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a b s t r a c t

The quantification of uncertainties is critical when systems are nonlinear and have uncer-
tain terms in their governing equations or are constrained by limited knowledge of initial
and boundary conditions. Such situations are common in multiscale, intermittent and non-
homogeneous fluid and ocean flows. The dynamically orthogonal (DO) field equations pro-
vide an adaptive methodology to predict the probability density functions of such flows.
The present work derives efficient computational schemes for the DO methodology applied
to unsteady stochastic Navier–Stokes and Boussinesq equations, and illustrates and studies
the numerical aspects of these schemes. Semi-implicit projection methods are developed
for the mean and for the DO modes, and time-marching schemes of first to fourth order
are used for the stochastic coefficients. Conservative second-order finite-volumes are
employed in physical space with new advection schemes based on total variation dimin-
ishing methods. Other results include: (i) the definition of pseudo-stochastic pressures
to obtain a number of pressure equations that is linear in the subspace size instead of qua-
dratic; (ii) symmetric advection schemes for the stochastic velocities; (iii) the use of gen-
eralized inversion to deal with singular subspace covariances or deterministic modes; and
(iv) schemes to maintain orthonormal modes at the numerical level. To verify our imple-
mentation and study the properties of our schemes and their variations, a set of stochastic
flow benchmarks are defined including asymmetric Dirac and symmetric lock-exchange
flows, lid-driven cavity flows, and flows past objects in a confined channel. Different Rey-
nolds number and Grashof number regimes are employed to illustrate robustness. Optimal
convergence under both time and space refinements is shown as well as the convergence of
the probability density functions with the number of stochastic realizations.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Quantifying uncertainty is becoming increasingly important in many scientific and engineering applications. This is in
part because the accuracy of an answer is now often as critical as the answer itself. Our present motivation is uncertainty
prediction for computational fluid dynamics (CFD) applications, specifically in the context of realistic ocean predictions. In
ocean dynamics, it is challenging to model multi-scale, intermittent, non-stationary and non-homogeneous uncertainties.
Already a single evaluation of an ocean model is costly and straightforward stochastic modeling methods are prohibitively
expensive [35,45], particularly when dealing with longer-term unsteady nonlinear dynamics. Fortunately, the recently
developed dynamically orthogonal (DO) field equations [49,48,50] provide efficient, tractable equations for uncertainty
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prediction in large-scale CFD and ocean applications. While these DO equations have been solved numerically using a sim-
ple finite-difference scheme, the specific properties of the DO equations warrant novel integration and discretization
schemes. Hence, our present goals are to derive efficient computational schemes for the DO methodology applied to un-
steady stochastic Navier–Stokes and Boussinesq dynamics, and to illustrate and study the numerical aspects of these
schemes.

Stochastic modeling approaches can be categorized as either non-intrusive or intrusive (for reviews, we refer to e.g.
[16,23,9,42,10,21,46,66,67,26,59]). The non-intrusive Monte–Carlo method provides access to the full statistics of the prob-
lem. Its computational cost does not strictly depend on the size of the system, but more on the number of truly independent
random variables, and convergence rates are often proportional to the square root of the number of samples. The efficiency
can be improved for example by using more elaborate Monte–Carlo schemes (e.g. 9), including particle filters or mixtures of
weighted kernels, e.g. Gaussian kernels [5,44]. Nonetheless, a large number of function evaluations are needed due to the
slow convergence, which can limit accuracy in large-scale applications.

The polynomial chaos expansion (PCE), pioneered by [16] and based on the theory by Wiener [64,2,65], has become pop-
ular because it can represent and propagate large uncertainties through complex models. Both non-intrusive (e.g.
[63,24,20,10]) and intrusive (e.g. [7,25,61,41,46]) versions have been employed, but both can suffer from the curse of dimen-
sionality (see [59] for a brief cost scaling analysis). This has prompted the use of non-Gaussian random variables [47], the
development of generalized PCE [68] to speed up convergence in the polynomial degree, and the development of adaptive
schemes that only evaluate the necessary terms in the PCE [37].

PCEs have been successful in many CFD applications. In the case of unsteady incompressible fluid dynamics, [27] used
a PCE scheme to study mixing in a two-dimensional (2D) microchannel and improved the efficiency of their solution
scheme by decoupling the velocity–pressure equations using a projection method. [62] showed that multi-element
generalized PCEs can significantly improve the accuracy for long time integration in the case of 2D noisy flows past a
circular cylinder. Other applications include fluid–structure interactions, (e.g. [69]), turbulence (e.g. [40, e.g.]), and
aerodynamics (e.g. [53]).

Motivated by the multi-scale, intermittent and non-homogeneous uncertain ocean fields, the error subspace statistical
estimation (ESSE) method was developed [34,28,29]. It uses a generalized Karhunen–Loève (KL) expansion [22,38] with time
varying and adaptive basis functions that is initialized by a multi-scale scheme [30] and evolved using a stochastic, data-
assimilative and adaptive ensemble. The computational cost of ESSE is outlined in [59].

The DO equations for dynamically evolving stochastic fields [49,48] were derived to approximate the Fokker–Planck
equation (or Liouville equation if no stochastic forcing is used) and capture the dominant stochastic subspace while being
computationally tractable. The DO methodology also starts from a truncated generalized Karhunen–Loève expansion but de-
rives the governing equations for the mean, the modes and their coefficients. In this derivation, a key condition is imposed:
the rate-of-change of the stochastic subspace is dynamically orthogonal to the subspace itself. The DO subspace basis, i.e. the
DO modes, as well as the probability density functions (pdfs), i.e. the stochastic coefficients, thus evolve only according to the
dynamics of the system. The DO computational scaling is only dependent on the number of random variables, s: specifically,
the storage scales as OðsÞ and computational cost as Oðs2Þ for Navier–Stokes equations. The size s in general adapts to the
dynamically evolving uncertainties and boundary conditions [50]. The DO methodology has been applied to several Na-
vier–Stokes flows and their stochastic dynamics has been studied, including mean-mode and mode–mode energy transfers
for 2D flows and heat transfers [48,51]. However, it has not yet been applied to Boussinesq flows, and efficient numerical
schemes for the DO decomposition of such flows have not been yet obtained nor evaluated. This explains the need for
the present study.

In what follows, the incompressible stochastic Navier–Stokes and Boussinesq equations are given (Section 2). In
Section 3, the discretization in time is developed, discussing explicit and implicit schemes. New ‘‘pseudo-stochastic
pressures’’ are defined. With this definition, the cost of DO integration schemes is substantially reduced: instead
of scaling as Oðs2Þ [50], it scales as OðsÞ (as long as solving the pressure Poisson equations dominates the cost of
the scheme). The time integration schemes are then derived. For the mean and the modes, we employ projection
methods [17], outlining schemes of first and second order. For the stochastic coefficients, we obtain several time-
marching schemes of first to fourth order. The discretizations of the physical space and stochastic subspace are given
in Section 4. For the former, the discretization of diffusion operators is straightforward. That of advection operators
requires special attention: since the deterministic DO modes have arbitrary signs, how to apply upwinding based on
total variation diminishing properties is a key question we investigate. For the stochastic subspace, a number of
possible discretizations are outlined, including the direct Monte–Carlo scheme. In Section 5, the questions of how
to deal with singular covariances and how to maintain orthonormal modes numerically are discussed. For the appli-
cations in Section 6, a set of benchmarks are defined and utilized to illustrate the properties of our DO numerics
scheme. Specifically, a verification benchmark based on an asymmetric Dirac-stochastic lock-exchange flow is used
to test the implementation. A symmetric stochastic lock-exchange is then employed to evaluate the new advection
schemes for DO modes. The spatial and temporal convergence is studied with a stochastic lid-driven cavity flow.
The discretization of the stochastic coefficients is examined using a flow over a square cylinder in a confined
channel. Each flow benchmark is purposely chosen to be different in part to test robustness. Lastly, conclusions
and discussions are in Section 7.



274 M.P. Ueckermann et al. / Journal of Computational Physics 233 (2013) 272–294
2. Stochastic dynamically orthogonal boussinesq equations

The deterministic components of the partial differential equations (PDEs) that we solve on a domain D are non-
dimensional Boussinesq equations,2 in the same form as in [19],
2 The
r � u ¼ 0; x 2 D;
@u
@t
� 1ffiffiffiffiffiffi

Gr
p r2u ¼ �r � ðuuÞ � rpþ qeg ; x 2 D;

@q
@t
� 1

Sc
ffiffiffiffiffiffi
Gr
p r2q ¼ �r � ðuqÞ; x 2 D:

ð1Þ
The non-dimensional variables are: uðx; tÞ ¼ ½u;v;w�, the velocity in 3D; qðx; tÞ, the density; and, pðx; tÞ, the pressure. The

vector eg is a unit-vector in the direction of gravity, ðx; tÞ are the non-dimensional space and time variables, Gr ¼ ĝ0 ĥ3

m̂2 is

the Grashof number which is the ratio of buoyancy forces to viscous forces, Sc ¼ m̂=bK is the Schmidt number which is the

ratio of kinematic viscosity m̂ to molecular diffusivity bK for the density field, ĝ0 ¼ ĝ ðq̂max�q̂minÞ
q̂avg

is the reduced gravity, and ĥ

is the vertical length-scale. In what follows, we denote the total dynamical rate-of-change in the prognostic Eqs. (1) for
velocity and density by Lu and Lq, respectively, i.e. @u

@t ¼ L
u and @q

@t ¼ L
q.

The latter prognostic equation for density originates from the thermodynamic energy equation and an equation of state
(it arises from another form of the Boussinesq approximation frequently used in ocean modeling which retains the temper-
ature and salinity fields as state variables, e.g. [6,18]). We emphasize that for problems without density-driven flows,ffiffiffiffiffiffi

Gr
p

� Re, that is, the square root of the Grashof number is the Reynolds number. The approach and numerical schemes that
we derive in this manuscript are directly applicable to the Navier–Stokes equations.

We are interested in solving Eq. (1) in their stochastic form. We thus introduce the set of random events x belonging to a
measurable sample space X and consider the stochastic velocity, density and pressure fields: uðx; t;xÞ;qðx; t;xÞ and
pðx; t;xÞ. This leads to stochastic dynamical rates-of-change Lu and Lq. If these rate-of-changes are themselves uncertain,
for example due to parameter or model uncertainties, then they also depend explicitly on x. In this study, we mostly focus
on uncertainties arising due to uncertain initial conditions. We define general stochastic initial conditions as
u x; 0;xð Þ ¼ u0 x; xð Þ; x 2 D; x 2 X;

q x;0; xð Þ ¼ q0 x; xð Þ; x 2 D; x 2 X
ð2Þ
and stochastic boundary conditions as
u ¼ gD x; t; xð Þ; x 2 @DD; x 2 X;
@u
@n
¼ gN x; t;xð Þ; x 2 @DN; x 2 X;

q ¼ gDq
x; t;xð Þ; x 2 @DDq ; x 2 X;

@q
@n
¼ gNq

x; t; xð Þ; x 2 @DNq ; x 2 X;

ð3Þ
where the boundary conditions are separated into Dirichlet and Neumann conditions for the velocity and density fields
(pressure boundary conditions are considered later). The resulting multivariate stochastic Eqs. (1)–(3) define the problem
to be solved. As in the deterministic case, specifics of the solution depend on the initial and boundary conditions chosen.

The DO decomposition of these equations can be obtained from [48,49] and a summary is provided in A. In short, the DO
methodology begins with a generalized Karhunen–Loève expansion truncated to sðtÞ terms [50]. The vector of prognostic
state variables Uðx; t;xÞ ¼ ½u;q�T is decomposed into the sum of a deterministic mean component �Uðx; tÞ, with s determin-
istic modes Uiðx; tÞ, each mode multiplied by a stochastic coefficient Yiðt;xÞ. This decomposition is first substituted into Eqs.
(1)–(3). The DO condition, the rate-of-change of the stochastic subspace is dynamically orthogonal to the subspace itself, is

then utilized. Orthogonality is defined by the spatial inner-product a;bh iD ¼
R
D
P

iðaibiÞdD for arbitrary vectors of spatial

functions a ¼ ½a1; a2; . . . �T and b ¼ ½b1
; b2

; . . . �T . In general, we note that this definition of the inner product assumes that
the different components of the state vector have been properly normalized [32,51]. This is not guaranteed from the simple
deterministic non-dimensionalization used in Eq. (1). In fact, an additional stochastic normalization is usually needed,
reflecting the stochastic initial and boundary conditions. After some manipulation (see A and [49,48]) time-evolution equa-
tions for the mean, modes, and stochastic coefficients, which are completely determined by the dynamics, are obtained. A
major contribution of this manuscript is to derive efficient discretizations in time and space for these equations and to eval-
uate the resulting computational schemes through a set of new benchmarks for stochastic Boussinesq dynamics.
dimensional variables, denoted with a hat, have been non-dimensionalized using: t̂ ¼ t
ffiffiffî
h
ĝ0

q
; x̂ ¼ xĥ; û ¼ u

ffiffiffiffiffiffiffi
ĝ0ĥ

q
; q̂ ¼ q̂min þ qðq̂max � q̂minÞ.
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3. Semi-implicit time discretization

Solving the deterministic version of the system of Eq. (1) implicitly in time often requires not only a large matrix inversion
at each time-step, but also iterations at each time-step to deal with the non-linear advection terms, e.g. [13]. Discretizing
their stochastic version (1)–(3) using a brute-force Monte–Carlo scheme would have similar costs per realizations, hence
a total cost equal to that of the deterministic version but multiplied by the size of the ensemble. If a DO decomposition is
used, solving the DO system (A.5)–(A.12) implicitly would require a matrix inversion ðs2 þ sþ 1Þ times larger than for (1)
since the mean and the modes are coupled through the pressure and non-linear advection terms (the number of pressure
equations are: s2 for pij’s, s for pi’s and 1 for �p). While it is possible to solve such systems, our goal here is to discretize
(A.5)–(A.12) such that the equations decouple, resulting in efficient solution schemes. This section describes how this decou-
pling is achieved. First we explain why we treat some terms explicitly and others implicitly. We then define new pseudo-
stochastic pressures that substantially reduce computational costs, develop projection methods for DO equations so as to
split the velocity and pressure terms, and present time marching schemes for the stochastic coefficients. The complete time
discretizations are summarized at the end. The spatial discretizations of physical space and of the stochastic subspace are
given in Section 4.

3.1. Explicitly and implicitly treated terms

Much of the decoupling is achieved by treating some terms explicitly, resulting in a semi-implicit scheme. First, we
choose to advance the stochastic coefficients explicitly, because then CYiYj

and MYjYmYn can be treated as constants when
evolving the mean and the modes, and no iteration is required to solve (A.5), (A.8) and (A.11). Somewhat similarly, we treat
the inner product terms Q i;Uj

� �
DUj in (A.8) explicitly to avoid iterations. Next, we treat the non-linear advection terms

explicitly, which is often done in the projection method community (e.g. [17]). This does impose a stability constraint on
the time-step size, a Courant–Friedrichs–Lewy (CFL) condition. Third, we treat the linear diffusion terms implicitly because
they do not couple the equations and the resulting diagonal-dominant matrices can be inverted efficiently. While they could
also be treated explicitly, this imposes a much harsher stability constraint that could result in very small timesteps. Thus, to
partially decouple the evolution equations, we advance the stochastic coefficients, inner product terms and non-linear
advection explicitly. However, these equations are still coupled through the pressure.

3.2. The pseudo-stochastic pressures

We now first overview the explicit treatment of pressure which results in a scheme requiring s2 þ sþ 1 solutions of sto-
chastic Pressure Poisson equations (PPEs) per timestep. Then, we define new pseudo-stochastic pressures that reduce the
expense to sþ 1 while still providing the valid solution.

The direct explicit handling of pressure was used in [49]. This approach takes advantage of the fact that the full stochastic
pressure can be recovered at any time instant by taking the divergence of (A.5) and (A.8), inserting the decomposition (A.2),
and using the divergence-free form on continuity, noting that r � @u

@t ¼ 0. The result is the stochastic PPEs:
r2�p ¼ �r � ½r � ð�u�uÞ � �qeg �;
r2pi ¼ �r � ½r � ð�uuiÞ þ r � ðui �uÞ � qie

g �;
r2pij ¼ �r � ½r � ðujuiÞ þ r � ðuiujÞ�:

ð4Þ
Hence, to recover the full stochastic pressure, 1þ sþ s2 Poisson equations need to be inverted, which is expensive and can
often dominate the cost of the scheme. Oceanic applications expected to require s � Oð102 � 103Þ [32] would be very expen-
sive. Another disadvantage is that the velocity computed with an explicit scheme will not be divergence-free after each
timestep.

We can reduce the number of PPEs to sþ 1 by defining new pseudo-stochastic pressures. The purpose of pressure in
divergence-free flows is to enforce continuity. In our stochastic equations, continuity needs to be satisfied by the mean
and each modal velocity field independently (we assume that the divergence-free continuity equation is exact, without
any errors in its form). Also, each of these velocity fields only needs a single scalar field in order to satisfy the continuity
constraint. By inspection of Eqs. (A.5) and (A.8), we therefore define new pseudo-stochastic pressures, which are a combi-
nation of the mean, linear-, and quadratic-modal pressures:
��p ¼ �pþ CYiYj
pij;

�pi ¼ pi þ C�1
YiYj

MYjYmYn pmn:
ð5Þ
With this definition, the quadratic modal pressures are eliminated from (A.5) and (A.8). Thus, to evolve the mean and modes,
we no longer need to solve for the quadratic pressures. However, substituting (5) into the equation for the evolution of the
stochastic coefficients (A.11), we find that the second term on the right-hand-side of (A.11),
rpmn þr � ðunumÞ;uih iD YmYn � CYmYnð Þ
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retains the projection of the quadratic stochastic pressure terms in the subspace. At first, this would indicate that the qua-
dratic modal pressures are still needed, but for commonly used boundary conditions, the projection cancels, i.e. the inner
product rpmn;uih iD is zero (see [51]). The quadratic stochastic pressure term in (A.11) can be dropped without any penalty.
Thus, by defining new pseudo-stochastic pressures (5), we have shown that we reduced the number of PPEs from s2 þ sþ 1
to the expected sþ 1.

3.3. Projection methods for the mean and modes

To obtain a numerically divergence-free velocity, we use a projection method. A large number of different projection
methods exist; for a recent review, see [17]. Projection methods are known for excellent efficiency, but the proper specifi-
cation of boundary conditions remains a long-standing issue [15,52]. Here, we chose to use the ‘‘incremental pressure-cor-
rection scheme in rotational form’’ [57], which has a proven temporal accuracy [17]. The classic versions of the scheme for
our deterministic equations are outlined in [59], next we adapt them for the mean and modes.

Projection scheme for the mean. We evolve the mean fields modifying the classic projection method to account for the mo-
ments of the stochastic coefficients and of the chosen explicit and implicit terms (Section 3.1). Starting from the PDEs (A.5)
for the mean, we obtain:
~�uk

Dt
� 1ffiffiffiffiffiffi

Gr
p r2 ~�uk ¼

�uk�1

Dt
� fr � ð�u�uÞgkH

�r��pkH

þ �qkH

eg � CkH

YiYj
r � ðujuiÞ
� �kH

; ð6aÞ

r2�hk ¼ 1
Dt
r � ~�uk; ð6bÞ

�uk ¼ ~�uk � Dtr�hk; ð6cÞ
��pk ¼ ��pk�1 þ �hk � mr � ~�uk; ð6dÞ
�qk

Dt
� 1

Sc
ffiffiffiffiffiffi
Gr
p r2 �qk ¼

�qk�1

Dt
� fr � ð�u�qÞgkH

� CkH

YiYj
r � ðujqiÞ
� �kH

; ð6eÞ
with deterministic boundary conditions:
~�uk ¼ �gD;
@�h
@n
¼ 0; x 2 @DD;

@~�uk

@n
¼ �gN; �h ¼ �gP ; x 2 @DN;

�qk ¼ �gDq ; x 2 @DDq ;

@�qk

@n
¼ �gNq ; x 2 @DNq :

ð7Þ
In the above, the time instant tkH

, either previous or intermediate, determines the order of the scheme in time. Specifically,
for first order in time, kH ¼ k� 1; for second order, we refer to [57,17]. We note that a difference between a classic projection
scheme and the above DO mean scheme is the presence of the covariances and third moments of the coefficients Yi’s (see
Section 3.4). A related one is the coupling between the differential equations for the mean, mode and coefficients (see
Section 3.5).

Projection scheme for the modes. As for the mean, the modes are evolved by modifying the classic projection method for Eq.
(A.8). We obtain:
~uk
i

Dt
� 1ffiffiffiffiffiffi

Gr
p r2 ~uk

i ¼
uk�1

i

Dt
�fr� ðui �uÞgkH

�fr� ð�uuiÞgkH

�r�pkH

i þqkH

i eg�C�1;kH

YiYj
MkH

YjYmYn
r�ðunumÞf gkH

� Q i;Uj
� �kH

D ukH

j ; ð8aÞ

r2hk
i ¼

1
Dt
r� ~uk

i ; ð8bÞ

uk
i ¼ ~uk

i �Dtrhk
i ; ð8cÞ

�pk
i ¼ �pk�1

i þhk
i �mr� ~uk

i ; ð8dÞ
qk

i

Dt
� 1

Sc
ffiffiffiffiffiffi
Gr
p r2qk

i ¼
qk�1

i

Dt
�fr�ðui �qÞgkH

�fr� ð�uqiÞg
kH

�C�1;kH

YiYj
MkH

YjYmYn
r�ðunqmÞf gkH

� Q i;Uj
� �kH

D qkH

j ð8eÞ
with boundary conditions:
~uk
i ¼ gi;Dð¼ 0Þ; @hi

@n
¼ 0; x 2 @DD;

@~uk
i

@n
¼ gi;Nð¼ 0Þ; hi ¼ gi;Pð¼ 0Þ; x 2 @DN ;

qk
i ¼ gi;Dq

ð¼ 0Þ; x 2 @DDq ;

@qk
i

@n
¼ gi;Nq

ð¼ 0Þ; x 2 @DNq ;

ð9Þ
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where, again, the scheme is first order for kH ¼ k� 1. Since we focus on the numerics of the DO equations, we assume that
the stochastic boundary forcings are null, i.e. gi’s are null in Eqs. (9). The time evolution of the Yi’s is discussed next.
3.4. Time integration scheme for the stochastic coefficients

To integrate the ordinary differential equations (ODEs) (A.11) for the stochastic coefficients, we assume that all variables
are available at time tk�1 and that we integrate forward to time tk.

We consider the case where the original governing differential equations only contain uncertain initial conditions, and no
stochastic forcing. This case corresponds to the examples and benchmarks employed later. We consider a given realization of
a coefficient Yi at time tk�1. To integrate to time tk, we first define an approximation to the time-rate of change of this coef-
ficient at a given instant tk�1 6 t 6 tk as follows:
dYi

dt

����
YðtÞ
¼ 1ffiffiffiffiffiffi

Gr
p r2um �r � ðum �uÞ � r � ð�uumÞ � r�pm þ qmeg ;ui

� 	k�

D
YmðtÞ

þ 1
Sc

ffiffiffiffiffiffi
Gr
p r2qm �r � ðum �qÞ � r � ð�uqmÞ;qi

� 	k�

D
YmðtÞ

� r � ðunumÞ;uih ik
�

D YmðtÞYnðtÞ � Ck�

YmYn


 �
� r � ðunqumÞ;qih ik

�

D YmðtÞYnðtÞ � Ck�

YmYn


 �
; ð10Þ
where ð�Þk
�

indicates that the modal quantities are estimates of their values at time t. The numerically exact option is to
choose tk� ¼ t, while the cheapest is to take tk� ¼ tk�1 since at that time, all modal quantities are available from the previous
time-step.

Using (10), we have compared several time-marching schemes of varying order to advance the Yi in time (see [59], includ-
ing: a low-storage 4th-order-accurate explicit Runge–Kutta integrator [3]; a 2nd-accurate explicit Runge–Kutta scheme
(Heun’s version); and the first-order-accurate explicit Euler scheme. For the Euler scheme, k� ¼ k� 1. For each stage of
the two RK schemes, dY

dt is evaluated using (10). If tk� ¼ t, the modal quantities (the rates for the Yi’s) are advanced to inter-
mediate times using the modes and mean PDEs above (which is expensive). If k� ¼ k� 1, the mean and modal quantities are
not advanced, but the YmðtÞ’s are still updated at intermediate times. Of course, the formal order of accuracy of that scheme is
limited by these mean/modal terms kept constant as will be shown later (Section 6). While Ck�

YmYn
could be recalculated at

each time level, our simulations showed better results if they were kept at the same time k� as modal quantities (in that
case, coefficients and subspace remain consistent). The extension to the case where governing equations contain stochastic
forcing in the form of zero-mean Wiener processes is discussed in [59].
3.5. Complete time integration scheme

We now summarize the complete time-discretization scheme from tk�1 to tk. Since we have decoupled the Eqs. (6), (8),
and (10), the order in which they are solved is not important. In fact, (6), (8), and (10) could be solved in parallel. Presently,
we employ the following, serial approach:

1. Calculate/extrapolate the statistics (CYmYn ;MYjYmYn ) to the approximated times kH
; k� and store for later use

2. Calculate/extrapolate the advection terms ðr�u�u;r�uui þrui �u;ruiujÞ to the approximated times kH
; k� and store for later

use
3. Advance the Yi’s using (10), and one of the ODE solvers in Section 3.4
4. Advance the mean �u using (6)
5. Advance the modes ui using (8).

For the modes and mean, we choose kH ¼ k� ¼ k� 1, resulting in a first order accurate scheme for the present applications
(Section 6). For second order accuracy, we would use kH as defined in [57,17]. For the stochastic coefficients, a higher order
ODE solver may be used in step 3 which may reduce the magnitude of the integration error. However, since DO equations are
coupled, the order of accuracy of that step is influenced by the choice of kH and k� used for the time-integration of the modes
and mean. Hence, if kH ¼ k� ¼ k� 1, the overall accuracy of the time-integration is in general expected to be first order.
4. Spatial physical and stochastic subspace discretizations

In this section, we start by describing the 2D spatial discretization of (6) and (8) on a structured grid (Section 4.1). We
employ a standard conservative finite volume discretization of second-order. Special treatment is needed for the advection
by the modes since they are basis vectors in the stochastic subspace and thus do not have a preferential direction. We finally
discuss the discretization of the s-dimensional probability subspace in Section 4.2.
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4.1. Spatial discretization of the physical space

The domain D is discretized into non-overlapping control volumes, presently forming structured Cartesian grid with rect-
angular uniform spacing in the x and y directions. Several choices exist for the relative placement of velocity and pressure
control volumes. Here we employ a standard staggered C-grid [13,39], where the u- and v-velocity control volumes are dis-
placed half a grid-cell in the x- and y-directions relative to the pressure and density control volumes, respectively.

4.1.1. Diffusion operator
The diffusion operatorr2 is discretized by using central boundary fluxes, see [59]. For the advection operator, the simple

second-order central flux is well-known to be unstable (e.g. [4]), and it needs more careful treatment.

4.1.2. Advection operator
For advection by a velocity component u, we use a standard total variation diminishing (TVD) scheme, with an monot-

onized central (MC) symmetric flux limiter [60]. The scheme can be written for a variable g as:
Fðgi�1
2
Þ ¼ ui�1

2

gi þ gi�1

2
� ui�1

2

��� ���gi � gi�1

2
C ui�1

2
;Dt;Dx;gi�2;gi�1;gi;giþ1


 �
; ð11Þ
where the function C is defined in [59] and ui�1
2

is used without interpolation for the density advection while a second-order
central scheme is used for the non-linear u and v advection. For more on TVD schemes, we refer to [36].

A possible issue with using this scheme for DO equations arises from the realization that the absolute value of the velocity
uj j, is a function of the full velocity �uþ Yiui which, depending on the specific realization, may be either positive or negative;

in other words, uj j is positive, but stochastic. Fortunately, we never need the full velocity to evolve the mean and modes in
(A.5) and (A.8) (see also (6) and (8)). In fact, in the case of the mean velocity �u, its absolute value is deterministic. Therefore,
the advection of the mean velocity by the mean velocity �u � r�u, and the advection of the velocity modes by the mean velocity
�u � rui can use the classic TVD method without modification. Advection of the mean by the modes ui � r�u and of the modes
by the modes ui � ruj, however, need additional consideration. Similar statements apply for the advection of the mean den-
sity and of the density modes by either the mean velocity (classic scheme is fine) or by the modes (additional considerations
are needed).

Here we propose three arguments for three different advection schemes that can be used for these ‘‘advection by the
modes’’ terms. First, if we examine the equations from the perspective of the numerical scheme only, a preferential advection
direction will be present. In this case we simply use the TVD scheme unmodified. Next, we argue that, since the stochastic
coefficients are zero mean, then the probability of Yi < 0 is equal to the probability that Yi > 0. This suggests that ui should
not have a preferential direction of propagation, in which case a central differencing advection scheme (CDS) could be used.
Last, recognizing that the CDS scheme may cause oscillations, we still wish to limit the flux in some way. A direct approach,
then, is to use the TVD scheme in both directions, and average the results. That is, the present sign of the modal velocity is
used first to calculate the advective terms, then the negative of the modal velocity is used, and the two results are averaged.
We call this the symmetric TVD or TVD* scheme. Note that the TVD* scheme is not a true TVD scheme and is thus not guar-
anteed to be oscillation-free for all realizations. Nonetheless, we have three potential schemes for advection by the modal
velocities.

The three proposed schemes are tested in Section 6.2, where we find that the TVD* scheme performs best. Improving this
TVD* is still possible, since minor oscillations can remain. We have shown [59] that at most 25% of the flux in the TVD*
scheme will be upwinded and the method reduces to a CDS scheme if both directions require no slope limiting or the same
amount of slope limiting, which explains why oscillations can remain. A proper flux-limited advection scheme may be de-
rived using the characteristics of the hyperbolic parts of the full system. This system has ðsþ 1Þ � d equations, where d is the
problem’s dimension, and the analysis is left for future research.

4.2. Discretization of stochastic subspace

The stochastic coefficients exist in an s-dimensional space, which could become large, from O (10) to O (103) based on our
experience. In most cases, there is also no strict bound on the value that a stochastic coefficient can take. Thus, evenly divid-
ing the s-dimensional space is not feasible. To discretize the uncertainty subspace, other schemes are used. They include: (a)
non-uniform discretizations of the subspace, either using structured or unstructured grids, possibly using schemes based on
finite-volumes or finite-elements [16,40]; (b) solve a discretized version of the PDEs for the probability densities of the cou-
pled s coefficients, e.g. solve Fokker–Planck equation [49]; (c) parameterize the probability space, either using polynomial
chaos [16,68,41,14], in our case extended to time-dependent polynomials, or other parameterizations such as Gaussian mix-
tures [43,55] or particle filters [9], and (d), use a Monte–Carlo approach [34,29].

We have employed a few of these schemes. Here, we only illustrate a Monte–Carlo scheme: for each realization the time-
integration of Section 3.4 is used. In general, the expected error for the mean and covariance is of O 1ffiffi

q
p

 �

, where q is the num-
ber of samples. For efficient results, it is important that samples are generated in regions where the probability is relatively
high, based on importance sampling [9]. At initial time t0, the distribution of the Yi is generated using the specified initial
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probability density given by Eq. (2). Here, our focus is on numerical schemes and we restrict ourselves to simple distributions
such as Gaussians or Dirac functions.

Thus, we discretize Yi by generating q samples, and forming a q� s dimensional matrix of elements Yr;i. Each row in
this matrix corresponds to one of the samples and each column to one of the modes. During the time-integration step,
each sample Yr;i is then advanced using (10), which is done efficiently. In all cases computed so far, q can be large, e.g.
�Oð104 � 105Þ, but still sufficiently small such that advancing (10) for every sample does not at all dominate the cost of
the whole scheme. A drawback to this Monte–Carlo approach is that rare events will not be captured unless a very large
number of samples are used. Alternative methods, such as mixture models [54,55] or other approaches mentioned above
can then be used.

5. Implementation details

In this section we describe selected implementation details. In particular, we discuss how to deal with possibly poorly
conditioned covariance matrices in the stochastic subspace, as well as the orthonormalization of the modes and decorrela-
tion of the stochastic coefficients.

5.1. Dealing with a singular covariance matrix

The covariance matrix may be singular or poorly conditioned if one or more of the stochastic coefficients have zero or very
small variance compared to other modes. This situation, for example, arises if a system has deterministic initial conditions,
but becomes uncertain through forcing, boundaries, parameters, numerical uncertainties, or other causes. The initial covari-
ance matrix is then simply zero: its inverse is not defined. Special treatment is thus needed for such cases since the inverse of
the covariance matrix is required in (8).

Fortunately, this problem is also common in data assimilation where it is resolved using generalized Moore–Penrose
inversions [1,34]. In the particular case of the DO equations, the inverse of the covariance matrix is multiplied by the third
moments in (8),
C�1;kH

YiYj
MkH

YjYmYn
; ð12Þ
which, for most physical processes, goes to zero for the eigenvalues of CkH

YiYj
that go to zero. However, to ensure a numerically

stable estimate of the inverse of the covariance matrix, we employ a generalized Moore–Penrose inverse, which amounts to
truncate the singular values less than a defined tolerance or to set them to that tolerance (with the former, the inverse of a
zero covariance, i.e. deterministic initial conditions, is zero). This results in a stable numerical simulation, as exemplified for
the benchmark in Section 6.1.

5.2. Orthonormalization

The DO equations enforce orthonormal modes and it is important to maintain this property numerically when integrating
over time. Analytically, if modes are orthonormal initially, orthonormality is maintained because
@ Ui;Uj
� �

D
@t

¼ @Ui

@t
;Uj

� 	
D
þ Ui;

@Uj

@t

� 	
D
¼ 0;
where the DO condition Ui;
@Uj

@t

D E
D
¼ 0; 8i; j 2 ½1;2; . . . ; s� was used. At the discrete level, this property is maintained, up to

truncation and round-off errors. Even if the modes are orthonormal at a given time-step, not all integration schemes over
the next time-step will conserve the discrete orthonormality.

Let us first consider the analytical integration from time tk�1 to tk. For the modes, we have Uk
i ¼ Uk�1

i þ Dt@Ui
@t where the

exact time integral is denoted as Dt@Ui
@t ¼

R tk
tk�1

@Ui
@t dt. For the inner product at tk, we then have:
Uk
i ;U

k
j

D E
D
¼ Uk�1

i þ Dt
@Ui

@t
;Uk�1

j þ Dt
@Uj

@t

� 	
D
;

¼ Uk�1
i ;Uk�1

j

D E
D
þ Dt Uk�1

j ;
@Ui

@t

� 	
D
þ Dt Uk�1

i ;
@Uj

@t

� 	
D
þ Dt2 @Ui

@t
;
@Uj

@t

� 	
D
:

Since Uk
i ;U

k
j

D E
D
¼ Uk�1

i ;Uk�1
j

D E
D
¼ dij, the remaining terms sum to zero,
Dt Uk�1
j ;

@Ui

@t

� 	
D
þ Dt Uk�1

i ;
@Uj

@t

� 	
D
þ Dt2 @Ui

@t
;
@Uj

@t

� 	
D
¼ 0: ð13Þ
Considering now a pth-order-accurate discrete approximation of @Ui
@t , its error, ei, is of OðDtpÞ. Assuming that the spatial inner

product is computed exactly, this error in the time integration leads to an error, E ij, in the inner product at time k, i.e.
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Ui;Uj
� �k;discrete

D ¼ Ui;Uj
� �k

D þ E ij. To estimate the magnitude of this E ij made over one time step, we assume an exactly ortho-
normal inner product at tk�1. By discrete integration to tk, we then have:
Ui;Uj
� �k

D þ Eij ¼ Uk�1
i ;Uk�1

j

D E
D
þ Dt Uk�1

j ;
@Ui

@t
þ ei

� 	
D
þ Dt Uk�1

i ;
@Uj

@t
þ ej

� 	
D
þ Dt2 @Ui

@t
þ ei;

@Uj

@t
þ ej

� 	
D
:

Using (13),
Eij ¼ Dt Uk�1
j ; ei

D E
D
þ Dt Uk�1

i ; ej
� �

D þ Dt2 ei;
@Uj

@t

� 	
D
þ Dt2 @Ui

@t
; ej

� 	
D
þ Dt2 ei; ej

� �
D;

� 2DtOð1ÞOðDtpÞ þ 2Dt2OðDtpÞOðDt�1Þ þ Dt2OðDt2pÞ;
� OðDtpþ1Þ:
Therefore, the error in the orthonormality will always be Dt smaller than that of the numerical scheme.
The orthornomality can be corrected indirectly by enforcing that the solution and the error are numerically orthonormal,

Ui;Uj
� �k

D þ E ij ¼ dij, at the end of a time step. This has to be done with care: the summation Yr;iUi produces specific realiza-
tions, and changing the basis without modifying the coefficients will change the specific realizations. Because Ui and Yr;i are
linked, various schemes for performing the orthonormalization exist. They are described in [59].

6. Numerical applications

In this section we present four benchmarks used to verify and study the schemes described above. To ensure that the
implementation is solving the desired equations, we compare the stochastic code to a deterministic code (Section 6.1) for
a version of the lock-exchange dynamical problem [19]. Next, we examine three advection schemes proposed for DO equa-
tions in Section 4.1.2, using a symmetric version of the lock-exchange problem (Section 6.2). Then, we evaluate the spatial
and temporal convergence using the lid-driven cavity flow (Section 6.3). Finally, we study the discretization of the stochastic
coefficients using the flow over a square cylinder in a confined channel (Section 6.4).

For evaluating errors, we use the L2 norm. At a single time instance, the norm is kUk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U;Uh iD

p
for the whole state vec-

tor, or k/k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
D /2dD

q
for a single component. For the convergence studies (Section 6.3) we also integrate over time, using

kUkT
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR T
0 U;Uh iDdt

q
for the state vector, and kYik2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR T
0 E YiYi½ �dt

q
for the stochastic coefficients.

6.1. Lock-exchange verification benchmark

The purpose of this benchmark is to verify the numerical implementation. For example, our use of stochastic pseudo-
pressures does not in theory introduce additional errors. However, one needs to verify that their numerical implementation
is accurate, solving the correct equations. Ideally, problems with analytical solutions should be used to verify a code, how-
ever, constructing a valid analytical solution of (6), (8) and (10) with multiple stochastic modes and coefficients is neither
trivial, nor does it lend itself to compact expressions. In this section we address this problem by defining a numerical bench-
mark and then using it to verify the present DO code.

6.1.1. Lock-exchange verification benchmark: setup
We verify our stochastic DO code by comparing it to a deterministic NS code which has been thoroughly verified [33,58].

This deterministic code uses the same second-order Finite volume scheme and first order backwards difference Projection
method as the stochastic code. While the DO code is inherently more complicated with coupled equations, the major differ-
ences are in the advection scheme for the stochastic modes (see Section 4.1.2 and Section 6.2), and in the need to also evolve
the stochastic coefficients.

The deterministic code is used non-intrusively with a Monte–Carlo method to generate an ensemble of independent real-
izations. These references are then compared to realizations from the DO code which solves the coupled DO equations. The
benchmark (Fig. 1) is based on the lock-exchange problem [19], where uncertainty is introduced by prescribing four possible
initial density differences. In other words, while the exact difference between the densities is unknown, it is known that only
four possibilities of equal probability exists: i.e. the pdf is initialized as four discrete Dirac delta function. Essentially, we em-
ploy a single run of the DO code to try to replicate four independent deterministic runs. While not a practical use of the DO
method, it is a challenging benchmark for verifying its numerical implementation.

To capture all of the uncertainty, three DO modes (s ¼ 3) are needed for the stochastic simulation. Four density difference
were chosen because three DO modes is the minimum number required to have full energy interactions between the mean
and modes of the DO simulation [49,48]. Also, to fully verify the implementation, we need to ensure that the initial pdf is
non-symmetric so that the third moments are non-zero (in (10) for example).

General setup: The Schmidt number is kept constant, Sc ¼ 1, and we present results for Gr ¼ 1:25� 106 and Gr ¼ 4� 104,
(although other Gr were studied). The four density differences of equal probability are Dq ¼ ½1;0:84;0:74;0:62�, with the ini-
tial density profile prescribed by



Fig. 1. Lock-exchange problem: an initial barrier separating light and heavy fluid is removed, and the flow is allowed to evolve. Uncertainty in our studies
originates from not knowing the initial density differences between the fluids. This benchmark is used to verify the correctness of the implementation, not
the DO methodology.

(a) (b) (c) (d) (e)

Fig. 2. Initialization of the lock-exchange problem (density field: mean, mode 1 and marginal pdf, modes 2 and 3). The initial velocity is zero. Stochasticity
is introduced through the first (of three) orthonormal modes for the density. The vertical length scale used for non-dimensionalization is the half-height of
the channel (ĥ ¼ 1). Initializing with four samples for the first mode, Yr;1 ¼ ½�0:18;�0:06; 0:04; 0:20�T , we have four possible initial conditions
corresponding to Dq ¼ ½1;0:84;0:74; 0:62�. The two remaining modes are initialized as described in the text, and do not introduce additional uncertainty.

M.P. Ueckermann et al. / Journal of Computational Physics 233 (2013) 272–294 281
qðx; y; t ¼ 0Þ ¼ Dq
2

tanhð2x=lqÞ;
where we take lq ¼ 1=64. Initially the velocity is zero everywhere. Free-slip boundary conditions are used at the domain
boundaries (Fig. 1). The domain is discretized using Dx ¼ Dy ¼ 1=256, and Dt ¼ 1=512, which is sufficient resolution for these
Grashoff numbers [19].

Mean initialization: The mean density profile (Fig. 2(a)) uses the hyperbolic tan function specified above with mean den-
sity difference Dq ¼ 0:8. The mean pressure and velocity are zero everywhere, initially.

Mode initialization: The density profile for the first mode is the hyperbolic tan profile above (Fig. 2(b)), but normalized. The
two remaining modes are arbitrary, since they do not introduce initial uncertainty (see below). They are set to:
q2ðx; t ¼ 0Þ ¼
ðDq� j�qjÞsignð�qÞj sinðpyÞj if ðDq� j�qjÞsignð�qÞ sinðpyÞ > 0
0 otherwise;

�

q3ðx; t ¼ 0Þ ¼
ðDq� j�qjÞsignð�qÞj sinðpyÞj if ðDq� j�qjÞsignð�qÞ sinðpyÞ < 0
0 otherwise;

�

where these are orthonormalized numerically as described in [59]. The pressure and velocity for all modes are zero every-
where, initially.

Stochastic coefficient initialization: The discrete pdf for the first stochastic coefficient is specified using four samples
Yr;1 ¼ ½�0:18;�0:06;0:04;0:20�T , (Fig. 2(c)). The next two coefficients do not introduce additional uncertainty because we
specify perfectly correlated samples, Yr;2 ¼ Yr;3 ¼ � � ½�0:18;�0:06;0:04;0:20�T , where � is a small constant chosen such thatP

iVarðYr;iÞ ¼ VarðYr;1Þ numerically. This means that the inverse of the covariance matrix is very ill-conditioned (or numer-
ically singular), so the pseudo-inverse is required during the initial stages of the simulation (see Section 5.1). Also, because
the pdf is discrete, we calculate moments using the biased estimator CYiYj

� 1
q

P
rYr;iYr;j, instead of the usual unbiased esti-

mator CYiYj
� 1

q�1

P
rYr;iYr;j. The initial fields and pdf are shown in Fig. 2.

6.1.2. Lock-exchange verification benchmark: results and discussion
The outputs from the stochastic run are shown in Fig. 3 for both Gr. Comparisons with the deterministic runs are in Fig. 4

and Fig. 5 for Gr ¼ 4� 104 and 1:25� 106, respectively. Finally, the evolution of the differences between the stochastic and
deterministic runs for both Gr are in Fig. 6. We obtain excellent agreement among the stochastic and deterministic runs.



Fig. 3. The DO mean, modes at non-dimensional time t ¼ 5, and evolution of stochastic coefficients, for Gr ¼ 1:25� 106 (top) and Gr ¼ 4� 104 (bottom).
The higher-Gr flow has sharper gradients, and its coefficients are larger than the lower-Gr flow. Streamlines shown over density in color. Note that the sign
of the contribution from a mode depends on the sign of the stochastic coefficients. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Particularly, for the lower-Gr flow, the local error is less than 0.2% everywhere. It is non-trivial that the complex DO imple-
mentation is capable of reproducing multiple deterministic runs in a single simulation. Based on these results and many
other tests (not shown), our implementation is adequate, that is, we are solving the intended equations.

The growth of differences between the deterministic and stochastic simulations (Fig. 6) is due to differences between the
stochastic and deterministic solvers, in particular the advection schemes and evolution of the stochastic coefficients. We
found that the magnitude of the differences over time is larger for coarser space and time resolution runs. This suggests
the error is due to spatial and/or temporal truncation error. The advection scheme does not contribute significantly to the
error at the reported resolution, since using a CDS advection scheme instead of the TVD* scheme for the modes did not
change results significantly. Dividing the time-step by two to Dt ¼ 1=1024 reduced the error at the final time from �2.1%
to �1.05% for the higher-Gr flow. This indicates that the error is dominated by a temporal truncation compounded error
of approximately OðDtÞ (as expected, see Section 6.3). Hence, the primary source of this compounded error is the evolution
of the stochastic coefficients and/or the modes. In [59], we show that it is the former, i.e. the stochastic coefficients time inte-
gration, that dominates this error.

In summary, using a discrete Dirac pdf benchmark, we showed that the DO implementation is correct. Also, based on the
results, we suggest that the accuracy of the scheme will benefit most from improving the temporal discretization, especially
for problems that require long time integration.

6.2. Effect of advection scheme

The purpose of this benchmark is to test the three different advection schemes proposed (Section 4.1.2). We again use a
version of the lock-exchange problem because the sharp density interface will highlight numerical oscillations. We modify
the problem by introducing symmetry, which should be maintained numerically. Finally, for simplicity we only consider a
single stochastic mode with a bimodal continuous pdf.

6.2.1. Effect of advection scheme: setup
General setup: The Schmidt number is kept constant, Sc ¼ 1, and we present results for Gr ¼ 1:25� 106. Initially the veloc-

ity is zero everywhere. Free-slip boundary conditions are used at the boundaries of the domain (Fig. 1). The domain is



Fig. 4. The four DO realizations (top row), the deterministic runs (middle row), and the DO realizations minus the deterministic runs normalized by
kUdeterministick2 (bottom row) for Gr = 4� 104 (resolution 256�256 with 512 � 5 time-steps). The stochastic solver result agrees with the deterministic solver
results, which validates our DO numerical schemes. Streamlines shown over density in color. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. As Fig. 4 but with Gr = 1:25� 106. The higher-Gr flow with sharper gradients has larger errors than the lower-Gr flow, but they are still small.
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discretized using Dx ¼ Dy ¼ 1=64, and Dt ¼ 1=256. A lower resolution is used here compared to the cases in Section 6.1 in
order to highlight the symmetry errors and numerical oscillations.

Mean initialization: The mean density, pressure, and velocity are all zero everywhere, initially.



Fig. 6. The relative errors for both Gr tend to grow over time but can decrease. In both cases, the DO mean field has a smaller error than the average error of
the realizations.

Fig. 7. Symmetric lock-exchange problem (higher Gr ¼ 1:25� 106) with grid resolution 64� 64 and Dt ¼ 1=256 using various advection schemes for the
modes. Only the stochastic density is non-zero initially, with a bimodal pdf (top row). The two most extreme realizations (largest and smallest stochastic
coefficients) are plotted in each case (right column). Our new averaged TVD* scheme only has minor oscillations and retains symmetry (third row), while
the CDS advection scheme suffers from large oscillations (white dashed circles, second row), and the one-sided TVD scheme loses symmetry (red dashed
circles, last row). Streamlines shown over density in color. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

284 M.P. Ueckermann et al. / Journal of Computational Physics 233 (2013) 272–294
Mode initialization: The density profile for the mode is the same normalized hyperbolic tan profile used in Section 6.1. The
pressure and velocity for this mode are zero everywhere, initially.

Stochastic coefficient initialization: The bimodal Gaussian continuous pdf is represented by 10,000 samples. To ensure that
any asymmetry comes from the numerical errors only, we exactly enforce symmetry in the initial conditions as follows. We
first generate 2500 samples (Yr2500 ) from a zero mean Gaussian distribution with standard deviation r ¼ 0:01e1 � 0:027.
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Next, these samples are duplicated to obtain a representation of the bimodal pdf that is exactly symmetric at the numerical
level:
Yr;1 ¼ Yr2500 �
1
2
;�Yr2500 �

1
2
;Yr2500 þ

1
2
;�Yr2500 þ

1
2

 �T
These are the 10,000 samples that we evolve. They are illustrated in the first row of Fig. 7. Of course, these samples are cor-
related. The procedure should not be used in general; it is used here solely to evaluate how good are numerical schemes at
maintaining symmetry.

6.2.2. Effect of advection scheme: results
The result of this simulation is shown in Fig. 7 for the three advection schemes. While the CDS scheme maintains sym-

metry of the mean, modes, pdf, and realizations, some clear numerical oscillations are present, particularly evident in the
realizations. While there are no oscillations in the TVD scheme, it clearly loses symmetry in the mean, modes, pdf, and real-
izations, as can be seen (with aid of the dashed guide lines) in Fig. 7. The TVD* scheme only develops minor oscillations,
which can be barely detected when examining the realizations, and completely retains symmetry. Thus, the new TVD*
scheme is the preferred scheme among the three.

Initially, we can represent all density realizations exactly with one mode. However, as different densities evolve at differ-
ent rates, one mode becomes insufficient to represent the uncertainty. Hence, spurious gradients can appear in the recon-
structed realizations. We purposely chose to use only one mode in this benchmark to also illustrate that if the number of
modes is fixed, errors occur. In general, we do not keep the number of modes fixed [50].

In summary, we found that the TVD* scheme performs adequately and that our DO implementation can reproduce vastly
different realizations of a given problem.

6.3. Numerical convergence analysis

The purpose now is mainly to show that the implemented scheme is converging. Here we use the classical lid-driven cav-
ity flow, and examine the numerical convergence under spatial and temporal refinement of each component separately. This
benchmark has a fixed density, and so we report the Re number instead of the Gr. Comparisons of the lid-driven cavity flows
at different resolutions are provided in [59]; in what follows, we only illustrate the convergence results. We also completed
convergence tests with variable densities: results (not shown here) are analogous.

6.3.1. Numerical convergence analysis: setup
General setup: We present results for Re ¼ 500, although other cases (Re 2 ½100;1000�) were also studied, giving similar

results. The flow is driven by a deterministic boundary condition at the top of an enclosed cavity (see [59]), with no-slip
velocity boundary conditions, and uncertain initial conditions. The finest resolution uses Dx ¼ Dy ¼ 1=512, and
Dt ¼ 1=4096, which is sufficient at this Re (see [12,11]). Considering time, the order of convergence is approximated as

O � log
k/2Nt

�/4Nt
k2

k/2Nt
�/Nt

k2


 �
= logð2Þ where Nt is the number of time-steps (the same approach is used for space). We examine the

difference between the fine and coarse space resolutions by interpolating (using splines) the fine solution onto the coarse
resolution grid, and taking the L2 norm over the interior of the domain, DI 2 ½0:25;0:75� � ½0:25;0:75�, to avoid the boundary
condition singularities at the top two corners.

Mean initialization: For a challenging case, the mean velocity and pressure are initially zero, everywhere.
Mode initialization: The velocity modes are initialized by specifying the stream function
wM;Nðx; yÞ ¼ CM;N sinðpxÞ sinðpMxÞ sinðpyÞ sinðpNyÞ;
where CM;N ¼ 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2þ1

16
3
2

� �dðN�1Þ þ N2þ1
16

3
2

� �dðM�1Þ
q

is the normalization constant; the delta function dðxÞ takes the value 1 if x ¼ 0

and 0 otherwise. The velocity modes are then specified as
ui ¼ �
@

@y
wðM;NÞi ; v i ¼

@

@x
wðM;NÞi ;
where ðM;NÞ ¼ fð1;1Þ; ð1;2Þ; ð1;3Þg. The initial pressure for the modes is specified as zero everywhere.
Stochastic coefficient initialization: The pdf is created using 5000 samples of zero mean Gaussian distributions with vari-

ances VarðYr5000 ;iÞ ¼ eð1�Mi�NiÞ. The number of samples is not critical in this case, since the samples are the same from one run
to the next. That is, we only test spatial and temporal convergence, not stochastic convergence. Since this is, again, a numer-
ical test, the Yi samples are purposely created using a procedure as in Section 6.2,
Y	r;i ¼
Yr5000 ;i

�Yr5000 ;i

 �
:

To ensure that the final generated samples have numerical variances exactly as specified, we correct the samples using the
numerically calculated variance



Fig. 8. The control volume size is held fixed at Dx ¼ 1=512 for the time convergence (left), and the time step size is held fixed at Dt ¼ 1=4096 for the spatial
convergence (right). The error (k/2N � /Nk2) decreases with both temporal- and spatial-refinement for each component, and convergence is near-optimal
(order 1 in time and 2 in space).

Table 1
Temporal convergence of lid-driven cavity flow. Tabulated is the error (e ¼ k/2Nt

� /Nt
k2) between the solutions using Dt ¼ 1=ð2NtÞ and using Dt ¼ 1=Nt , and

the approximate order of convergence O. The grid size is fixed at Dx ¼ 1=512.

. Nt Mean Mode 1 Mode 2 Mode 3

kek2 O kek2 O kek2 O kek2 O

P 2048 2.9e�04 1.5 5.8e�04 1.5 3.0e�03 1.5 2.3e�03 1.5
1024 5.7e�04 1.0 1.2e�03 1.0 5.9e�03 0.99 4.7e�03 1.0

u 2048 2.7e�04 1.5 3.7e�04 1.5 1.6e�03 1.5 2.2e�03 1.5
1024 5.4e�04 1.0 7.3e�04 1.0 3.1e�03 .99 4.3e�03 1.0

v 2048 2.5e�04 1.5 4.7e�04 1.5 1.8e�03 1.5 2.4e�03 1.5
1024 5.0e�04 1.0 9.5e�04 1.0 3.5e�03 0.99 4.8e�03 1.0

Yi 2048 – – 3.1e�04 1.5 5.1e�04 1.5 9.9e�04 1.5
1024 – – 6.2e�04 1.0 1.0e�03 1.0 2.0e�03 1.0

286 M.P. Ueckermann et al. / Journal of Computational Physics 233 (2013) 272–294
Yr;i ¼ Y	r;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðYr5000 ;iÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarqðYr;iÞ

q ;
where Varqðar;iÞ ¼ 1
q�1

Pq
r¼1ar;i is the calculated sample variance. For illustrations, we refer to [59].
6.3.2. Numerical convergence analysis: results and discussion
The convergence results are illustrated in Fig. 8. The reference high-resolution non-Gaussian DO simulation and its com-

parisons with simulations at different resolutions are shown in [59]. We find that the numerical errors for all components
decrease with temporal and spatial refinement as expected. The convergence is near optimal at large grid sizes for all vari-
ables. These results with the velocity components separated are tabulated in Tables 1 and 2: the stochastic coefficients are
converging optimally. Even though a fourth-order RK method is used to advance the stochastic coefficients, the total-DO con-
vergence is first order in time (based on choices made in Section 3.5. Thus, we observe near-optimal convergence for all vari-
ables, which suggests that the implementation is correct.
6.4. Stochastic convergence

The purpose of the fourth benchmark is to further assess numerical performance, demonstrate that a significant number
of modes can be used, and study the effect of the stochastic discretization. Specifically, we quantify the effects on accuracy of
the number of stochastic samples and of the time-order of integration. To do so, we extend the classic shedding of vortices by
a uniform flow as it encounters a symmetric obstacle to stochastic DO computations. Since this problem is symmetric, the
stochastic solution can only lose symmetry if numerical or external perturbations initiate the non-symmetric laminar shed-
ding of vortices. However, if perturbations are symmetric, there should be no preferential direction for vortex shedding.
Thus, a carefully initialized simulation should be able to capture symmetric directions: this provides an excellent test to as-
sess numerical performance.



Table 2
Spatial convergence of lid-driven cavity flow. Tabulated is the error (e ¼ k/2Nx

� /Nx
k2) between the refined (2Nx � 2Nx) and present (Nx � Nx) grid, and the

approximate order of convergence O. The time step is fixed at its smallest value Dt ¼ 1=4096.

. Nx Mean Mode 1 Mode 2 Mode 3

kek2 O kek2 O kek2 O kek2 O

P 256 1.8e�04 2.2 5.4e�04 1.8 1.9e�03 2.3 2.9e�03 2.0
128 1.0e�03 2.5 2.1e�03 2.0 1.0e�02 2.4 1.1e�02 2.0

64 4.5e�03 2.2 9.6e�03 2.2 4.7e�02 2.2 3.0e�02 1.5

u 256 2.0e�04 2.1 5.2e�04 2.1 1.2e�03 1.9 3.6e�03 2.1
128 1.0e�03 2.4 2.7e�03 2.4 4.9e�03 2.1 1.7e�02 2.2

64 4.5e�03 2.1 1.3e�02 2.3 2.5e�02 2.4 6.7e�02 2.0

v 256 1.9e�04 2.0 5.6e�04 2.1 1.2e�03 1.9 4.0e�03 2.1
128 8.6e�04 2.2 2.8e�03 2.3 5.1e�03 2.0 1.9e�02 2.3

64 3.6e�03 2.1 1.4e�02 2.4 2.6e�02 2.4 7.8e�02 2.0

Yi 256 – – 4.8e�04 2.1 7.2e�04 2.1 1.3e�03 2.2
128 – – 2.2e�03 2.2 3.4e�03 2.2 6.4e�03 2.3

64 – – 7.5e�03 1.8 1.5e�02 2.1 2.1e�02 1.7

Fig. 9. Laminar vortex shedding over a square cylinder in a channel. Here uncertainty originates from the initial conditions and uncertain vortex shedding:
depending on the perturbation, the first vortex could either be shed above or below the cylinder. Within a stochastic framework, however, if uncertainties
are initially symmetric, the mean and modes should remain symmetric, and this is evaluated with our DO numerics.
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6.4.1. Stochastic convergence: setup
The benchmark is based on an open flow in a frictionless pipe with a square cylindrical obstacle (Fig. 9), a classic test for

deterministic solvers.
General setup: We present results for Re ¼ 100, although other Re were studied. The flow is driven by a deterministic uni-

form inlet boundary condition (left of domain), with slip velocity boundary conditions at the top and bottom, open boundary
conditions at the outlet, and symmetric uncertain initial conditions. All simulations use a resolution of 336� 63 in space, and
63 � 40 in time. We choose to integrate until t ¼ 40 because this allows the statistics to reach steady values. At t ¼ 40 the
mean velocity has traveled through the domain 2.5 times.

Mean initialization: The mean velocity and pressure are initially zero, everywhere.
Mode initialization: The exact shape of the initial stochastic perturbations are not important since they are advected out of

the domain. However, to maintain symmetry, perturbations have to be symmetric. We initialize the velocity modes by spec-
ifying the stream function
wM;Nðx; yÞ ¼ CM;N sinðpx=aÞ sinðpMx=aÞ sinðpy=bÞ sinðpNy=bÞ;
where CM;N is the normalization constant (as in Section 6.3), and a ¼ 16; b ¼ 3 are the width and height of the domain respec-
tively. The velocity modes are then specified as
ui ¼ �
@

@y
wðM;NÞi BM; v i ¼

@

@x
wðM;NÞi BM;
where
ðM;NÞ ¼ fð1;1Þ; ð2;1Þ; ð1;2Þ; ð3;1Þ; ð1;3Þ; ð2;2Þ; ð4;1Þ; ð1;4Þ; ð3;2Þ; ð2;3Þg;
and BM is a smoothing function created numerically from the domain mask. BM is created from the mask by iteratively aver-
aging each control volume by its own value and its four neighbors for 2

Dy iterations. That is, at iteration k
Bk
Mði; jÞ ¼

1
5

Bk�1
M ði; jÞ þ Bk�1

M ði� 1; jÞ þ Bk�1
M ði; j� 1Þ þ Bk�1

M ðiþ 1; jÞ þ Bk�1
M ði; jþ 1Þ


 �
:

The initial pressure for the modes is specified as zero everywhere.



Fig. 10. Mean field and first 5 modes with marginal pdfs at final non-dimensional time T = 40 for Re = 100, and the evolution of the mean, u;uh iD and
stochastic energy, VarðYiÞ, for the reference solution (resolution 63�336 with 63 � 40 time-steps). Streamlines shown over pressure in color. Our scheme
and implementation retains (anti)-symmetry for the most important first four modes. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Stochastic coefficient initialization: To ensure initial symmetry, the samples for the stochastic coefficients are created using
the same procedure as in Section 6.3, using the variances VarðYr;iÞ ¼ eð2�Mi�NiÞ (note the difference of þ1 in the exponential
from Section 6.3). The reference solution uses 105 samples for the stochastic coefficients, and a 4th order RK time integration
scheme (Section 3.5).

6.4.2. Stochastic convergence: results and discussion
For the reference solution, we find that excellent symmetry is maintained for the first four stochastic modes (Fig. 10).

From the realizations (Fig. 11), the scheme clearly captures both shedding directions. We find that for fewer samples and
lower time integration accuracy, the symmetry is not as well maintained (not shown). However, for a sufficient number
of samples, symmetry is maintained for all Reynolds numbers we tested. From Fig. 10, we see that variances seem to reach
a steady value after an initial transient period. The smaller variances take longer to reach a steady value; the highest modes
still evolve after the final time step.



Fig. 11. As in Fig. 10, but showing two realizations where the vortex is shed in opposite directions. The colorbar for the pressure is as on Fig. 10. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Energy of the stochastic coefficients, VarðYiÞ, over time for: (top) different number of samples (Oð4Þ time integration); and (bottom), different time
integration schemes (10,000 samples). Trends are well captured in all cases, but there are noticeable errors for less energetic modes after long integration
times when a small number of samples and a low order time discretization scheme is used.

M.P. Ueckermann et al. / Journal of Computational Physics 233 (2013) 272–294 289
For our sequential implementation, the reference DO simulation (Fig. 10) was computed in about 7.5 h on a 2.4 Ghz com-
puter. Each time-step required the inversion of 11 pressure equations, as opposed to the 111 required for the scheme with-
out the stochastic pseudo pressure. This roughly translates to a 1000% increase in efficiency, or about 3 days saving in terms
of computational time for this computer. Since then, we have used as many as s ¼ 25 modes for data assimilation applica-
tions [55,56].

Sample sizes: Examining the evolution of the variance of the stochastic coefficients for a few sample sizes (top of Fig. 12),
differences are larger for higher modes. For the first four, results agree well with the reference when using >1000 samples.
After the 5th coefficient, differences are relatively larger, and in the 10th, they begin sooner. However, these differences are
insignificant when compared to the variance of the first mode (note the logarithmic scale), indicative of convergence.

The shapes of marginals are also well-reproduced for 1000 samples or more, for all time integration schemes (Fig. 13). The
magnitudes of the bimodal peaks in the first mode are more symmetric with increased sample sizes, which suggests using
upwards of 10,000 samples. Overall, the solution is converging with the number of samples: the cases with 10,000 and
100,000 samples give nearly identical results. We note that using such numbers of samples does not affect the overall cost.
On the other hand, since marginals are still well-represented using smaller sizes, a small number of samples could be used
for problems with larger s.

Order in time: We are here only varying the order of the ODE solver used to evolve the stochastic coefficients: the overall
order of the DO scheme is kept fixed at first order (see Section 3.4). Examining results (bottom of Fig. 12), we see that the
second and fourth order ODE solver agree well for all coefficients. A second order solver thus seems sufficient.

In summary, we simulated a stochastic version of the classical flow over a square cylinder benchmark. We found that our
DO solver maintains excellent symmetry, and the use of pseudo-pressures reduces the cost by 1000% when using 10 stochas-
tic modes. We also found that the statistics is converging with the number of samples and that accuracy benefits from using
a second-order solver for the coefficients, even though the overall DO scheme is limited to first order. Finally, smaller sample
sizes for the coefficients still produced accurate time-evolving statistic and marginal pdfs, which is encouraging.



Fig. 13. Marginal probability density functions of first five modes for the flow over a square cylinder benchmark at final time (columns 1–3, increasing
sample sizes; columns 4–5, decreasing order in time; column 6, reference). With 10,000 samples for the stochastic coefficients, the continuous marginal
pdfs are well-represented, although the bimodal peaks lose some symmetry. The marginals have similar shapes for all sample sizes, but the best
representations have larger sizes. Overall, the order of the time-integration scheme has less effect than the sample size (the overall order in time is one).
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7. Conclusions and future research

We derived efficient computational schemes for the DO methodology applied to unsteady stochastic Navier–Stokes and
Boussinesq simulations, and illustrated and studied the numerical aspects of these schemes. For the discretizations in time,
we develop semi-implicit projection methods for the mean and modes, and we employ time-marching schemes of first to
fourth order for the stochastic coefficients. For the discretizations of the physical space, we employ conservative second-
order finite-volumes, with a special treatment for the advection terms based on a TVD scheme with monotonized central
symmetric flux limiter. We addressed several numerical issues specific to the DO method for fluid and ocean flows. In
particular, we have shown: how to define pseudo-stochastic pressures to reduce the number of matrix inversions for the
pressure from Oðs2Þ to OðsÞ; how to treat advection by the stochastic modes using symmetric approximate TVD schemes;
how to deal with singular subspace covariances by generalized inversion; and how to maintain orthonormal modes at
the numerical level, accounting for truncation and round-off errors during time integration. Finally, we evaluated our
schemes using a varied set of stochastic flows, hence illustrating robustness but also providing benchmarks for future
schemes and implementations.

Using an asymmetric Dirac-stochastic lock-exchange benchmark, we found excellent agreement among multiple realiza-
tions from a deterministic code and the realizations generated from a single DO simulation. This validated our numerical
implementation, and confirmed that the pseudo-stochastic pressure approach works in practice. Using a symmetric version
of this lock-exchange benchmark, we showed that the symmetric TVD-based advection scheme (TVD*) works well, while the
CDS scheme suffers from numerical oscillations, and the classic TVD scheme loses symmetry.

Using a lid-driven cavity flow with uncertain initial conditions, we showed that state variables converged near-optimally
under both time and space refinement, even though pdfs were non-Gaussian. We also showed that even when a higher-order
time integrator is used for the stochastic coefficients, accuracy is still limited to the overall order of the DO scheme
(Section 3.4).

Finally, using a stochastic flow past a square cylinder in a confined channel, we showed that the stochastic coefficients
converge with increased samples sizes and orders of time integration. We found that using >10,000 samples and a second
order time-integrator yielded adequate performance. This benchmark also demonstrated that our numerical DO scheme suc-
cessfully captures both vortex shedding directions, maintaining a fully symmetric mean field. Also, with the newly defined
pseudo-stochastic pressure, we were 1000% more efficient computationally when using 10 modes.

Possible future studies include the efficient extension of our present framework to flows with uncertain parameters in the
governing equations and with stochastic forcing at the boundary and in the interior. Also, our results suggest that simula-
tions with long time integration will benefit from more accurate time-integration scheme. While our proposed symmetric
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TVD-based advection and orthonormalization schemes for the stochastic modes were shown to perform adequately, more
optimal treatments are possible. Alternative means of discretizing the stochastic coefficients are worth exploring for appli-
cations where rare events are important. Finally, specific multi-resolution DO schemes can be derived for multiscale stochas-
tic fluid and ocean flows. Unstructured grids as well as nested approaches [8,18] will then be useful. The utilization of the
present schemes as well as these future advances can allow the prediction of uncertainty in realistic simulations of multi-
physics fluid systems, over a wide range of applications, from micro-nano fluid engineering to multiscale ocean and climate
studies.
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Appendix A. DO Navier–Stokes equations

In this Appendix we present the stochastic DO equations for Boussinesq dynamics, and briefly summarize the required
steps (from [49,48,51]) to obtain these equations.

Starting with a generalized Karhunen-Loève expansion [31,48], one decomposes the solution of Eqs. (1)–(3) into a
Dynamically Orthogonal (DO) field expansion [49,48,50] for the velocity, density and pressure3 fields
3 For
Uðx; t;xÞ ¼ �Uðx; tÞ þ
Xs

i¼1

Yiðt;xÞUiðx; tÞ;

U � �Uþ YiUi; ðA:1Þ

pðx; t;xÞ ¼ �pðx; tÞ þ
Xs

i¼1

Yiðt;xÞpiðx; tÞ þ
Xs

i¼1

Xs

j¼1

Yiðt;xÞYjðt;xÞpijðx; tÞ;

p � �pþ Yipi þ YiYjpij; ðA:2Þ
where U ¼ ½U1;U2; . . . �T ¼ ½u;q�T is the vector of prognostic state variables. The scalar s ¼ sðtÞ defines the time-dependent
dimension of the stochastic subspace [50], i.e. s is a discrete number of stochastic terms retained from a complete expansion.
The field functions Uiðx; tÞ are the s orthonormal deterministic modes and the Yiðt;xÞ are their s zero-mean stochastic coef-
ficients, in general non-Gaussian. In our notation, we use the Einstein summation exclusively for summations related to the
stochastic expansion. The decomposition of pressure into a mean, linear modal and quadratic modal component follows
from the Pressure Poisson Equations (see Section 3.2 or [49]). Since both the modes and stochastic coefficients are functions
of time, a redundancy arises, which is resolved by the DO condition,
Ui;
@Uj

@t

� 	
D
¼ 0; 8i; j 2 ½1;2; . . . ; s�; ðA:3Þ
where the inner product is defined as a;bh iD ¼
R
D
P

iðaibiÞdD for arbitrary vectors of spatial functions a ¼ ½a1; a2; . . . �T and
b ¼ ½b1

; b2
; . . . �T .

Using the DO condition, an exact set of equations can be obtained that governs the evolution of the mean, modes, and
stochastic coefficients of the generalized Karhunen-Loève expansion. The only approximation arises from the truncation
of the DO expansion to sðtÞ terms. First substitute (A.1) into Eqs. (1)–(3) to obtain (using a Langevin notation):
@�u
@t
þ dYi

dt
ui þ Yi

@ui

@t
¼ Lu �uþ Yiui; �qþ Yiqi;p; x; t; xð Þ;

@�q
@t
þ dYi

dt
qi þ Yi

@qi

@t
¼ Lq �qþ Yiqi; �uþ Yiui;x; t;xð Þ;

ðA:4Þ
and DO decomposed versions of 2,3. It is from these equations, within which the DO decomposition was inserted, that the
equations for the mean, modes and their coefficients are obtained, using the expectation operator, the spatial inner product,
and Eqs. (A.2) and (A.3).

Mean. To obtain a rate of change for the mean fields, the idea is to eliminate the random components in the left-
hand-sides of Eq. (A.4). Hence, taking the expectation of Eq. (A.4) it can be found that the evolution of the mean fields are
governed by
convenience, we changed the sign of pij from the original definition in [49].
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r � �u ¼ 0; x 2 D;
@�u
@t
� 1ffiffiffiffiffiffi

Gr
p r2 �u ¼ �r � ð�u�uÞ � r�pþ �qeg � CYiYj

rpij þr � ðujuiÞ
� �

; x 2 D; ðA:5Þ

@�q
@t
� 1

Sc
ffiffiffiffiffiffi
Gr
p r2 �q ¼ �r � ð�u�qÞ � CYiYj

r � ðujqiÞ; x 2 D;
with the initial and boundary conditions given by
�u x; 0ð Þ ¼ �u0; x 2 D;
�q x;0ð Þ ¼ �q0; x 2 D;
�u ¼ �gD; x 2 @DD;

ðA:6Þ

@�u
@n
¼ �gN ; x 2 @DN;

�q ¼ �gDq ; x 2 @DDq ;

@�q
@n
¼ �gNq ; x 2 @DNq ;

ðA:7Þ
where CYiYj
¼ Ex YiYj

� �
is an element of the covariance matrix in the stochastic/error subspace. Deterministic initial and

boundary conditions (�
 quantities) are assigned to the mean. Note that in general the vector r � ðujuiÞ differs from

r � ðuiujÞ recall that r � ðujuiÞq ¼
@uj r uiq

@xr
–

@ui r uj q

@xr
; e:g:; @v jui

@y –
@v iuj

@y


 �
.

Modes. The evolution of the modes is also obtained from Eq. (A.4). To do so, the idea is to eliminate the random coeffi-
cients in front of the time derivatives of the modes. The essential steps are to multiply these equations with a stochastic coef-

ficient Yj, apply the expectation operator, and substitute an expression for Ex @Yi
@t Yj

h i
, which is obtained by projecting the

equation unto Uk and imposing the DO condition. From this the following governing evolution equations for the modes
can be found:
r � ui ¼ 0; x 2 D;
@ui

@t
¼ Q u

i � Q i;Uj
� �

Duj; x 2 D;

@qi

@t
¼ Qq

i � Q i;Uj
� �

Dqj; x 2 D;

ðA:8Þ
where
Q i ¼ Q u
i ;Q

q
i

� �T ¼ C�1
YiYj

Ex LuYj
� �

; C�1
YiYj

Ex Lq Yj
� �h iT

;

Q u
i ¼

1ffiffiffiffiffiffi
Gr
p r2ui �r � ðui �uÞ � r � ð�uuiÞ � rpi þ qie

g � C�1
YiYj

MYjYmYn rpmn þr � ðunumÞð Þ;

Qq
i ¼

1
Sc

ffiffiffiffiffiffi
Gr
p r2qi �r � ðui �qÞ � r � ð�uqiÞ � C�1

YiYj
MYjYmYn r � ðunqmÞð Þ
and MYjYmYn ¼ Ex YjYmYn
� �

is a third moment. The right-hand-sides in Eq. (A.8) correspond the total rate of change of the sub-
space (without a DO condition) minus the projection of this rate of change on the subspace itself (which is subtracted to
ensure the DO condition). We note that in general r � ð�uuiÞ–r � ðui �uÞ since @�vui

@y – @v i �u
@y for example.

The initial and boundary conditions for the modes are obtained from those of the full stochastic fields, Eqs. (2) and (3), but
reduced to their dominant initial error subspace of size s0,
ui x;0ð Þ ¼ ui;0 xð Þ; x 2 D;
qi x; 0ð Þ ¼ qi;0 xð Þ; x 2 D

ðA:9Þ
and

ui ¼ gi;D; x 2 @DD;

@ui

@n
¼ gi;N; x 2 @DN;

qi ¼ gi;Dq
; x 2 @DDq ;

@qi

@n
¼ gi;Nq

; x 2 @DNq :

ðA:10Þ
Coefficients. Finally, to obtain the evolution of the stochastic coefficients from Eq. (A.4), the idea is to eliminate the modes
in the term containing the time derivatives of the random coefficients. To do so, project the evolution Eq. (A.4) onto each
mode i, apply the DO conditions, and essentially impose that each coefficient is of zero mean. The resulting governing sto-
chastic ODEs are
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dYi

dt
¼ L� Ex L½ �;Ui
� �

D;

¼ Fm;Uih iDYm � rpmn þr � ðunumÞ;uih iD YmYn � CYmYnð Þ � r � ðunqmÞ;qih iD YmYn � CYmYnð Þ; ðA:11Þ
where L ¼ ½Lu;Lq�T and Fm ¼ ½Fu
m; F

q
m�

T with
Fu
m ¼

1ffiffiffiffiffiffi
Gr
p r2um �r � ðum �uÞ � r � ð�uumÞ � rpm þ qmeg ;

Fq
m ¼

1
Sc

ffiffiffiffiffiffi
Gr
p r2qm �r � ðum �qÞ � r � ð�uqmÞ:
The initial conditions for the coefficients are obtained from those of the full stochastic fields, Eq. (2), by projection onto each
initial mode i, Ui;0, and removal of the mean. This leads to:
Yi t0;xð Þ ¼ U0 � �U0;Ui;0
� �

D

¼ u0 � �u0;ui;0
� �

D þ q0 � �q0;qi;0

D E
D
; x 2 X: ðA:12Þ
In this Appendix we stated the DO equations for the mean, modes, and stochastic coefficients of the stochastic Boussinesq
equations.
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