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a b s t r a c t

We estimate and study the evolution of the dominant dimensionality of dynamical systems with
uncertainty governed by stochastic partial differential equations, within the context of dynamically
orthogonal (DO) field equations. Transient nonlinear dynamics, irregular data and non-stationary
statistics are typical in a large range of applications such as oceanic and atmospheric flow estimation.
To efficiently quantify uncertainties in such systems, it is essential to vary the dimensionality of the
stochastic subspace with time. An objective here is to provide criteria to do so, working directly with the
original equations of the dynamical system under study and its DO representation. We first analyze the
scaling of the computational cost of these DO equations with the stochastic dimensionality and show that
unlike many other stochastic methods the DO equations do not suffer from the curse of dimensionality.
Subsequently, we present the new adaptive criteria for the variation of the stochastic dimensionality
based on instantaneous (i) stability arguments and (ii) Bayesian data updates. We then illustrate the
capabilities of the derived criteria to resolve the transient dynamics of two 2D stochastic fluid flows,
specifically a double-gyre wind-driven circulation and a lid-driven cavity flow in a basin. In these two
applications, we focus on the growth of uncertainty due to internal instabilities in deterministic flows.
We consider a range of flow conditions described by varied Reynolds numbers andwe study and compare
the evolution of the uncertainty estimates under these varied conditions.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Natural problems, but also technological and societal systems,
that are subject to uncertain perturbations can be profitably
treated from a stochastic point of view. Such systems are among
the basic objects ofmodern physics, biology, chemistry, economics,
and finance, to mention just a few. In general, uncertain systems
include problems for which the dynamics is not fully resolved
or not sufficiently known to warrant solely a deterministic
approach as well as systems for which initial, boundary, forcing
or parametric uncertainties are significant. In this manuscript, we
focus on fluid systems, especially ocean and atmospheric flows,
but the presented uncertainty quantification approach is relevant
to any system governed by nonlinear partial differential equations
(PDEs) with stochastic inputs, including partial or uncertain
observations.

A basic goal of uncertainty quantification is to estimate
joint probability distributions for the variables that describe the
system state, given the probabilistic information for the initial
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state and forcing of the system as well as for the equation
random coefficients, if any. A complete probabilistic description
of the response would either require the knowledge of the
response characteristic functional or equivalently the knowledge
of the whole Kolmogorov hierarchy of the joint probability
distributions of the response stochastic variables at any collection
of time instances and spatial locations [1,2]. However, even for
low-dimensional stochastic systems this is a vast amount of
information and therefore dimensionality reductionmethods have
been developed for the efficient description and evolution of
stochastic systems. More specifically, it has been observed that
for most systems of practical interest a probability measure that
‘lives’ in a finite dimensional space, the stochastic subspace of the
problem, may be sufficient to capture most of the probabilistic
information that characterizes the system. The dimension of
this subspace, which we will refer to as intrinsic or stochastic
dimensionality, may be less formally thought as the minimal
number of latent variables [3] needed to describe the uncertain
system at a given time instant.

The estimation of the number of latent variables is an essential
step in the process of reduced-order modeling for stochastic
systems since most order-reductionmethods need that number as
an external and a priori user-defined parameter. However, there
are many situations where the dimensionality of the stochastic
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subspace needs to be adapted as the system evolves. A typical
example is a stochastic system initiated with deterministic initial
conditions where the stochastic subspace is initially an empty set
and as time evolves acquires non-zero dimensionality. Another
commonly encountered problem where it is efficient to adapt
the stochastic dimensionality is a stochastic system exhibiting
transient dynamics either due to time varying external excitation
or inherent instabilities. Finally, if the estimation is based on
both dynamical equations and irregular or gappy observations, the
subspacewheremost uncertainties liewill varywith time [4,5] and
one can expect that the dimension of this subspace will also vary.

Typical examples of this kind are geophysical field estimation
and data assimilation applications [6–12] where the strongly
transient and non-stationary character of the dynamics as well as
the very irregular, multivariate and heterogeneous observations
require adaptive modeling of the dimensionality of the stochastic
(or error) subspace. An ocean uncertainty prediction and data
assimilation scheme with such a variable-size error subspace is
the Error Subspace Statistical Estimation (ESSE) system [13–15].
To predict uncertainties, ESSE first perturbs an initial state based
on the initial error subspace [16,17]. This leads to an ensemble
of random initial realizations. Each of them is then integrated
forward in time using stochastic ocean model PDEs where the
stochastic forcing represent model errors [18]. A convergence
criterion based on the second-order statistical characteristics of
the resulting ensemble of system states is utilized to control
and adapt the size of the ensemble or stochastic dimensionality.
Specifically, coefficients measuring the similarity between the
principal components and principal coefficients of two subspaces
of different sizes are computed. The size of the ensemble is
increased (at times by breeding, [7]) until new ensemble members
do not change the error subspace sufficiently, as estimated by
these coefficients. At that point, the error subspace covariance is
used for data assimilation. Subsequently, the posterior residuals
are employed to augment the uncertainty directions and their
amplitudes at that particular time, using a learning scheme.

PCA methods as well as Metric Multidimensional Scaling [3]
are important representatives of linear methods, commonly used
in data analysis, data mining and machine learning, mainly
because of their simplicity. Until recently, very few methods
were able to reduce the data dimensionality in a nonlinear way.
However, during the last decades, newmethods have been derived
for nonlinear dimensionality reduction, also called, manifold
learning. In this framework the stochastic subspace dimensionality
comes from fractal geometry estimators such as the capacity
dimension [19] and the correlation dimension [20]. The classic PCA
is a linear method, meaning that the estimator cannot identify
nonlinear dependences and only gives a global dimensionality
of an object. However, this can suffice since the nonlinear
dependences may be expressed through the joint probability
density function defined in the reduced order, time-varying, space.
Therefore, even though linear methods are not primarily intended
to compute the nonlinear manifold dimension, they still can be
used to evaluate the dimensionality of the stochastic subspace,
especially if they allow adaptation of this dimension.

The scope of this work is to develop adaptive criteria for the
dimensionality of the stochastic subspace in the context of the
dynamically orthogonal (DO) field equations [21] and to apply
them to two-dimensional dynamical systems representative of
fluid and ocean flows. A novelty is to provide adaptive criteria
that instantaneously evolve the subspace dimension according to
internal dynamics and external forcing aswell as tomeasurements
inputs. The evolution of the subspace is already governed by theDO
partial differential equations but assuming a fixed subspace size.
The criteria and schemes we provide next extend the DO approach
to a variable subspace size, but remain in a continuous differential
framework. Another question we address is how to extend the
spatially-discrete adaptive ensemble subspace approach of ESSE
to a continuous DO differential framework. A related topic is to
expand the useful but also spatially-discrete adjoint and non-
normal mode schemes for generalized stability or error growth
studies [22–24,7,25] to stability or error quantification methods
defined by partial differential equations. We also aim to directly
account for the present state of the uncertainty and its evolution
instead of focusing on maximum error growth under specific
norms, e.g. [26], an approach most useful in atmospheric sciences
and weather predictions. Accounting for all dominant errors is
especially important in coastal ocean science and predictions. This
is because of the limited ocean data and small internal Rossby radii
of deformation which can lead to uncertainties that are locally
(in time and space) as large as the variability [18]. Even if these
uncertainties do not grow, they need to be quantified.

In what follows, we first provide in Section 2 definitions and
results including the DO representation, the generic stochastic
PDEs of the system and the associated DO equations. In Section 3,
we discuss the cost scaling of the DO field equations with respect
to the number of stochastic dimensions used. Subsequently, we
present adaptive criteria for the contraction and expansion of
the stochastic subspace and we also illustrate how the new
stochastic dimensions should be chosen (when the stochastic
subspace should be expanded) according to analytical stability
arguments that follow directly from the stochastic PDEs that
describe the system. Finally, we discuss the issue of updating
both the stochastic subspace and the probabilistic information
(i.e. the stochastic coefficients) through the usage of full-field
data if those are available. The analytical criteria are applied and
illustrated in the last section through two stochastic flows: the
externally forceddouble-gyre flowand the lid-driven cavity flow in
a basin both initiated with deterministic flow conditions and with
system parameters that correspond to dynamical regimes where
flow instabilities occur. Specifically, we study the growth of the
stochastic dimensionality due to internal instabilities of the flow
and we illustrate how the required number of DO modes grows as
the complexity of the flow increases for higher Reynolds numbers.

2. Definitions and DO field equations

2.1. Definitions

Let (Ω, B, P ) be a probability space with Ω being the sample
space containing the set of elementary events ω ∈ Ω, B is the
σ -algebra associated with Ω , and P is a probability measure. Let
x ∈ D ⊆ Rn denote the spatial variables and t ∈ T the time. Then
every measurable map of the form u(x, t; ω), ω ∈ Ω will define a
random field. In applications, the most important cases are when
n = 2, 3 and, therefore we assume that x ∈ D ⊆ Rn, n = 2, 3. We
define the mean value operator as

ū(x, t) = Eω
[u(x, t; ω)] =

∫
Ω

u(x, t; ω)dP (ω).

AHilbert space denoted byH, is formed by the set of all continuous,
square integrable random fields [27,28], i.e.


D Eω

[u(x, t; ω)

u(x, t; ω)T ]dx < ∞ for all t ∈ T (where •
T denotes the complex

conjugate operation) and the bilinear form or covariance operator

Cu(·,t;ω)v(·,s;ω)(x, y) = Eω
[(u(x, t; ω) − ū(x, t))(v(y, s; ω)

− v̄(y, s))T ], x, y ∈ D, t, s ∈ T . (1)

For every two elements u(x, t; ω), v(x, t; ω) ∈ H, we define the
spatial inner product as

⟨u(•, t; ω), v(•, t; ω)⟩ =

∫
D
u(x, t; ω)Tv(x, t; ω)dx,
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where the integral on the right hand side is defined in the
mean square sense [29]. For the case where the integrands
are deterministic the mean square integral is reduced to the
classical Riemann integral. In what follows, we will use Einstein’s
convention for summation, i.e.

∑
i aibi = aibi except if the limits of

summation need to be shown. A double index that is not summed
will be denoted as aı̄bı̄. We define the projection operator 5 of a
field u(x, t), x ∈ D to an m-dimensional linear subspace spanned
by the orthonormal family {wj(x, t; ω)}mj=1, x ∈ D as follows

5{wj(x,t;ω)}mj=1
[u(x, t; ω)] =

m−
j=1

wj(x, t; ω)⟨wj(•, t; ω), u(•, t; ω)⟩

= wj(x, t; ω)⟨wj(•, t; ω), u(•, t; ω)⟩.

2.1.1. DO representation
Using a generalized form (each term is time-dependent) of

the Karhunen–Loeve expansion, we have that every random field
u(x, t; ω) ∈ H can be approximated arbitrarily well, by a finite
series of the form

u(x, t; ω) = ū(x, t) +

s−
i=1

Yi(t; ω)ui(x, t), ω ∈ Ω, (2)

where s is a sufficiently large, non-negative integer and the
Yi(t; ω) are s scalar random coefficients. We define the stochastic
subspace VS = span{ui(x, t)}sj=1 as the linear space spanned
by the s deterministic fields ui(x, t). Representation (2) is
the expansion into time-dependent spatial basis functions and
stochastic coefficients that is used by the DO field equations. In
this manuscript, the aim is to also evolve the size s, i.e. allow
s(t) in (2), in analogy to the ESSE algorithms and their time-
dependent ensemble and error subspace sizes. In ESSE, the error
subspace size is adapted by the ensembleMonte-Carlo scheme and
its convergence criteria, and by the observations or data-model
misfits [13]. Here, we focus on the extension of the first type of
adaptation to the DO equations, i.e. evolving s from the system
SPDEs themselves.

2.1.2. Stochastic PDEs of the system
The SPDE describing the system evolution is assumed to have

the form

∂u(x, t; ω)

∂t
= L[u(x, t; ω); ω], x ∈ D, t ∈ T , ω ∈ Ω, (3)

where L is a general (nonlinear), differential operator. Addition-
ally, the initial state of the system at t0 is described by the random
field

u(x, t0; ω) = u0(x; ω), x ∈ D, ω ∈ Ω, (4)

and the boundary conditions are given by

B[u(ξ , t; ω)] = h(ξ , t; ω), ξ ∈ ∂D, ω ∈ Ω, (5)

where B is a linear differential operator. For all of the above
quantities we assume that the random coefficients have statistical
moments of any order.

2.2. Dynamically orthogonal field equations

Clearly, representation (2) with all quantities (ū(x, t),
{uj(x, t)}sj=1, {Yj(t; ω)}sj=1) varying is redundant and therefore we
cannot derive independent equations from the SPDE describing
their evolution. Hence, additional constraints are imposed in order
to get a well posed problem for the unknown quantities. As shown
in [21,30], an appropriate constraint is the DO condition, the rate of
change of the stochastic subspace is orthogonal to itself, expressed
as
dVS

dt
⊥ VS ⇔


∂ui(•, t)

∂t
, uj(•, t)


= 0,

i = 1, . . . , s, j = 1, . . . , s. (6)

Note, that the DO condition implies the preservation of orthonor-
mality for the basis {uj(x, t)}sj=1 itself since

∂

∂t
⟨ui(•, t), uj(•, t)⟩ =


∂ui(•, t)

∂t
, uj(•, t)


+


∂uj(•, t)

∂t
, ui(•, t)


= 0, i = 1, . . . , s, j = 1, . . . , s.

As it is proven in [21,30] the DO expansion results in a set of
independent, explicit equations for all the unknown quantities.
In particular, using the DO expansion we reformulate the original
SPDE to an s-dimensional stochastic differential equation for the
random coefficients Yi(t; ω) coupled with s+1 deterministic PDEs
for the fields ū(x, t) and ui(x, t).

Theorem 1 (DO Evolution Equations). Under the assumptions of
the DO representation, the original SPDE (3)–(5) is reduced to the
following system of equations

dYi(t; ω)

dt
= ⟨L[u(•, t; ω); ω] − Eω

× [L[u(•, t; ω); ω]], ui(•, t)⟩, (7)

∂ ū(x, t)
∂t

= Eω
[L[u(x, t; ω); ω]], (8)

∂ui(x, t)
∂t

= 5V⊥
S
[Eω

[L[u(x, t; ω); ω]Yj(t; ω)]]C−1
Yi(t)Yj(t)

, (9)

where the projection in the orthogonal complement of the stochastic
subspace is defined as 5V⊥

S
[F(x)] = F(x) − 5VS [F(x)] = F(x) −

⟨F(•), uk(•, t)⟩uk(x, t) and the covariance coefficients CYi(t)Yj(t) =

Eω
[Yi(t; ω)Yj(t; ω)]. The associated boundary conditions have the

form

B[ū(ξ , t; ω)]|ξ∈∂D = Eω
[h(ξ , t; ω)],

B[ui(ξ , t)]|ξ∈∂D = Eω
[Yj(t; ω)h(ξ , t; ω)]C−1

Yi(t)Yj(t)
,

and the initial conditions are given by

Yi(t0; ω) = ⟨u0(•; ω) − ū(x, t0), υi(•)⟩,

ū(x, t0) = Eω
[u0(x; ω)],

ui(x, t0) = υi(x),

for all i = 1, . . . , s, where υi(x) are the eigenfields of the covariance
operator Cu(·,t0)u(·,t0) defined by the following eigenvalue problem for
t = t0∫

D
Cu(·,t)u(·,t)(x, y)υi(x)dx = λ2

ı̄ (t)υı̄(y), y ∈ D. (10)

3. Cost scaling with the stochastic dimensionality

The most important obstacle towards the numerical solution of
stochastic dynamical systems and especially of high dimension-
ality such as SPDEs is the exponential growth of the number of
unknowns with respect to the stochastic dimensionality of the
problem. This is also known as curse of dimensionality [31] and
refers to the exponential growth of a hypercube’s volume as a func-
tion of dimensionality. Therefore in a direct simulation approach
where N degrees of freedom are involved in every stochastic di-
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mension, the storage cost of having s stochastic dimensions will be
given by
Sdirect(N) = O(N s).

Hence, for high or infinite-dimensional systems, the storage, and
thus, the computational cost is prohibited with this approach. In
the Polynomial-Chaos (PC) method, where the stochastic element
is projected into a given set of random functions the storage cost
grows polynomially as (see e.g. [32])

SPC(N) = N
p−

k=1

1
k!

k−1∏
r=0

(s + r) ∼ O(Nsp),

where p is the order of the polynomial-chaos approximation and
s the stochastic dimensionality of the problem. Therefore, the
growth rate strongly depends on the order pwhichmay need to be
sufficiently large in order to capture adequately complex statistical
responses. For the PC method, the computational cost for evolving
the degrees of freedom depends on the order of the non-linearity,
q, characterizing the evolution equation (e.g. for Navier–Stokes
q = 2) and it scales as
CPC(N) ∼ O(Nspq)
where the exponent q comes from the fact that for a q-order poly-
nomial term in the system equation and a representation consist-
ing of Nsp terms, the number of multiplications required for the
computation of this term will be Nspq.

In the ESSE approach, the storage cost grows linearly with
respect to the stochastic dimension s, i.e. SESSE(N) = O(Ns).
Since the evolution of the probabilistic information is done through
Monte-Carlo simulation the computational cost does not depend
on the stochastic dimensionality but rather on the number of
Monte-Carlo samples that will allow us to get a satisfactory
approximation of the stochastic response.

In the case of the DO field equations the storage cost grows
linearly with respect to the stochastic dimension s, while the
computational cost grows polynomially with an exponent that
does not depend on s but rather on the nonlinearity q associated
with the governing equations. More specifically, as we presented
in the previous section, the representation (2) consists of s + 1
deterministic fields, and a stochastic process that takes values in
Rs. Even though the stochastic process Y(t; ω) carries the curse of
dimensionality, the small to moderate size of s (even for realistic
oceanic applications s ∼ O(10) − O(103) is sufficient, [15]) allows
for storage of the probabilistic structure through a sufficiently large
number of samples. Therefore, the main storage cost comes from
the s + 1 time dependent fields. Thus,
SDO(N) = O(Ns).
Consequently, for a system operator L having polynomial
nonlinearities of maximum order q the computational cost will be
given by
CDO(N) = O(Nsq)
where the computational cost follows from similar arguments as
in the case of the PC method.

From the above discussion we conclude that in the DO
methodology the storage cost grows linearly, independently from
the complexity of the stochastic solution or the nonlinearity of the
system operator, while the number of numerical operations grows
polynomially with an exponent that depends exclusively on the
order of nonlinearity of the system operator L.

In Fig. 1, we present the computational cost in seconds with
respect to the number of modes for a fluid dynamical system
described by Navier–Stokes equations. More specifically, we
consider the stochastic lid-driven cavity flow which is described
in detail in [21]. The red dotted curve indicates the measured
time for a particular run while the blue line is the best linear
fit. The inclination of the best linear fit is equal to 1.986 and
compares satisfactory with the theoretical prediction i.e. the order
of nonlinearity which for Navier–Stokes is 2.
Fig. 1. Computational time (s) for the lid-driven cavity flow described in Sec-
tion 6.2, using different numbers of DO modes (red curve). The blue line indicates
the linear ‘best fit’ in the log–log plot and it has an inclination equal to 1.986 (2 is the
theoretical prediction). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

4. Update of the stochastic subspace using stability properties
of the SPDE

In this section we will study criteria for the dimensionality
selection of the stochastic subspace VS as the system evolves.
The proposed conditions for the contraction and expansion of
the stochastic subspace will be based on the covariance matrix
CYi(t)Yj(t) = Eω

[Yi(t; ω)Yj(t; ω)], i.e. on the second order character-
istics of the stochastic field. Note that CYi(t)Yj(t) provides informa-
tion about both the intensity of the uncertainty that characterizes
a stochastic field but also the principal directions in H over which
this stochasticity is distributed.

4.1. Conditions for the evolution of the stochastic dimensionality

For the covariance matrix CYi(t)Yj(t), we have the set of eigen-
values ρ2

j (t), j = 1, . . . , s and the corresponding eigenvectors
φj(t), j = 1, . . . , s, given by the eigenvalue problem

CYi(t)Yj(t)φkj(t) = ρ2
k̄ (t)φk̄i(t).

To relate the above eigenvalues and eigenvectors with those of the
covariance operator Cu(·,t)u(·,t)(x, y), we observe (using represen-
tation (2) of u(x, t; ω)) that

Cu(·,t)u(·,t)(x, y) = Eω
[Yi(t; ω)Yj(t; ω)ui(x, t)uj(y, t)T ]

= CYi(t)Yj(t)ui(x, t)uj(y, t)T .

Then we can easily check that the eigenvalue problem∫
D
Cu(·,t)u(·,t)(x, y)ui(x, t)dx = λ2

ı̄ (t)uı̄(y, t), y ∈ D,

has s non-zero eigenvalues given by ρ2
j (t), j = 1, . . . , s with the

corresponding eigenfields given by

υj(x, t) = ui(x, t)φij(t), j = 1, . . . , s,

where φij(t) is the i element of the j eigenvector φj(t).
We proceed by defining the conditions for the decrease

and increase of the size of the stochastic subspace, considering
arbitrary contraction time tc and expansion time te at which this
can happen.

Condition 1 (Contraction of VS). The stochastic dimension s =

dim VS will be decreased by one when at t = tc the minimum
eigenvalue becomes less than a critical value σ 2

cr

min
i

ρ2
i (tc) < σ 2

cr.
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In this way, we set a threshold of variance below which
uncertainty is sufficiently small to be neglected. The value of σ 2

cr
may be chosen to be fixed or dynamically evolving according to
the energy of the mean field i.e. σ 2

cr = σ̃ 2
cr⟨ū, ū⟩ or the maximum

eigenvalue i.e. σ 2
cr = σ̃ 2

cr maxi ρ2
i (tc). In this way we are able to

capture uncertainty as small as a specific portion of the mean
field energy or the maximum eigenvalue. We will use the former
approach (i.e. based on the mean flow energy) to study how the
number of required modes varies for fluid flows over different
Reynolds numbers (Re =

UL
ν
, with ν being the fluid viscosity, and

U, L the characteristic velocity and length of the flow, respectively).
The stochastic subspace basis elements ui(x, tc) as well as the

stochastic coefficients Yi(tc; ω) have to be updated accordingly.
We assume that (ρ2

s (tc), υs(x, tc)) is the eigenpair that we neglect
because ρ2

s (tc) < σ 2
cr. Moreover, we denote as u+

i (x, tc) and
Y+

i (tc; ω), i = 1, . . . , s − 1 the basis elements of the stochastic
subspace V+

S−1 and the corresponding stochastic coefficients
respectively after the application of the contraction criterion. By
choosing the basis elements u+

i (x, tc) to be identical with the
eigenfields υi(x, tc), i = 1, . . . , s − 1 we have the stochastic
subspace V+

S−1 which is contracted relative to VS exactly by
the eigendirection υs(x, tc) that corresponds to the minimum
eigenvalue (note that orthonormality of υi(x, tc), i = 1, . . . , s− 1
is preserved). Then, the state of the system at t = tc will be
described by

u+(x, tc; ω) = ū(x, tc) +

s−1−
i=1

Y+

i (tc; ω)υi(x, tc), ω ∈ Ω

where the stochastic coefficients can be easily found by projecting
the stochastic part of the solution u(x, tc; ω)− ū(x, tc) to the basis
υj(x, tc), j = 1, . . . , s − 1

Y+

j (tc; ω) = φij(tc)Yi(tc; ω), j = 1, . . . , s − 1.

Condition 2 (Expansion of VS). The stochastic dimension s =

dim VS will be increased by one when at t = te the minimum
eigenvalue becomes greater than a critical value Σ2

cr > σ 2
cr.

min
i

ρ2
i (te) ≥ Σ2

cr > σ 2
cr.

Similarly with σ 2
cr, the critical value Σ2

cr may be chosen to
be fixed or evolve dynamically according to the characteristics
of the stochastic field. The additional stochastic dimension is
chosen for simplicity to have a stochastic coefficient Y+

s+1(te; ω)

that is normally distributed with variance σ 2
s+1. It is also assumed

statistically independent from the existing stochastic coefficients.
Both of these assumptions are based on the fact that the stochastic
intensity along the new direction is small (σ 2

s+1). We note that
in ocean uncertainty and data assimilation applications, another
reasonable choice is to set σ 2

s+1 based on the existing eigenvalue
spectrum of size s. If a subspace of size s + 1 had been used
from the start, by mode–mode and mode–mean interactions, the
amplitude of σ 2

s+1 would be linked to the shape of the {σ 2
i }

s
i=1

spectrum. Extrapolating that spectrum to set the amplitude of σ 2
s+1

is then logical: for example, if the spectrum is white for the modes
around mode s, then σ 2

s+1 would be set equal to σ 2
s . On the other

hand, the selection of the additional basis field u+

s+1(x, te) is not
straightforward. This is done next based on stability arguments of
the system operator L.

4.2. Selection of new stochastic dimensions

We will now describe the directions in H which are not
included in the stochastic subspace VS and which have the larger
tendency to grow (most unstable) in terms of the variance. In what
follows we will assume that uncertainty is small and uniform in
the orthogonal complement of the stochastic subspace (V⊥

S , the
subspace that until now was not considered stochastic). Based on
this assumption we may choose the new direction based only on
the largest, instantaneous, growth rate (see e.g. [7]).

First we give some definitions that will be essential to our
analysis. Suppose Φ(u) : H → H is an operator from the space of
square integrable stochastic fields H to itself. The operator Φ will
be called Frechet differentiable (see e.g. [33]) if for any u ∈ H there
exists a bounded, linear operator δΦ(u)

δu [h] : H → H such that the
following limit exists

lim
ε→0

Φ(u + εh) − Φ(u) −
δΦ(u)

δu [h]


2

ε
= 0

where ‖u‖
2
2 = ⟨u,u⟩ is the norm induced by the inner product of

the Hilbert space H. In this case, we will have [33]

Φ(u + εh) − Φ(u) = ε
δΦ(u)

δu
[h] + O(ε2). (11)

In what follows we will study the normal stability of VS ,
i.e. the stability of the reduced system to perturbations which
are normal to VS . To this end we will use Normal Infinitesimal
Lyapunov Exponents that have been used in the study of normal
stability properties of invariant manifolds of multi-dimensional
dynamical systems (see [25]). More specifically, we consider a
small perturbation of an element in VS at the time instant te such
that the perturbed field ũ has the form

ũ(x, te; ω) = εΥ (te; ω)ϑ(x, te) + u(x, te; ω)

where u ∈ VS, ε is a small real number, ϑ(x, te) is a deterministic
field that is normal to the stochastic subspace VS , and Υ (te; ω) is
a square-integrable random variable that is independent from the
stochastic processes Yi(t; ω), i = 1, . . . , s, t ≤ te. Then, from the
s + 1 dimensional DO equations we will have using (7)

ε
dΥ (t; ω)

dt
= ⟨L[ũ(•, t; ω); ω] − Eω

[L[ũ(•, t; ω); ω]], ϑ(•, t)⟩.

Then, by expanding L[ũ(•, t; ω); ω] around u using Eq. (11) we
obtain

L[ũ(x, t; ω); ω] = L[u(x, t; ω); ω] + εΥ (t; ω)

×
δL[u(x, t; ω); ω]

δu
[ϑ(x, t)] + O(ε2).

Moreover, since Υ (t; ω) is zero-mean we will have for the limit
t → te
lim
t→te

Eω
[L[ũ(x, t; ω); ω]] = lim

t→te
Eω

[L[u(x, t; ω); ω]] + O(ε2).

Now inserting these latter two equations in the equation for
Υ (t; ω) we have for t → te

ε
dΥ (t; ω)

dt


t=te

= ⟨L[u(•, te; ω); ω] − Eω
[L[u(•, te; ω); ω]], ϑ(•, te)⟩

+ εΥ (te; ω)


δL[u(•, te; ω); ω]

δu
[ϑ(•, te)], ϑ(•, te)


+ O(ε2).

Then we multiply with 2Υ (t; ω) and apply the mean value
operator to obtain for the limit t → te, ε → 0

dEω
[Υ 2(t; ω)]

dt


t=te

= 2Eω
[Υ 2(te; ω)]

×


Eω

[
δL[u(•, te; ω); ω]

δu
[ϑ(•, te)]

]
, ϑ(•, te)


.
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Therefore the Normal Infinitesimal Lyapunov Exponent in this case
will be given by

σte [u] = 2 max
ϑ∈V⊥

s
‖ϑ‖=1

Q[ϑ]

≡ 2 max
ϑ∈V⊥

s
‖ϑ‖=1


Eω

[
δL[u(•, t; ω); ω]

δu
[ϑ(•, t)]

]
, ϑ(•, t)


. (12)

We emphasize that the direction corresponding to σte is the
dominant perturbation (in the sense of instantaneous magnitude
growth) that is orthogonal to the present subspace. Thus, the
above approach takes into account the non-normality of the
linearized operator (e.g. [22,34]) but also extends it by only
considering perturbations that lie in a specific subspace only,
here the orthogonal complement to the stochastic subspace,
V⊥

S (similarly with the approach presented in [25] for finite-
dimensional dynamical systems). Of course, even though the initial
perturbations are assumed to ‘live’ at the considered time te inside
V⊥

S , they are not restricted to evolve in V⊥

S . Over a small 1t ,
the fastest growing perturbation at te would evolve to the left
singular vector of the linearized model dynamics. In summary, the
presented analysis guarantees that the quantity (12) is a measure of
themaximumpotential growth of perturbationswhich are not already
contained in VS .

Using the result (12), we can predict based on the present state
of the system and the present form of the stochastic subspace
VS which perturbation vector ϑ(x, te) will grow the fastest in
the orthogonal complement V⊥

S and therefore we can update or
expand the stochastic subspace accordingly. How to compute this
direction is discussed next. The result (12) is strictly valid if the
uncertainty spectrum in V⊥

S can be assumed uniform (i.e. white in
space). If observational evidence shows that the spectrum is not
uniform (e.g. red in space as in common in ocean cases, e.g. [18]),
the normal vectors in the above developments need to beweighted
by the corresponding covariance decomposition, leading to a
weighted spatial inner product in (12). The eigendecomposition
and fastest modes depend on the coordinate system chosen and
to identify meaningful modes not presently captured, adequate
coordinates need to be chosen.

Finally, an approach related to (12) that is commonly used in the
weather and ocean prediction and data assimilation literature is
based on the dominant right and left singular vectors of the tangent
linear model considered over a finite time interval extending from
the present to a future time instant (the so called ‘linearized
regime’). This approach assumes linearized dynamics over this
finite time interval and allows to find the perturbation that will
have the maximum growth over this interval (see e.g. [35,7]). A
significant difference here is that the time interval is infinitesimal,
in practice, the discrete time-step.

4.2.1. Numerical computation of the Normal Infinitesimal Lyapunov
Exponent

In order to compute the Normal Infinitesimal Lyapunov
Exponent, we first approximate V⊥

S by a finite base {ϑi(x, te)}
q
i=1.

This can also be seen as the first iteration of a breeding
procedure [7,4], realizing that here this breeding occurs only in
directions orthogonal to the subspacewe already capture. A similar
approach is also utilized in the ESSE method and combined with
data-model misfits inputs [13,16,17]. In the present work, we
extend this analysis to continuous time and space, directly from
the original system SPDEs.

Note that such basis can always be constructed using any
finite base that approximates the space of square integrable
deterministic fields L2 (e.g. Fourier modes) and then applying the
Gram–Schmidt process. By considering such a base, we will have

ϑ(x, te) =

q−
i=1

aiϑi(x, te) with
q−

i=1

a2i = 1.

Then, using the linearity of the Frechet derivative with respect to
ϑ we will have

Q[ϑ] = Q̃[a1, . . . , aq]

= aiaj


Eω

[
δL[u(•, t; ω); ω]

δu
[ϑi(•, t)]

]
, ϑj(•, t)


=

1
2


Qij + Qji


aiaj,

where Qij is a q × qmatrix whose elements are given by

Qij =


Eω

[
δL[u(•, t; ω); ω]

δu
[ϑi(•, t)]

]
, ϑj(•, t)


.

Note that in the equation for Q[ϑ] we have used the fact that for
any matrix Q and vector xwe have

xTQx =

xTQx

T
= xTQTx =

1
2
xT

Q + QT  x.

Therefore the problem has been reduced to the optimization
of the quadratic function Q̃ over the unit sphere a2ii = 1.
The property a2ii = 1 follows from the assumption of uniform
variance for all the modes which are not included in the stochastic
subspace. As mentioned above, for the case where we had some
background information for the size of the various perturbations
in the orthogonal complement, we would have a weighted
problem according to the variances of the individual modes in this
orthogonal subspace.

The quadratic optimization of Q[ϑ] has always a solution since
the unit sphere is a compact set. Moreover, since Q̃ is quadratic we
will have

σte [u] = λmax[Qij + Qji],

where λmax denotes the maximum eigenvalue. Based on the
above analysis we choose the new direction u+

s+1(x, te) in the
expanded stochastic subspace as the critical direction ϑc(x, t)
within the finite base {ϑi(x, te)}

q
i=1 for which maximum growth of

variancewill occur. This direction of fastest growth is the dominant
eigenvector of Q + QT , i.e.

u+

s+1(x, te) = ϑc(x, t) = ac,iϑi(x, t),

where {ac,i}
q
i=1 are the elements of the eigenvector of Qij + Qji that

corresponds to the maximum eigenvalue λmax[Qij + Qji].

5. Update of the stochastic subspace using data and measure-
ments

In many systems modeled stochastically, available data or
measurements can improve significantly the accuracy of estimates.
The scope of this section is to describe how this information can be
merged with the numerically evolved stochastic fields within the
context of DO equations.

Generally data and measurements are available in arbitrary lo-
cations in the domain of interest, especially in oceanic applica-
tions. The optimal estimation of gridded fields directly from the
spatially irregular and multivariate data sets that are collected by
varied instruments and sampling schemes is a problem studied in
the context of objective mapping (see e.g. [6,36]) and will not be
studied in this work. For schemes that utilize raw data to learn the
dominant (multivariate) stochastic subspace, we refer to [13,15].
In these schemes, the posterior data-model misfits at gappy data
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Fig. 2. Decomposition of the stochastic subspace VS based on the data subspace
VO .

points are first gridded to model points using a prior estimate of
the multivariate error covariance in the orthogonal complement
V⊥

S of the stochastic subspace. Once posterior misfits are gridded
and their uncertainty estimates computed, they are employed to
update the subspaceVS estimate, i.e. learn the dominant error sub-
space. Here, for simplicity, we assume that data or measurements
information is already gridded, i.e. they are expressed in full field
form (or full field probability densities) known at particular time
instants. Based on this assumption, we first define some essential
notation for the analysis that will follow.

5.1. Measurement data formulation

We denote the time instant where observations are available
as to, the unbiased estimated field (e.g. through objective analysis)
as û(x, to), and the covariance operator for the associated error
E(x, to; ω) ≡ û(x, to) − u(x, to; ω) where u(x, to; ω) is the true
field as

CEE (x, y) = Eω
[E(x, to; ω)E(y, to; ω)T ].

For simplicitywe also assume zero-meanGaussian statistics for the
observed gridded field. To express the available information in the
DO framework we perform a spectrum analysis of the covariance
operator by solving the following eigenvalue problem∫

D
CEE (x, y)υE,i(x)dx = λ2

E,ı̄υE,ı̄(y), y ∈ D (13)

from which we obtain a set of eigenpairs (λ2
E,i, υE,i(x)) i =

1, 2, . . . . Then, based on the critical variance threshold σ 2
cr (below

which stochasticity is negligible), we obtain the full-field data
subspace

VO = span{υE,i(x)|λ2
E,i > σ 2

cr},

defined as the span of all eigenfields υE,i(x) associated with
important variance (λ2

E,i > σ 2
cr).

5.2. Update of the stochastic information inside VS

To update the stochastic information of the current state of
the system we partition the stochastic subspace VS into two
orthogonal (i.e. disjoint) linear subspaces as follows

VS = VS ∩ VO ⊕ VS ∩ V⊥

O ,

where⊕ denotes the direct sum of the two subspaces (Fig. 2). Note
that along the dimensions contained in the subspace VS ∩ V⊥

O ⊂

VS , the available information from measurement data guarantees
accurate estimation since the associated data variance is less than
σ 2
cr. Therefore, for these directions,wemayneglect those stochastic

dimensions and update the stochastic subspace and the mean
directly as (q+, q− denoting the posterior and prior values of a
quantity q, respectively)

V+

S = V−

S ∩ VO, and s+ = dimV−

S ∩ VO

ū+(x, to) = ū−(x, to) − 5V−

S ∩V⊥
O
[ū−(x, to)] + 5V−

S ∩V⊥
O
[û(x, to)],

where û(x, to) is the unbiased estimated field. Note that for the
stochastic subspace we maintain only the directions lying on
the intersection of the stochastic subspace and the uncertain
data information. For the mean we substitute completely the
information computed through the evolution equations with the
measured information for which there is good accuracy, i.e. the
‘certain’ measured information corresponding to eigendirections
with λ2

E,i ≤ σ 2
cr which are contained in V⊥

O .
The next step of our analysis involves the update of the remain-

ing stochastic coefficients Yi(to; ω) that describe the probabilistic
structure in the reduced-dimension stochastic subspaceVS , specif-
ically VS ∩ VO. We have by definition of E (see Section 5.1),

û(x, to) = E(x, to; ω) + ū(x, to) + Yi(to; ω)ui(x, to) + r,

where r is in V⊥

S . By projecting the above equation to every basis
element of the stochastic subspace we then obtain for every k =

1, . . . , s

⟨û(•, to),uk(•, to)⟩ = ⟨E(•, to; ω),uk(•, to)⟩
+ ⟨ū(•, to),uk(•, to)⟩ + Yk(to; ω).

We shall now do a Bayes ‘data assimilation’ update in the Y space.
Using the above relation we can apply Bayes rule to update the
probability density function describing the stochastic coefficients.
More, specifically we will have

fY(y, to|{⟨û(•, to),uk(•, to)⟩}sk=1)

=
f ({⟨û(•, to),uk(•, to)⟩}sk=1 | y)fY(y, to)

Rs f ({⟨û(•, to),uk(•, to)⟩}sk=1 | z)fY(z, to)dz
,

where y is the argument for the random variable Y(to; ω) and fY is
the corresponding probability density function. We have assumed
Gaussian statistics for the error field E(x, to; ω). Therefore,

f ({⟨û(•, to),uk(•, to)⟩}sk=1 | y) = N (⟨ū(•, to),
uk(•, to)⟩ + yk, 4ij),

where 4ij is the covariance matrix defined as

4ij =

∫
D

∫
D
uT
i (x1, to)CEE (x1, x2)uj(x2, to)dx1dx2,

i, j = 1, . . . , s.

Thus, the pdf describing the updated stochastic coefficients will be

fY(y, to | {⟨û(•, to),uk(•, to)⟩}sk=1)

=
N (⟨ū(•, to),uk(•, to)⟩ + yk, 4ij)fY(y, to)

Rs N (⟨ū(•, to),uk(•, to)⟩ + yk, 4ij)fY(z, to)dz
.

To be consistent with the DO formulation we finally need to center
the above density, so that the updated Yk(to; ω) are zero mean
(Fig. 3). Specifically, we will have

ū+(x, to) = ū−(x, to) + mkuk(x, to),

with mk =

∫
Rs

ykfY(y, to|{⟨û(•, to),uk(•, to)⟩}sk=1)dy,

f +

Y (y, to) = f −

Y (y + m, to|{⟨û(•, to),uk(•, to)⟩}sk=1)

where the latter density update is implemented by removing the
mean from the updated Yk(to; ω).

5.3. Expansion of the stochastic subspace VS

The second stage involves the consideration of the stochastic
dimensions of VO which are not included into the stochastic
subspace VS . More specifically, we consider the space WO ≡

VO ∩ V⊥

S . This linear subspace contains directions with important
uncertainty according to the estimation procedure and hence these
should be included into the stochastic subspace VS . This can be
done in more than one ways. A first ‘update-all’ approach is
the expansion of the stochastic subspace VS using all the new
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Fig. 3. Update of the probability density function fY(y, t) using data or measure-
ments .

dimensions contained in WO, which has the advantage of keeping
all new directions. However, this method may involve significant
cost. In realistic application, this can be made more efficient by
adding only a single dimension for every synoptic batch of data
(see [13]). Here, we want to extend the singular vector ideas
[22,37,7] to continuous time and to only the directions not already
captured in the DO subspace at time t . We also want to utilize the
ESSE ideas of expending the subspace by learning from data, but
within a new continuous DO approach.

With this in mind, a first choice is to combine the information
for WO with the analytical arguments presented in the previous
section in order to obtain the direction(s) inWO that lead to larger
values of variance according to the dynamics of the system. In this
way, we enhance VS only with the most unstable directions of the
spaceWO.

If we select only the most unstable direction in WO, then
according to the results of the last section this will be given by

us+1(x, to) =

dimWO−
i=1

aiwi(x)

where wi(x) is a basis that spans WO and {ai}
dimWO
i=1 is the

eigenvector associated with the maximum eigenvalue of the
matrix Qij + Qji, with

Qij =


Eω

[
δL[u(•, to; ω); ω]

δu
[wi(•)]

]
,wj(•)


.

Depending on the nature and scale of the problem and the size
of the stochastic subspace, a second efficient choice is to combine
the above with ESSE ideas, i.e. add those directions in WO with
important variance as well as those which are most unstable.
This second approach is likely to give the most efficient results
in realistic ocean situations. Finally, the stochastic coefficients
Ys+1(to; ω) corresponding to these new directions will follow
Gaussian distribution with variance

σ 2
Ys+1

(to) =

∫
D

∫
D
uT
s+1(x1, to)CEE (x1, x2)us+1(x2, to)dx1dx2

and mean

Eω
[Ys+1(to; ω)] = ⟨û(•, to),us+1(•, to)⟩.

As wementioned in the previous section appropriate modification
of the mean field should be made so that Ys+1(to; ω) is centered
according to the DO formulation.

6. Stochastic modeling of 2D unstable fluid flows

In this section we will use the presented criteria in order
to model the complex behavior observed in two-dimensional
incompressible fluid flows characterized by a range of Reynolds
number values. We consider two specific cases: the wind-driven
double gyre flow in a basin in the presence of the Coriolis force and
the lid driven cavity flow. The latter case was studied previously
in the stochastic context in [21]; however this study involved
a fixed subspace size and strongly stochastic initial conditions
(i.e. variance of the initial conditions being comparable or larger
to the energy of the mean field). Here we resolve the stochastic
transient regime from deterministic initial conditions to complex
stochastic states caused by internal instabilities (in practice,
simulations are always limited by numerical resolution and initial
condition accuracy, and if internal instabilities are strong and
not fully-resolved, they prevent a fully deterministic solution).
Thus, in all examples that follow, the flow is initiated with zero
initial conditions and zero uncertainty: therefore the stochastic
subspace is initially an empty set. Both flows are studied for
specific Reynolds numbers. Moreover, an analysis of the number
of DO modes required to capture a specific portion of uncertainty
is presented over different flow Reynolds numbers. We found that
for the case of the double gyre flow this number increases much
faster with respect to Reynolds, due to internal instabilities of the
flow,while for the lid-driven cavity flowwehave smaller growth of
the number of required modes with respect to the flow Reynolds.

The numerical algorithm utilized is based on the implementa-
tion of the DO field equations for Navier–Stokes presented in [21]
through a finite-volume framework the details of which are given
in [38,39]. The spatial resolution is chosen to be 80 × 80 and the
time step is taken δt = 2.10−5 for the double gyre flow and
δt = 2.10−3 for the lid-driven cavity flow. In the numerical algo-
rithmused,we check the conditions for expansion or contraction of
the stochastic subspace everyM computational time steps (where
M = 50). For the considered cases, the state is initially determinis-
tic and after the first M time steps we add a first dimension to the
stochastic subspace according to the procedure described in Sec-
tion 4.2. The critical variances for expansion and contraction of the
subspace are chosen as

Σ2
cr = 10−5 and σ 2

cr = 10−8.

Moreover, each newmode is assumed to have normally distributed
stochastic coefficient with variance σ 2

n = 10−6.
The equation for the stochastic coefficients Yi is resolved

using a Monte-Carlo approach (the integration scheme is a 4th
order Runge–Kutta method) with 105 samples (the very small
dimensionality of Yi allows us to use a very large number of
samples); an alternative approach based on the solution of the
conservation law for the pdf of Yi could also be used (see
[40,41] for themultidimensional case). Thenumerical computation
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of the Normal Infinitesimal Lyapunov Exponent (Eq. (12)) is
performed using a finite base approximation of the orthogonal
complement of the stochastic subspace which we construct by
Gram–Schmidt orthonormalization process and an initial set of
30 basis elements that we obtain as the eigenvectors of a given
correlation operator (see Section 5.2 of [21] for details). These
operations can be formulated to fields of different dimensions,
for example, for the case of temperature, salinity and currents
governed by oceanic primitive-equations. This extends the simple
breeding of multivariate error modes [4,15] over a finite-time
period and spatially-discrete field approximation to a continuous
framework.

6.1. Wind-driven double gyre flow

The wind-driven double gyre flow that we study is modeled
using a barotropic single layer-model in a square basin of size L = 1
described in detail in [42,43] (see also [44,45]). The intent is to
simulate the idealized near-surface double-gyre ocean circulation
at mid-latitudes. The mid-latitude easterlies and trade winds in
the northern hemisphere drive a cyclonic gyre and an anticyclonic
gyre, and the corresponding zonal jet in between. This eastward
jet would correspond to the Gulf Stream in the Atlantic and to
the Kuroshio and its extension in the Pacific. This idealized flow
is modeled by the nondimensional equations of motion

∂u
∂t

= −
∂p
∂x

+
1
Re

1u −
∂(u2)

∂x
−

∂(uv)

∂y
+ f v + aτx, (14a)

∂v

∂t
= −

∂p
∂y

+
1
Re

1v −
∂(vu)

∂x
−

∂(v2)

∂y
− fu + aτy, (14b)

0 =
∂u
∂x

+
∂v

∂y
, (14c)

where Re is the flowReynolds number taking values from10 to 104,
f = f̃ +βy is the non-dimensional Coriolis coefficient, and a = 103

the strength of thewind stress. In non-dimensional terms, we have
f̃ = 0.1, β = 103. The flow in the basin is forced by an idealized
zonal wind stress that is constant in time, given by

τx = −
1
2π

cos 2πy

τy = 0.

Free slip boundary conditions are imposed on the northern and
southern walls (y = 0, 1) and no-slip boundary conditions on
the eastern and western walls (x = 0, 1). In what follows, we
first present results for Re = 100, for which we have resolved
simulations. Since we are interested in studying the proposed
criteria and schemes to evolve the size of the subspace for any
type of nonlinear dynamics, we also consider higher Re. The
dimensionless inertial and viscous boundary layer thickness are,
δI = L−1√U/β0 =

√
1/β and δM = L−1(AH/β0)

1/3
=

(1/(Reβ))1/3, respectively.

6.1.1. Wind-driven double gyre flow at Re = 100
To evaluate our numerical solutions, we compared solutions

obtainedwith the employed spatial resolution (80×80)with those
obtained with lower and higher spatial resolutions (e.g. 128 ×

128 and higher). We compared the mean field and the modes of
the vorticity, barotropic streamfunction, and velocities at different
time instants in the simulations. We also completed similar
evaluations for the time-step. With these resolution studies (not
presented here), we found that a horizontal grid of size δx = 1/80
and time-step of δt = 2.10−5 were sufficient for our purposes at
Re = 100 (for which δI = 0.032 and δM = 0.0215). Note that we
also completed classical convergence studies for the deterministic
case as well as novel convergence studies for the stochastic DO
case; we refer to [39] for such studies involving different fluid
flows.

In Fig. 4 we present a schematic representation of the flow
character (in this case the flow is resolved with a fixed number
(s = 4) of DO modes) for Re = 100. During the initial transient
period, the flow remains deterministic with all the probability
measure being concentrated around a single state, shown on the
top left of the figure, in terms of the vorticity field (colormap)
and the barotropic streamfunction (black curves). As time evolves
internal instabilities lead to the growth of the flow total variance
(initialized at a value of approximately 10−6 at time t = 0),
shown in the lower plot, changing the character of the flow from
deterministic to stochastic. At this stage, the flow is characterized
by an infinite number of possible realizations associated with a
probability measure.

This family of possible realizations and the overall uncertainty
evolution is efficiently described by the time evolving DO modes
and their associated stochastic coefficients shown for t = 2.8
(when uncertainty has become important) in Fig. 5 in terms of
the vorticity function (colormap), barotropic streamfunction (black
curves), as well as the probability density functions which, in
general, present strongly non-Gaussian behavior.

A variance view of the evolution of the stochasticity and the
differences between a fixed and adaptive subspace estimates are
shown in Fig. 6, where the variance of the coefficients Yi(t; ω) is
shown with respect to time in linear (top plot) and logarithmic
scale (bottom plot). Thus, we resolve the same problem using two
approaches. In the first case,weutilize the derived adaptive criteria
adding modes when is necessary (solid color lines). In the second
case, we resolve the stochastic flow with a fixed number of modes
(4 modes) initiated from the beginning with very small variance
(dashed color curve) approximately equal to 10−6. The energy of
themean flow is also shown as black solid curve in the logarithmic
plot. Note that the energy of the mean flow is almost identical in
both approaches. Moreover, it is interesting to observe that the
time series for the variances in the two approaches follow similar
patterns indicating that the main factor for their evolution is non-
linear interactions with the mean flow rather than linear growth
of the initially small stochastic perturbation.

Themodes addedduring the evolution of the stochastic solution
using the adaptive criteria and Eq. (12) are shown in Fig. 7. We
observe the quasi-symmetric character (in the sense of vorticity)
of the first two modes added. This follows from the quasi-
antisymmetric character of the mean flow which is the only
quantity that enters Eq. (12) explicitly, as shown in Eq. (15) of
Appendix A. Note however that the present form of the DO modes
also plays a key role since the added modes must be orthogonal to
the existing stochastic subspace. The thirdmode added at t = 1.11
is not symmetric reflecting a southwest gyremode, in part because
the mean is then not anti-symmetric anymore, as shown next.

In Figs. 8 and 9 we present the mean flow and the DO
modes again for the cases of the adaptive and fixed sizes of the
stochastic subspace, respectively. At time t = 0.5, the small initial
perturbations have not yet grown much (see Fig. 6) and the mean
is still relatively symmetric. By times t = 1.25 and t = 2.5,
perturbations have grown into basin and gyre modes (e.g. [46]),
which can lead to a loss of symmetry for the mean. At t = 1.25,
modes 1 and 2 have almost the same variances in both cases (Fig. 6)
and the order of the first two modes between the adaptive DO
and non-adaptive DO cases is flipped, but otherwisemode patterns
are very close. At t = 2.5, the subspaces defined by the mode
patterns are less close between the two cases, reflecting the strong
mean–mode and mode–mode interactions at that stage, but also
the fact that the number of modes is limited to 4. We also note
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Fig. 4. Stochastic response of the double gyre flow for Re = 100. The initially deterministic state of the flow (t = 0) becomes stochastic (t > 1.6) characterized by a family
of possible realizations (each one associated with a specific probability). On top some of those possible realizations are shown in terms of the vorticity field (colormap) and
the barotropic stream function (black curves). The lower plot shows the total variance of the solution with respect to time.
Fig. 5. DO modes and the probability density function of the corresponding stochastic coefficients for the wind-driven double gyre flow at t = 2.8 (Re = 100).
that by that time, the variance of the coefficient is as large as
the mean, and the mean flow is then not necessarily physically
realizable. Beyond t = 2.5, as we will see later, we note that
the adaptive scheme recovers. Overall, we observe that the two
cases compare satisfactorily even though the initialization of the
stochastic subspace is different in the two cases. This result is in
accordancewith the behavior of the variances of the corresponding
modeswhere, aswe concluded at least for the considered problem,
the evolution of uncertainty depends primarily on the nonlinear
interactions with the mean flow and less on the initial form of the
stochastic subspace. Importantly, the presented adaptive criterion
is capable of monitoring the uncertainty growth and decay and to
adapt the number of modes as needed.

6.1.2. Wind-driven double gyre flow at higher Re
We now study how the above results vary with the Re number.

Specifically, we study higher Re flows to find out if our adaptive
scheme can still converge towards a solution computed with a
larger, but fixed, number of modes. Specifically, we consider Re up
to Re = 104. We note that as the Re increases, the diffusion terms
decrease and the steady wind forcing leads to larger 2D currents.
Ultimately, the dominant balance in the interior is between the
wind and the advection terms, while the inertial and viscous
boundary layers dominate only near the boundaries. We note also
that at Re = 104, our flows are neither fully physical nor fully
resolved numerically. The flow is not fully physical because at this
Re the real ocean flowwould be three-dimensional (this is also the
case of the lid-driven cavity at the same Re [47]). The solution we
compute is also not fully resolved numerically, i.e. the numerical
diffusion influences the solution. These two limitations are not
critical since our goal here is only to study the behavior of the
adaptive DO solution.

Before evaluating the behavior of the adaptive schemes with an
increasing Re we summarize the results at Re = 104. We found
that during the initial transient period instabilities grew and the
stochasticity increased by interactions of the initialmodeswith the
mean flow. The mean flow however, retained an anti-symmetric
pattern in the interior, in accordance with the expected balance
between wind forcing and advection terms. In Figs. 10 and 11, we
present again the mean flow and the DO modes for the cases of
the adaptive and fixed (s = 5) sizes of the stochastic subspace,
respectively. We observe that the two cases compare even more
satisfactorily than at Re = 100 (a quantitative comparison will
be provided in Section 6.2). This is because nonlinearities are
even stronger and the interactions of the mean with the modes
are dominated by nonlinear instabilities and boundary layers
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Fig. 6. Time series for the variance, in linear (top) and logarithmic (bottom) scale,
of the stochastic coefficients in the case of variable size stochastic subspace (solid
lines) and fixed size (dashed lines) with s = 4. In the logarithmic scale plot the
energy of the mean flow is also shown with black solid curve (it is identical in both
cases).

Fig. 7. DO modes added in the stochastic subspace VS using the adaptive criteria
for the variance and Eq. (12).

terms near the boundaries, albeit here replaced by numerical
dissipation.

The last part of our study for this flow involves the investigation
of the number of DOmodes required to capture the variance that is
larger than a given a portion of themean flow energy, as a function
of the Reynolds number. For all Reynolds, we still consider the
case of uncertainty growth from a deterministic initial condition.
Specifically, we study the number of modes so that for all times
t (in the considered time interval) the mode with the smaller
variance has always instantaneous variance σ 2(t) < aEmean(t),
where a is fixed constant, and Emean(t) = ⟨ū(•, t), ū(•, t)⟩ is
the instantaneous energy of the mean flow. For our study the
considered time interval is T = [0, 2] and a = 10−6. The
flow Reynolds number regime that we show in Fig. 12 is still
from 10 to 104, again knowing that for our resolution, at the
larger Re, the numerical dissipation dominates the physical one.
As expected, the number of required modes is only one in the low
Reynolds regime where the flow is stable and gets larger as the
flow Reynolds increases and the character of the flow becomes
Fig. 8. Mean flow and DO modes for the double-gyre flow with Re = 100 shown
for three different time instants for the case of time evolving size of the stochastic
subspace.

Fig. 9. Mean flow andDOmodes for the double-gyre flowwith Re = 100 shown for
three different time instants for the case of fixed size (s = 4) stochastic subspace.

Fig. 10. Mean flow and DO modes for the double-gyre flow with Re = 104 shown
for three different time instants for the case of time evolving size of the stochastic
subspace.

more complex. Note that the number of required modes depends
strongly on the time interval considered in transient conditions
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Fig. 11. Mean flow and DO modes for the double-gyre flow with Re = 104

shown for three different time instants for the case of fixed size (s = 5) stochastic
subspace.

Fig. 12. Number ofmodes required to capture variance as small as 10−6 of themean
flow energy Emean(t) over different flow Reynolds numbers for the double gyre.

since some instabilities need more time to develop. The exact
dependence of the number of modes, which also characterize the
complexity of the solution, is beyond the scope of this work and
will be presented elsewhere. For guidance using a Monte-Carlo
error subspace approach, we refer for example to [5].

6.2. Lid-driven cavity flow

The next system that we study using the developed finite-
volume DO SPDE framework is the lid-driven cavity flow described
by Navier–Stokes equation (14) with f = a = 0. The physical
configuration (Fig. 13) consists of a square container filled with a
fluid [48–50]. The lid of the container moves at a given, constant
velocity, thereby setting the fluid inmotion. No-slip conditions are
imposedon all four segments of the boundarywith the exception of
the upper boundary, alongwhich the velocity u in the x-direction is
set equal to the given lid velocity ub to simulate themoving lid. The
length of each side is L = 1, the Reynolds number of the nominal
flow example is taken to be Re = 10 000, and the lid velocity
is taken to be ub = 1. We note that at this Re, a real lid-driven
cavity flow would be 3D but we focus on the 2D solution that is
known to exist numerically in the deterministic case [47]. If the
resolution is sufficient, this deterministic flow tends to a steady
state even at Re = 10 000. In our stochastic case, we will show
that our numerical mean field indeed becomes steady while the
uncertainty amplitude decays once themean is close enough to the
steady state.We also note that by that time, ourmean estimate has
Fig. 13. Lid-driven cavity flow, problem configuration.

thin boundary layers (bottom right and left, and top left, corners)
that are similar to those of [47], in contrast to spurious oscillatory
deterministic solutions which can be obtained when one employs
not accurate enough numerics.

As for the double gyre flow, we solve the stochastic lid-
driven cavity flow using a variable size stochastic subspace and
a fixed-size one. In Fig. 14, we first present the variances of the
stochastic coefficients for the DO modes with the adaptive size
algorithm (colored solid curves) and with the fixed size subspace
algorithm (dashed colored curves). The flow is initiated on a single
deterministic state and as time evolves it becomes unstable giving
rise to large variances of the DO modes and to non-Gaussian
responses (see Fig. 15—in this case the flow is resolved with a
fixed number (s = 4) of DO modes). Subsequently this transient
regime is surpassed and the stochastic dynamics converge to a
stable deterministic attractor leading to relatively low variance
levels.

We find that the shape of the time series of the variance
estimates computed with a fixed and adaptive subspace are still
very similar, as in the previously examined flow. However, we also
observe that the time series for the two approaches are not as
close in magnitude. This fact indicates that in this case the initial
magnitude and shape of the stochastic perturbation (that has small
variance at the beginning) plays an important role. The modes are
not driven exclusively from the mean flow as it was the case in
the double-gyre flow; in fact, within the growth period of this
lid-driven flow, it is more the modes themselves that drive the
uncertainty. Therefore, for this system adding the most unstable
perturbation has an effect on amplitude since it leads to much
larger variance relative to the case where the perturbation was not
chosen according to stability arguments, i.e. the case where the
whole subspace has a fixed size and is initiated at the beginning of
the flow. To obtain closer time series for each mode, one could fit
the initial amplitude of each adaptivemode added at a certain time
to the amplitude of the corresponding mode of the fixed subspace,
at that same time. In conclusion, this case illustrates that if the
uncertainty is close to zero a priori and the dynamical regime is
relatively linear (which is the case for this lid-driven flow), the
uncertainty magnitude has important dependence on the chosen
initial conditions.

The modes being added using the adaptive criteria in the
variable-size subspace algorithm are shown in Fig. 16. In all
three cases, we observe that the modes are mostly active in
the region where we have separation of the jet from the right
vertical boundary. These larger scale structures are then breaking
to smaller vortices which are advected by the mean flow. This is
illustrated in Fig. 17 where the DO modes along with the mean
flow are shown for three different time instants. The modes in
accordance with the mean flow describe the possible perturbed
stages of the formed jet.

A comparison of the modes between the case of fixed-size
stochastic subspace (Fig. 18) and the case of variable size (Fig. 17)
reveals that the geometry of the modes is qualitatively similar
although some modes present some differences. This is most
likely justified by the fact that the initial shape of the stochastic
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Fig. 14. As Fig. 6 but for the lid-driven cavity flow: time series for the variance,
in linear (top) and logarithmic (bottom) scale, of the stochastic coefficients in the
case of variable size stochastic subspace (solid lines, modes added at times t =

14.6, 16.6, 19.7) and fixed size (dashed lines) with s = 4. In the logarithmic scale
plot the energy of the mean flow is also shown with black curve (it is identical in
both cases).

perturbations is different and as we concluded from the form of
the variances time series, the initial conditions do matter in this
case although the non-linear interactions with themean flow have
an important role leading to qualitatively similar modes withmost
of their energy being concentrated around the jet of themean flow
in both cases.

To quantitatively estimate the similarity between the fixed-size
and adaptive-size subspaces and their internal distributions, we
illustrate on Fig. 19 the evolution of a coefficient measuring the
similarity between subspaces weighted by variance estimates [4]
(see Appendix B for the formulation in the DO framework). For the
case of the double gyre flow (Fig. 19(a) and (b)), the instantaneous
agreement of the two subspaces is satisfactory for both Re numbers
and is connected with the total amount of uncertainty present in
the system at any particular time instant. For the case of the lid-
driven cavity flow (Fig. 19(c)), the similarity coefficients show that
Fig. 16. DO modes added in the stochastic subspace VS using the adaptive criteria
for the variance and Eq. (12).

the subspaces are actually much closer than some could believe
by quickly comparing the modes visually, as was done above.
This is because the modes are forced to be orthogonal and slight
differences in higher modes are fed to lower modes. Hence, linear
combinations and rotations of the modes lead subspaces closer
thanmodeswould indicate. Another interesting aspect is the faster
quasi-periodic scales in these similarity curves, especially towards
the end of the simulations. These are likely driven by localized
instabilities occurring in the thin boundary layers at high Reynolds.
The corresponding uncertainty estimates of the fixed-size and
adaptive-size subspaces are then slightly out of phase (shown by
localizedwave-like behavior in themodes). This is again indicative
that if simulations were run further, the subspace size should be
increased.

Finally we present in Fig. 20 the number of required DO modes
that capture the important part of the variance, i.e. modes that can
capture variance as small as 10−6 of themean flow energy Emean(t)
over different Reynolds numbers. The time interval considered is
T = [0, 50]. Comparing with the double gyre case we observe that
in both cases instabilities begin to occur around Re = 102. In the
present case the number of required modes grows much slower
and becomes larger than 2 only for Reynolds of order O(103).
Even in this case, however, 5 modes are sufficient to capture the
uncertainty growth with some accuracy in contrast to 10 which
was the case for the double gyre flow. This may be justified by the
energy levels of themean flow for the two cases, since in the double
gyre flow the energy is much larger than in the lid-driven cavity
flow.
Fig. 15. Mean flow, DO modes, and probability density functions for the associated stochastic coefficients for the lid-driven cavity flow at t = 50.
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Fig. 17. Mean flow and DO modes for the lid-driven cavity flow shown for three
different time instants for the case of time evolving size of the stochastic subspace.

Fig. 18. Mean flow and DO modes for the lid-driven cavity flow shown for three
different time instants for the case of fixed size (s = 4) stochastic subspace.

7. Conclusions

We have derived analytical criteria for the evolution of
the stochastic dimensionality for flows with uncertainty. This
evolution is essential in order to describe the transient dynamics
and non-stationary statistics which are typical in a large range of
applications such as oceanic and atmospheric flows estimation.
The formulation was completed for the general case of a
continuous dynamical system described by a system of stochastic
PDEs and utilizes the DO framework. The new criteria for evolving
the subspace size are based on stability arguments which follow
directly from the system differential equations and provide us
with the instantaneously most unstable perturbation which is not
included into the stochastic subspace. We also illustrate how full-
field data and the corresponding uncertainties can be used to
perform Bayesian updates of the mean and subspace estimates
within aDO formalism, and so update the probabilistic information
associated with the considered problem.

We apply the developed framework for the study of the
transient responses of two fluid flows, thewind-driven double gyre
circulation in a basin and the lid-driven cavity flow, considering
a range of Reynolds numbers that corresponds to dynamically
unstable regimes. We focus on the growth of uncertainty due
to internal instabilities and compare the adaptive and fixed-
size stochastic subspace estimates. The adaptive criteria in
Fig. 19. Quantitative comparison of the fixed-size and adaptive-size subspaces
over time for the double-gyre flow with (a) Re = 102 , (b) Re = 104 , and
(c) the lid-driven cavity flow. The coefficient γ measures the similarity of the two
subspaces weighted according to the distribution of probability while γG measures
their geometric similarity (see Appendix B for details).

Fig. 20. Number ofmodes required to capture variance as small as 10−6 of themean
flow energy Emean(t) over different Reynolds numbers for the lid-driven cavity flow.

combination with the DO methodology allow us to estimate and
study the transient regimes from a deterministic state to a fully
stochastic response. We show that transient stochastic responses
are characterized by strongly non-Gaussian statistics and time-
dependent DO modes having spatial forms which are connected
with that of the mean flow. We also investigated the number of
modes required to capture the variance that is larger than a given
portion of the mean flow energy and we found that this number
of modes depends strongly on the flow Reynolds as well as on the
considered time interval. Finally, our comparisons of the stochastic
responses computed with the adaptive algorithm with responses
obtained using a fixed size subspace show that the adaptive
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schemes are effective. These results are confirmed by quantitative
similarity coefficients between the subspaces. We also find that
the two types of flows considered have a somewhat different
behavior when they evolve from a quasi-deterministic state to
uncertain dynamics. In the double gyre flows, the formof the initial
stochastic subspace has a very small contribution to the evolution
of the DO modes and the coefficients statistics: this is because
those are drivenmainly by instabilities of themean flow. However,
for the same Reynolds numbers in the lid-driven cavity flows,
there is a more significant effect of the initial conditions on the
evolution of the solution even though qualitatively the adaptive
and fixed-size subspace estimates of stochastic responses are very
similar both in terms of the variance evolution and the shape of
the DO modes. This is likely because the uncertainty growth in
the lid-driven flows is governed by linear dynamics for a longer
time interval. Future investigations include detailed studies of the
stability and stochastic dynamics in such flow systems, including
how the momentum, energy or vorticity transfers between the DO
modes and the mean flow vary with time and space, and with
respect to different flow parameters and dynamical regimes. Other
research directions include the use of distributed computing [51]
as well as the applications of the adaptive DO scheme to more
complex ocean and atmospheric schemes.
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Appendix A. Computation of matrix Qij for 2D Navier–Stokes

Weconsider theNavier–Stokes equation (14) and by computing
the Frechet derivative for the evolution operator L we obtain the
variation towards the direction ϑ(x)

δL[u(•, t; ω)]

δu
[ϑ] = −∇

δp
δu

+
1
Re

1ϑ

− f k̂ × ϑ − ϑ.∇u − u.∇ϑ.

Moreover, the continuity equation will take the form

divϑ(x) = 0,

from which we can determine the variational derivative for the
pressure δp

δu

∆


δp
δu


= ∇


−f k̂ × ϑ − ϑ.∇u − u.∇ϑ


.

Applying the mean value operator Eω we have

∆


Eω

[
δp
δu

]
= ∇(−f k̂ × ϑ − ϑ.∇ū − ū.∇ϑ).

Moreover,

Eω

[
δL[u(•, t; ω)]

δu
[ϑ]

]
= −∇


Eω

[
δp
δu

]
+

1
Re

1ϑ − f k̂ × ϑ

− ϑ.∇ū − ū.∇ϑ.
Hencewewill have the form of the functionalQ[ϑ] fromwhichwe
will determine the most unstable mode

Q[ϑ] =


Eω

[
δL[u(•, t; ω); ω]

δu
[ϑ(•, t)]

]
, ϑ(•, t)


= −


∇


Eω

[
δp
δu

]
, ϑ


+

1
Re

⟨1ϑ, ϑ⟩

− ⟨ϑ.∇ū, ϑ⟩ − ⟨ū.∇ϑ, ϑ⟩ − ⟨f ˆk × ϑ, ϑ⟩.

The last term ⟨f ˆk × ϑ, ϑ⟩ vanishes identically. Moreover, by using
Gauss identity we have
∇


Eω

[
δp
δu

]
, ϑ


= −

∫
D
Eω

[
δp
δu

]
divϑdx

+

∫
∂D

Eω

[
δp
δu

]
ϑ.nds

=

∫
∂D

Eω

[
δp
δu

]
ϑ.nds,

where the last equality follows from the non-divergence property
of ϑ . Hence, the following expression for the matrix Qij can be
written

Qij = −

∫
∂D

Eω

[
δp
δu

]
ϑ.nds +

1
Re

⟨1ϑi, ϑj⟩

− ⟨ϑi. ∇ū, ϑ j⟩ − ⟨ū.∇ϑ i, ϑj⟩. (15)

We emphasize that in the computation of the matrix Qij used
for the determination of the most unstable mode there is no
contribution of the Coriolis terms. This is physically justified by
the fact that Coriolis force does not change the energy content
of the system and here the norm that we consider is the kinetic
energy. However, other norms may be used to characterize the
most unstable perturbation, e.g. growth of enstrophy, 1

2


D |∇ ×

u|
2dx. In the latter case, we will have a contribution of the Coriolis

force due to the spatial variation of the Coriolis coefficient.

Appendix B. Comparison of two stochastic subspaces

In many cases it is useful to compare the distance of two
stochastic solutions u(x, t; ω) ∈ Rn and υ(x, t; ω) ∈ Rn for
the same SPDE (e.g. when using different integration parameters
or different numbers of DO modes). Several metrics have been
developed for the comparison of linear subspaces (see e.g.
[52,53] and references therein). Another approach better adapted
to stochastic subspaces where variance is a key property is given
in [4]: a comparison criterion is developed in discrete space that
measures the distance of the two subspaces weighted according to
the variance of the solution on each stochastic direction. In what
follows we use a symmetric version of this criterion generalizing it
for functional or infinite-dimensional spaces. More specifically, let
the two stochastic subspaces VS1 = span{ui(x, t)}

s1
j=1 and VS2 =

span{υi(x, t)}
s2
j=1 of arbitrary dimensionalities s1 and s2 and the

corresponding covariance matrices for the stochastic coefficients
{Yj(t)}

s1
j=1 and {Ψj(t)}

s2
j=1 associated with the DO expansion of the

two solutions: CYi(t)Yj(t) and CΨi(t)Ψj(t). Then the field covariance
operators will be given by

Cu(·,t;ω)u(·,t;ω)(x, y) = Eω
[(u(x, t; ω) − ū(x, t))

× (u(y, t; ω) − ū(y, t))T ] =

s1−
i=2

s1−
i=1

CYi(t)Yj(t)R
u
ij(x, y, t),

where Ru
ij(x, y, t) = ui(x, t)uj(y, t)T ∈ Rn×n for every i =

1, . . . , s1 and j = 1, . . . , s1. Then we have the weighted
distance of the two subspaces defined as γ 2 (see Box I). The
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γ 2
=

tr

D


D Cu(·,t;ω)u(·,t;ω)(x, y)Cυ(·,t;ω)υ(·,t;ω)(x, y)Tdydx

[trCYi(t)Yj(t)C
T
Yi(t)Yj(t)

.trCΨi(t)Ψj(t)C
T
Ψi(t)Ψj(t)

]
1
2

=

s1∑
i=1

s1∑
j=1

s2∑
l=1

s2∑
k=1

CYi(t)Yj(t)CΨk(t)Ψl(t)tr

D


D Ru

ij(x, y, t)[R
υ
kl(x, y, t)]

Tdydx

[trCYi(t)Yj(t)C
T
Yi(t)Yj(t)

.trCΨi(t)Ψj(t)C
T
Ψi(t)Ψj(t)

]
1
2

=

s1∑
i=1

s1∑
j=1

s2∑
l=1

s2∑
k=1

CYi(t)Yj(t)CΨk(t)Ψl(t)⟨ui, υk⟩⟨uj, υl⟩

[trCYi(t)Yj(t)C
T
Yi(t)Yj(t)

.trCΨi(t)Ψj(t)C
T
Ψi(t)Ψj(t)

]
1
2

Box I.
covariance matrices CYi(t)Yj(t) and CΨi(t)Ψj(t) can always be brought
in diagonal form by performing a suitable rotation of the modes
and the coefficients. In this coordinate system where the matrices
CYi(t)Yj(t) and CΨi(t)Ψj(t) are diagonal (with elements {ρ2

u,i(t)}
s1
i=1 and

{ρ2
υ,i(t)}

s2
i=1 respectively) the above expression simplifies as

γ 2
=

s1∑
i=1

s2∑
j=1

ρ2
u,i(t)ρ

2
υ,j(t)⟨ui, υj⟩

2

 s1∑
i=1

ρ4
u,i(t)

 s2∑
j=1

ρ4
υ,j(t)

 1
2
.

Since, the modes are normalized we always have ⟨ui, υj⟩
2

≤ 1
(from Cauchy–Schwarz inequality). Additionally, using Cauchy–
Schwarz inequality for the sum

∑s1
i=1
∑s2

j=1 ρ2
u,i(t)ρ

2
υ,j(t)we obtain

γ 2
≤ 1. The equality will be achieved when the subspaces and

the secondorder distribution characteristics of stochasticitywithin
these subspaces are identical. To measure only the geometric
distance between the two subspaces i.e. without weighting with
respect to the stochastic energy of each direction, we set ρ2

u,i(t) =

ρ2
υ,j(t) = 1 for all i = 1, . . . , s1 and j = 1, . . . , s2 to obtain

γ 2
G =

‖⟨ui, υj⟩‖
2

√
s1s2

,

where ‖A‖
2

=
∑s1

i=1
∑s1

j=1 A
2
ij is the Euclidean norm of the matrix

A ∈ Rs1×s2 .
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