (3.4b)

We have

〈ū ·∇ui,ui〉 + cρ〈ū ·∇ρi, ρi〉 = 〈ū,∇Ei〉 = 0, (3.5)

where we have defined the field Ei = (u2
i + cρρ2

i )/2, and the last equation follows from
the Gauss theorem,

〈ū,∇Ei〉 = −〈div ū,Ei〉 +
∫
∂D

Ei(ξ , t)ū(ξ , t) ·n(ξ) dξ , (3.6)

and the chosen deterministic boundary conditions, which lead to
∫
∂D Ei(ξ , t)ū(ξ , t) ·

n(ξ) d ξ = 0. Additionally, we have

〈 f k̂× ui,ui〉 = 0 (3.7)

and, from the Gauss theorem and chosen boundary conditions,

〈1ui,ui〉 = −〈∇ui,∇ui〉, (3.8a)
〈1ρi, ρi〉 = −〈∇ρi,∇ρi〉. (3.8b)

Finally, we observe that

〈ui ·∇ū,ui〉 =
∫

D
uT

i Sūui dx, (3.9)

where {Sū}ij = (∂ ūi/∂xj + ∂ ūj/∂xi)/2. Overall, we thus obtain

1
2

d
dt

Eω[Y2
i ] = −

[
1√
Gr
〈∇ui,∇ui〉 + cρ

1

Sc
√
Gr
〈∇ρi,∇ρi〉

+
∫

D
uT

i Sūui dx+ 〈ρik̂,ui〉 + cρ〈ui ·∇ρ̄, ρi〉
]

Eω[Y2
i ]

− 1
2
[〈um ·∇un + un ·∇um,ui〉

+ cρ〈um ·∇ρn + un ·∇ρm, ρi〉]Eω[YiYmYn]. (3.10)

We first observe that mean stochastic energy transfer between the stochastic mode i
and the mean flow occurs in a linear way, although the terms in the original equation
that are responsible for this energy transfer are the nonlinear ones (it is the quadratic
terms in Navier–Stokes that lead to the terms uT

i Sūui and 〈ui ·∇ρ̄, ρi〉 in (3.10)). Hence,
for the dissipation due to fluid viscosity and density diffusion we have

εdiss,i =−Eω[Y2
i ]
[

1√
Gr
〈∇ui,∇ui〉 + cρ

1

Sc
√
Gr
〈∇ρi,∇ρi〉

]
, (3.11)

and for the rate of energy transferred to or from the mean flow to mode i in the form
of stochastic energy (variance) we have

εmean→i =−Eω[Y2
i ]
[∫

D
uT

i Sūui dx+cρ〈ui ·∇ρ̄, ρi〉
]
. (3.12)

We also have a term associated with the transformation of kinetic to potential energy,

εpot↔kin,i =−Eω[Y2
i ]〈ρik̂,ui〉. (3.13)
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For small stochastic energy amplitudes Eω[Y2
i ] (so that terms of O(Y3) can be

omitted), these three terms are those that mainly characterize the total energy variation
of the mode ui, i.e. the total rate of energy change is given by

εlinear,i ≡ εdiss,i + εmean→i + εpot↔kin,i. (3.14)

In conclusion, in the absence of external source of stochasticity (i.e. when stochasticity
is introduced only through the initial conditions), uncertainties are always reduced by
dissipation and diffusion, but they are either amplified or tapered by the nonlinear
stretching of the mean flow as well as the gradient of the mean density field, while
exchanges between potential and kinetic forms of stochastic energy occur.

3.1.2. Stochastic energy exchanges between the principal DO modes
To study amplitude exchanges among various DO modes, we consider (3.10) just

derived above. By inspection, we observe that the rate of energy transferred to mode i
from all the DO modes is given by

εDO→i =− 1
2 [〈um ·∇un + un ·∇um,ui〉 + cρ〈um ·∇ρn + un ·∇ρm, ρi〉]Eω[YiYmYn]. (3.15)

Since we had assumed that the modal covariance matrix CYm(t)Yi(t) had been
diagonalized, the direct interactions of a pair of modes has been projected out. Such
terms would correspond to dyadic exchanges of stochastic energy within the DO
subspace, including conserved exchanges and internal growth or decay. Without these
dyadic transfers, we consider that principal DO modes and stochastic energy transfers
among these principal DO modes depend on the non-Gaussian characteristics of the
probability measure (for Gaussian variables, we always have Eω[YiYmYn] = 0 and the
triad term vanishes). Note that the m= n= i term vanishes since, as for (3.5),

〈ui ·∇ui,ui〉 + cρ〈ui ·∇ρi, ρi〉 = 〈ui,∇Ei〉 = 0. (3.16)

Hence, based on the above, we can have two types of interactions for these principal
modes.

3.2. Energy exchanges II: isothermal case
To simplify technical details, we consider for now incompressible flows only, i.e. we
derive expressions for the rate of energy transfer to a specific principal mode in the
absence of density fluctuations. In the first type of principal mode interactions, we
have interactions of two modes, say q and i, in a ‘two–one triad’ fashion, i.e. the
distinct cases are (m = q, n = i ), or (m = i, n = q), or (n = m = q). For that type of
‘two–one triad’ interaction, summing all non-zero contributions, we obtain the rate of
energy transferred between mode q and i:

εq→i =−〈uq ·∇ui + ui ·∇uq,ui〉Eω[Y2
i Yq] − 1

2 〈uq ·∇uq + uq ·∇uq,ui〉Eω[Y2
q Yi]

= −[〈ui ·∇uq,ui〉 + 〈uq ·∇ui,ui〉]Eω[Y2
i Yq] − 〈uq ·∇uq,ui〉Eω[Y2

q Yi]
= −[〈ui ·∇uq,ui〉 + 1

2 〈uq,∇|ui|2〉]Eω[Y2
i Yq] − 〈uq ·∇uq,ui〉Eω[Y2

q Yi]
= −〈ui ·∇uq,ui〉Eω[Y2

i Yq] + 〈uq ·∇ui,uq〉Eω[Y2
q Yi]

= −Eω[Y2
i Yq]

∫
D
uT

i Suqui dx+ Eω[Y2
q Yi]

∫
D
uT

qSuiuq dx. (3.17)

In the above, we have used the assumed zero boundary conditions for the modes
and the equality 〈uq · ∇uq,ui〉 = −〈uq · ∇ui,uq〉, which follows from direct application
of the Gauss theorem. The two terms correspond to stretching of principal mode i



Analysis of Navier–Stokes flows using dynamical orthogonality 97

projecting onto principal mode q and the contracting of principal mode q projecting
onto principal mode i.

The second type of principal mode interactions involves the interaction of modes
in triads, where the energy transferred to mode i is due to its triad interaction with
another pair of DO modes, e.g. modes p and q. The rate of energy transfer due to this
truly triad interaction has the form

εpq→i =− 1
2 〈up ·∇uq + uq ·∇up,ui〉Eω[YiYpYq]

= − 1
2 [〈uq ·∇up,ui〉 + 〈up ·∇uq,ui〉]Eω[YiYpYq]

= 1
2 [〈uq ·∇ui,up〉 + 〈up ·∇ui,uq〉]Eω[YiYpYq]

= 1
2

(∫
D
uT

qSuiup dx+
∫

D
uT

pSuiuq dx
)

Eω[YiYpYq]

=
∫

D
uT

qSuiup dxEω[YiYpYq]. (3.18)

Hence, this term corresponds to the stretching of principal mode direction i that
projects on two other principal modes p and q.

We have derived expressions characterizing the transfer of mean energy to
uncertainty (transfer of energy from the mean to the principal modes) but also the
variance exchanges between principal modes. Motivated by these results, we define
the following form of stochastic energy, where the energy of the mean and variance
of the modes are considered in a unified way. As above, we restrict ourselves to
incompressible Navier–Stokes flows and global kinetic energy only,

ES = 1
2

Eω[〈u,u〉] = 1
2

Eω[〈ū+ Yiui, ū+ Yiui〉]

= 1
2

(
‖ū‖2 +

s∑
i=1

Eω[Y2
i ]
)

(3.19)

where we have defined for convenience ‖ū‖2 = 〈ū, ū〉. The next step is to study the
evolution of the above quantity. We have, using the DO equations,

dES

dt
= Eω[〈ū, ūt〉] + Eω

[
Yi

dYi

dt

]
= Eω[〈ū,Eω[Lu]〉] + Eω[Yi〈Lu − Eω[Lu],ui〉]
= Eω[〈ū,Eω[Lu]〉] + Eω[Yi〈Lu,ui〉]
= Eω[〈Lu, ū〉] + Eω[〈Lu,Yiui〉]
= Eω[〈Lu, ū+ Yiui〉]
= Eω[〈Lu,u〉], (3.20)

which is as expected (from the deterministic kinetic energy equation).

3.2.1. Case of zero mean flow boundary conditions
The above result can be further expanded in the special but common cases of:

(i) zero stochastic and mean forcing (as was assumed all along in this section); and
(ii) zero boundary conditions on the mean velocity along the whole domain boundaries.
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FIGURE 1. (Colour online) Energy exchanges between principal DO modes and the mean
flow in stochastic, unforced, incompressible Navier–Stokes equations. The energy flow from
the mean to the principal modes is characterized by the second-order statistics while variance
exchange among the principal modes is characterized by the third-order statistics.

With these assumptions, the above result is expanded, using the Gauss theorem,

dES

dt
= Eω[〈Lu,u〉] = Eω

[〈
1
Re
1u,u

〉]
=− 1

Re
Eω[〈∇u,∇u〉]

= − 1
Re
(〈∇ū,∇ū〉 + Eω[Y2

i ]〈∇ui,∇ui〉)

=− 1
Re
(‖∇ū‖2 + Eω[Y2

i ]‖∇ui‖2). (3.21)

Thus, the stochastic kinetic energy for incompressible Navier–Stokes flows (i) with
null boundary conditions on the mean velocity and (ii) without stochastic and mean
forcing, is dissipated due to viscosity, in full analogy with the usual notion of energy
for deterministic Navier–Stokes. All the other forms of energy transfer from the mean
flow to the DO modes and among the DO modes are internal system interactions.
Of course, should the mean velocity boundary be non-zero somewhere along the
boundaries or should a mean forcing be present in the interior, additional terms
(i.e. pressure work, advection of kinetic energy and mean body/forcing work) will be
present in this equation.

A summary of all the energy transfers in the incompressible unforced case is given
in figure 1, where the internal interactions among the principal DO modes (green
and blue arrows) are shown. The black arrows show the energy exchanges between
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the mean flow and the principal modes. Finally, the red arrows represent the energy
dissipation due to viscosity acting on both the mean flow and the principal modes.

4. Analysis of transient dynamics in fluid flows
We will now illustrate the use of the DO equations in the analysis of laminar

flows with a small number of instabilities that lead to low-dimensional attractors of
complex form (e.g. multiple steady states or effective dimensionality smaller than the
reduced-order phase space dimensionality) and with strongly transient characteristics.
Note that in this work the goal is to illustrate the applicability of the DO method in
fluid flows with instabilities and to emphasize its importance in the analysis of energy
transfers between dynamical components. To this end, we will only consider low-Re
regimes where the number of instabilities is small – a feature that allows one to more
easily describe nonlinear interactions and their role on the global dynamics.

Depending on the specific characteristics of the flow, the dynamics may possess a
discrete or continuously infinite set of feasible states. The derived machinery allows
for the determination of these states as well as the corresponding probability at which
they occur. Additionally, the expressions for the energy rate transfer allows for the
understanding of how these states are generated, e.g. where their energy is coming
from. In what follows, we will consider two characteristic representatives of laminar
flows with multiple states: flows behind a disk, as well as Rayleigh–Bénard flows. We
will study the evolution of the statistical characteristics of these flows by initializing
them with a very small stochastic perturbation with Gaussian statistics, and allow the
internal instabilities of each flow to grow and give the multiple states that characterize
the stochastic attractor at the given level of input energy.

4.1. Flow behind a circular disk
4.1.1. Flow equations and geometry

We consider viscous flows behind a circular disk; the same flows have been
considered previously in Venturi, Wan & Karniadakis (2008) and Sapsis & Lermusiaux
(2009) in the stochastic setting. Here we consider these flows again, but we seek
to understand the energy transfer properties between the unstable mean and the
dynamically evolving modes as well as their nonlinear interactions. As we will see,
it is the interplay of linear instabilities and nonlinear energy transfers that allow energy
to flow to linearly stable modes giving finite size to the attractor even along the
linearly stable directions.

The governing equations for this case take the form

∂u
∂t
=−∇p+ 1

Re
1u− u ·∇u, (4.1)

0= div u. (4.2)

The geometry of the flow, together with the boundary conditions, is shown in figure 2.
The diameter of the disk is a = 1 and it is located at a distance d1 = 4.5 from the
inlet of the flow. The length and width of the computational domain are 20 × 3
(non-dimensional) and the spatial resolution used is Nx × Ny = 400 × 60, while the
time step used is δt = 0.004. The initial conditions consist of random perturbations
with harmonic dependence in space and Gaussian stochastic structure (see Sapsis &
Lermusiaux (2009) for details). The DO numerical scheme used is presented in full
detail in Ueckermann et al. (2013). The Reynolds number of the flow is defined
as Re = Ua/ν, where ν is the kinematic viscosity. For the simulations that follow, we
set U = 1 and a= 1, and thus Re= ν−1.
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FIGURE 2. (Colour online) Sketch of the flow behind the circular disk.
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FIGURE 3. (Colour online) Top: energy of mean flow, total variance and total dissipation rate
for the flow behind a disk over different Re numbers. Lower time-series plots: energy of the
first three modes together with energy exchange rates between the mean and the other modes
for two different Re numbers corresponding to stable and unstable dynamics.

4.1.2. Stochastic response – stable regime and transitions
In figure 3(a), we present the energy of the mean flow, the total variance as well

as the total dissipation rate as functions of time and Re number. It is clear from the
second plot that between Re = 40 and Re = 50 a bifurcation occurs, making the mean
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regime (Re = 41). The joint statistics are also presented for the first three modes (in the form
of two-dimensional marginals for pairs of modes). The Gaussian statistics between the first
two modes indicate their negligible energy interaction.

flow linearly unstable. The exact value of the transition is known to be Rec = 43 and
can be approximately obtained by the present analysis by integration of the reduced-
order equations. This transition to instability is expressed through the variance growth
of the DO modes that adaptively track and so reveal the unstable directions in phase
space (see figure 5).

More specifically, we can observe from the plots that immediately after t = 0 the
mean flow energy grows. Then depending on the Re number, this energy is either
retained to the mean flow (stable regime) or it is transformed to variance of the DO
modes (unstable regime). In figure 4 we present in more detail the mean field and DO
modes for a stable Re number (Re = 41). We can observe that the first two modes
are an oscillatory pair presenting spatially periodic structure that travels downstream
– these two modes are strongly related since their spatial topology is shifted by half
a temporal period and they essentially express a linearly stable oscillatory mode that
corresponds to an eigenvalue with a non-zero imaginary part (Strouhal frequency).
The DO scheme predicts that, after an initial transient growth, the energy of this
spatially periodic perturbation (described by the first two modes) tends to decay, since
the dissipation dominates the small positive value of energy transfer from the mean
(dashed line, figure 3e). Concerning the statistical structure of the coefficients, we see
that for the first two modes it is strongly Gaussian (figure 4) – a feature that indicates
zero nonlinear energy transfers between modes 1 and 2 (see figure 1). Even though
the third mode has non-Gaussian statistical connection with the first two modes, the
energy of the latter is continuously decreasing (due to dissipation and energy flowing
towards the mean), therefore not allowing for any important energy transfer to the
third DO mode (figure 3e).
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modes are presented in terms of their vorticity together with the joint statistics of the first four
stochastic coefficients.

4.1.3. Stochastic response – unstable regime
The situation is reversed in the unstable regime. To analyse this case, we consider

a sufficiently large Re = 91. We can distinguish three different dynamical regimes. In
the first phase of the dynamics (t < 20), the first two DO modes have exactly the same
spatial structure as the DO modes of Re = 41, i.e. the spatially periodic structure that
comes in pairs of shifted modes. However, in this case we have an exponential growth
of their amplitude – during this dynamical regime the statistics of the two modes
remain Gaussian and there is no significant energy transfer between those modes and
other modes. Right after t = 20 a bifurcation occurs and the second DO mode becomes
antisymmetric (see figure 5a) while the probability density function (p.d.f.) of the
first two stochastic coefficients collapses into an effectively one-dimensional set (see
p.d.f. plot for T = 27 in figure 5b). A detailed explanation of this collapse and its
connection with the number of positive Lyapunov exponents or instabilities is given
in Sapsis (2013), where it is rigorously proven that the effective dimensionality of
the p.d.f. cannot exceed the number of instabilities or positive Lyapunov exponents.
Here, this fact is illustrated, since we can directly observe that during the collapse of
the Y1 − Y2 p.d.f. (after t ∼ 20) there is only the first mode that is linearly unstable
– for the second mode both dissipation and energy transfer from the mean are negative.
The strongly non-Gaussian shape of the p.d.f. creates nonlinear energy transfer from
the first to the second mode, as can be directly seen from figure 3(f ). Thus, during
this transitional phase, we have only one linearly unstable mode, the first one, which
absorbs energy from the mean, and due to the non-Gaussian statistics passes some
of this energy (the rest is dissipated) to the linearly stable modes. In this way, even
though only one mode is linearly unstable, a series of stable modes have finite amount
of energy – a detailed analysis of these energy transfer features and its implications
in turbulent systems having a very large number of instabilities is given in Sapsis &
Majda (2013c). These modes need to have non-Gaussian joint statistical structure with
the linearly unstable modes in order for the nonlinear energy transfers to be activated.
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After this transition phase (after t = 40), the flow enters a statistically stationary
regime where the first two modes absorb energy from the mean flow through a
complex pair of oscillatory modes (i.e. as happened during the initially transient
instability). Both of these modes dissipate an important amount of this energy and
the rest is sent to the third mode (note the negative values of mode-to-modes energy
transfer in figure 3f ). For the latter, we observe that the energy dissipation is much
larger than the energy received from the mean flow. In this way, even though there
are only two modes with positive Lyapunov exponents (i.e. the two modes for which
the energy transfer from the mean is larger than dissipation), energy is spread along
a much larger number of modes. Note that the fact that some of the energy is
returned back to the mean does not contradict the common picture in fluid dynamics
that energy eventually dissipates in small scales. The reason that we have energy
flowing back to the mean here has to do with the fact that we are dealing with a
low-dimensional attractor where the high-frequency modes still have sufficiently large
scales so that their energy is not completely dissipated and exchanges with the mean
still occur.

4.2. Rayleigh–Bénard convection
The second application that we consider is the Oberbeck–Boussinesq approximation
to convection, which can lead to multiple steady-state regimes (Gelfgat, Bar-Yoseph
& Yarin 1999) that are physically realizable (Pallares, Grau & Giralt 1999). The
stochastic bifurcation properties for this flow have been studied in Venturi, Wan
& Karniadakis (2010); here we are interested in performing a detailed uncertainty
quantification analysis of both the transient and steady-state regimes. We first present
the steady-state variance of the first and second DO modes for various Rayleigh and
Prandtl numbers. Subsequently, we determine the various parametric domains that lead
to qualitatively different results and present the details of the statistical responses and
the associated stochastic attractors that give rise to multiple steady-state responses.

4.2.1. Flow equations and geometry
We consider the Navier–Stokes equations in the form (2.2.1) and we apply the

rescaling

x→ (RaPr)−1/6x, t→ (RaPr)1/6t, (4.3)

ρ→−(RaPr)1/2T, p→ (RaPr)−2/3p, (4.4)

where we use the non-dimensional numbers Ra and Pr (employed in the
Oberbeck–Boussinesq approximation) given by

Gr Sc⇒ Ra and Sc⇒ Pr, (4.5)

and we also use temperature T instead of density used in (2.2.1). After applying the
above rescaling, we obtain the Oberbeck–Boussinesq approximation, which will be
used for our analysis

∂u
∂t
=−∇p+ Pr1u− u ·∇u+ RaPr T k̂, (4.6a)

∂T

∂t
=1T − u ·∇T, (4.6b)

0= div u. (4.6c)
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FIGURE 6. (Colour online) Sketch of the configuration for the Rayleigh–Bénard convection.

We consider non-dimensional numbers with order Pr ∼ 0.1–1 and Ra ∼ 1.5 ×
104–2 × 104 since for these values important bifurcations occur (Venturi et al. 2010).
The geometry of the flow is assumed to be a square domain (figure 6) with dL = 1 and
with constant temperature on the top and bottom boundaries,

T = 1 for y= 0, (4.7a)
T = 0 for y= 1, (4.7b)

and homogeneous Neumann boundary conditions for the two vertical sides.
Additionally, we assume no-slip boundary conditions for the velocity. We discretize
the domain with an Nx × Ny = 64 × 64 grid and we use a time step δt = 0.001; the
details of the DO numerical scheme are presented in Ueckermann et al. (2013).

To estimate the quantity cρ for the inner product, we estimate the magnitude of
the field quantities. From the boundary conditions, we will have T ∼ O(1). Moreover,
since we are interested in performing UQ in the unstable regime, advection will be
important, and thus we expect a scaling of the form u2/dL ∼ RaPr T. This implies that
u ∼ O(10)–O(100). Based on this scaling of the field quantities, we choose cρ = 10
(the equations we have considered are in non-dimensional form and so is cρ), so that
both the temperature and the velocity play an equally important role in the inner
product and thus in the evolution of the stochastic subspace. We emphasize that the
results that we present in the sequel are robust with respect to the exact value of the
parameter cρ as long as the stochastic dynamics remain consistent with the scaling
argument we have just presented.

We initiate the mean flow using a superposition of the first two eigenfields of the
linearized equation,

ū0 =
(
∂ψ

∂y
,−∂ψ

∂x

)
with ψ = 0.3X1(x)Y1(y)+ 0.2X2(x)Y2(y), (4.8a)

T̄0 = 1− y, (4.8b)

where the expressions for Xi and Yi can be found in Venturi et al. (2010). We also
apply a small, two-dimensional, stochastic perturbation in the temperature field with
Gaussian statistics having variance (σ 2

1 , σ
2
2 ) = (10−1, 10−5), and with spatial shape

given by

T1,0 = 2 cos 8πx cosπy, (4.9a)
T2,0 = 2 cosπx cosπy. (4.9b)
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4.2.2. Deterministic response
We first recall some properties of the deterministic dynamics and in particular

some stability properties of the flow in the parametric regime we chose. A detailed
bifurcation analysis is presented in Venturi et al. (2010). In this work the authors
show that in the parametric regime we consider here there are two stable steady
states coexisting: one characterized by a single rolling motion, and the other by a
double rolling motion. The single roll has much higher energy than the double-roll
motion. We emphasize that the linearly stable character of the above motions does
not necessarily imply their existence in the stochastic response. In particular, their
probability of occurrence depends on the domain of attraction, which is a nonlinear
property of the system. Therefore, although linear stability analysis predicts the
existence of both of these motions, we will see later that the domain of attraction
for each one of them can lead to completely different probabilities of occurrence.

4.2.3. Stochastic response
We integrate the DO equations with two modes for long enough so that the system

reaches a statistical steady state. The steady-state energy of the two modes with
respect to the non-dimensional numbers Ra and Pr is shown in figure 7. There are
two well-separated regions corresponding to the stochastically stable (zero variance or
deterministic) and unstable behaviour. Both modes are active over the same parametric
region – this is because, as we will see later, the second mode absorbs its energy
directly from the first mode and not from the mean. The strength of the first mode,
which corresponds to a single rolling motion of the fluid inside the square domain
(see figure 8), shows a uniform dependence over the Ra number, while it increases
monotonically with the Pr number until the bifurcation value, at which point the
energy suddenly vanishes. On the other hand, the second mode (having a double
symmetric roll structure) presents a more uniform dependence over the Pr number,
while its energy increases as the Ra number increases until the stochastic stability
boundary. We first discuss the character of the flow in the two different regimes
(separated by the stochastic stability boundary).

In figure 8 we present the stochastic response of the flow for a set of parameters
lying in the stable regime (Ra = 18 900 and Pr = 1.025). In this case the mean has
a double-roll symmetric structure while the first mode has an antisymmetric structure
with a single dominant roll. The second mode consists of four rolls in a symmetric
configuration. The non-Gaussian shape of the p.d.f. indicates that there is a nonlinear
energy transfer of energy from mode 1 to mode 2. However, the linearly stable
character of both modes does not allow for any growth of their energy and the
deterministic mean flow dominates.

In contrast, for a set of parameters lying in the unstable regime (Ra = 16 050 and
Pr = 0.45), a small stochastic perturbation grows rapidly until it reaches the size of
the stochastic attractor. In particular, as we can observe in figure 9, the mean flow
retains its double-roll symmetric structure having also two smaller rolls forming in the
bottom of the domain. The first mode retains the same topology with the stable regime,
while the second mode now has a double-roll symmetric structure. The evolution of
the p.d.f. also presents interesting features. In particular, the initially Gaussian shape is
rapidly converging into a p.d.f. with effective dimensionality close to one, indicating
a reduced-order dynamical system with one stable and one unstable direction (Sapsis
2013). The strongly non-Gaussian shape also reveals the important energy transfer
from mode 1 to mode 2. As time evolves, more and more probability concentrates to
the lobes of the p.d.f., gradually giving rise to a bimodal stochastic attractor consisting
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FIGURE 7. (Colour online) Variance of the two DO modes with respect to different Ra and
Pr numbers for the Rayleigh–Bénard convection. The stability boundary separates the regions
of finite-amplitude response. The shading/colour of the surfaces indicate the variance at this
point (i.e. the vertical coordinate).

of two symmetric stages with a strong, positive and negative, rolling motion of the
fluid and a weaker double-roll motion.

We emphasize that over the considered parametric regime the linear stability
properties of the two motions remain invariant: both single and double roll are linearly
stable equilibria. However, using stochastic analysis, we have revealed a stochastic
stability boundary Ra(Pr) over which the coexisting equilibrium points collapse to a
robust double-roll motion with specific directionality. The robustness of this double
rolling fluid motion, which takes place for large enough Ra numbers where forcing
due to the temperature field is more intense, is probably related to the low energy
of the corresponding stable equilibrium (see bifurcation analysis in Venturi et al.
(2010)), which makes it easier to reach from an energetic point of view. On the other
hand, in the stochastic regime, we have the coexistence of both single and double
rolling motions, with the first one giving rise to the second one due to a secondary
instability, which has been well documented here through the analysis of energy
transfer properties.
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5. Conclusions
We have given a global characterization of the stochastic attractor and analysed

the energy transfer properties in laminar fluid flows with internal instabilities. We
have seen that these energy transfer properties are inherently connected with: (i) the
linear instabilities of the mean flow; and (ii) the shape of the stochastic attractor
and in particular with its non-Gaussian properties. In order to perform the above
analysis, we have used the DO order-reduction framework, suitably formulated
for Navier–Stokes and Boussinesq equations, which allows for efficient uncertainty
quantification particularly for systems with low-dimensional attractors. The time-
dependent character of the DO modes allows for the determination of a very efficient
basis that can track the stochastic attractor more effectively especially during transient
regimes.

To illustrate the energy transfer properties, we selected two laminar flows
with a small number of internal instabilities, the flow behind a disk and the
Rayleigh–Bénard convection. We first performed a bifurcation analysis to determine
how the second-order properties vary with respect to the non-dimensional numbers
involved. Subsequently, we focused on the different dynamical regimes and interpreted
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the stochastic response in terms of the energy transfer properties between the modes
and the mean and between the modes themselves.

In contrast to the traditional linear stability and bifurcation analysis, the presented
stochastic framework has the advantage of revealing inherently nonlinear properties of
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the flow such as nonlinear energy transfers, domains of attraction for the various
stable steady states and stochastic stability boundaries. There are properties of
crucial importance since they are associated with the robustness and probability of
occurrence of the dynamical modes of motion predicted by the deterministic analysis.
A characteristic example is the Rayleigh–Bénard flow considered over a parametric
regime where linear analysis predicts uniform dynamical properties while the actual
stochastic attractor of the flow goes through an important bifurcation associated with
secondary instabilities that give rise to nonlinear energy transfers and lead to the
coexistence of two modes of fluid motion.

The present work also provides an important paradigm, illustrating the interplay
between stochastic properties and global dynamical properties in fluid flows where
order reduction is feasible; thus it covers a large spectrum of modern fluid dynamics
applications and beyond. Extension into three-dimensional flows is feasible, although
the computational cost associated with the coupled evolution of multiple three-
dimensional flow fields may introduce technical challenges. Moreover, extension to
non-laminar, turbulent flows requires the development of new UQ tools that can
handle the essentially irreducible character of the dynamics while they can still be
computationally tractable. In this way we should be able to handle problems of very
high dimensionality (such as turbulence) and be able in this context to quantify the
connection between energy transfers and stochastic characteristics; results along this
direction will be reported in the near future (Sapsis & Majda 2013c,b).
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Appendix. The case of stochastic boundary conditions
Here we consider the problem of stochastic boundary conditions and show how,

under certain conditions, it can be transformed into stochastic forcing in the interior,
i.e. an additional term in the governing equations. For simplicity, we assume that
uncertainty is contained in the boundary velocity conditions only, although the results
can be generalized. We assume that the complete stochastic information for the
boundary conditions is known. More specifically, we have

BΦ[Φ(ξ , t;ω)] = Φ̄∂D(ξ , t)+Φ ′∂D(ξ , t;ω)= Φ̄∂D(ξ , t)+
(
u′∂D(ξ , t;ω)

0

)
, ξ ∈ ∂D,

(A 1)

where Φ ′∂D(ξ , t;ω) is the zero-mean stochastic part of the boundary conditions. As
for the initial conditions, we consider the covariance operator associated with the
boundary conditions

C∂D ∂D(ξ 1, ξ 2)= Eω[u′∂D(ξ , t;ω)u′∂D(ξ , t;ω)T]. (A 2)
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We formulate the eigenvalue problem to determine the principal directions along which
the probability is distributed in the dominant variance sense:∫

∂D
C∂D ∂D(ξ 1, ξ 2)u∂D,k(ξ 2,t) dξ 2 = λ2

ku∂D,k(ξ 1,t). (A 3)

Using this information, we expand the stochastic boundary conditions as follows:

BΦ[Φ(ξ , t;ω)] = Φ̄∂D(ξ , t)+Ξk(t;ω)
(
u′∂D,k(ξ , t)

0

)
, ξ ∈ ∂D, (A 4)

where k is an index taking values from 1, . . . ,K, the order of the truncation, and the
stochastic coefficients are given by

Ξk(t;ω)=
∫
∂D

u′∂D(ξ , t;ω)Tu∂D,k(ξ , t) dξ . (A 5)

Assuming specific conditions on the above boundary forcing problem, we now
transform it into an equivalent one having deterministic boundary conditions but
with additional interior stochastic forcing. The idea is to handle the effect of
stochastic boundary conditions through the partition of the solution into a component
Φh(x, t;ω) = (uT

h , ρh)
T that will satisfy the deterministic part of the boundary

conditions, and a set of incompressible and irrotational components ub,k(x, t) that
will satisfy the stochastic part of the boundary conditions. Specifically, we assume we
can write the solution of the system at any given fixed time t as(

u(x, t;ω)
ρ(x, t;ω)

)
=
(
uh(x, t;ω)
ρh(x, t;ω)

)
+Ξk(t;ω)

(
ub,k(x, t)

0

)
. (A 6)

Since the velocity fields ub,k(x, t) have been assumed irrotational and incompressible,
there is a set of scalar potentials φb,k(x, t) such that

ub,k(x, t)= ∇φb,k(x, t), (A 7a)
1φb,k(x, t)= 0. (A 7b)

Moreover, each potential function φb,k(x, t) will satisfy the following boundary
conditions:

BΦ

[(
∇φb,k(ξ , t)

0

)]
=
(
u∂D,k(ξ , t)

0

)
, ξ ∈ ∂D. (A 8)

Note that time in the above elliptic equation acts as a parameter; thus there is no
need for initial conditions. With the above choice, we have a well-defined problem
for the potentials φb,k(x, t) and additionally our solution satisfies the stochastic part of
the boundary conditions. Moreover, we require Φh(x, t;ω) to satisfy the deterministic
part of the boundary conditions and in this way we obtain the following problem for
Φh(x, t;ω):

∂Φh

∂t
=L

[
Φh(x, t;ω)+Ξk(t;ω)

(
∇φb,k(x, t)

0

)
;ω
]

− ∂

∂t

(
Ξk(t;ω)

(
∇φb,k(x, t)

0

))
, (A 9)

0= div uh, (A 10)
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with deterministic boundary conditions

BΦ[Φh(ξ , t;ω)] = Φ̄∂D(ξ , t), ξ ∈ ∂D, (A 11)

and initial conditions

Φh(x, t0;ω)=Φ0(x;ω)−Ξk(t0;ω)
(
∇φb,k(x, t0)

0

)
, x ∈ D, ω ∈Ω. (A 12)

Therefore, we have transformed the general problem to one with deterministic
boundary conditions and interior stochastic forcing. We note that the following
assumptions are required for the above to be efficient, including: (i) the K boundary
forcing modes need to satisfy sufficient smoothness conditions; and (ii) the stochastic
solution of the original Navier–Stokes or Boussinesq equations (forced by the
stochastic boundary conditions) need to be well approximated by the stochastic
solution of the transformed problem, which is forced by the truncated interior
expansion defined by (A 7)–(A 8).

We note that handling the stochastic boundary conditions through the interior is
of special importance for the case of systems where the initial state is deterministic
and uncertainty is introduced only through the boundary conditions (i.e. the stochastic
subspace is initially an empty set). In this case the DO modes required to describe
the current state of the system may be very few compared to those required to satisfy
the stochastic boundary conditions. Using the above decomposition, we create a new
set of modes that depend exclusively on the stochastic characteristics of the boundary
conditions and not on the system state. Hence, in this formulation the stochastic
boundary conditions can be satisfied a priori (since we have solved for the potentials
φb,k(ξ , t)) and we only need to solve for the uncertainty of the solution in the interior
of the domain.
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