
Path Planning Methods for Adaptive Sampling of

Environmental and Acoustical Ocean Fields

Namik Kemal Yilmaz∗, Constantinos Evangelinos†, Nicholas M. Patrikalakis†, Pierre F. J. Lermusiaux‡,

Patrick J. Haley‡, Wayne G. Leslie‡, Allan R. Robinson‡, Ding Wang† and Henrik Schmidt†

∗Department of Mechanical Engineering

Massachusetts Institute of Technology, Cambridge, MA 02139–4307

Email: nkyilmaz@mit.edu
†Massachusetts Institute of Technology, Cambridge, MA 02139–4307

‡Harvard University, Cambridge, MA 02138

Abstract— Adaptive sampling aims to predict the types and
locations of additional observations that are most useful for spe-
cific objectives, under the constraints of the available observing
network. Path planning refers to the computation of the routes
of the assets that are part of the adaptive component of the
observing network. In this paper, we present two path planning
methods based on Mixed Integer Linear Programming (MILP).
The methods are illustrated with some examples based on envi-
ronmental ocean fields and compared to highlight their strengths
and weaknesses. The stronger method is further demonstrated on
a number of examples covering multi-vehicle and multi-day path
planning, based on simulations for the Monterey Bay region.
The framework presented is powerful and flexible enough to
accommodate changes in scenarios. To demonstrate this feature,
acoustical path planning is also discussed.

I. INTRODUCTION

Path planning for adaptive sampling is a challenging prob-

lem and presents exciting research opportunities. There is a

wide range of possible objectives for adaptive path planning

in the ocean, from purely scientific to purely operational. For

example, the aim can be to incorporate extra measurements

that target high uncertainty areas or reduce forecast uncer-

tainties. These extra measurements are “adaptive” since their

location and nature are a function of the ocean variability and

updates to the observing network. Prior works on adaptive path

planning have generally different perspectives on the problem

and some of them utilize optimization ideas to produce locally

optimal solutions. We approach the path planning problem in

an optimization framework and try to achieve a formulation

and solution methodology that will generate globally optimal

solutions. We test our methodology using the uncertainty data

supplied by Harvard Ocean Prediction System (HOPS) [1] and

Error Subspace Statistical Estimation technique (ESSE) [2]–

[4].

In this paper we present two path planning methods for

adaptive sampling based on Mixed Integer Linear Program-

ming (MILP). The first method is predicated on network-flow

ideas. An important classification of the set of path-planning

problems to be solved is the number of days that are involved

in the complete sampling mission. Intrinsic limitations of

this first network-flow-based method prevent its use for more

than a single instant. For example, computing the path for

a multiple-day mission isn’t directly feasible. The second

method emerged by taking into consideration the limitations of

the first method and is based on a general MILP formulation. It

is a more powerful formulation as it: can handle multiple-day

adaptive sampling missions; is scalable and can easily address

the multiple vehicle case; and is more easily extended to cover

unforeseen situations that might arise as adaptive sampling

concepts and needs evolve. The second method also inspired

techniques to be used for the solution of auxiliary problems

that are required to determine suitable initial conditions for

the main problem. We use the ”branch and bound algorithm”

which is known to be capable of providing exact solutions to

MILP problems [5].

The methods are illustrated with some examples based on

environmental ocean fields generated from simulations for the

Monterey Bay region and AOSN-II [6] data. The framework

presented is powerful and flexible and can accommodate

various adaptive sampling scenarios. To demonstrate this fact,

the case of an acoustical path planning is also presented.

II. MILP METHOD BASED ON NETWORK PROGRAMMING

APPROACH

The “Network Programming” approach aims at solving the

optimal routing problem by combining ideas from network

programming and mixed integer programming (MIP) tech-

niques. The problem at hand, in its simplest form, is to find

an optimal path for a vehicle, given its starting point and an

uncertainty field coming from an ESSE solver. The termination

point of the vehicle can be specified either as an exact point in

space or a set of points. The method seeks a globally optimal

solution. The problem can be extended to a multi-vehicle case

also including inter-vehicle coordination.

The uncertainty field is a 2D array, input to the problem.

To implement the suggested approach, the nodes in the 2D

field are woven into a grid structure by introducing horizontal

and vertical flows in between adjacent nodes. The introduced

horizontal flows include flows from left to right (forward hor-

izontal flows) as well as right to left flows (reverse horizontal

flows). The vertical flows include top to bottom flows (forward

vertical) and bottom to top flows (reverse vertical). This forms

the flow grid for the network approach.



In a network programming scheme, the node-arc incidence

matrix (A) represents the connection between nodes in a

network. It lays a structure for the rest of the formulation. In

our particular example, each element of the uncertainty matrix

is a node. The arc-incidence matrix determines which links are

established between the nodes in the system. In the general

case, it is a (♯ of nodes) by (♯ of edges) matrix. Each row

corresponds to a node and each column corresponds to an arc.

The (i, k)th entry aik is associated with the ith node and kth

arc. We define aik as:

aik =







1 if i is the start node of the kth arc

−1 if i is the end node of the kth arc

0 otherwise

Flow variables are the unknown in the problem. Therefore

the solver aims to find values of these variables. Each column

of A matrix corresponds to a flow variable. Let us denote by

a vector f a particular ordering of flow variables( the columns

of matrix A must follow the same ordering in order to match

the flows). Then A and f are used to write down the continuity

equation. To illustrate, let us focus on the ith row of A,

denoted by ai. This row is associated with node i. The nonzero

entries stand for the arcs that are incident to node i. If it is an

incoming arc the entry is −1, if it is an outgoing arc then the

nonzero entry is +1. Thus,

a
′

if =
∑

j∈O(i)

fij −
∑

i∈I(i)

fji (1)

where O(i) and I(i) stand for the set of outgoing and

incoming flows from and to the node i respectively.

The flow conservation equation at node i can be written as

a
′

if = bi (2)

or, equally in matrix notation,

Af = b (3)

where b is the vector (b1, , ..., bn) and bi is the amount of

flow that enters the network at node i. In general, node i is

called a source if bi > 0 and a sink if bi < 0.

In our formulation all bis except at two special nodes will

be zero. There will be a source node at the start location of the

vehicle and a sink node at an unknown location. The location

of the sink node will be determined as a part of the solution.

In order to formulate the problem at hand, it is necessary

to include a virtual start node and a virtual termination node.

The nodes will serve a special purpose in the formulation and

thus are critical. The problem will be treated as a variation of

the “all to one” shortest path problem [7]. ”One” node is the

starting node (’s’). The termination node is undetermined in

the beginning. All the nodes in the network (or depending on

the problem a subset of them) are potential termination nodes.

The starting node is connected only to the node where

the vehicle starts its motion, whereas termination node is

connected to all nodes. This is pictured in Fig. 1(a). To give

the big picture of the solution approach, a flow of magnitude

+1 will be fed into the network at the start node. Then it will

follow a path that will be determined by the objective function

and constraints, and will leave the network at the termination

node.

Since the starting node (s) is connected only once, it can

be omitted by setting the value of its entry in bi to +1. Edges

from all network nodes to t are one directional and only one of

the flows will be +1 through these with all others remaining

equal to 0. The non-zero flow will point to the termination

node.

The cost vector is constructed using the uncertainty data. For

the connection between the nodes, the cost value (which cor-

responds to the award that will be collected if that connection

is a part of the solution) must be defined. The uncertainty is

provided in a matrix denoted as P. The elements of this matrix

correspond to the uncertainty value at the corresponding grid

location. To extract the cost associated with a flow, the average

of the uncertainty values at the start and end nodes are taken.

ci−j = cj−i =
Pi + Pj

2
(4)

Each vehicle has a specific range and can only travel up

to that range. To prevent a solution from violating the range

restriction, an appropriate constraint must be introduced. This

constraint can be written as follows:

∑

fi · Li ≤ R (5)

L vector stands for the modifications on flow lengths in

case of the inclusion of diagonal moves in the formulation

and also for the case of curvilinear grid geometry. In the

specific case where only horizontal and vertical moves are

considered, L is a vector of ones. In the matrix notation the

above inequality can also be expressed as

LT · f ≤ R (6)

Since ckl and clk have the same value, naturally the optimal

solution will tend to include both of the corresponding flows,

fkl and flk. This will cause a back and forth motion along the

same line. As it will be mentioned later there are integrality

constraints on fkl and it may be either 0 or 1. To prevent the

oscillating notion, we impose the constraint fij + fji ≤ 1.

Hence fij = 1 ⇒ fji = 0 or vice versa.

Also we need to impose the constraint that each node can

be visited only once. If this restriction is not imposed then,

moves resembling the shape of number 8 (or papillon shape)

become very common in the solutions found. The problem

with these kinds of path geometry is the double counting of

some observation point and focusing around the same area

more than necessary. This can be achieved by introducing the

following mathematical inequality:

∑

fij + fji ≤ (2 − bi), ∀i ∈ N (7)



(a) (b)

Fig. 1. a) Indexing notation for nodes and flows. b) Constraints to eliminate loops of size 1 × 1.

If bi is 0 for a node then right-hand-side of the equation

becomes 2 and it means that if the node is not a source or

sink node, there can be one flow entering and one flow exiting.

The subtour problem emerges in optimization problems

where a route or routes need to be generated. Examples of

these problems include the Traveling Salesman Problem (TSP)

and the Vehicle Routing Problem(VRP) [8], [9]. In our case,

similar issue arises and our remedy is to introduce special

constraints that prevent the inclusion of loops in the solution.

Our subtour elimination approach is based on the idea of

imposing some constraints on the flows around the square

loops of various sizes. The idea is illustrated on a ”1 × 1
loop” in Fig. 1(b).

The idea can be extended to loops of higher size as a

function of the vehicle range. The complete formulation for

the multi vehicle case can be written as follows:

R : Range

N : Network of all nodes in the grid and the start and the

termination nodes.

V : Set of all vehicles in the fleet

cp,i−j = 1
2 (Pp,i + Pp,j) : Cost of moving from node i to

node j for vehicle p.

A : Connectivity matrix.

fp,i−j : Flow from node i to node j belonging to vehicle p.

s : Starting node for network flow problem.

t : Termination node for the network flow problem.

max
∑

cp,i−jfp,i−j

subject to
∑

fp,i−j −
∑

fp,j−i = bp,i ∀(i− j) ∈ N ∀p ∈ V (8)

or in an equivalent representation Afp = bp where bp,s =
1 bp,t = −1 bp,i = 0 i 6= s, t)

∑

fp,i−j · Lp,i−j ≤ R (9)

∀(i− j)(k− l) ∈ N and ∀p ∈ Vwhere Li−j is a distance

modification matrix to take care of diagonal moves if they

are allowed and the curvilinear grid geometry in case it is used.

To disallow opposite flows between two nodes, we use the

constraint:

fp,i−j + fp,j−i ≤ 1 ∀(i − j) and (j − i) ∈ N ∀p ∈ V

(10)

To avoid visiting the same node twice, we use the constraint:

∑

j

fp,i−j + fp,j−i ≤ (2 − bi) ∀i ∈ N, ∀(i − j) and

(j − i) ∈ N, ∀p ∈ V (11)

To avoid size “ℓ” loops, we use the constraint:

∑

fp,i−j ≤ Ωℓ ∀fp,i−j ∈ SLℓk, ∀SLℓk ∈ N, ∀p ∈ V

(12)

where SLℓk stands for the kth member of the set of all

square shaped regions of size ℓ. Ωℓ stands for the upper limit

value on the summation on circumferential flows for “size ℓ

loops”. Typical values can be exemplified as Ω1 = 1, Ω2 = 4
and Ω3 = 6.

To mask out of range flows, we use the below constraint

where R stands for nodes within the range of vehicle:

fp,i−j = 0 ∀(i, j) ∈ (N-R), , ∀p ∈ V (13)

For vicinity constraints, we add the following constraint:
∑

fp,i−j ≤ 12(1 − fq,k−l)

∀fp,i−j , fq,i−j ∈ VCRz, ∀p, q|p > q ∈ V, ∀VCRz ∈ N

(14)

We also need the impose the integrity constraint on the

flows:



fp,i−j = {0, 1}, fp,i−j must be integer. (15)

The mathematical program has been implemented using

the “XPress-MP” from “Dash Optimization” [10]. Fig. 2(a)

presents the solution for a two-vehicle problem. The total

solution takes around 60 − 70 seconds on a Pentium 4, 2.8
GHz PC with 1 Gb memory.

III. GENERAL MILP METHOD FOR MULTI-DAY MISSIONS

An important class of problems include multi-day missions

where the optimization needs to be performed over a time

window. The nature of the network programming based

formulation requires the starting positions on each day to be

available in the beginning, so that corresponding elements

in the related matrices can be set accordingly. Unfortunately

for a multi-day mission although the starting points of

vehicles for first days are available, that of followings days

are not and must be calculated as a part of the solution

process. Therefore considering the shortcomings of the

method, we developed another MILP based method. The

second method is not based on the idea of weaving the

physical space with flows and trying to highlight the flows

that will be a part of the solution. It is predicated on the

idea of segmenting the path with a number of path-points

and trying to solve for the coordinates of those points.

This idea is illustrated in Fig. 2(b). In this paper, we will

explain the important aspects of this general formulation

without going into details. The readers can refer to [11], [12]

for the complete mathematical description of the methodology.

The number of path-points is a parameter that is defined as

a function of vehicle range and grid dimensions. The objective

function of the optimization problem is to maximize the path

integral of the uncertainty values along the vehicle path. This is

a rather complicated function to express given the restrictions

on the kind of functions you can feed into a MILP solver. The

first step in representing such a function is to define the non-

convex and non-concave uncertainty field using piecewise-

linear functions. This is possible by using the concept of

special ordered set of type 1 and 2 (SOS1 and SOS2) [13].

This concept is first introduced by Beale and Tomlin [14]. The

objective function which is the path integral of the uncertainty

values along the vehicle paths, can be written in mathematical

terms as:

max

N
∑

i=1

U(x(i), y(i)) (16)

where U(x(i), y(i)) stands for the uncertainty field. After

we have a valid representation for the uncertainty field, the

objective function can be easily be expressed in MILP formu-

lation [11], [12].

The next task is to write down the constraints that govern the

motion of the vehicles. The first set of constraints are related

to the primary motion of the vehicle by which we mean the

motion the vehicle needs to make in order to move to one of

the surrounding 8 nodes around it. This idea is represented

in Fig. 2(c). These constraints define the relation between the

coordinates of a path-point and the path-point preceding it.

There also exist constraints designed to prevent curling.

These constraints define relation between the coordinates of

a path-point and the path-point preceding it by two and three

(the number might increase as a function of the vehicle range).

This idea is represented in Fig. 3(a). A generic form of these

constraints can be written as:

∀p ∈ [1, ..., P ] and ∀i ∈ [n + 1, ..., Np] :

|xpi − xp(i−n)| ≥ ∆n OR |ypi − yp(i−n)| ≥ ∆n (17)

where P is the total number of vehicles in the fleet and Np

is the total number of path-points belonging to pth vehicle.

n stands for the distance between path-points the anti-curling

constraint is set for and ∆n is the corresponding separation

distance. In all of the above equations, subscripts p and k stand

to denote the kth path-point of pth vehicle. Using formulations

techniques it is possible to write the above formulation in a

MILP notation [11], [12].

Vicinity requirements and collision avoidance for multi-

vehicle scenarios can be handled with the following con-

straints:

∀p, q ∈ [1, ..., P ] : ∀p, q| p > q ; ∀i, j ∈ [1, ..., Np] :

|xpi − xqj | ≥ ∆xsafety OR |ypi − yqj | ≥ ∆ysafety (18)

where the safety distances in x and y directions are denoted

by ∆xsafety and ∆ysafety respectively.

There also exist constraints which are required for the coor-

dination issues that are related to the different communication

considerations with overshadowing ships, shore stations and

buoys. Communication with AUVs is established by over

radio signals (most commonly), acoustically, or via direct

connection to the AUV by a cable. The suggested MILP

formulation is strong and flexible enough to incorporate neces-

sary constraints for these different scenarios easily [11], [12].

The need for communication with multiple platforms arises

in the context of an Autonomous Ocean Sampling Network

(AOSN) [16], [6], [17]. AOSN is a concept that is still under

development. The ultimate goal of AOSN is the realization

of a completely autonomous network in charge of collecting

data from the ocean. The network may consist of AUVs,

buoys, shore stations, acoustic modems, satellite and radio

links and other autonomous vehicles. In a simplified example

scenario, the shore station makes the mission plan and sends

it to the buoys via a radio link. Buoys establish an acoustical

communication link with AUVS and upload the individual

path plans to the AUVs. The AUVs navigate in accordance to

the uploaded plan and make necessary measurements. When

the mission is completed, the collected data is transmitted to

one of the buoys. The buoy sends the data to the shore station

using the wireless connection. Also, buoys not only act as an



(a) (b) (c)

Fig. 2. a) Result for two-vehicle case. Starting coordinates and range (in grid units) for vehicle 1: x = 15, y = 10, Range = 14. Starting coordinates
range (in grid units) for vehicle 2 x = 39, y = 12, Range = 14; Total Reward = 1078°C. b) Path construction by segmentation. c) Allowable set
of path-points by taking into account the spatial constraints between the candidate point and the point that precedes it by one. Blue dots represent current
path-points in the path, green ones show the allowable path-point locations and the red ones show the unallowable path-point locations for the path-points
under consideration.

(a) (b)

Fig. 3. a) Allowable set of path-points by taking into account the spatial anti-curling constraints between the candidate point and the point that precedes it
by two. b) Illustration of an “Autonomous Oceanographic Sampling Network” [15].

(a) (b) (c)

Fig. 4. a) Results for first day of a time-progressive case example. Starting coordinates: x1 = 15km, y1 = 22.5km, Range1 = 14.5km; x2 = 45km,
y2 = 30km, Range2 = 15km. b) Results for second day of a time-progressive case example. c) An acoustic problem example.

intermediate data logger but also can serve as docking stations

where AUVs can be recharged and continue their mission

without being needed return to the shore or board to a ship.

Fig. 3(b) illustrates an AOSN.

We present a formulation in [11], [12] designed around the

extended functionality of buoys as docking stations in addition

to being a node in the communication network. Other scenarios

and different requirements can be formulated and relatively

easily implemented. This is because of the power of MILP

techniques and of the flexibility of our formulation framework.

An important set of problems are the planning of missions

over multiple days with a need to establish the information

link between consecutive days. The general MILP formulation

can easily account for this by adding a time dimension to

cover multi-day problems. We use the “Mosel” modeling

language from “Dash Optimization” [10] to implement the

MILP problem and a new time dimension translates into

adding an index to the related matrices. A very key point



in establishing the link between consecutive days, and to

introduce the time-progressive features, is to define the relation

between the end path-point of vehicles on one day with the

starting point on the following day. One option is to impose

the constraint that on consecutive mission days the vehicles

should start their mission exactly at the location they finished

their mission on the previous day. This can be achieved by the

following constraints:

∀p ∈ [1, ..., P ], ∀d ∈ [2, ..., D] :

xpd1 = xp(d−1)Np
(19)

ypd1 = yp(d−1)Np
(20)

where D is the total number of days in the mission. Fig.

4(a) and 4(b) present results for a two-day time-progressive

case. This example also reveals the power of the proposed

formulation to find time global optimal solutions. If we assume

the absence of any information link between the uncertainty

data for day 1 and day 2, on day 1 the second vehicle, which

starts its motion at x=45km and y=30km, needs to be drawn

to the small peak located around x=40km, y=35km causing

the high-uncertainty region on day 2 to stay out of the reach

of vehicle 2. But since there is communication between day

1 and day 2, vehicle 2 compromises on the total amount of

reward it can collect on day 1 ,and heads towards the high-

uncertainty region that will appear on day 2 to maximize the

total reward over two days.

The MILP path planning algorithm can also be applied on an

acoustical system [18] (with some modification if necessary).

Fig. 4(c) shows a sound velocity prediction error map. Suppose

a sonar system is at the blue point and a sound source is at

the white point. From the error map, large uncertainties exist

around the sonar location. The sonar may localize the sound

source in a wrong bearing. It is desirable to send an AUV

carrying conductivity, temperature and depth (CTD) sensors

to do in-situ measurements in the region, so that after these

data are assimilated, the sound velocity error is reduced and the

sonar bearing localization can be expected to be more accurate.

Due to AUV’s performance limits, an optimized sampling path

is needed to capture critical uncertainties and improve sonar

performance as much as possible.

IV. CONCLUSIONS

We developed two MILP-based methods for path-planning

for adaptive sampling. Due to intrinsic shortcomings the first

method was incapable of handling multi-day missions. A

second general method was therefore developed. This second

method can treat a larger range of problems and produce

solutions faster than the first one in the case of single day

missions. Also its implementation is very flexible in the sense

that any modifications to the problem scenario can easily

be accommodated. The framework could be utilized as a

foundation for future research where we can embed approxi-

mations of HOPS and ESSE into the optimization framework

to establish the link between the measurements performed at

a generated path-point and their effect on uncertainty field(s)

involved in the problem. This would allow the reduction of

uncertainty fields dynamically: the objective (error) field is

modified after each path point. The path planning framework

presented in this paper could also be extended to low level

path planning where vehicle dynamics can also be taken into

consideration [19].
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