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Abstract

A new methodology for Bayesian inference of stochastic dynamical models is devel-
oped. The methodology leverages the dynamically orthogonal (DO) evolution equa-
tions for reduced-dimension uncertainty evolution and the Gaussian mixture model
DO filtering algorithm for nonlinear reduced-dimension state variable inference to
perform parallelized computation of marginal likelihoods for multiple candidate mod-
els, enabling efficient Bayesian update of model distributions. The methodology also
employs reduced-dimension state augmentation to accommodate models featuring un-
certain parameters. The methodology is applied successfully to two high-dimensional,
nonlinear simulated fluid and ocean systems. Successful joint inference of an uncer-
tain spatial geometry, one uncertain model parameter, and O(105) uncertain state
variables is achieved for the first. Successful joint inference of an uncertain stochastic
dynamical equation and O(105) uncertain state variables is achieved for the second.
Extensions to adaptive modeling and adaptive sampling are discussed.
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Chapter 1

Introduction

1.1 Stochastic Dynamical Systems

A stochastic dynamical system is any system that is both time-varying—dynamical—

and affected by uncertainty—stochastic [59]. Examples of such systems are every-

where. Physical systems such as oceans and ecological networks, engineering systems

such as power grids and communications networks, and anthropological systems such

as financial markets and social networks can all be classified as stochastic dynamical

systems. The mathematical tools that have been developed for investigating stochas-

tic dynamical systems are thus highly versatile and have been applied in a wide range

of fields [4, 5, 12, 25, 36, 51, 62, 66, 87, 116, 117, 118].

The general procedure for modeling a stochastic dynamical system is best illus-

trated with a simple example: a ball thrown through the air. This system is certainly

dynamical; the ball’s position and velocity, the state variables of the system, are

changing with time. The system is also stochastic; the ball’s trajectory is depen-

dent on its initial conditions, which can be uncertain, as well as on turbulent mul-

tiscale aerodynamic forcings, which are often not deterministically predictable. The

evolution of the ball’s position and velocity can be mathematically described by a

stochastic differential equation (SDE) that couples Newton’s laws of motion with sta-

tistical representations of the turbulent aerodynamic forcings. This SDE represents

the stochastic dynamical model for the system. Given a probability distribution for
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the ball’s initial conditions, the stochastic dynamical model can be used to predict

probability distributions for the ball’s position and velocity as functions of time, a

process known as predicting the uncertainty evolution. If observations of the ball are

made during the course of its flight, these probability distributions can be updated

to account for the newly-acquired information, a process known as inference or data

assimilation. Inference always reduces uncertainty in a system’s state variables.

The general procedure for modeling a stochastic dynamical system can be sum-

marized as follows:

1. Model formulation. Formulate a stochastic dynamical model that governs the

evolution of the system’s state variables and their associated probability distri-

bution.

2. Uncertainty initialization. Quantify initial uncertainty in the system’s state

variables by specifying an initial probability distribution.

3. Uncertainty evolution. Evolve the initial state variable probability distribution

through time using the stochastic dynamical model.

4. Inference. Update the state variable probability distribution using information

from observations, reducing state variable uncertainty.

Though listed sequentially, uncertainty evolution and inference typically occur in an

alternating fashion, with periods of uncertainty evolution interspersed with instances

of inference. We also note that uncertainty evolution and inference can also be com-

pleted backward in time.

1.2 Model Formulation Uncertainty

For the example featuring the ballistic ball, it was implicitly assumed that the stochas-

tic dynamical model formulated for the system was an accurate mathematical descrip-

tion of its governing physics. Uncertainty in the system’s state variables was modeled

12



as originating solely from uncertainty in the system’s initial conditions and the tur-

bulent aerodynamic forcings, whose statistical properties were assumed known. This

assumption of absolute validity of the model formulation however is not always defen-

sible. For the ball, Newton’s laws of motion were included in the system’s stochastic

dynamical model, but what if these laws were uncertain? That is, what if the ball

were being thrown during a pre-Newtonian era when it was not known whether force

was proportional to velocity, acceleration, or a non-linear function of both? This

source of uncertainty—model formulation uncertainty—would certainly amplify the

overall uncertainty in the ball’s trajectory. In contemporary contexts, similar model

uncertainty could arise when dealing with complex systems whose governing equa-

tions have not yet been derived from known first principles. For these systems, the

assumption of absolute validity for any one particular model formulation would surely

be inappropriate. In general, uncertainty in model formulation can originate from the

choice of state variables themselves, from the functional forms of the model equations,

the boundary conditions, and initial conditions, and from the definition of the (spa-

tial) domain of integration. Both the deterministic and stochastic components of the

model formulation can be uncertain. In what follows, when possible, we will we refer

to model formulation uncertainty as simply model uncertainty.

Model uncertainty in stochastic dynamical systems can be difficult to properly

quantify and is thus often ignored. This simplifying assumption is not severely dam-

aging when model uncertainty is insignificant. When throwing a ball on Earth in the

21st century for example, one can have high confidence in the validity of Newton’s laws

of motion. In other cases however, it can lead to significant underestimation of state

variable uncertainty. [34], [55], and [72] review poignant examples from the statistics

literature in which ignorance of model uncertainty resulted in overconfidence in state

variable estimates, which subsequently led to tragically flawed conclusions.

Perhaps even more unfortunate, ignoring model uncertainty is antithetic to the

scientific method, which entails the comparison of competing hypotheses by means of

observations. If multiple models are considered, the same observations of a stochastic

dynamical system that are used to perform inference of its state variables can also
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be used to infer the relative validity of each of the models. This process of model

inference can reveal valuable insights regarding the fundamental mechanisms that

govern the system under investigation. If model uncertainty is ignored however and

only one model—one hypothesis—is assumed, this opportunity for scientific discovery

in the classic sense is forfeited.

1.3 Literature Review

Several methods have been developed to handle the coupled issues of model uncer-

tainty and model inference in stochastic dynamical systems. We review a number of

these methods here.

Directed search methods are a general class of computational methods for model

inference. These methods typically proceed by first performing state variable inference

for a large set of candidate models, then scoring the inferred state variables relative

to system observations using metrics derived from frequentist statistics. Computa-

tional schemes are employed to search through expansive sets of plausible candidate

models, with the search process directed by results from successive rounds of can-

didate evaluations. [123] is a premier example of this strategy. In this work, the

authors employed a heuristic optimization scheme known as symbolic regression [75]

to search through a space of algebraic expressions with the goal of finding the fun-

damental physical laws that govern several simple dynamical systems, such as single

and double pendula. The authors were able to identify conservation laws for en-

ergy and momentum without any prior information regarding the laws’ functional

forms. Their approach was highly versatile but exceptionally demanding in terms of

computational cost, even for the low-dimensional systems considered in their work.

Model inference for the double pendulum system, a non-linear system with two state

variables, required over 30 hours of computational time in a 32-core parallelized imple-

mentation. Extensions of their approach, and other directed search model inference

methods (e.g. [19, 22, 74, 110, 144]), to high-dimensional systems will likely prove to

be computationally challenging.
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Hierarchical Bayesian modeling is a general approach to handling model uncer-

tainty whereby full stochastic dynamical models are represented as hierarchies of sim-

pler, analytically tractable sub-models [145, 147]. If these sub-models are properly

formulated, inference can be performed separately for each by exploiting their con-

ditional independences, with the sub-models aggregated afterwards to achieve global

model inference. An oceanographic application of this approach is demonstrated in

[146], where the authors used a hierarchical Bayesian model to formulate a stochastic

dynamical model of the surface wind streamfunction over a region of the Labrador

Sea using satellite surface wind velocity data. The aggregate wind model was decom-

posed into sub-models for observational data, boundary conditions, and the numerical

streamfunction, which enabled the quantification of boundary condition uncertainties

on the posterior distribution of streamfunction values. [60] features an ecological ap-

plication of this approach, where the authors used a hierarchical Bayesian model to

predict the spatial distribution of ground flora based on sparse data. Sub-models

were formulated that enabled the incorporation of geographic covariates, a source of

model uncertainty that, when accounted for, significantly enhanced flora distribution

predictions. [16], [61], [103], [114], and [131] present further applications of hierar-

chical Bayesian modeling to problems of spatiotemporal statistics. Multiresolution

Bayesian modeling, a variation of the approach for application to signal and image

processing, is reviewed in [27], [28], and [148]. [65] reviews an extension of the hierar-

chical formulation to graphical models that allow for more complex interdependencies

between model components at the cost of more computationally intensive inference

algorithms.

Reduced-order modeling is a set of methods that have been employed to deal with

high-dimensional systems featuring model uncertainty [40]. Though many model

inference techniques, such as the directed search methods reviewed above, can be

effective when system dimensions are small and candidate model spaces are readily

explored, computational difficulties often arise when the same techniques are applied

to high-dimensional systems, such as those frequently encountered in oceanography

[89]. Reduced-order modeling techniques are designed to find low-dimensional repre-
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sentations of high-dimensional models, for which model uncertainty quantification and

inference are more readily performed. A wide selection of methods fall under this clas-

sification, including proper orthogonal decomposition [7, 20, 53], centroidal Voronoi

tessellation [23], neural networks [44, 142], Volterra series [99], kriging [49], certified

reduced basis methods based on numerical error bounds [64], empirical emulators

[97, 134], error subspace statistical estimation (ESSE) [83, 90],and the dynamically

orthogonal (DO) evolution equations [120, 121]. Though these techniques all take

advantage of information redundancies in full-order stochastic dynamical models to

achieve order reduction, some (e.g. the DO evolution equations) preserve decidedly

greater physical meaning in their low-dimensional representations than others (e.g.

neural networks and empirical emulators).

The methodology developed in the present work adopts ideas from both hier-

archical Bayesian modeling and reduced-order modeling to achieve efficient model

uncertainty quantification and inference for stochastic dynamical systems of large di-

mension. Other works directly relevant to the present methodology are reviewed later

in Chapters 1 and 2.

1.4 Problem Statement

1.4.1 System

In this work, we consider a general stochastic dynamical system with state vector

X ∈ RNX governed by an uncertain stochastic dynamical model M with uncertain

parameter vector Θ ∈ RNΘ , where NX ∈ N and NΘ ∈ N are the dimensions of the

state and parameter vectors respectively. For realizations x, θ, and Mn of X, Θ,

and M respectively, we have

dx(t;ω)

dt
=Mn [x(t;ω),θ(ω), t;ω ] (1.1)

Mn ≡
(
Dn, SGn,BCn, ICn

)
, (1.2)
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where t denotes time, ω an index over stochastic realizations (a random event), Dn
the set of stochastic dynamical equations for the model, SGn the spatial geometry

(spatial domain), BCn the boundary conditions, and ICn the initial conditions. All

of the model components represented in (1.2) are allowed to be uncertain. The joint

probability distribution over X, Θ, and M is defined to be pX,Θ,M(x,θ,Mn).

1.4.2 Observations

Stochastic observations Y ∈ RNY of the system’s state variables are assumed to

be available at arbitrarily times, with the probability distribution of observations

conditionally independent of both the stochastic dynamical model and the parameters

given state variables

pY |X,Θ,M(y |x,θ,Mn) = pY |X(y |x) ≡ L(y |x) ∀x ∈ RNX , (1.3)

where NY ∈ N is the dimension of the observation vector, y represents a realization

of the observation vector, and L(y |•) represents the observation likelihood function

or observation model for the system.

One particular observation likelihood function we will use is a Gaussian distribu-

tion, for which we have

L(y |x) = N
(
y ; Hx , R

)
∀x ∈ RNX , (1.4)

whereN
(
• ; µ , Σ

)
represents a multivariate Gaussian distribution with mean µ and

covariance Σ, H ∈ RNY ×NX represents the linear observation matrix that transforms

state variables into observation means, and R ∈ RNY ×NY represents the matrix of ob-

servation covariances. This particular observation model is equivalent to the following

linear relation between state and observation vectors:

Y = HX + V ,

where V ∈ RNY represents zero-mean Gaussian noise with covariance R. The obser-
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vation model is assumed to be time-invariant (i.e. the parameters H and R in the

particular case of (1.4) are assumed to be time-invariant).

1.4.3 Goal

The goal of the present work is two-part:

1. Efficiently evolve pX,Θ,M(x,θ,Mn) in time, accounting for all forms of uncer-

tainty encapsulated in (1.1) and (1.2).

2. When observations are available, perform the update

pX,Θ,M(x,θ,Mn)→ pX,Θ,M|Y (x,θ,Mn |y)

using the observation model represented by (1.3).

1.5 Candidate Models

When faced with a stochastic dynamical system whose model is uncertain, a common

approach is to formulate a finite set of candidates for the true model governing the

system under investigation. These candidate models or beliefs may be derived from

first principles, may be inspired by previous observations, or may be based on a

combination of theoretical and empirical prior knowledge. A discrete probability

distribution pM(•) can be defined over the set of candidate models to represent the

probabilities that each of the candidates are the true model. We note that in general

the candidates can be correlated. In a Monte-Carlo approach, each candidate model

can be used to predict the evolution of the uncertainties of the system’s state variables

independent of the other models, producing state variable probability distributions

that are conditional on the candidates being the true model.

If the candidate models are assumed to be independent, a state variable probabil-

ity distribution that accounts for the uncertainty in the formulation of the system’s

stochastic dynamical model can be estimated at any time as simply the weighted
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average of these conditional distributions

pX(x) =

NM∑
n=1

pX|M(x |Mn) pM(Mn) ∀x ∈ RNX , (1.5)

where pX(•) represents the state variable distribution, NM ∈ N represents the

total number of candidate models, Mn represents the nth candidate model, and

pX|M(•|Mn) represents the state variable distribution conditioned on the nth can-

didate model (the nth model-conditional state variable distribution). This general

approach to accounting for model uncertainty has been used in many fields and is

known by many names, including Bayesian model averaging [55, 112, 126], multimodel

estimation [11, 101], multimodel fusion [98], and (multimodel or super-) ensemble

modeling [50, 76, 115]. We note that if the candidate models Mn are correlated or

if the space of model formulation/structures is continuous (instead of discrete as in

(1.5)), the distribution (1.5) becomes a correlated weighting or an integral over the

continuous model formulation/structures. Our formalism can be extended to these

cases and this will be reported elsewhere.

In the present case, the linear nature of (1.5) w.r.t. candidate models leads to

several useful properties. Marginal distributions for subsets of state variables can be

found as weighted averages of the corresponding model-conditional marginal distri-

butions. Letting x1 and x2 be mutually exclusive complementary subsets of state

variables and x =
[
x1 x2

]T
,

pX1(x1) =

∫
pX(x) dx2

=

∫
pX

([
x1 x2

]T)
dx2

=

∫ (NM∑
n=1

pX|M

([
x1 x2

]T |Mn

)
pM(Mn)

)
dx2

=

NM∑
n=1

(∫
pX|M

([
x1 x2

]T |Mn

)
dx2

)
pM(Mn)

=

NM∑
n=1

pX1|M(x1 |Mn) pM(Mn) ∀x1 ∈ RNX1 , (1.6)
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where NX1 < NX . Similarly, the state variable mean can be found as a weighted

average of the model-conditional state variable means

E [X ] =

∫
xpX(x) dx

=

∫
x

(
NM∑
n=1

pX|M(x |Mn) pM(Mn)

)
dx

=

NM∑
n=1

(∫
xpX|M(x |Mn) dx

)
pM(Mn)

=

NM∑
n=1

E [X |Mn ] pM(Mn) . (1.7)

1.6 Bayesian Model Inference

When observations of a stochastic dynamical system’s state variables are made, both

the model-conditional state variable distributions and model distribution within the

summation of (1.5) can theoretically be updated using Bayes’ theorem [13]

pX|Y ,M(x |y,Mn) =
pY |X,M(y |x,Mn)

pY |M(y |Mn)
pX|M(x |Mn)

∀x ∈ RNX ,∀n ∈ {1, . . . , NM} , (1.8)

pM|Y (Mn |y) =
pY |M(y |Mn)

pY (y)
pM(Mn) ∀n ∈ {1, . . . , NM} . (1.9)

In (1.8), the model Mn plays the role of a ‘given parameter’. For this Mn, the

distributions pX|M(•|Mn) and pX|Y ,M(•|y,Mn) are referred to as the prior and

posterior conditional state variable distributions for the nth candidate model respec-

tively, while pM(•) and pM|Y (•|y) are referred to as the prior and posterior model

distributions.

If the candidate models are assumed independent, as in (1.5), the posterior model-

conditional state variable distributions and model distribution can be combined to
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form the posterior state variable distribution

pX|Y (x |y) =

NM∑
n=1

pX|Y ,M(x |y,Mn)pM|Y (Mn |y) ∀x ∈ RNX . (1.10)

(1.8) represents Bayesian state variable inference and can be performed for each

model-conditional state variable distribution independently, ignoring model uncer-

tainty. Techniques for state variable inference abound, ranging from classic ana-

lytical methods such as the Kalman filter [69, 70] to contemporary computational

approaches such as particle filters [6], Markov chain Monte Carlo (MCMC) algo-

rithms [3], and forward-backward algorithms [37]. State variable inference and data

assimilation have roots in optimal estimation theory e.g. [45, 68, 124] and control the-

ory [95, 82], with now many applications in environmental sciences and engineering

(e.g. [15, 71, 79, 100, 111, 117, 145, 149]).

(1.9) represents Bayesian model inference. The comparison of the posteriors for

each Mn, pM|Y (Mn |y), is Bayesian hypothesis testing for competing models and

each pM|Y (Mn |y) is often referred to as model evidence. Though cosmetically sim-

pler than (1.8), (1.9) is in fact the more challenging of the two Bayesian updates

to perform. The chief difficulty lies in the calculation of the marginal likelihood

pY |M(y |Mn), which represents the strength of the observational evidence for the

nth candidate model, i.e. the likelihood of model Mn, for all states X. While

pY |X,M(y |x,Mn) is equivalent to the observation likelihood function L(y |x)—the

function that defines the probability distribution for observations when state variables

are known—an explicit expression for the likelihood pY |M(y |Mn) is not available.

Instead, pY |M(y |Mn) (the probability distribution for the observation vector real-

ization conditioned on a given candidate model) must be found through oftentimes

difficult (large-dimension) integrations [34, 145, 138]

pY |M(y |Mn) =

∫
pY |X,M(y |x,Mn) pX|M(x |Mn) dx

=

∫
L(y |x) pX|M(x |Mn) dx ∀n ∈ {1, . . . , NM} . (1.11)
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Note that although pY |M(y |Mn) also appears in (1.8), there it serves only as the

normalization constant for the posterior conditional state variable distribution and

its explicit calculation is usually side-stepped by Bayesian state variable inference

schemes. Likewise, pY (y) appearing in (1.9) is not of concern for inference, as it

serves only as the normalization constant for the posterior model distribution. Once

all marginal likelihoods have been found, pY (y) can be computed as simply their

weighted summation

pY (y) =

NM∑
n=1

pY |M(y |Mn) pM(Mn) . (1.12)

It is not uncommon that the difficulty of computing the integral in (1.11) leads

to the avoidance of the update of the model distribution (1.9) entirely [76, 112]. In

these cases, prior statistical knowledge derived from a fixed set of system observa-

tions is typically used to specify an initial model distribution, which is then kept

unchanged even when new observations become available. This approach is subop-

timal, as update of the model distribution yields two significant benefits: 1) More

precise weighting of the conditional state variable distributions in (1.5), leading to

improved state variable uncertainty quantification (1.10); and 2) Insight into the true

model governing the system under investigation. Techniques for the efficient compu-

tation of the marginal likelihood integral in (1.11) are thus of great utility for the

study of stochastic dynamical systems featuring uncertainty in model formulation.

1.7 Overview of the Present Work

The present work develops a new methodology for performing Bayesian inference of

stochastic dynamical models. The dynamically orthogonal (DO) evolution equations

for reduced-dimension uncertainty evolution [121] and the Gaussian mixture model

DO filtering algorithm (GMM-DO filter) for nonlinear reduced-dimension inference

of state variables [129, 130] are first extended to accommodate stochastic dynamical

models featuring uncertain parameters. Another extension then enables the compu-
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tationally expedient calculation of the marginal likelihood integral in (1.11). The

result is a methodology capable of performing Bayesian model inference for high-

dimensional, nonlinear stochastic dynamical systems, including oceanic and atmo-

spheric systems.

Chapter 2 reviews a number of techniques that have been developed to calculate

the marginal likelihood integral in (1.11), with particular attention paid to the added

difficulties that arise with high-dimensional systems. Chapter 3 reviews the DO

evolution equations and the GMM-DO filter, then develops the extensions of the new

methodology in detail. Chapter 4 applies the methodology to a simulated stochastic

dynamical system featuring a fluid flowing past an obstacle; model uncertainty arises

in the shape of the obstacle. Chapter 5 applies the methodology to a second simulated

system featuring a marine microorganism convected by a fluid; model uncertainty

arises in the reaction equation of the microorganism. Chapter 6 provides a synopsis

and a discussion of promising avenues for future investigation.
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Chapter 2

Marginal Likelihood Calculation

2.1 Overview

As introduced in Chapter 1, the key computational difficulty associated with Bayesian

model inference for a set of model candidates is the calculation of the marginal like-

lihood integral

pY |M(y |Mn) =

∫
L(y |x) pX|M(x |Mn) dx . (2.1)

Three classes of methods for performing this crucial calculation are reviewed in this

chapter in order of increasing computational expense. The applicability of each of

these method classes is dependent on the functional forms of the observation likelihood

function L(y |•) and model-conditional state variable distribution pX|M(•|Mn).

Note that (2.1) need not be calculated using the same method for all candidate mod-

els. Indeed, the functional form of pX|M(•|Mn) for some candidates may enable

computational expediencies not applicable to others.

2.2 Analytical Cases

In a handful of special cases, the functional forms of the observation likelihood func-

tion L(y |•) and conditional state variable distribution pX|M(•|Mn) allow for the

25



analytical calculation of the integral in (2.1).

One such case is when both L(y |•) and pX|M(•|Mn) are Gaussian distributions.

Let

L(y |x) = N
(
y ; Hx , R

)
∀x ∈ RNX ,

as first defined in (1.4). Further, let

pX|M(x |Mn) = N
(
x ; µX|Mn

, ΣX|Mn

)
∀x ∈ RNX ,

where µX|Mn
∈ RNX represents the vector of state variable means conditional on the

nth candidate model and ΣX|Mn ∈ RNX×NX represents the matrix of state variable

covariances conditional on the nth candidate model.

Then, (2.1) becomes

pY |M(y |Mn) =

∫
N
(
y ; Hx , R

)
N
(
x ; µX|Mn

, ΣX|Mn

)
dx . (2.2)

Since the integral in (2.2) is taken over all values of x, a linear transformation of

the integration variable can be performed without changing the value of the integral.

Then, using the linear transformation properties of Gaussian distributions, (2.2) can

be rewritten as

pY |M(y |Mn) =

∫
N
(
y −Hx ; 0 , R

)
N
(

Hx ; HµX|Mn
, HΣX|MnHT

)
dHx .

(2.3)

Observations are assumed to be unbiased. (2.3) represents the convolution of two

Gaussian distributions and thus yields another Gaussian distribution whose mean

and variance are equal to the sums of the means and variances of the two component

distributions respectively [35]

pY |M(y |Mn) =
[
N
(
• ; 0 , R

)
∗N

(
• ; HµX|Mn

, HΣX|MnHT
) ]

(y)

= N
(
y ; HµX|Mn

, HΣX|MnHT + R
)

, (2.4)
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where ∗ represents the convolution operator, defined as

[
f(•)∗ g(•)

]
(t) =

∫
f(t− τ)g(τ) dτ .

The full derivation of the convolution identity used in (2.4) is provided in Appendix A.

Even if the conditional state variable distribution pX|M(•|Mn) is not Gaussian,

(2.4) can still be used to analytically calculate an approximation of the marginal

likelihood if the mean and covariance of the conditional distribution is used to form

a Gaussian approximation of the distribution. In control theory, state estimation

schemes that are based on the classic Kalman filter typically already employ such

Gaussian approximations and the extension of these schemes to perform Bayesian

model inference using (2.4) has thus been natural [11, 101]. Though these Gaus-

sian approximation methods are computationally expedient, they are limited in the

complexity of the systems they can accomodate. Most conspicuously, systems that

feature substantially non-Gaussian state variable distributions are handled poorly. A

remedy for this—Gaussian mixture model (GMM) approximations—will be explored

in Chapter 3. High-dimensional systems also pose a challenge as the size of the condi-

tional state variable covariance matrix appearing in (2.4) grows as NX
2, the square of

the number of state variables. More versatile techniques are reviewed in the following

sections.

2.3 Asymptotic Approximations

When the functional forms of L(y |•) and pX|M(•|Mn) do not allow for the ana-

lytical calculation of the integral in (2.1), a popular alternative is to use closed-form

approximations of the integral that are exact in the limit of infinite observations [72].

The majority of these asymptotic approximations are variations of the Laplace ap-

proximation. The general Laplace approximation for an integral of the form
∫

ef(u) du

is ∫
ef(u) du ≈ (2π)d/2 |A∗|1/2ef(u∗) , (2.5)

27



where u is a vector, d is the dimension of u, u∗ is the maximizing argument of f (•),

and A∗ is the negative of the inverse Hessian of f (•) evaluated at u∗ [9]. Substituting

log
[
L(y |x) pX|M(x |Mn)

]
for f (u) yields the Laplace approximation for (2.1)

pY |M(y |Mn) ≈ (2π)NX/2 |A∗|1/2L(y |x∗) pX|M(x∗ |Mn) , (2.6)

where x∗ is the maximizing argument of log
[
L(y |•) pX|M(•|Mn)

]
, which is equiv-

alently the maximizing argument of L(y |•) pX|M(•|Mn), and A∗ is the negative

of the inverse Hessian of log
[
L(y |•) pX|M(•|Mn)

]
evaluated at x∗. Depending on

the functional forms of L(y |•) and pX|M(•|Mn), it may not be possible to find x∗

and A∗ analytically, in which case sample approximations for x∗ and A∗ must be

found before (2.6) can be evaluated, e.g. [92].

The accuracy of the Laplace approximation and its variants increases as the den-

sity of L(y |•) pX|M(•|Mn) increases near its maximum (i.e. the more the density

peaks, the better). These asymptotic approximations are thus best-suited for systems

featuring unimodal state variable distributions and large numbers of observations.

Unfortunately, in high-dimensional, nonlinear systems such as those encountered in

oceanography and meteorology, multimodality and sparse observations are the norm

(e.g. [8, 31, 88, 87, 30, 100]). Furthermore, calculating and inverting the Hessian of

log
[
L(y |•) pX|M(•|Mn)

]
, which is necessary for (2.6), is computationally infeasible

for systems of high-dimension and hence also needs to be approximated.

2.4 Computational Approximations

For cases where analytical solutions to (2.1) are not available and asymptotic approx-

imations are inappropriate, computational approximations are the only recourse. A

general class of computational techniques known as importance sampling [33, 132]

makes use of samples drawn from a chosen sampling distribution g(•) to approximate
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(2.1) as the weighted average of numerous likelihood function evaluations

pY |M(y |Mn) ≈
∑K

k=1wk L(y |xk)∑K
k=1wk

, (2.7)

where xk represents the kth of K ∈ N samples and the weights are defined by

wk =
pX|M(xk |Mn)

g (xk)
∀k ∈ {1, . . . , K} . (2.8)

A sample weight is large when the density of the prior conditional state variable

distribution at the sample value is high relative to the density of the sampling dis-

tribution g(•). The sample weights thus balance the frequency with which sample

values are drawn from the sampling distribution and their ‘importance’ relative to

the prior conditional state variable distribution.

The simplest choice for g(•) is the prior conditional state variable distribution

itself, which reduces all sample weights to one and (2.7) to

pY |M(y |Mn) ≈ 1

K

K∑
k=1

L
(
y |x−k

)
, (2.9)

where x−k represents the kth sample from the prior distribution. This is known as the

arithmetic mean estimator (AME) [81]. Though the simplicity of its implementation

is attractive, the AME can exhibit slow rates of convergence if L(y |•) is large for

only a small subset of its domain.

If g(•) is instead chosen to be the posterior conditional state variable distribution,
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(2.7) becomes

pY |M(y |Mn) ≈

K∑
k=1

pX|M
(
x+
k |Mn

)
pX|Y ,M

(
x+
k |y,Mn

) L(y |x+
k

)
K∑
k=1

pX|M
(
x+
k |Mn

)
pX|Y ,M

(
x+
k |y,Mn

)

=

K∑
k=1

pX|M
(
x+
k |Mn

)
pX|Y ,M

(
x+
k |y,Mn

)
pY |M(y |Mn)

L
(
y |x+

k

)
K∑
k=1

pX|M
(
x+
k |Mn

)
pX|Y ,M

(
x+
k |y,Mn

)
pY |M(y |Mn)

,

where x+
k represents the kth sample from the posterior distribution. Using (1.8),

pY |M(y |Mn) ≈

K∑
k=1

1

pY |X,M
(
y |x+

k ,Mn

) L(y |x+
k

)
K∑
k=1

1

pY |X,M
(
y |x+

k ,Mn

)

=

K∑
k=1

1

L
(
y |x+

k

) L(y |x+
k

)
K∑
k=1

1

L
(
y |x+

k

)

=

(
1

K

K∑
k=1

L
(
y |x+

k

)−1

)−1

. (2.10)

This is known as the harmonic mean estimator (HME) [108]. The convergence rate

of the HME is typically faster than that of the AME due to the fact that the pos-

terior conditional state variable distribution tends to have greater density than the

prior distribution in areas where L(y |•) is large. This is a direct result of Bayesian

state variable inference; the posterior distribution is generated by shifting the prior
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distribution towards state variable values that are more likely to have produced the

observations—i.e. values for which L(y |•) is large.

More advanced sampling techniques generally employ recursive schemes that ei-

ther bias or constrain the sample distribution g(•) to regions where L(y |•) is large.

These techniques include bridge sampling [102], path sampling [46], annealed impor-

tance sampling [107], and nested sampling [29, 125]. Though the use of recursive

adjustments to g(•) can greatly improve both convergence rate and stability, these

advanced sampling techniques are still limited in the dimension of the systems they

can handle. Even the best contemporary sampling techniques are limited to problems

of dimension O(102) [46], which falls far short of the O(106–109) systems frequently

encountered in the geophysical sciences [89]. At a fundamental level, sampling tech-

niques are stymied by the fact that state space volumes grow as exponential functions

of the number of the state variables. The number of samples needed to thoroughly can-

vass a high-dimensional state space in order to accurately approximate the marginal

likelihood integral in (2.1) is thus prohibitively large.

2.5 Summary

High system dimension is the common stumbling point of the marginal likelihood

calculation methods reviewed in this chapter. In order to perform Bayesian model

inference for high-dimensional stochastic dynamical systems, the major challenge is

to derive inference schemes that can reduce the dimension of the systems down to a

manageable order while capturing and exploiting dominant nonlinear dynamics and

non-Gaussian statistics as they arise. Chapter 3 will show that the DO evolution

equations are an effective means of achieving this dimension reduction. Further-

more, Chapter 3 will also show that the GMM approximations employed by the

GMM-DO filter allow for the analytical calculation of the marginal likelihood inte-

gral in (2.1), while still providing the structural flexibility necessary to accommodate

systems featuring nonlinear, multimodal state variable distributions. Together, the

DO evolution equations and the GMM-DO filter enable Bayesian model inference for

31



high-dimensional, nonlinear stochastic dynamical systems.
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Chapter 3

Methodology

3.1 Overview

To achieve the efficient dimension-reduction necessary for performing the marginal

likelihood calculations (1.11) for high-dimensional stochastic dynamical systems, the

present methodology employs the DO evolution equations to evolve the dominant

model-conditional state variable distributions in (1.5). The GMM-DO filter is used

to perform the Bayesian updates of the model-conditional distributions represented

by (1.8) in the evolving DO subspace. Reduced-dimension state augmentation is

used to extend the DO evolution equations and the GMM-DO filter to accommodate

stochastic dynamical models featuring uncertain parameters. The marginal likelihood

calculations (1.11) are then performed analytically using Gaussian mixture models

(GMM) in the DO subspaces for each candidate model, extending the Gaussian ap-

proximation reviewed in Section 2.2. Finally, these marginal likelihoods are used

to perform the Bayesian update (1.9) of the model distribution, thus accomplishing

Bayesian model inference. Each of these components of the present methodology

is developed in detail in the following sections, with an integrated account of the

methodology provided at the end of the chapter. A compendium of the notation used

in this chapter is provided in Table 3.1 for ease of reference.
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Table 3.1: Notation compendium.

General

NX ∈ N dimension of state vector
X ∈ RNX state vector
x ∈ RNX state vector realization

NΘ ∈ N dimension of parameter vector
Θ ∈ RNΘ parameter vector
θ ∈ RNΘ parameter vector realization

M stochastic dynamical model
NM ∈ N number of candidate models
n ∈ {1, . . . , NM} candidate model index
Mn nth candidate model
Dn stochastic dynamical equations of nth candidate model
SGn spatial geometry of nth candidate model
BCn boundary conditions of nth candidate model
ICn initial conditions of nth candidate model

NY ∈ N dimension of observation vector
Y ∈ RNY observation vector
y ∈ RNY observation vector realization

DO Evolution Equations

x ∈ RNX state vector mean
NDO ∈ N dimension of stochastic subspace
i ∈ {1, . . . , NDO} mode index
X ∈ RNX×NDO matrix of modes
x̃i ∈ RNX ith mode
Φ ∈ RNDO mode coefficient vector
φ ∈ RNDO mode coefficient vector realization
φi ∈ R ith mode coefficient

NMC ∈ N number of Monte Carlo samples
k ∈ {1, . . . , NMC} Monte Carlo sample index
xk ∈ RNX kth state vector sample
θk ∈ RNΘ kth mode coefficient vector sample
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GMM-DO Filter

H ∈ RNY ×NX linear observation matrix
R ∈ RNY ×NY observation covariance matrix

NGMM ∈ N number of GMM components
j ∈ {1, . . . , NGMM} GMM component index

πX,j ∈ R jth component weight of prior state GMM
µX,j ∈ RNX jth component mean vector of prior state GMM
ΣX,j ∈ RNX×NX jth component covariance matrix of prior state

GMM

πΦ,j ∈ R jth component weight of prior mode coefficient
GMM

µΦ,j ∈ RNDO jth component mean vector of prior mode coeffi-
cient GMM

ΣΦ,j ∈ RNDO×NDO jth component covariance matrix of prior mode
coefficient GMM

πX|Y ,j ∈ R jth component weight of posterior state GMM
µX|Y ,j ∈ RNX jth component mean vector of posterior state

GMM
ΣX|Y ,j ∈ RNX×NX jth component covariance matrix of posterior state

GMM
Kj ∈ RNX×NY jth gain matrix

πΦ|Y ,j ∈ R jth component weight of posterior mode coefficient
GMM

µΦ|Y ,j ∈ RNDO jth component mean vector of posterior mode co-
efficient GMM

ΣΦ|Y ,j ∈ RNDO×NDO jth component covariance matrix of posterior
mode coefficient GMM

ỹ ∈ RNY transformed observation vector realization

H̃ ∈ RNY ×NDO transformed observation matrix

K̃j ∈ RNDO×NY jth transformed gain matrix
µ′Φ|Y ,j ∈ RNDO jth intermediate component mean vector
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Reduced-Dimension State Augmentation

XΘ ∈ RNX+NDO augmented state vector
xΘ ∈ RNX+NDO augmented state vector realization
MΘ augmented stochastic dynamical model
xΘ ∈ RNX+NDO augmented state vector mean
x̃Θ,i ∈ RNX+NDO ith augmented mode
HΘ ∈ RNY ×(NX+NDO) augmented linear observation matrix

Operators, Functions, and Indicators

E [ • ] expectation operator
∗ convolution operator
L(y |•) observation likelihood function
N
(
• ; µ , Σ

)
Gaussian distribution with mean µ and covariance Σ

( · )− prior
( · )+ posterior

3.2 DO Evolution Equations

The DO evolution equations are a closed set of reduced-dimension stochastic dif-

ferential equations that effectively approximate general, high-dimensional nonlinear

stochastic differential equations. These equations are premised on the fact that any

vector of stochastic dynamical state variables can be approximated to arbitrary accu-

racy using a DO expansion (a generalized, time-dependent Karhunen-Loeve decom-

position) of the state vector

x(t;ω) ≈ x(t) +

NDO∑
i=1

φi(t;ω) x̃i(t) , (3.1)

where x(t) ∈ RNX denotes the state vector mean, x̃i(t) ∈ RNX the ith of NDO

orthonormal basis vectors, and φi(t;ω) ∈ R the ith of NDO zero-mean stochastic

processes [96]. The basis vectors and stochastic processes are referred to as the modes

and mode coefficients of the expansion respectively. The expansion is exact in the
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case where NDO equals the dimension of the state vector NX .

If the modes in (3.1) are properly selected, the total number of modes needed

to achieve high approximation accuracy can be orders of magnitude less than the

state vector dimension. Specifically, if the modes are chosen to be oriented in the

directions of ‘largest’ state uncertainty, then a small number of modes can capture a

large majority of the total uncertainty in the state vector. These modes then define

a stochastic subspace VDO = span
{
x̃i(t)

}NDO

i=1
embedded in RNX within which the

majority of the state uncertainty resides. At any given time, a reduced-dimension

probability distribution for the NDO mode coefficients then efficiently represents the

full probability distribution for the NX state variables, as the expansion (3.1) relates

the two sets of variables through an affine transformation.

To evolve the probability density of the state vector, equations for the terms in the

expansion (3.1) are obtained from the original stochastic dynamical model equations

governing the evolution of the state vector

dx(t;ω)

dt
=M [x(t;ω);ω] . (3.2)

We assume for now that the true model for the system is known and hence useM in

(3.2) as opposed to the Mn used in (1.1). Specifically, evolution equations for x(t),

x̃i(t), and φi(t;ω) [121] are obtained by insertion of (3.1) into (3.2), noting that while

only the dynamical evolution of the modes can capture state uncertainty evolution

orthogonal to the stochastic subspace VDO at time t, both dynamical evolution of the

modes and of the mode coefficients can capture uncertainty evolution within VDO.

This redundancy is eliminated by constraining the evolution of the modes to directions

orthogonal to VDO

dx̃i(t)

dt
⊥ VDO ⇔

〈
dx̃i(t)

dt
, x̃j(t)

〉
= 0 ∀i, j ∈ {1, . . . , NDO} , (3.3)

where the operator 〈a,b〉 represents the vector inner product of a and b. (3.3) is

known as the DO condition for mode evolution [121]. The DO condition, critically,
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preserves the orthonormality of the modes

d

dt
〈 x̃i(t) , x̃j(t) 〉 =

〈
dx̃i(t)

dt
, x̃j(t)

〉
+

〈
x̃i(t) ,

dx̃j(t)

dt

〉
= 0

∀i, j ∈ {1, . . . , NDO} .

Using (3.3) in conjunction with the expansion (3.1) and stochastic dynamical model

(3.2), a unique set of evolution equations can be derived for the state vector mean,

modes, and mode coefficients. These are the DO evolution equations

dx(t)

dt
= E [M [x(t;ω);ω] ] , (3.4)

dx̃i(t)

dt
=

NDO∑
j=1

C−1
(i,j)PV⊥

DO
[ E [φj(t;ω)M [x(t;ω);ω] ] ]

∀i ∈ {1, . . . , NDO} , (3.5)

dφi(t;ω)

dt
= 〈M [x(t;ω);ω]− E [M [x(t;ω);ω] ] , x̃i(t) 〉

∀i ∈ {1, . . . , NDO} , (3.6)

where E [ • ] represents the expectation operator, PV⊥
DO

[ a ] represents the projection

of the vector a onto the space orthogonal to VDO

PV⊥
DO

[ a ] = a− PVDO
[ a ] = a−

NDO∑
k=1

〈 a , x̃k(t) 〉 x̃k(t)

and C−1
(i,j) represents the (i, j)th entry of the inverse of the mode coefficient covariance

matrix

C(i,j) = E [φi(t;ω)φj(t;ω) ] .

The complete derivation of (3.4)–(3.6) from (3.1)–(3.3) is provided in Appendix B.

The imposition of additional constraints on (3.4)–(3.6) can be shown to result in

either the proper orthogonal decomposition (POD) evolution equations [109] or the
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polynomial chaos (PC) evolution equations [47], indicating that these two more con-

ventional methods for reduced-dimension uncertainty evolution are subclasses of the

DO equations [121].

For the present state vector formulation (3.2), (3.4) and (3.5) represent (NDO + 1)

ordinary differential equations (ODEs) of dimension NX , while (3.6) represents NDO

SDEs of unit dimension or, equivalently, a single SDE of dimension NDO. These

equations are coupled. Numerical implementations of the DO evolution equations

can employ classic solvers for the deterministic evolution of the state vector mean

and modes (of course specific original system equations can lead to powerful DO

solvers, see [141]). Meanwhile, stochastic evolution of the coefficients can be carried

out using Monte Carlo (MC) sampling methods, whereby NMC � NDO samples are

drawn from the initial mode coefficient distribution and evolved by solving (3.6)

as an ODE of dimension NDO for each sample [141]. These evolved samples then

constitute a sample approximation for the mode coefficient distribution at any point

in time, keeping a rich description of this distribution since NMC � NDO. However, an

equivalent sampling approach applied to the original SDE in (3.2) would require the

solution of NMC ODEs of dimension NX � NDO, an endeavor of substantially greater

computational expense. The DO evolution equations thus enable computationally

expedient reduced-dimension uncertainty evolution for general, nonlinear stochastic

dynamical systems.

In [121], the DO equations were derived for infinite-dimensional stochastic dynam-

ical state fields x(r, t;ω), where r represents a coordinate vector within a continuous

domain SG ∈ Rn. Such state fields are commonly encountered in the physical sci-

ences, where SG typically represents a spatial domain of dimension 1, 2, or 3. When

dealing with state fields, the inner products appearing in (3.3), (3.5), and (3.6) become

spatial inner products

〈 a ,b 〉 =

∫
SG

a(r)T b(r) dr

and (3.2) represents a stochastic partial differential equation (SPDE) rather than

just a SDE. The ODEs represented by (3.4) and (3.5) subsequently become partial
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differential equations (PDEs), which in general can be solved using numerical schemes

that discretize the continuous domain SG [141]. If the stochastic boundary conditions

for the original SPDE represented by (3.2) are defined as

B [x(r, t;ω)] = b(r, t;ω), r ∈ ∂SG , (3.7)

where B represents a linear differential operator, then the boundary conditions for

the PDEs governing the evolution of the state vector mean and modes are given by

B [x(r, t;ω)] = E [ b(r, t;ω) ] , r ∈ ∂SG , (3.8)

B [x̃i(r, t;ω)] =

NDO∑
j=1

C−1
(i,j) E [φj(t;ω) b(r, t;ω) ], r ∈ ∂SG

∀i ∈ {1, . . . , NDO} . (3.9)

When numerically implemented with a discretized domain, all infinite-dimensional

state fields x(r, t;ω) reduce to finite-dimensional state vectors x(t;ω). Mathematical

development of the state and model inference schemes in the following sections will

thus be premised on the finite-dimensional representation (3.1), with the implicit

assumption that numerically discretized representations are used to accommodate

systems featuring infinite-dimensional state fields.

3.3 GMM-DO Filter

As mentioned in Section 3.2, the expansion (3.1) represents an affine transformation

between mode coefficients and state variables, a relation that is more salient when
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(3.1) is written in matrix form

x(t;ω) ≈ x(t) +

NDO∑
i=1

φi(t;ω) x̃i(t)

= x(t) +
[
x̃1(t) · · · x̃NDO

(t)
]

φ1(t;ω)
...

φNDO
(t;ω)


= x(t) +X (t)φ(t;ω) . (3.10)

whereX (t) ∈ RNX×NDO represents the matrix of modes and φ(t;ω) ∈ RNDO represents

a realization of the vector of mode coefficients Φ. Since this relation dictates that

any probability distribution for state variables can be equivalently represented by a

reduced-dimension probability distribution for mode coefficients, a Bayesian update

of the state variable distribution can theoretically be achieved through an equivalent

update of the mode coefficient distribution. For specific prior and observation model

distributions, this affine transformation to a subspace allows an explicit (analytical)

update of the prior distribution parameters in the subspace. The GMM-DO filter

is a scheme that takes advantage of this fact to achieve efficient reduced-dimension

Bayesian state variable inference [129, 130].

For any set of stochastic dynamical state variables evolved using the DO evolution

equations, the GMM-DO filter operates as follows. Anytime observations correlated

with state variables are made according to the observation model (1.3), the prior

probability distribution for mode coefficients in the DO subspace is approximated

using a GMM

pΦ(φ) ≈
NGMM∑
j=1

πΦ,j ×N
(
φ ; µΦ,j , ΣΦ,j

)
∀φ ∈ RNDO , (3.11)

where NGMM is the to-be-determined number of GMM components, πΦ,j the jth

component weight, µΦ,j the jth component mean vector, and ΣΦ,j the jth component

covariance matrix. This approximation is found by performing a semiparametric fit to
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the Monte Carlo samples used to numerically evolve the stochastic mode coefficients.

Specifically, the expectation-maximization (EM) algorithm for GMMs [17] is used to

find maximum likelihood estimates for the parameters πΦ,j, µΦ,j, and ΣΦ,j, while

the selection of the number of GMM components NGMM is directed by the Bayesian

information criterion (BIC) [133].

Due to the affine transformation (3.10) relating mode coefficients to state variables,

the GMM approximation of the prior mode coefficient distribution (3.11) equivalently

represents a GMM approximation of the prior state variable distribution, with vari-

ances restricted to the dominant directions of state uncertainty

pX(x) ≈
NGMM∑
j=1

πX,j ×N
(
x ; µX,j , ΣX,j

)
∀x ∈ RNX , (3.12)

where

πX,j = πΦ,j (3.13)

µX,j = x+XµΦ,j (3.14)

ΣX,j = XΣΦ,jXT (3.15)

are the jth component weight of the prior state variable GMM approximation, the

jth component mean vector, and the jth component covariance matrix, respectively.

Further, if the Gaussian observation likelihood function

L(y |x) = N
(
y ; Hx , R

)
∀x ∈ RNX (3.16)

as first defined in (1.4) is used, the Bayesian update of the GMM prior (3.12) is

another GMM by conjugacy [129]; the posterior state variable distribution is thus

pX|Y (x |y) =

NGMM∑
j=1

πX|Y ,j ×N
(
X ; µX|Y ,j , ΣX|Y ,j

)
∀x ∈ RNX , (3.17)
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with parameters

πX|Y ,j =
πX,j ×N

(
y ; HµX,j , HΣX,jH

T + R
)∑NGMM

k=1 πX,k ×N
(
y ; HµX,k , HΣX,kHT + R

) ,

µX|Y ,j = µX,j + Kj

(
y −HµX,j

)
,

ΣX|Y ,j = (I−KjH) ΣX,j

∀j ∈ {1, . . . , NGMM}

and gain matrices defined by

Kj = ΣX,jH
T
(
HΣX,jH

T + R
)−1 ∀j ∈ {1, . . . , NGMM} .

Though analytically accessible, the posterior GMM state variable distribution

(3.17) cannot be directly computed for systems (3.2) of high dimension. Specifically,

the storage and manipulation of the prior and posterior state variable GMM compo-

nent covariance matrices, which are of size NX ×NX , is computationally prohibitive.

A key advantage of the GMM-DO filter is that the update of the prior GMM state dis-

tribution (3.12) is equivalently obtained from the update of the prior GMM coefficient

distribution (3.11) into the following posterior GMM coefficient distribution:

pΦ|Y (φ |y) =

NGMM∑
j=1

πΦ|Y ,j ×N
(
φ ; µΦ|Y ,j , ΣΦ|Y ,j

)
∀φ ∈ RNDO , (3.18)

where

πΦ|Y ,j =
πΦ,j ×N

(
ỹ ; H̃µΦ,j , H̃ΣΦ,jH̃

T + R
)∑NGMM

k=1 πΦ,k ×N
(
ỹ ; H̃µΦ,k , H̃ΣΦ,kH̃T + R

) ,

µΦ|Y ,j = µ′Φ|Y ,j −
NGMM∑
k=1

πΦ|Y ,k × µ′Φ|Y ,k ,

ΣΦ|Y ,j =
(
I− K̃jH̃

)
ΣΦ,j

∀j ∈ {1, . . . , NGMM}
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and the transformed observation vector realization, transformed observation matrix,

transformed gain matrices, and intermediate component mean vectors are defined by

ỹ = y −Hx ,

H̃ = HX ,

K̃j = XTKj ∀j ∈ {1, . . . , NGMM} ,

µ′Φ|Y ,j = µΦ,j + K̃j

(
ỹ − H̃µΦ,j

)
∀j ∈ {1, . . . , NGMM} . (3.19)

This posterior GMM coefficient distribution (3.18) can be shown to be equivalent to

the posterior GMM state variable distribution (3.17) through the affine transforma-

tion (3.10) if the state vector mean is also updated according to

x(t+) = x(t−) +X
NGMM∑
k=1

πΦ|Y ,k × µ′Φ|Y ,k .

Since all uncertainty resides in the DO subspace, Bayesian updates can only change

the mean of the DO coefficients. This state vector update is thus responsible for

bringing all mean updates back in to the state space. The full demonstration of this

equivalency is presented in Appendix C.

We first note that all computations in this update are defined by analytical equa-

tions. Then, whereas the explicit calculation of (3.17) is infeasible, the calculation

of (3.18) is untroublesome. Critically, no matrices of size larger than NX × NDO �

NX×NX are manipulated in the update (3.18), rendering the Bayesian update of the

mode coefficient distribution computationally tractable for high-dimensional systems.

Finally, new Monte Carlo samples are drawn from the posterior GMM mode co-

efficient distribution (3.18), which are dynamically evolved with the DO evolution

equations until new observations are made and the GMM-DO filter is applied again.

By using GMM approximations, the GMM-DO filter is able to accommodate systems

featuring multimodal state variable distributions while avoiding the excessive granu-

larity of kernel approximations [129]. The GMM-DO filter, in conjunction with the

DO evolution equations, is thus a computationally expedient method for performing
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Bayesian state variable inference for high-dimensional, nonlinear stochastic dynamical

systems.

3.4 Reduced-Dimension State Augmentation

Parameter uncertainty in stochastic dynamical models can be directly coupled to

state uncertainty using a well-known technique from estimation theory known as

state augmentation [45]. This technique enables joint Bayesian inference of state

variables and parameters from observations correlated to the state variables. The

conceptual premise of state augmentation is simple: treat all uncertain parameters

as time-invariant uncertain state variables. Concatenating vectors of state variables

and parameters and using the notation specified in Table 3.1 then leads to

XΘ(t) =

 X(t)

Θ

 ∈ RNX+NΘ , (3.20)

which is referred to as augmented state vector and for which realizations are given by

xΘ(t;ω) =

 x(t;ω)

θ(ω)

 . (3.21)

The general, nonlinear differential operator that governs the evolution of the aug-

mented state vector—the augmented stochastic dynamical model—is given by

MΘ [xΘ(t;ω);ω] =
dxΘ(t;ω)

dt
=

d

dt

 x(t;ω)

θ(ω)

 =

 M [x(t;ω);ω]

0

 . (3.22)

Reduced-dimension state augmentation is achieved using an expansion similar to
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(3.1) for the augmented state vector

 x(t;ω)

θ(ω)

 ≈
 x(t)

θ

+

NDO∑
i=1

φi(t;ω)

 x̃i(t)
θ̃i(t)



xΘ(t;ω) ≈ xΘ(t) +

NDO∑
i=1

φi(t;ω) x̃Θ,i(t) , (3.23)

where xΘ(t) ∈ RNX+NΘ denotes the mean of the augmented state vector, x̃Θ,i(t) ∈

RNX+NΘ the ith mode of the augmented state vector, θ ∈ RNΘ the mean of the

parameter vector, and θ̃i(t) ∈ RNΘ the parameter elements of the ith augmented

state vector mode. Given the augmented stochastic dynamical model (3.22), DO

evolution equations as those developed in Section 3.2 (i.e. (3.4)–(3.6)) can be used to

evolve the augmented state vector mean, augmented state vector modes, and mode

coefficients defined in (3.23).

It can be recognized that there is no mathematical distinction between state vari-

ables and parameters in the augmented state vector expansion (3.23). Mode coeffi-

cients are shared between the two groups of uncertain variables and the DO modes

of the augmented state vector represent directions of joint state and parameter un-

certainty. Statistical correlations between state variables and parameters manifest as

concurrently nonzero elements in the augmented modes. If state variables and param-

eters are largely uncorrelated however, the modes will feature only either nonzero state

variable elements or nonzero parameter elements, indicating orthogonality between

state uncertainty and parameter uncertainty. Note that even though parameters are

specified as time-invariant in the augmented stochastic dynamical model (3.22) and

hence the mean of the parameter vector in (3.23) is time-invariant (in between obser-

vation updates), the parameter elements of the augmented state vector modes are still

subject to evolution. This reflects the fact that the statistical relations between state

uncertainty and parameter uncertainty may change as the stochastic dynamical sys-

tem under investigation evolves. Since the augmented state vector modes collectively
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define the stochastic subspace within which the majority of the joint state and pa-

rameter uncertainty resides, all elements of the modes are subject to change in order

to reflect all possible reorientations of this subspace. Of course, when an observation

is made, the Bayesian update of the parameter distribution also updates the mean of

the parameter values; these updated parameter means are then subsequently utilized

in (3.22) and (3.23) until the next observation.

State augmentation also enables joint Bayesian inference of state variables and

parameters. If parameters were to be inferred separate from state variables, Bayesian

update of the probability distribution for parameters would entail the calculation

pΘ|Y (θ |y) =
pY |Θ(y |θ)

pY (y)
pΘ(θ)

=

∫
pY |X,Θ(y |x,θ) pX|Θ(x |θ) dx

pY (y)
pΘ(θ)

=

∫
L(y |x) pX|Θ(x |θ) dx

pY (y)
pΘ(θ) ∀θ ∈ RNΘ . (3.24)

(3.24) is analogous to (1.9) and the last integral in (3.24) is analogous to (1.11), the

marginal likelihood integral required for model inference, and the same difficulties

discussed in Chapter 2 for the calculation of (1.11) apply to the integral here. In

the present ‘parameter evidence’ computation, the role of Mn is played by θ, the

parameter mean value (and its pdf) is estimated as model evidence was in (1.9).

State augmentation allows us to solve these difficulties for parameter inference

the same way we solved them for model inference, i.e. using the GMM-DO filter to

estimate the state pdf and so allow the computation of the integral in (3.24). Of

course, as we will see, once the parameter pdf has been updated at a given time, the

posterior parameter pdf is used at later times.

Specifically, the observation likelihood L(y |•) can be replaced by an equivalent
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augmented likelihood function

LΘ(y |xΘ) = L
(
y |
[

INX 0
]
xΘ

)
∀xΘ ∈ RNX+NΘ (3.25)

that simply ignores the parameter elements of the augmented state vector when cal-

culating observation likelihoods. If the original state likelihood function is a Gaussian

function, as assumed by the GMM-DO filter in (3.16), the augmented likelihood func-

tion becomes

LΘ(y |xΘ) = N
(
y ; H

[
INX 0

]
xΘ , R

)
= N

(
y ; [ H 0 ]xΘ , R

)
= N

(
y ; HΘxΘ , R

)
∀xΘ ∈ RNX+NΘ (3.26)

and the GMM-DO filter can be applied as usual using the augmented observation

matrix HΘ = [ H 0 ] ∈ RNY ×(NX+NΘ) in place of the original observation matrix

H. As long as some of the modes in the expansion (3.23) feature both nonzero

state variable and parameter elements—i.e. as long as there is some finite correlation

between state variables and parameters—the probability distribution for parameters

will be jointly updated with the probability distribution for state variables when

the GMM-DO filter updates the reduced-dimension distribution for the shared mode

coefficients. After this GMM-DO update, the integration of (3.22) and (3.23) will

utilize the updated parameter mean and evolve the joint state-parameter probability

distribution in accord with the dynamics until the next observation.

In summary, reduced-dimension state augmentation extends both the DO evo-

lution equations and the GMM-DO filter to enable joint uncertainty evolution and

inference of state variables and parameters. For the remainder of this chapter, the

augmented state vector XΘ (and realization xΘ) will be denoted as simply X (and

x) for notational expediency, with the implicit assumption that X encapsulates both

uncertain state variables and uncertain parameters coupled through state augmenta-

tion.
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3.5 GMM-DO Marginal Likelihood Calculation

3.5.1 Analytical GMM Approach

As reviewed in Section 2.2, the marginal likelihood integral in (1.11) that is essen-

tial for Bayesian model inference can be calculated analytically for the special case

of Gaussian model-conditional state variable distributions coupled with a Gaussian

observation likelihood function. In this section, we will show that for the GMM

state variable distributions and Gaussian observation models and likelihood function

used by the GMM-DO filter, a similar analytical solution for the marginal likelihood

integral is available.

Specifically, using (3.16) and (3.12) for L(y |•) and pX|M(•|Mn) respectively, we

obtain

pY |M(y |Mn) =

∫
L(y |x) pX|M(x |Mn) dx

=

∫
N
(
y ; Hx , R

)
(
NGMM∑
j=1

πX|Mn,j ×N
(
x ; µX|Mn,j , ΣX|Mn,j

))
dx . (3.27)

Here, since we are once again considering model uncertainty, we use Mn in place of

M to represent a realization of the uncertain model. Note that state augmentation is

also featured implicitly, with both state variables and parameters encapsulated in the

vector x. Analogous to the derivation presented in Section 2.2, since the integral in

(3.27) is taken over all values of x, a linear transformation of the integration variable

can be performed without changing the value of the integral. Then, using the linear
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transformation properties of Gaussian distributions, (3.27) can be rewritten as

pY |M(y |Mn) =

∫
N
(
y −Hx ; 0 , R

)
(
NGMM∑
j=1

πX|Mn,j ×N
(

Hx ; HµX|Mn,j , HΣX|Mn,jH
T
))

dHx

=

∫ NGMM∑
j=1

πX|Mn,j ×N
(
y −Hx ; 0 , R

)
N
(
Hx ; HµX|Mn,j , HΣX|Mn,jH

T
)

dHx . (3.28)

Interchanging integration and summation, then factoring,

pY |M(y |Mn) =

NGMM∑
j=1

πX|Mn,j ×
∫
N
(
y −Hx ; 0 , R

)
N
(

Hx ; HµX|Mn,j , HΣX|Mn,jH
T
)

dHx

=

NGMM∑
j=1

πX|Mn,j ×
[
N
(
• ; 0 , R

)
∗N

(
• ; HµX|Mn,j , HΣX|Mn,jH

T
) ]

(y) , (3.29)

where ∗ again represents the convolution operator. Using once more the convolution

identity introduced in Section 2.2 and derived in Appendix A,

pY |M(y |Mn) =

NGMM∑
j=1

πX|Mn,j ×N
(
y ; HµX|Mn,j , HΣX|Mn,jH

T + R
)

. (3.30)

Analogous to (3.17), the analytically accessible (3.30) cannot be directly com-

puted for systems of high dimension due to the prohibitive size of the state variable

GMM component covariance matrices involved. Fortunately, the utilization of the

GMM-DO approach to compute (3.30) is possible, again because of (3.10), the affine

transformation that relates state variables and mode coefficients. Substituting the
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prior GMM-DO fit in the DO subspace, (3.13)–(3.15), into (3.30) yields

pY |M(y |Mn) =

NGMM∑
j=1

πΦ|Mn,j

×N
(
y ; H

(
x+XµΦ|Mn,j

)
, H

(
XΣΦ|Mn,jXT

)
HT + R

)
=

NGMM∑
j=1

πΦ|Mn,j

×N
(
y −Hx ; HXµΦ|Mn,j , HXΣΦ|Mn,j (HX )T + R

)
=

NGMM∑
j=1

πΦ|Mn,j ×N
(
ỹ ; H̃µΦ|Mn,j , H̃ΣΦ|Mn,jH̃

T + R
)

, (3.31)

where the definitions in (3.19) have been used. The explicit evaluation of the Gaussian

functions in (3.31) is computationally expedient. None of the matrices involved exceed

NY × NX in size and NY is typically orders of magnitude smaller than NX , espe-

cially for systems featuring infinite-dimensional state fields (or their large-dimensional

discretized versions) [48]. Furthermore, all the quantities in (3.31) are found in the

process of performing Bayesian state variable inference with the GMM-DO filter, thus

necessitating no new computations. (3.31) can be used to calculate marginal likeli-

hoods for all candidate models, which can subsequently be used to perform Bayesian

update of the model distribution as represented by (1.9).

3.5.2 Computational Alternatives

If an alternative to the GMM-DO filter is used to perform Bayesian state variable in-

ference in conjunction with the DO evolution equations, reduced-dimension marginal

likelihood calculation can still be accomplished even without the analytical expedi-

ency provided by GMM state variable distributions. Since our present numerical

implementations of the DO evolution equations [141] evolve the mode coefficients in

the expansion (3.1) using Monte Carlo sampling methods, a set of samples from the

prior mode coefficient distribution is at hand anytime observations are made and in-

ference is to be performed. These samples can be used to find marginal likelihood
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AMEs, as reviewed in Section 2.4, by first transforming the samples using (3.10) then

calculating (2.9)

pY |M(y |Mn) ≈ 1

NMC

NMC∑
k=1

L
(
y |x−k

)
=

1

NMC

NMC∑
k=1

L
(
y |x+Xφ−k

)
, (3.32)

where φ−k represents the kth of NMC ∈ N samples from the prior mode coefficient

distribution and x−k represents the equivalent kth sample from the prior state variable

distribution.

Any state variable inference scheme operating in conjunction with the DO evolu-

tion equations will also necessarily generate a set of Monte Carlo samples from the

posterior mode coefficient distribution (3.18) in order to continue the evolution of the

mode coefficients following inference. This set of posterior samples can be used to

find marginal likelihood HMEs, as reviewed in Section 2.4, by again transforming the

samples using (3.10) then calculating (2.10)

pY |M(y |Mn) ≈

(
1

NMC

NMC∑
k=1

L
(
y |x+

k

)−1

)−1

=

(
1

NMC

NMC∑
k=1

L
(
y |x+Xφ+

k

)−1

)−1

, (3.33)

where φ+
k represents the kth of NMC ∈ N samples from the posterior mode coefficient

distribution and x+
k represents the equivalent kth sample from the posterior state

variable distribution. Note that while directly drawing samples from either the prior

or posterior state variable distributions may be intractable for high-dimensional sys-

tems, drawing samples from the reduced-dimension prior or posterior mode coefficient

distributions is both feasible and efficient as the modes in the expansion (3.1) restrict

sampling to the time-dependent stochastic subspace within which the majority of the

state uncertainty resides.

52



3.6 Summary

The methodology developed here for Bayesian inference of stochastic dynamical mod-

els can be summarized in the following four-step procedure premised on the general

four-step procedure for stochastic dynamical modeling introduced in Section 1.1:

1. Model formulation. Formulate a set of candidate models for the true stochastic

dynamical model governing the system under investigation. For each candidate,

specify stochastic dynamical equations, spatial geometry, boundary conditions,

and initial conditions, as represented in (1.2).

2. Uncertainty initialization.

(a) State variable and parameter uncertainty initialization. For each candidate

model, specify an initial joint probability distribution for state variables

and parameters. Initialize the augmented state vector mean as represented

in the expansion (3.23) by finding the statistical mean of this distribution.

Initialize augmented modes and mode coefficients by orienting the modes

in the directions of greatest joint state variable and parameter uncertainty

and specifying corresponding probability distributions for the mode co-

efficients. A general computational procedure for accomplishing this ini-

tialization of modes and mode coefficients is to perform Karhunen-Loève

transforms of the initial joint state variable and parameter covariance ma-

trices [84, 86], a procedure that leads to the optimal selection of modes and

mode coefficients when the initial probability distributions are Gaussian

[121].

(b) Model uncertainty initialization. Define an initial discrete probability dis-

tribution over the set of candidate models. The distribution value cor-

responding to any candidate model represents the probability that that

candidate model is the true model.

(c) Initial Bayesian uncertainty quantification. As needed, compute the initial

probability distribution for state variables and parameters that accounts
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for model uncertainty by combining the model-conditional initial distribu-

tions using (1.5).

3. Uncertainty evolution.

(a) Model-conditional uncertainty evolution. Use the DO evolution equations

(3.4)–(3.6) to evolve the augmented state vector means, augmented modes,

and mode coefficients for each candidate model.

(b) Prior Bayesian uncertainty quantification. As needed, compute the prior

probability distribution for state variables and parameters that accounts

for model uncertainty by combining the model-conditional prior distribu-

tions using (1.5).

4. Inference.

(a) State variable and parameter inference. When an observation is made, use

the GMM-DO filter to perform a Bayesian update of the mode coefficient

distribution for each candidate model.

(b) Marginal likelihood calculation. Calculate marginal likelihoods for all can-

didate models using (3.31).

(c) Model inference. Use (1.9) along with the marginal likelihoods to perform

a Bayesian update of the model distribution.

(d) Posterior Bayesian uncertainty quantification. As needed, compute the

posterior probability distribution for state variables and parameters that

accounts for model uncertainty by combining the model-conditional pos-

terior distributions using (1.5).

A graphical representation of this four-step procedure is provided in Figure 3-1. NDO

and NGMM are in general both time- and model-dependent but for notational sim-

plicity, these dependencies are not explicitly represented in the figure. Similarly, the

number of candidate models NM could in general be a function of time, but this too

is omitted in the graphical representation.
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3.6.1 Comments

Independence between Candidate Models

Note that all operations involved in Steps 2a, 3a, 4a, and 4b (i.e. the left half of

Figure 3-1) are performed independently for each candidate model. All computations

relevant to these steps can hence be performed in parallel for each candidate model.

Another important consequence of this independence is that idiosyncratic variations

of the DO evolution equations and the GMM-DO filter can be applied to any of the

candidate models without affecting the others. For example, each candidate model

could employ a different stochastic subspace dimension for the expansion (3.23), with

some possibly adopting dynamically evolving subspace dimensions as used in [122].

Furthermore, as mentioned in Section 2.1, the marginal likelihood calculations that

constitute Step 4b can be performed differently for each candidate model. If an

alternative to the GMM-DO filter is used for one particular candidate for example,

the reduced-dimension computational approximations (3.32) and (3.33) could be used

in place of (3.31).

Independence from Model Distribution

Another important feature of the present methodology is that the operations involved

in Steps 2a, 3a, 4a, and 4b are also independent of the model distribution (i.e. no

arrows point from the right half of Figure 3-1 to the left). In fact, as long as the

marginal likelihoods calculated in Step 4b are stored, Bayesian update of the model

distribution as represented by Step 4c need not be performed unless an explicit render-

ing of the state variable distribution with model uncertainty accounted for is required

(i.e. if Steps 2c, 3b, and 4d are necessary). This allows for new candidate models to

be added to the set of viable candidates, even after Steps 2a, 3a, 4a, and 4b have been

carried out for existing candidates. One simply needs to respecify the initial model

distribution to include the new candidates, then perform the independent steps afresh

for the new candidates only. The marginal likelihoods generated for the new candi-

dates can be combined with those already stored to perform Bayesian update of the
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new model distribution.

Note that one can always choose to perform model inference either immediately

after each observation or only after all observations have been made. The decision

between these two alternatives should be made considering available computational

resources and the utility of real-time state variable and parameter distributions that

account for model uncertainty. If real-time distributions are crucial, model inference

should naturally be performed at all observation times in order to carry out Steps 3b

and 4d. If computational resources are relatively limited however, model inference

may, out of necessity, be left for post-processing. The present methodology allows for

both courses of action.

Recursive Model Inference

The model inference procedure described above could also be extended to a form of

‘recursive model inference’ that is similar in fashion to parameter inference. In this

case, when the model distribution is updated at each observation time, the model

itself could be treated as a parameter, in that we could sample model uncertainty as

we sample parameter uncertainty. Consequently, the set of candidate models could

be updated with time, perhaps directly with an algorithm such as the GMM-DO

filter, and these updates would then influence model predictions at future times.

This would represent a new extension to the current methodology since in this case

model inference and state inference would not be independent: updates to the set

of candidate models would influence the dynamic evolution of the state variables,

just as updates to parameter distributions influence state variables in the current

formulation. Further investigation of this possibility is left for future work.

In sum, the present methodology constitutes a versatile approach to Bayesian in-

ference of stochastic dynamical models. Applications to two high-dimensional, non-

linear systems are presented in the following chapters.
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Chapter 4

Flow Past an Obstacle

4.1 Flow Past a Cylinder or Island

The flow past a cylinder or idealized island is a classic dynamical system in fluid

mechanics that features a two-dimensional fluid flowing around an impermeable cir-

cular obstacle. The fluid is assumed to be incompressible and Newtonian while the

obstacle is assumed to be fixed. Furthermore, the fluid velocity far away from the

obstacle is assumed to be uniform and steady—i.e. both spatially and temporally

invariant—at an infinite distance away from the obstacle. This system has been ex-

tensively studied within the fluid mechanics community due to both its exceptionally

simple formulation and the startling intricacy of the fluid flow patterns it can evoke

[32, 41, 42, 127, 137, 150].

The key parameter that governs the properties of the fluid flow in the flow past a

cylinder system is the non-dimensional Reynolds number

Re =
V∞L

ν
, (4.1)

where V∞ represents the velocity of the fluid an infinite distance away from the ob-

stacle, L represents the projected width of the obstacle, and ν represents the dynamic

viscosity of the fluid. The Reynolds number can be interpreted as the ratio between

the inertial and viscous forces in the fluid [78]. For Reynolds numbers below ap-
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Figure 4-1: Visualization of stable recirculation zones in an experimental investigation
of the flow past a cylinder system with a Reynolds number of 26 [143].

proximately 40, the fluid flow downstream of the obstacle is symmetric, with a pair

of stable recirculation zones appearing behind the obstacle for Reynolds numbers

greater than 5. These recirculation zones can be seen in Figure 4-1 and increase in

size with increasing Reynolds number. At Reynolds numbers greater than 40, the

recirculation zones become unstable and exhibit periodic, asymmetric vortex shed-

ding. This results in dynamic fluid flow patterns known as von Kármán vortex streets

downstream of the obstacle, as illustrated in Figure 4-2. Systems featuring Reynolds

numbers greater than 200 exhibit more complex aperiodic patterns while Reynolds

numbers greater than 105 result in turbulent fluid flow [135].

Countless variations of the classic flow past a cylinder system have been investi-

gated, including systems featuring non-Newtonian fluids [24], rotating obstacles [104],

oscillating obstacles [18], noncircular obstacles [67], multiple obstacles [94], and three-

dimensional fluids and obstacles [43]. In addition to serving as standardized platforms

for conducting theoretical, experimental, and computational studies of fluid phenom-

ena, the flow past a cylinder system and its variants have also been used as practical

models of real systems found in both natural and engineered environments [151]. An

example of an atmospheric system that is well-modeled as a flow past a cylinder is

depicted in Figure 4-3.
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Figure 4-2: Visualizations of von Kármán vortex streets in an experimental investi-
gation of the flow past a cylinder system with several Reynolds numbers [58].
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Figure 4-3: Image of clouds off the Chilean coast near the Juan Fernandez Islands
taken by the Landsat 7 satellite on September 15, 1999 [106]. The fluid flow pattern
behind the island at the bottom-left of the image can be modeled as a variation of
the flow past a cylinder system.
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Figure 4-4: Two-dimensional spatial domain of the stochastic flow past an obstacle
system. All lengths and coordinates are given in non-dimensionalized length units.
The bounding area for the obstacle is indicated by the dashed square. The observation
array is indicated by the nine points situated at the center of the domain.

4.2 Stochastic Flow Past an Obstacle System

The first stochastic dynamical system considered for application of the Bayesian

model inference methodology developed in Chapter 3 is a simulated stochastic vari-

ation of the flow past a cylinder system. The two-dimensional spatial domain of the

system is shown in Figure 4-4, with fluid flow proceeding left to right in the positive

r1 direction. As in the classic rendition of the system, the fluid is assumed to be

incompressible and Newtonian while the obstacle is assumed to be fixed. Uncertainty

in the fluid velocity field—the infinite-dimensional state field of the system—is intro-

duced in three ways: 1) uncertainty in the initial velocity field; 2) uncertainty in the

Reynolds number of the fluid flow; and 3) uncertainty in the shape of the obstacle.

As mentioned in Section 4.1, the fluid flow pattern downstream of the obstacle in

the flow past a cylinder system is periodic for Reynolds numbers between 40 and 200.

Vortex shedding frequency and morphology are predictable for any given Reynolds

number within this range. The phase of vortex shedding however is highly unpre-

dictable, as shedding is always triggered chaotically by asymmetric perturbations of

the otherwise symmetric fluid domain. Even mild uncertainty in the initial conditions

of the system can thus lead to substantial uncertainty in the shedding phase, which,
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as exhibited in Figure 4-5, can correspond to substantial uncertainty in the velocity

field.

Further uncertainty in the velocity field can arise if the Reynolds number of the

fluid flow, which governs both the frequency and morphology of vortex shedding

downstream of the obstacle, is also uncertain. As exhibited in Figure 4-6, higher

Reynolds numbers correspond to greater shedding frequencies and vortices of higher

energy.

Finally, uncertainty in the shape of the obstacle within the generic spatial domain

illustrated in Figure 4-4 can have a significant effect on the uncertainty of the velocity

field. As exhibited in Figure 4-7, different obstacle shapes can result in substantially

different downstream fluid flow patterns. Even when projected widths are identical,

different shapes can lead to different vortex shedding frequencies and morphologies

for the same Reynolds number. For the system considered here, five shapes are

allowed for the obstacle, with spatial dimensions as specified in Figure 4-8. The

details of the flow patterns for these five shapes are different, as can be seen in

Figure 4-7. Specifically, the circle and square exhibit both similar near-field and

far-field vortex shedding patterns, but with slight variations in vortex intensities

(most notably in the near-field). The other three shapes also exhibit similar near-

field vortex shedding patterns, but the far-field pattern of the downstream-pointing

triangle differs markedly from those of the upstream-pointing triangle and diamond.

These differences can be exploited to infer the correct obstacle shape for the system

when this feature is uncertain.

4.3 Description of the Experiments

4.3.1 Model Formulation

Five possible shapes are considered for the obstacle in the system, leading to five

possible configurations for the generic spatial domain illustrated in Figure 4-4. Each

of these domains represents a distinct candidate model for the system, with each
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Figure 4-5: Fluid flow patterns for realizations of the stochastic flow past an obstacle
system featuring a circular obstacle, a Reynolds number of 75, and phase shifts of
0, π

2
, π, and 3π

2
. Directions of fluid flow are indicated with streamlines. Note that

the flow patterns for phase shifts of 0 and π are a mirrored pair about the r2 = 3
centerline, as are the flow patterns for phase shifts of π

2
and 3π

2
.
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Figure 4-6: Fluid flow patterns for realizations of the stochastic flow past an obsta-
cle system featuring a circular obstacle and Reynolds numbers of 50, 75, and 100
at the same non-dimensional time. Phase shifts indicate different vortex shedding
frequencies.
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Figure 4-7: Fluid flow patterns for realizations of the stochastic flow past an obstacle
system featuring different obstacle shapes at the same non-dimensional time, all with
a Reynolds number of 75. The projected width of all the obstacles is identical. Phase
shifts indicate different vortex shedding frequencies.
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r1

1

1

Figure 4-8: Five possible obstacle shapes: a circle, a square, an upstream-pointing
triangle, a downstream-pointing triangle, and a diamond. All lengths are given in
non-dimensionalized length units. The bounding area indicated for each of the shapes
corresponds to the area indicated in Figure 4-4.

candidate assumed to be equally likely a priori (i.e. a uniform initial model distribu-

tion is used). We proceed to describe each component of (1.2) for each of these five

candidate models.

Dn — The same set of stochastic dynamical equations is used to model the evolu-

tion of the fluid velocity field for each of the candidate models: the two-dimensional

Navier-Stokes equations for an incompressible, Newtonian fluid in non-dimensional

form

∂v1

∂t
= −∂(v2

1)

∂r1

− ∂(v1v2)

∂r2

+
1

Re(ω)

(
∂2v1

∂r2
1

+
∂2v1

∂r2
2

)
− ∂p

∂r1

, (4.2)

∂v2

∂t
= −∂(v1v2)

∂r1

− ∂(v2
2)

∂r2

+
1

Re(ω)

(
∂2v2

∂r2
1

+
∂2v2

∂r2
2

)
− ∂p

∂r2

, (4.3)

∂v1

∂r1

+
∂v2

∂r2

= 0 , (4.4)

where v1 = v1(r, t;ω) and v2 = v2(r, t;ω) denote the r1 and r2 components of the

non-dimensionalized velocity field v(r, t;ω) respectively [73]. The Reynolds number

for the system Re(ω) is left as an uncertain parameter to be inferred. p = p(r, t;ω)

appearing in (4.2) and (4.3) represents the non-dimensionalized pressure field, which,

despite lacking an explicit time derivative term, can be solved for implicitly from the

velocity field using the continuity equation (4.4).

SGn — The geometries of the spatial domains for the five candidate models are

distinct, with each domain featuring its own obstacle shape from the set depicted

in Figure 4-8. The projected widths of all the obstacles are identical and are all 1
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non-dimensional length unit. For purposes of numerical implementation, the spatial

domain for each of the candidate models is discretized using a regular rectangular grid

of 320 and 120 elements along the r1 and r2 directions respectively (∆r1 = ∆r2 = 1
20

).

This spatial discretization results in approximately 320×120 r1-velocity and 320×120

r2-velocity state variables for each of the candidate models, with slight variations due

to the different surface areas of the five possible obstacle shapes. The augmented

state vector for any of the candidate models is then

xΘ(t;ω) =


v1(t;ω)

v2(t;ω)

Re(ω)

 , (4.5)

where v1(t;ω) and v2(t;ω) represent the vectors of r1-velocity and r2-velocity state

variables respectively. Again, the Reynolds number of the system appears as an

uncertain parameter. NX +NΘ, the dimension of the augmented state vector, is thus

of order 105.

BCn — Stochastic Dirichlet boundary conditions are used for the left domain

limits for all five candidate models

v = (V∞(ω), 0) =

(
Re(ω)

Re′
, 0

)
for r1 = 0 , (4.6)

where V∞(ω) denotes the stochastic non-dimensionalized inlet fluid velocity and

Re′ =
V ′L′

ν

is a constant comprised of the non-dimensionalizing velocity and length constants V ′

and L′ as well as the dynamic viscosity of the fluid ν. V ′, L′, and ν are chosen to be 1,

1, and 1
80

for this system respectively. Deterministic Neumann boundary conditions
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are used for the top, bottom, and right domain limits

∂v

∂r2

= 0 for r2 = 0 and r2 = 6 ,

∂v

∂r1

= 0 for r1 = 16 .

Additional deterministic Dirichlet boundary conditions are used to impose no-slip

conditions on the surfaces of the obstacles for all candidate models.

ICn — For each of the five candidate models, an initial uniform distribution from

50 to 100 is assumed for the Reynolds number of the fluid flow. The mean of this

distribution—Re = 75—corresponds to a mean non-dimensionalized inlet fluid veloc-

ity of 75
80

, as given by the relation in (4.6). Initial means for the fluid velocity in each of

the candidate model spatial domains are found by numerically solving the continuity

equation (4.4) with this mean inlet velocity and the other boundary conditions speci-

fied above. For each of the candidate models, a covariance matrix is then constructed

for the velocity state variables that respects symmetry about the r2 = 3 centerline

using the boundary-mollified spatial covariance method suggested in [121]. Discrete

Karhunen-Loève transforms are performed on these covariance matrices to initialize

eight pairs of augmented modes and mode coefficients for each candidate model. The

symmetry properties of this procedure lead to unbiased initialization of uncertainty

in vortex shedding phase (i.e. no information regarding the phase of vortex shedding

is assumed at the start), as exhibited in Figure 4-10. A ninth augmented mode is

introduced for each candidate model that features only a single nonzero entry for the

uncertain Reynolds number, for a total DO subspace dimension NDO = 9.

4.3.2 True Solution Generation

We generate two different true solutions for the stochastic flow past an obstacle sys-

tem, the first—Experiment A1—featuring the circular obstacle depicted in Figure 4-8

and the second—Experiment A2—featuring the downstream-pointing triangular ob-

stacle. For both solutions, Re is chosen to be 80. Deterministic initial velocity fields
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satisfying the continuity equation (4.4) are constructed for both, with arbitrary asym-

metries introduced to induce vortex shedding. Deterministic evolution of the velocity

fields is performed by numerically solving the Navier-Stokes equations (4.2)–(4.4) us-

ing a finite-volume approach employing a regular rectangular grid of 320 and 120

elements along the r1 and r2 directions respectively and a non-dimensional time-step

of ∆t = 1
120

up to a final non-dimensional time T = 50. These deterministic solutions

represent two possible realizations of the stochastic flow past an obstacle system,

each with a true obstacle shape, true Reynolds number, and true dynamical velocity

field that are to be inferred. Each of these two solutions constitutes an independent

experiment conducted with this system and results for both will be described in the

following section.

4.3.3 Observations and Inference

Every 1 non-dimensional time unit (i.e. every 120 numerical time-steps), noisy obser-

vations of both r1-velocity and r2-velocity are made at the nine locations indicated in

Figure 4-4, for a total of NY = 18 observations at every observation time. A single

non-dimensional time unit for this system corresponds to a phase shift of approxi-

mately 5π
13

when Re = 80. Unbiased Gaussian noise is applied to the observations with

a standard deviation equal to approximately 10% of the mean fluid velocity, which

are then used by the GMM-DO filter to perform joint model-conditional inference

of the velocity state variables and the Reynolds number for each of the candidate

models. The linear observation matrix H appearing in (3.16) is specified so as to

identify the velocity state variables corresponding to the nine observation locations

while the matrix of observation covariances R is specified as a diagonal matrix with

diagonal elements equal to the variance of the observation noise.

Following the procedure outlined in [129], the Bayesian information criterion

(BIC), in conjunction with the expectation-maximization (EM) algorithm for GMMs,

is used to select the optimal number of GMM components NGMM at every observation

time. Typical BIC-optimized values for NGMM were found to lie between 20 and 60 for

experiments conducted with the stochastic flow past an obstacle system. Marginal
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likelihoods for the candidate models are calculated using (3.31) following every it-

eration of the GMM-DO filter and the model distribution is updated according to

(1.9).

4.3.4 Numerical Method

Numerical evolution of the augmented state vector mean, augmented modes, and

mode coefficients for each of the candidate models is performed using the DO evolu-

tion equations (3.4)–(3.6) and the Navier-Stokes equations (4.2)–(4.4) with stochastic

boundary conditions (4.6) according to the finite-volume methodology developed in

[140]. A non-dimensional time-step of ∆t = 1
120

is used. NMC = 104 Monte Carlo

samples are used for the stochastic evolution of the mode coefficients.

For numerical robustness, the logarithms of the marginal likelihoods calculated

using (3.31) are used to perform model inference rather than the marginal likelihoods

themselves, which are typically of exceptionally small magnitude (< 10−12) for high-

dimensional systems such as the stochastic flow past an obstacle system considered

here. These logarithms can be used directly to perform Bayesian update of the model
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distribution, as can be seen by rearranging the terms in (1.9)

pM|Y (Mn |y) =
pY |M(y |Mn)

pY (y)
pM(Mn)

=
pY |M(y |Mn) pM(Mn)

NM∑
m=1

pY |M(y |Mm) pM(Mm)

=
pM(Mn)

NM∑
m=1

pY |M(y |Mm)

pY |M(y |Mn)
pM(Mm)

=
pM(Mn)

NM∑
m=1

exp
[

log pY |M(y |Mm)− log pY |M(y |Mn)
]
pM(Mm)

∀n ∈ {1, . . . , NM} . (4.7)

Note that the argument of the exponential in (4.7) is the logarithm of the Bayes factor

[72] between the mth and nth candidate models.

A summary of the experimental properties used for the stochastic flow past an

obstacle system is provided in Table 4.1.

4.4 Results

Three metrics are used to evaluate the success of the Bayesian model inference

methodology as applied to the stochastic flow past an obstacle system. The first

metric is the root mean square error (RMSE) between the velocity state variables

given by the deterministic simulation from which observations are made—i.e. the

true velocity state variables—and the Bayesian mean of the candidate model velocity

state variables, as determined by (1.7). A RMSE approaching 0 indicates success-

ful state inference. The second metric is the integral of the Bayesian probability
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Table 4.1: Experimental properties for the stochastic flow past an obstacle system.

Property Value

NM 5

NX ∼ 75, 000

NΘ 1

NY 18

NDO 9

NMC 104

∆r1 1/20

∆r2 1/20

∆t 1/120

T 50

distribution for the Reynolds number of the system from 77.5 to 82.5, a range that

is centered on the Reynolds number of the deterministic simulations—i.e. the true

Reynolds number—and encompasses only 10% of the total initial prior range as-

sumed for the Reynolds number. This metric is referred to as the true Reynolds

number probability and is calculated by applying the marginalization (1.6) to the

augmented state vector (4.5). A true Reynolds number probability approaching 1 in-

dicates successful parameter inference. The third metric is simply the probability of

the model of the deterministic simulation from which observations are made—i.e. the

true model—within the model distribution. A true model probability approaching 1

indicates successful model inference (since in our example, the true model is among

the candidate models). This ‘probability of the model’ metric easily extends to cases

where the truth is not part of the candidate models (e.g. is a linear combination) or

is a probabilistic combination of several candidate models.

4.4.1 Experiment A1: Circular Obstacle

The first experiment we consider, Experiment A1, is that of a simulated truth defined

by the deterministic simulation featuring the circular obstacle. The goal is to jointly

infer the velocity state variables, Reynolds number, and obstacle shape when noisy
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observations are made from this simulated truth. The evolution of this inference is

illustrated in Figures 4-9 to 4-18.

Figure 4-9 and Figure 4-10 illustrate the system at the initial non-dimensional time

(t = 0), before any observations are made. The fluid velocity field of the deterministic

simulation, which was chosen for the true velocity field of the system, is in a time-

periodic state. Regular asymmetric vortex shedding is occurring downstream of the

obstacle, with a period of approximately 5.4 non-dimensional time units. Each of

the five model-conditional velocity field means (i.e. x in (3.1)) for the five candidate

models is symmetric about the r2 = 3 centerline, indicating no bias towards any

particular vortex shedding phase. The Bayesian mean of these five model-conditional

velocity fields (i.e. the mean of pX(•) in (1.5) or equivalently the mean of the five x

for the five candidate models) is consequently also symmetric. The model-conditional

Reynolds number distributions (found using the marginalization represented by (1.6))

are uniform, as is the model distribution (i.e. pM(•) in (1.5)). The model-conditional

velocity field standard deviations are also all symmetric about the r2 = 3 centerline.

Figure 4-11 and Figure 4-12 illustrate the system after 1 non-dimensional time unit

and 1 observation episode (i.e. one use of the GMM-DO filter). The true velocity

field remains in a time-periodic state. The model-conditional velocity field means

for the five candidate models (each mean estimated using the GMM-DO filter) have

shifted slightly from symmetry, as have the model-conditional velocity field standard

deviations. Standard deviation magnitudes have also decreased for all candidate

models as a result of inference. The model-conditional Reynolds number distributions

have shifted slightly from uniform, as has the model distribution.

Figure 4-13 and Figure 4-14 illustrate the system after 10 non-dimensional time

units and 10 observation episodes. All five of the model-conditional velocity field

means are beginning to align in phase with the true velocity field. Consequently, the

Bayesian mean of these conditional velocity field means is also beginning to align in

phase with the true field, though the energy of the vortices in this Bayesian mean

is still lower than that of those in the true field. The Reynolds number distribution

is beginning to shift towards the true Reynolds number of 80 and the probability
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of one of the incorrect candidate models, the one featuring the downstream-pointing

triangular obstacle, has fallen quickly.

Figure 4-15 and Figure 4-16 illustrate the system after 30 non-dimensional time

units and 30 observation episodes. Phase alignments between the five conditional ve-

locity field means and the true field all appear to have improved significantly. Since

the five obstacle shapes produce different vortex shedding frequencies for the same

Reynolds number however (see Figure 4-7), the five model-conditional Reynolds num-

ber distributions have begun to concentrate around different values. For the candidate

model featuring the circular obstacle, the conditional Reynolds number distribution is

simply concentrating around 80, the true Reynolds number. For the other candidates

though, the conditional distributions are concentrating around values that allow the

candidates to match the shedding frequency of the true field despite featuring in-

correct obstacle shapes. This leads to the multimodality exhibited in the Reynolds

number distribution. The candidate model featuring the circular obstacle is now also

clearly favored by the model distribution.

Figure 4-17 and Figure 4-18 illustrate the system after 50 non-dimensional time

units and 50 observation episodes. The Bayesian velocity field mean is now consistent

with the true velocity field. The Reynolds number distribution is concentrated around

the true Reynolds number of 80, with slight multimodality still present. Note that

had an incorrect model been assumed for the system instead of properly accounting

for model uncertainty, the inferred Reynolds number distribution at this point would

correspond entirely to one of the smaller modes constituting the multimodal Reynolds

number distribution, all of which assign infinitesimal probability density to the true

Reynolds number of the system. The candidate model featuring the circular obstacle

is now also the only plausible model for the system, as indicated by the highly peaked

model distribution. The model-conditional velocity field standard deviations for all

five candidate models have decreased significantly, with the greatest decreases exhib-

ited by the circular obstacle (the true model) and the square obstacle (the candidate

model ‘closest’ to the circle, as seen in Figure 4-7).

Figure 4-19 illustrates the time progression of the three inference metrics intro-
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duced above. The RMSE approaches 0, the true Reynolds number probability ap-

proaches 1, and the true model probability approaches 1, all indicating successful

inference.
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Figure 4-9: The stochastic flow past an obstacle system with observations made from
the deterministic simulated truth featuring the circular obstacle (Experiment A1) at
non-dimensional time t = 0. Observation locations are indicated on the true state
field in light blue. The bounding area for the obstacle in the Bayesian mean of
the candidate model states is labeled with a question mark since the obstacle shape
is uncertain. Model-conditional velocity field means for each of the five candidate
models are displayed on the right.
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Figure 4-10: As Figure 4-9 but showing model-conditional uncertainties at non-
dimensional time t = 0. Specifically, model-conditional velocity field standard devia-
tions for each of the five candidate models are displayed on the left. Model-conditional
Reynolds number distributions for each of the five candidate models are displayed on
the right.

79



Figure 4-11: As Figure 4-9 but at non-dimensional time t = 1 (i.e. after 1 observation
episode).
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Figure 4-12: As Figure 4-10 but at non-dimensional time t = 1 (i.e. after 1 observation
episode).
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Figure 4-13: As Figure 4-9 but at non-dimensional time t = 10 (i.e. after 10 observa-
tion episodes).
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Figure 4-14: As Figure 4-10 but at non-dimensional time t = 10 (i.e. after 10 obser-
vation episodes).
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Figure 4-15: As Figure 4-9 but at non-dimensional time t = 30 (i.e. after 30 observa-
tion episodes).
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Figure 4-16: As Figure 4-10 but at non-dimensional time t = 30 (i.e. after 30 obser-
vation episodes).
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Figure 4-17: As Figure 4-9 but at non-dimensional time t = 50 (i.e. after 50 observa-
tion episodes).
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Figure 4-18: As Figure 4-10 but at non-dimensional time t = 50 (i.e. after 50 obser-
vation episodes).
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Figure 4-19: Time progression of inference metrics for the stochastic flow past an
obstacle system (as defined at the beginning of Section 4.4) with observations made
from the deterministic simulated truth featuring the circular obstacle (Experiment
A1). Metrics are plotted at every 1 non-dimensional time unit immediately following
observation and inference (i.e. posterior values from the GMM-DO filter).
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4.4.2 Experiment A2: Downstream-Pointing Triangular Ob-

stacle

The second experiment we consider, Experiment A2, is that of a simulated truth

defined by the deterministic simulation featuring the downstream-pointing triangular

obstacle. The goal is again to jointly infer the velocity state, Reynolds number, and

obstacle shape when noisy observations are made from this simulated truth. The

evolution of this inference is illustrated in Figures 4-20 to 4-23.

Figure 4-20 illustrates the system at the initial non-dimensional time (t = 0),

before any observations are made. The true velocity field is again in a time-periodic

state and the conditional velocity field means for all the candidate models are sym-

metric about the r2 = 3 centerline. The Reynolds number distribution and model

distribution are uniform.

Figure 4-21 illustrates the system after 5 non-dimensional time units and 5 ob-

servation episodes. The conditional velocity field means are beginning to align in

phase with the true field and the Reynolds number distribution is beginning to shift

towards the true Reynolds number of 80. The probabilities of the three candidate

models featuring the circular obstacle, the square obstacle, and the upstream-pointing

triangular obstacle have all fallen quickly.

Figure 4-22 illustrates the system after 10 non-dimensional time units and 10

observation episodes. All the candidate models other than the one featuring the

downstream-pointing triangular obstacle are struggling to match the vortex shedding

pattern of the true field. The Reynolds number distribution is concentrating around

the true Reynolds number of 80 and the candidate model featuring the downstream-

pointing triangular obstacle is now clearly favored by the model distribution.

Figure 4-23 illustrates the system after 30 non-dimensional time units and 30

observation episodes. The Bayesian velocity field mean is now consistent with the

true velocity field, the Reynolds number distribution is concentrated around the true

Reynolds number of 80, and the candidate model featuring the downstream-pointing

triangular obstacle is now the only plausible model, as indicated by the highly peaked
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model distribution.

Figure 4-24 illustrates the time progression of the three inference metrics in-

troduced at the beginning of Section 4.4. Again, the RMSE approaches 0, the

true Reynolds number probability approaches 1, and the true model probability ap-

proaches 1, all indicating successful inference.

Remarks

First, it is interesting to note that model inference proceeds much more quickly for

the deterministic simulation featuring the downstream-pointing triangular obstacle

(Experiment A2) than for the simulation featuring the circular obstacle (Experiment

A1), suggesting that the downstream-pointing triangular obstacle is more distinct

amongst the set of five possible obstacles than the circular obstacle. Of course, this

speed of inference result depends on the dynamics, uncertainty, and observation loca-

tions selected. Second, this exemplifies how the methodology developed in Chapter 3

for Bayesian model inference can also be used as a statistical determinant of the simi-

larity or dissimilarity between various stochastic dynamical models. For example, we

can say that for the given Reynolds number range and initial state uncertainty con-

sidered, the diamond obstacle is the ‘closest’ to the downstream-pointing triangular

obstacle. Similar remarks could have been made for Experiment A1: for example,

that experiment indicated which obstacles were closest/furthest to a circle for the

given Reynolds number range, initial uncertainty, and observation locations.
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Figure 4-20: As Figure 4-9 but for the second experiment featuring the downstream-
pointing triangular obstacle (Experiment A2).
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Figure 4-21: As Figure 4-20 but at non-dimensional time t = 5 (i.e. after 5 observation
episodes).
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Figure 4-22: As Figure 4-20 but at non-dimensional time t = 10 (i.e. after 10 obser-
vation episodes).
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Figure 4-23: As Figure 4-20 but at non-dimensional time t = 30 (i.e. after 30 obser-
vation episodes).
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Figure 4-24: As Figure 4-19 but for the second experiment featuring the downstream-
pointing triangular obstacle (Experiment A2).
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Chapter 5

Microorganism Tracer

5.1 Marine Microorganisms

Microscopic marine organisms abound in the oceans of the world. These microorgan-

isms generally fall within two functional groups: phytoplankton, which harvest solar

energy through photosynthesis, and zooplankton, which feed on other microorgan-

isms. Countless species of both phytoplankton and zooplankton exist, which collec-

tively play major roles in the Earth’s biogeochemical cycles. Concentrations of basic

chemical compounds such as oxygen and carbon dioxide in both the Earth’s oceans

and atmosphere are closely tied to the abundance of these marine microorganisms,

rendering their study of great importance to researchers in geochemistry and climate

science [14, 39, 119]. Furthermore, phytoplankton and zooplankton constitute the

foundations of the oceans’ biological food networks. The growth and decay of these

microorganisms thus have far-flung consequences for the health of many macroscale

marine species, which garners them significant interest from marine biologists and

ecologists [38, 56, 57, 80].

The submillimeter scale of phytoplankton and zooplankton often renders their

self-directed movements within their fluid domains negligible compared to their bulk

transport by convection. When this holds, these microorganisms are well-modeled as

fluid flow tracers, immotile particles whose spatial evolution is governed entirely by

the physical dynamics of their fluid environments [1, 2]. A consequence of this is that
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species with salient optical properties can produce stunning natural visualizations of

fluid flow within large bodies of water, as exhibited in Figure 5-1.

While they share a means of physical transport, the many distinct species of

phytoplankton and zooplankton in the world’s oceans each grow and decay according

to unique biological (reaction) dynamics. Assuming the continuum hypothesis holds,

one can define a microorganism concentration. The stochastic dynamical evolution of

a microorganism species within a fluid domain can then be described by the general

equation
∂ρ

∂t
= −v · ∇ρ︸ ︷︷ ︸

advection

+ κ∇2ρ︸ ︷︷ ︸
diffusion︸ ︷︷ ︸

convection

+Fρ (ρ, r, t;ω)︸ ︷︷ ︸
biology(reaction)

, (5.1)

where ρ = ρ(r, t;ω) represents the spatial field of microorganism concentration de-

fined as either mass or number of entities per fluid volume, κ represents the diffusivity

of the microorganism within the fluid, and Fρ represents the reaction equation for the

microorganism, which captures all nonconvective influences [139]. Variables within

the reaction equation for a particular species typically include the spatial distributions

of various chemical compounds, which may be necessary for growth, and the spatial

distributions of other microorganism species, which may act as predators, preys, or

competitors for resources. Physical factors may also be included, such as fluid pres-

sure, fluid temperature, and light abundance. If the microorganism is not entirely

immotile, motility terms can also be included in the reaction (biological behavior)

term. The identification of the reaction equation for individual species as well as

the elucidation of general reaction equation features for groups of species are central

focuses of marine microorganism research [136].

5.2 Stochastic Microorganism Tracer System

The second stochastic dynamical system considered for application of the Bayesian

model inference methodology developed in Chapter 3 is a simulation of a single ma-

rine microorganism species convected through a stochastic fluid domain. The two-

dimensional spatial domain of the system is shown in Figure 5-2, with fluid flow
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Figure 5-1: Image of intense concentrations of phytoplankton around the Swedish
island of Gotland in the Baltic Sea taken by the Landsat 7 satellite on July 13,
2005 [105]. Green chlorophyll in the photosynthesizing phytoplankton renders them
optically visible.
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r = (3,3)

r = (0,0)

r = (5,3)

1 2

2
r2

r1

Figure 5-2: Two-dimensional spatial domain of the stochastic microorganism tracer
system. All lengths and coordinates are given in nondimensionalized length units.
The observation array is indicated by the nine points situated at the center of the
domain.

proceeding left to right in the positive r1 direction. The domain features the familiar

circular obstacle that defines the classic flow past a cylinder system introduced in

Section 4.1. This is a simple idealization of flows around an island, as exhibited in

Figure 5-1, and these flows affect the microorganism’s fluid environment. A Reynolds

number of 50 is chosen for the system. The microorganism is assumed to be immotile

and thus represents a fluid flow tracer. Uncertainty in the fluid velocity and microor-

ganism concentration fields is introduced in two ways: 1) uncertainty in the initial

velocity field and 2) uncertainty in the reaction equation for the microorganism.

As in the stochastic flow past an obstacle system explored in Chapter 4, the phase

of vortex shedding behind the obstacle in the stochastic microorganism tracer system

is highly sensitive to the initial fluid velocity field. Since the concentration field is

closely coupled to the velocity field through (5.1), uncertainty in the initial velocity

field translates directly to uncertainty in the concentration field as well. Figure 5-3

illustrates that different phase shifts of the periodic fluid flow pattern downstream of

the obstacle can correspond to substantially different fluid velocity and microorganism

concentration fields.

In addition to uncertainty arising from the fluid velocity field, uncertainty in the

reaction equation for the microorganism can significantly increase the uncertainty
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Figure 5-3: Microorganism concentrations overlaid on fluid flow patterns, for realiza-
tions of the stochastic microorganism tracer system featuring a basic microorganism
reaction equation and phase shifts of 0, π

2
, π, and 3π

2
. Directions of fluid flow are

indicated with streamlines. Note that the flow patterns for phase shifts of 0 and π
are a mirrored pair about the r2 = 3 centerline, as are the flow patterns for phase
shifts of π

2
and 3π

2
.
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in the microorganism concentration field. Basic phytoplankton reaction terms are

assumed for the microorganism behavior, i.e.

Fρ (ρ, r, t;ω) = g(r, t)
ρ(ρmax − ρ)

ρmax − ρ+ kg︸ ︷︷ ︸
growth

− d(r, t)ρ︸ ︷︷ ︸
decay

, (5.2)

where g(r, t) represents the microorganism growth factor, ρmax represents the maxi-

mum microorganism concentration, kg represents the growth regularization parame-

ter, and d(r, t) represents the microorganism decay factor [136]. The values of ρmax

and kg are both chosen to be 1.0. The formulation of the growth and decay factors

however are assumed to be uncertain, with three possible formulations for g(r, t)

g+(r, t) = g+(t) = (1 + AT sin(t/Tρ))G , (5.3)

g0(r, t) = g0 = G , (5.4)

g−(r, t) = g−(t) = (1− AT sin(t/Tρ))G (5.5)

and three possible formulations for d(r, t)

d+(r, t) = d+(r) =
(
1 + ALexp

(
−(‖r − r0‖ /Lρ)2))D , (5.6)

d0(r, t) = d0 = D , (5.7)

d−(r, t) = d−(r) =
(
1− ALexp

(
−(‖r − r0‖ /Lρ)2))D , (5.8)

where ‖•‖ represents the L2 norm operator for any given vector and r0 = (3, 3)

represents the center of the circular obstacle illustrated in Figure 5-2. The temporal

dependence in (5.3) and (5.5) is used to simulate possible periodic influences in real

ocean environments, such as solar light cycles or tides, while the spatial dependence in

(5.6) and (5.8) is used to simulate possible near-coast influences, such as bathymetric

changes or pollution. The growth factor parameters G, AT , and Tρ are chosen to

be 0.8, 0.5, and 0.7 respectively while the decay factor parameters D, AL, and Lρ

are chosen to be 0.1, 1.8, and 1.0 respectively. The combination of the three growth

factor forms (5.3)–(5.5) and three decay factor forms (5.6)–(5.8) leads to a total of
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Figure 5-4: Microorganism concentrations overlaid on fluid flow patterns, for real-
izations of the stochastic microorganism tracer system featuring nine different mi-
croorganism reaction equations at non-dimensional time t = π × Tρ ≈ 2.2 (i.e. when
periodic temporal effects are either maximal or minimal).

nine possible reaction equations for the microorganism. These reaction equations

result in subtle but significant variations of the microorganism concentration field, as

exhibited in Figure 5-4.

5.3 Description of the Experiments

5.3.1 Model Formulation

Nine possible reaction equations are considered for the microorganism in the sys-

tem, leading to nine possible sets of stochastic dynamical equations. Each of these

equation sets represents a distinct candidate model for the system, with each candi-

date assumed to be equally likely a priori (i.e. a uniform initial model distribution

is used). We proceed to describe each component of (1.2) for each of these nine

candidate models.
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Dn — As in the stochastic flow past an obstacle system, the evolution of the fluid

velocity field in the stochastic microorganism tracer system for all nine candidate

models is modeled using the two-dimensional Navier-Stokes equations for an incom-

pressible, Newtonian fluid in nondimensional form (4.2)–(4.4). These equations are

coupled to the equation for the evolution of the microorganism concentration field

(5.1), with the general form of the reaction equation given by (5.2). Considering the

three possible forms for the growth factor (5.3)–(5.5) and the three possible forms

for the decay factor (5.6)–(5.8), nine distinct reaction equations are possible, one for

each of the nine candidate models. The flow parameters are here assumed to be

determined. Specifically, Re in (4.2) and (4.3) is chosen to be 50 while κ in (5.1) is

chosen to be 0 for simplicity.

SGn — Unlike the stochastic flow past an obstacle system, the geometries of

the spatial domains for the nine candidate models here are all the same, with the

domain for each candidate represented by Figure 5-2. For purposes of numerical

implementation, these spatial domains are discretized using a regular rectangular grid

of 240 and 120 elements along the r1 and r2 directions respectively (∆r1 = ∆r2 = 1
20

).

This spatial discretization results in 28,349 r1-velocity, 28,229 r2-velocity, and 28,489

microorganism concentration state variables for each of the candidate models. The

state vector for any of the candidate models is then

x(t;ω) =


v1(t;ω)

v2(t;ω)

ρ(t;ω)

 ,

where ρ(t;ω) represents the spatially-discretized vector of concentration state vari-

ables (state augmentation is not needed for this system because all parameters are

assumed to be determined). NX , the dimension of the state vector, is thus 85, 067.

BCn — Deterministic Dirichlet boundary conditions for the velocity and concen-

tration fields are used for the left domain limits for all nine candidate models

v = (1, 0) , ρ = 0.1 for r1 = 0 , (5.9)
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while deterministic Neumann boundary conditions are used for the top, bottom, and

right domain limits

∂v

∂r2

= 0 ,
∂ρ

∂r2

= 0 for r2 = 0 and r2 = 6 ,

∂v

∂r1

= 0 ,
∂ρ

∂r1

= 0 for r1 = 12 .

Additional deterministic Dirichlet boundary conditions are used to impose no-slip

conditions on the surface of the circular obstacle for all the candidate models.

ICn — For each of the nine candidate models, the state vector mean as repre-

sented in the expansion (3.23) is initialized as follows. The means of the velocity

state variables are obtained by numerically solving the continuity equation (4.4),

given the boundary condition (5.9). The means of the microorganism concentration

states variables are subsequently found by numerically solving (5.1) for the steady

state concentrations corresponding to these mean velocities. For each of the candi-

date models, a covariance matrix is then constructed for both the velocity and con-

centration state variables that respects symmetry about the r2 = 3 centerline using

again the boundary-mollified spatial covariance method suggested in [121]. Discrete

Karhunen-Loève transforms are performed on these covariance matrices to initialize

eight pairs of modes and mode coefficients for each candidate model, for a DO sub-

space dimension NDO = 8. As for the stochastic flow past an obstacle system, the

symmetry properties of this procedure lead to unbiased initialization of uncertainty

in vortex shedding phase, as exhibited in Figures 5-6 and 5-7.

5.3.2 True Solution Generation

We generate four different true solutions for the stochastic microorganism tracer sys-

tem. Each of these simulations has its own fixed formulation for the microorganism:

each represents the ‘truth’ for the corresponding experiment. The first—Experiment

B1—features the constant formulations for growth factor, g0, and decay factor, d0,

representing a spatially and temporally invariant microorganism reaction equation.
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The second—Experiment B2—features the constant growth factor formulation g0 and

the spatially-variable decay factor formulation d−(r), representing a spatially variant

but temporally invariant reaction equation. The third—Experiment B3—features

the time-dependent growth factor formulation g+(t) and the spatially-variable decay

factor formulation d−(r), representing a reaction equation that is both spatially and

temporally variant. Finally, the fourth—Experiment B4—features the growth factor

formulation

g′(r, t) = g′(t) = (1 + (1/2)AT sin(t/Tρ))G (5.10)

and the decay factor formulation

d′(r, t) = d′(r) =
(
1− (1/2)ALexp

(
−(‖r − r0‖ /Lρ)2))D , (5.11)

representing a reaction equation with intermediate spatial and temporal variance that,

importantly, is not explicitly included in the set of candidate models formulated for

the system.

Deterministic initial velocity fields satisfying the continuity equation (4.4) are con-

structed for all four simulated truths, with arbitrary asymmetries introduced to induce

vortex shedding. Microorganism concentration fields are initialized at 0.1. Determin-

istic evolution of the velocity and concentration fields is performed by numerically

solving the Navier-Stokes equations (4.2)–(4.4) and microorganism evolution equation

(5.1) using a finite-volume approach employing a regular rectangular grid of 240 and

120 elements along the r1 and r2 directions respectively and a non-dimensional time-

step of of ∆t = 1
120

up to a final non-dimensional time T = 80. These deterministic

simulations represent four possible realizations of the stochastic microorganism tracer

system, each with a true microorganism reaction equation, true dynamical velocity

field, and true dynamical concentration field that are to be inferred. Each of these

four solutions constitutes an independent experiment conducted with this system and

results for all four will be described in the following section.
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5.3.3 Observations and Inference

Every 1 non-dimensional time unit (i.e. every 120 numerical time-steps), noisy obser-

vations of microorganism concentration are made at the nine locations indicated in

Figure 5-2, for a total of NY = 9 observations at every observation time. A single

non-dimensional time unit for this system corresponds to a phase shift of approxi-

mately π
3

when Re = 50. Unbiased Gaussian noise is applied to the observations with

a standard deviation equal to approximately 5% of the maximum microorganism

concentration, which are then used by the GMM-DO filter to perform joint model-

conditional inference of the velocity and concentration state variables for each of the

candidate models. The linear observation matrix H appearing in (3.16) is specified

so as to identify the concentration state variables corresponding to the nine observa-

tion locations while the matrix of observation covariances R is specified as a diagonal

matrix with diagonal elements equal to the variance of the observation noise.

Following the procedure outlined in [129], the Bayesian information criterion

(BIC), in conjunction with the expectation-maximization (EM) algorithm for GMMs,

is used to select the optimal number of GMM components NGMM at every observation

time. Typical BIC-optimized values for NGMM were found to lie between 40 and 60 for

experiments conducted with the stochastic microorganism tracer system. Marginal

likelihoods for the candidate models are calculated using (3.31) following every it-

eration of the GMM-DO filter and the model distribution is updated according to

(1.9).

5.3.4 Numerical Method

Numerical evolution of the state vector mean, modes, and mode coefficients for each of

the candidate models is performed using the DO evolution equations (3.4)–(3.6) and

the Navier-Stokes equations (4.2)–(4.4) with a fluid flow tracer (5.1) according to the

finite-volume methodology developed in [141]. To obtain explicit differential equations

for the evolution of the DO decomposition for the non-polynomial nonlinearities of

the microorganism reaction terms (5.2), a local linearization is employed [91]. These
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locally linearized terms are derived in Appendix D. A non-dimensional time-step of

∆t = 1
120

is used. NMC = 104 Monte Carlo samples are used for the stochastic

evolution of the mode coefficients. For numerical robustness, the logarithms of the

marginal likelihoods calculated using (3.31) are again used to perform model inference

rather than the marginal likelihoods themselves according to (4.7).

A summary of the experimental properties used for the stochastic microorganism

tracer system is provided in Table 5.1.

Table 5.1: Experimental properties for the stochastic flow past an obstacle system.

Property Value

NM 9

NX 85, 067

NΘ 0

NY 9

NDO 8

NMC 104

∆r1 1/20

∆r2 1/20

∆t 1/120

T 80

5.4 Results

As for the stochastic flow past an obstacle system, Bayesian state variable mean

RMSE and true model probability are used to evaluate the success of the Bayesian

model inference methodology as applied to the stochastic microorganism tracer sys-

tem. Since their numerical values were all normalized to be of order 1, both fluid

velocity and microorganism concentration state variables are included in RMSE cal-

culations without weighting. A RMSE approaching 0 and a true model probability

approaching 1 again indicate successful state and model inference respectively.
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5.4.1 Experiment B1: Constant Growth and Decay

The first experiment we consider, Experiment B1, is that of a simulated truth de-

fined by the deterministic simulation featuring the constant growth and decay factor

formulations g0 and d0 respectively. The goal is to infer the state of the velocity

fields and microorganism concentration jointly with the formulation of the reaction

equation when noisy observations are made from this simulated truth. The evolution

of this inference is illustrated in Figures 5-5 to 5-10.

Figures 5-5, 5-6, and 5-7 illustrate the system at the initial non-dimensional time

(t = 0), before any observations are made. The fluid velocity and microorganism

concentration fields of the deterministic simulated truth are in a time-periodic state.

Regular asymmetric vortex shedding is occurring downstream of the obstacle, with

a period of approximately 6.0 non-dimensional time units. The model-conditional

velocity and concentration field means for all nine candidate models are symmetric

about the r2 = 3 centerline, indicating no bias towards any particular vortex shed-

ding phase. The model distribution is uniform. The model-conditional velocity and

concentration standard deviations are also all symmetric about the r2 = 3 centerline.

Figure 5-8 illustrates the system after 10 non-dimensional time units and 10 ob-

servation episodes. The model-conditional microorganism concentration field means

for all nine candidate models (each mean is estimated using the GMM-DO filter) are

beginning to align in phase with the true concentration field. Despite the absence of

direct velocity field observations, the conditional velocity field means for the candi-

dates are also beginning to align with the true velocity field, as a result of the joint

inference of microorganism concentration and fluid velocity. Inference of the vortex

shedding phase behind the obstacle however is far from complete, as evidenced by the

blurred features in the Bayesian mean of these conditional concentration field means,

when compared to those in the true field. The true model of the system is favored by

the model distribution, with ‘adjacent’ models—i.e. models featuring smaller devia-

tions in their growth and decay factor forms—maintaining higher probabilities than

distant models.
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Figure 5-9 illustrates the system after 30 non-dimensional time units and 30 ob-

servation episodes. Agreement between the true velocity and concentration fields and

the inferred velocity and concentration field means has improved significantly, though

some concentration field features are still slightly blurred in the Bayesian mean. The

true model is now strongly favored by the model distribution, with only adjacent

models remaining as plausible alternatives.

Figure 5-10 illustrates the system after 80 non-dimensional time units and 80

observation episodes. The inferred velocity and concentration field means are now

consistent with the true velocity and concentration fields. The true model is now also

the only plausible model for the system, as indicated by the highly peaked model

distribution.

Figure 5-11 illustrates the time progression of the two inference metrics selected

above. The RMSE approaches 0 and the true model probability approaches 1, both

indicating successful inference.
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Figure 5-11: Time progression of inference metrics for the stochastic microorganism
tracer system (as defined at the beginning of Section 4.4) with observations made
from the deterministic simulated truth featuring the constant growth factor g0 and
decay factor d0 formulations (Experiment B1). Metrics are plotted at every 1 non-
dimensional time unit immediately following observation and inference (i.e. posterior
values from the GMM-DO filter).
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5.4.2 Experiment B2: Constant Growth and

Spatially-Variable Decay

The second experiment we consider, Experiment B2, is that of a simulated truth

defined by the deterministic simulation featuring the constant growth and spatially-

variable decay factor formulations g0 and d−(r) respectively. The evolution of this

inference is illustrated in Figures 5-5 to 5-10. The results are analogous to those

illustrated in Figures 5-5 to 5-10, with successful inference indicated by the time pro-

gression of the inference metrics in Figure 5-16. Note that the true model probability

rises to 1 slightly faster in Experiment B2 than in Experiment B1. This is due to

the fact that the true model in Experiment B2 resides on the periphery of the model

space (i.e. the set of candidate models/feasible model formulations) while the true

model in Experiment B1 resides at the center. RMSE consequently decreases slightly

faster for Experiment B2 than for Experiment B1.

118



F
ig

u
re

5-
12

:
A

s
F

ig
u
re

5-
5

b
u
t

fo
r

th
e

se
co

n
d

ex
p

er
im

en
t

fe
at

u
ri

n
g

th
e

gr
ow

th
fa

ct
or
g 0

an
d

d
ec

ay
fa

ct
or
d
−

(r
)

fo
rm

u
la

ti
on

s
(E

x
p

er
im

en
t

B
2)

.

119



F
ig

u
re

5-
13

:
A

s
F

ig
u
re

5-
12

b
u
t

at
n
on

-d
im

en
si

on
al

ti
m

e
t

=
10

(i
.e

.
af

te
r

10
ob

se
rv

at
io

n
ep

is
o
d
es

).

120



F
ig

u
re

5-
14

:
A

s
F

ig
u
re

5-
12

b
u
t

at
n
on

-d
im

en
si

on
al

ti
m

e
t

=
30

(i
.e

.
af

te
r

30
ob

se
rv

at
io

n
ep

is
o
d
es

).

121



F
ig

u
re

5-
15

:
A

s
F

ig
u
re

5-
12

b
u
t

at
n
on

-d
im

en
si

on
al

ti
m

e
t

=
80

(i
.e

.
af

te
r

80
ob

se
rv

at
io

n
ep

is
o
d
es

).

122



Figure 5-16: As Figure 5-11 but for the second experiment featuring the growth factor
g0 and decay factor d−(r) formulations (Experiment B2).
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5.4.3 Experiment B3: Time-Dependent Growth and

Spatially-Variable Decay

The third experiment we consider, Experiment B3, is that of a simulated truth defined

by the deterministic simulation featuring the time-dependent growth and spatially-

variable decay factor formulations g+(t) and d−(r) respectively. The evolution of this

inference is illustrated in Figures 5-17 to 5-20. The results are again analogous to

those illustrated in Figures 5-5 to 5-10, with successful inference indicated by the

time progression of the inference metrics in Figure 5-21. Note that the true model

probability rises to 1 even faster in Experiment B3 than in Experiment B2. This is

again due to the fact that the true model in Experiment B3 resides on the periphery

of the model space, with even fewer ‘adjacent’ candidate models than the true model

in Experiment B2. RMSE consequently decreases even faster for Experiment B3

than for Experiment B2. This is analogous to the different rates of inference for

Experiments A1 and A2 discussed in Section 4.4.2: the true model in Experiment B3

is more dynamically distinct from the other candidate models than the true models

in Experiments B1 and B2.
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Figure 5-21: As Figure 5-11 but for the third experiment featuring the growth factor
g+(t) and decay factor d−(r) formulations (Experiment B3).
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5.4.4 Experiment B4: Intermediate Time-Dependent

Growth and Spatially-Variable Decay

The fourth experiment we consider, Experiment B4, is that of a simulated truth

defined by the deterministic simulation featuring the intermediate time-dependent

growth and spatially-variable decay factor formulations g′(t) and d′(r) respectively.

This combination of growth and decay factor formulations is not explicitly represented

as one of the nine candidate models for the system, but is represented implicitly as

an intermediary between the four candidate models formed by combining the two

growth factor formulations g+(t) and g0 and the two decay factor formulations d0 and

d−(r). The goal of this experiment is to find out if the formulation of the reaction

terms (in general, their probabilities) can still be inferred jointly with the state of the

velocity and microorganism concentration fields from noisy observations made from

the simulated truth. The evolution of this inference is illustrated in Figures 5-22 to

5-25.

Figure 5-22 illustrates the system at the initial non-dimensional time (t = 0),

before any observations are made. The fluid velocity and microorganism concentra-

tion fields of the deterministic simulated truth are again in a time-periodic state.

As for the other three experiments considered above, the model-conditional velocity

and concentration field means for all nine candidate models are symmetric about the

r2 = 3 centerline and the model distribution is uniform.

Figure 5-23 illustrates the system after 10 non-dimensional time units and 10 ob-

servation episodes. The model-conditional microorganism concentration field means

for all nine candidate models are beginning to exhibit slight asymmetries, indicating

partial inference. The model distribution is clearly favoring the candidate models

that simultaneously feature one of the two growth factor forms g+(t) and g0 and one

of the two decay factor forms d0 and d−(r)—i.e. the four candidate models that

encircle the true model. The probabilities of the other candidate models are falling

quickly.

Figure 5-24 illustrates the system after 30 non-dimensional time units and 30
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observation episodes. Agreement between the true velocity and concentration fields

and the inferred velocity and concentration field means has improved significantly,

though some concentration field features are still slightly blurred in the Bayesian

mean. The model distribution now indicates that the only plausible models are the

four candidate models that encircle the true model.

Figure 5-25 illustrates the system after 80 non-dimensional time units and 80

observation episodes. The inferred velocity and concentration field means are now

consistent with the true velocity and concentration fields. No clear favorite amongst

the four encircling candidate models has emerged, strongly suggesting that the true

model is an intermediary.

Figure 5-26 illustrates the time progression of the Bayesian state variable mean

RMSE and the probabilities of the four candidate models most dynamically similar

to the true model for this experiment. Surprisingly, the RMSE still approaches 0,

even though the true model of the system is not explicitly represented by a candidate

model. This indicates that the Bayesian model inference methodology developed in

Chapter 3 is at least partially robust to inadequacies in the initial representation

of a system’s model uncertainty. The four model probabilities all float about 0.25

(uniform distribution), with no one showing persistent dominance over the others.

The non-monotonic nature of the model probability time-series is likely attributable

to non-linear interactions between the experiment’s various periodic features: vor-

tex shedding downstream of the obstacle (with a period of approximately 6.0 non-

dimensional time units), the time-dependent growth factor formulation (with time

constant Tρ = 0.7), and temporally-discrete observations (with a frequency of 1 non-

dimensional time unit).

The above results indicate that interpolation within the functional space of model

formulations is possible. To further refine the Bayesian learning, the inference would

need to fully account for the possibility of intermediary models represented by varied

combinations of growth and decay factors. An approach to do so is to render AT

and AL appearing in g+(t), g−(t), d+(r), and d−(r) uncertain. Specifically, defining

initial uniform distributions between -1 and 1 for both AT and AL would allow for

131



the encapsulation of all nine explicit reaction equations considered above along with

their intermediaries in the general reaction equation

Fρ(ρ, r, t;ω) =
[

(1 + AT (ω) sin(t/Tρ))G
] ρ(ρmax − ρ)

ρmax − ρ+ kg

−
[ (

1 + AL(ω)exp
(
−(‖r − r0‖ /Lρ)2))D]ρ . (5.12)

This general reaction equation would then represent a single ‘super’ candidate model

for the stochastic microorganism tracer system, with other candidates featuring dif-

ferent functional forms for the growth and decay terms in (5.12)—i.e. alternatives

to

fg(ρ, r, t;ω) =
ρ(ρmax − ρ)

ρmax − ρ+ kg

and

fd(ρ, r, t;ω) = ρ .

In essence, this approach transforms the inference of formulations using a limited

set of candidate models into an infinite-dimensional parameter estimation inference.

This is possible if the different candidate models are compatible (at least numerically)

such that they can be combined (e.g. linearly added) into a coherent all-encompassing

model formulation with stochastic parameters. Further discussion of the utility and

economy of such expansions of the model space is provided in Chapter 6.
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Figure 5-26: As Figure 5-11 but for the fourth experiment featuring the growth factor
g′(t) and decay factor d′(r) formulations (Experiment B4). Since the true model for
this experiment is not explicitly represented within the set of candidate models, the
probabilities of the four candidates that are most dynamically similar to the true
model are plotted in place of the true model probability.
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Chapter 6

Discussion

6.1 Adaptive Modeling

For the two classes of simulated experiments presented so far, the candidate model

sets for the systems were assumed to be immutable. The candidate models formulated

for the systems at initialization were the only ones ever assessed for validity. However,

this does not need to be the case and our approach can be extended to variable model

formulations within the context of adaptive modeling [85].

To summarize the results presented from this perspective, for the two experi-

ments conducted with the stochastic flow past an obstacle system (Experiments A1

and A2) and for the first three experiments conducted with the stochastic microorgan-

ism tracer system (Experiments B1 to B3), one of the candidate models was the true

model of the system. The Bayesian model inference methodology developed in Chap-

ter 3 was able to correctly infer the true models in each of these cases. For the fourth

experiment conducted with the stochastic microorganism tracer system however (Ex-

periment B4), the set of formulated candidate models did not explicitly include the

true model for the system. The result of our Bayesian model inference methodology

was then to assign higher probabilities to candidate models that have formulations

likely to resemble that of the true model; in other words, the methodology found an

implicit representation of the true model using the available candidate models. To

allow further and more precise inference in that scenario, we would need to allow
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the evolution of the candidate model set itself. The model distribution would then

be updated through inference and new models would be considered as the inference

progresses: this process can be referred to as adaptive modeling.

Adaptive modeling can be viewed as the intelligent allocation of computational

resources over the space of stochastic dynamical models. An ideal accounting of

model uncertainty would assign finite probability density to all plausible models at

all times, an approach that is theoretically in line with the epistemological tenets of

science but is practically infeasible for the vast majority of systems. Given a com-

putational budget, it is sensible to limit computational resources to high probability

regions of the model space. Consequently, as inference proceeds with a finite set of

candidate models, low probability candidates should be replaced with new candidates

that are in the vicinity of high probability candidates, a recursive process that could

be performed either automatically or in conjunction with a human subject matter ex-

pert. When little information is available regarding the stochastic dynamical model

governing a particular system, such a recursion may make it unnecessary to explicitly

represent the entirety of the plausible model space using the initial set of candidate

models, a computationally burdensome approach. It may instead be sufficient to use

the initial candidates to sparsely populate the highest probability density regions of

the model space and rely on the adaptive modeling scheme to refine the candidate

model set as inference proceeds. One approach to achieve this consists of defining

classes of (non-compatible) candidate models and then, for each class of (compatible)

models, utilizing principal components in the model functional space and adaptive

parameter estimation of their coefficients. This direct extension of what we have

presented was touched upon at the end of Chapter 5. In general, the fundamental

trade-offs between computational expediency and explicitness of model uncertainty

representation, especially when the possibility of uncertain parameters is considered,

are worthy of further study.
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6.2 Adaptive Sampling

For both the simulated systems considered in the present work, the locations of the

observations used for inference were assumed to be fixed within the spatial domains

of the systems. For many real-world stochastic dynamical systems however, several

alternative sets of observations are commonly available, which correspond to several

possible choices for the observation likelihood function L(y |x) defined in (1.3). In

oceanographic settings for example, mobile observation platforms typically enable a

virtually countless number of options for the spatial and temporal configuration of

observations [54]. The selection of a particular observation set is usually guided by

a combination of practical accessibility, economic cost, and, critically, the ability of

the target observations to reduce uncertainty in the system under investigation. The

process of choosing observations based on an uncertainty reduction criterion is known

as adaptive sampling [26, 85].

One measure of the uncertainty in a stochastic dynamical system is the differential

entropy of the system’s state vector

H [X ] ≡ −
∫
pX(x) log pX(x) dx . (6.1)

If the system features model uncertainty, the state variable distribution in (6.1) is

taken to be the state variable distribution from the Bayesian mean of the model-

conditional distributions (1.5), in which case

H [X ] = −
∫ NM∑

n=1

pX|M(x |Mn) pM(Mn) log

(
NM∑
n=1

pX|M(x |Mn) pM(Mn)

)
dx .

(6.2)

The value of a set of tentative observations can be quantified as the expected reduction

in the differential entropy of the system’s state vector

Ey [H [X |y ]−H [X ] ] = Ey [H [X |y ] ]−H [X ] , (6.3)

where Ey [ • ] represents an expectation over all possible realizations of the observation
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vector. Using an identity from information theory [128], we then have

Ey [H [X |y ] ]−H [X ] = Ex [H [Y |x ] ]−H [Y ] , (6.4)

where Ex [ • ] represents an expectation over all possible realizations of the state vec-

tor. A complete derivation of (6.4) is provided in Appendix E.

The conditional differential entropy of the observation vector H [Y |x ] can be

found directly using the observation likelihood function associated with the target

observations

H [Y |x ] ≡
∫
pY |X(y |x) log pY |X(y |x) dy

=

∫
L(y |x) logL(y |x) dy . (6.5)

The differential entropy of the observation vector H [Y ] meanwhile needs to be found

through

H [Y ] ≡
∫
pY (y) log pY (y) dy . (6.6)

For systems featuring model uncertainty, pY (y) in (6.6) can be found using (1.12),

yielding

H [Y ] =

∫ NM∑
n=1

pY |M(y |Mn) pM(Mn) log

(
NM∑
n=1

pY |M(y |Mn) pM(Mn)

)
dy

∀y ∈ RNY . (6.7)

GMM representations of the conditional observation distributions appearing in

(6.7) could be found using (3.31), the same equation used to perform the critical

reduced-dimension marginal likelihood calculation for the Bayesian model inference

methodology developed in Chapter 3. The linear combination of these GMM con-

ditional observation distributions in (6.7) then renders the observation distribution

pY (•) a GMM distribution as well. Thus, the entropy of the observation vector

H [Y ] could be found using one of the numerous approximation techniques available
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for calculating the entropy of a random vector with a GMM distribution [63]. This

potential adaptive sampling extension of the Bayesian model inference methodology

developed in the present work is a promising topic for future work.

6.3 Conclusion

A new methodology for Bayesian inference of stochastic dynamical models was de-

veloped in the present work. The methodology was applied successfully to two high-

dimensional, nonlinear simulated systems. Potential extensions of the methodology

to incorporate both adaptive modeling and adaptive sampling are promising avenues

for future investigation. Applications of the methodology to real systems are also

certainly worthwhile endeavors. In the grand scheme, the present work represents

a step towards the comprehensively adaptive investigation of stochastic dynamical

systems envisioned in [85].
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Appendix A

Convolution of Gaussian

Distributions

Consider the convolution of two Gaussian distributions

pY (y) =
[
N
(
• ; µ1 , Σ1

)
∗N

(
• ; µ2 , Σ2

) ]
(y)

=

∫
N
(
y − x ; µ1 , Σ1

)
N
(
x ; µ2 , Σ2

)
dx . (A.1)

Ignoring normalization constants, the product of the Gaussian distributions in (A.1)

is

N
(
y − x ; µ1 , Σ1

)
N
(
x ; µ2 , Σ2

)
∝ exp

[
− 1

2

[
(y − x− µ1)TΣ−1

1 (y − x− µ1)

+ (x− µ2)TΣ−1
2 (x− µ2)

]]
. (A.2)
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Let W1 = Σ−1
1 , W2 = Σ−1

2 , and Ws = W1+W2 define symmetric matrices. Expanding

the quadratic terms in the exponent in (A.2) and using symmetry,

(y − x− µ1)TΣ−1
1 (y − x− µ1) + (x− µ2)TΣ−1

2 (x− µ2)

= (y − µ1)TW1(y − µ1) + xTW1x− 2xTW1(y − µ1)

+ xTW2x+ µT
2W2µ2 − 2xTW2µ2

= xTWsx− 2xT (W1(y − µ1) +W2µ2)

+ (y − µ1)TW1(y − µ1) + µT
2W2µ2

=
[
xTWsx− 2xT (W1(y − µ1) +W2µ2)

+ (W1(y − µ1) +W2µ2)TW−1
s (W1(y − µ1) +W2µ2)

]
+
[

(y − µ1)TW1(y − µ1) + µT
2W2µ2

− (W1(y − µ1) +W2µ2)T W−1
s (W1(y − µ1) +W2µ2)

]
(A.3)

=
[

A
]

+
[

B
]

, (A.4)

where A and B have been defined so as to encapsulate the first three and last three

terms in (A.3) respectively. Let

x̂ = W−1
s (W1(y − µ1) +W2µ2) . (A.5)

Then, A reduces to

A = (x− x̂)TWs(x− x̂)

= (x− x̂)T(Σ−1
1 + Σ−1

2 )(x− x̂) . (A.6)

Expanding the terms in B,

B = (y − µ1)T(W1 +W2)W−1
s W1(y − µ1) + µT

2 (W1 +W2)W−1
s W2µ2

− (y − µ1)TWT
1 W

−1
s W1(y − µ1)− µT

2W
T
2 W

−1
s W2µ2

− 2(y − µ1)TWT
1 W

−1
s W2µ2 . (A.7)
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By the symmetry of W1 and W2, B reduces to

B = (y − µ1)TW2W
−1
s W1(y − µ1) + µT

2W1W
−1
s W2µ2

− 2(y − µ1)TWT
1 W

−1
s W2µ2 . (A.8)

Using the identity W1(W1 +W2)−1W2 = W2(W1 +W2)−1W1 = (W−1
1 +W−1

2 )−1,

B = (y − µ1)T(W−1
1 +W−1

2 )−1(y − µ1) + µT
2 (W−1

1 +W−1
2 )−1µ2

− 2(y − µ1)T(W−1
1 +W−1

2 )−1µ2

= (y − µ1 − µ2)T(W−1
1 +W−1

2 )−1(y − µ1 − µ2)

= (y − µ1 − µ2)T(Σ1 + Σ2)−1(y − µ1 − µ2) . (A.9)

Substituting (A.6) and (A.9) into (A.4),

(y − x− µ1)TΣ−1
1 (y − x− µ1) + (x− µ2)TΣ−1

2 (x− µ2)

= (x− x̂)T(Σ−1
1 + Σ−1

2 )(x− x̂)

+ (y − µ1 − µ2)T(Σ1 + Σ2)−1(y − µ1 − µ2) . (A.10)

The right-hand side of (A.10) represents the quadratic terms in the exponent of the

product of two new Gaussian distributions

N
(
x ; x̂ , (Σ−1

1 + Σ−1
2 )−1

)
N
(
y ; µ1 + µ2 , Σ1 + Σ2

)
∝ exp

[
− 1

2

[
(x− x̂)T(Σ−1

1 + Σ−1
2 )(x− x̂)

+ (y − µ1 − µ2)T(Σ1 + Σ2)−1(y − µ1 − µ2)
]]

. (A.11)

Using (A.10), we can thus equate (A.2) and (A.11), up to a multiplicative constant,

to obtain

N
(
y − x ; µ1 , Σ1

)
N
(
x ; µ2 , Σ2

)
= cN

(
x ; x̂ , (Σ−1

1 + Σ−1
2 )−1

)
N
(
y ; µ1 + µ2 , Σ1 + Σ2

)
, (A.12)
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where c is a constant of proportionality. Substituting (A.12) into (A.1),

pY (y) =

∫
cN
(
x ; x̂ , (Σ−1

1 + Σ−1
2 )−1

)
N
(
y ; µ1 + µ2 , Σ1 + Σ2

)
dx

= cN
(
y ; µ1 + µ2 , Σ1 + Σ2

) ∫
N
(
x ; x̂ , (Σ−1

1 + Σ−1
2 )−1

)
dx

= cN
(
y ; µ1 + µ2 , Σ1 + Σ2

)
. (A.13)

Using (A.1) again,

∫
pY (y) dy =

∫∫
N
(
y − x ; µ1 , Σ1

)
N
(
x ; µ2 , Σ2

)
dx dy

=

∫∫
N
(
y ; x+ µ1 , Σ1

)
N
(
x ; µ2 , Σ2

)
dx dy

=

∫
N
(
x ; µ2 , Σ2

)(∫
N
(
y ; x+ µ1 , Σ1

)
dy

)
dx

=

∫
N
(
x ; µ2 , Σ2

)
dx

= 1 . (A.14)

Then, since the Gaussian distribution in (A.13) is equal to (A.1), and (A.1) itself

integrates to unity, c must be equal to one. Therefore,

pY (y) = N
(
y ; µ1 + µ2 , Σ1 + Σ2

)
. (A.15)

The convolution of two Gaussian distributions is thus another Gaussian distribution

whose mean and variance are equal to the sums of the means and variances of the two

component distributions respectively. The derivation presented here is an extension

of the derivation presented in [93].
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Appendix B

Derivation of the DO Evolution

Equations

Starting from the reduced dimensionality stochastic subspace expansion

x(t;ω) ≈ x(t) +

NDO∑
i=1

φi(t;ω) x̃i(t) , (B.1)

the stochastic dynamical model

dx(t;ω)

dt
=M [x(t;ω);ω] , (B.2)

and the DO condition for mode evolution

dx̃i(t)

dt
⊥ VDO ⇔

〈
dx̃i(t)

dt
, x̃j(t)

〉
= 0 ∀i, j ∈ {1, . . . , NDO} , (B.3)
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the DO evolution equations

dx(t)

dt
= E [M [x(t;ω);ω] ] , (B.4)

dx̃i(t)

dt
=

NDO∑
j=1

C−1
(i,j)PV⊥

DO
[ E [φj(t;ω)M [x(t;ω);ω] ] ]

∀i ∈ {1, . . . , NDO} , (B.5)

dφi(t;ω)

dt
= 〈M [x(t;ω);ω]− E [M [x(t;ω);ω] ] , x̃i(t) 〉

∀i ∈ {1, . . . , NDO} , (B.6)

which govern the evolution of the state vector mean, modes, and mode coefficients in

(B.1) respectively can be derived.

Substituting (B.1) into (B.2),

dx(t;ω)

dt
+

NDO∑
i=1

[
dφi(t;ω)

dt
x̃i(t) + φi(t;ω)

dx̃i(t)

dt

]
=M [x(t;ω);ω] . (B.7)

To derive the governing equation for the mean (B.4), we take expectations of (B.7)

to obtain

dx(t;ω)

dt
+

NDO∑
i=1

[
E

[
dφi(t;ω)

dt

]
︸ ︷︷ ︸

0

x̃i(t) + E [φi(t;ω) ]︸ ︷︷ ︸
0

dx̃i(t)

dt

]

= E [M [x(t;ω);ω] ] . (B.8)

Since φi(t;ω) are zero-mean stochastic processes, the expectations on the left-hand

side are equal to zero and (B.8) reduces to (B.4), the DO evolution equation for the

state vector mean.

To derive the governing equations for the modes (B.5), we multiply (B.7) by the
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jth mode coefficient,

φj(t;ω)
dx(t;ω)

dt
+

NDO∑
i=1

[
dφi(t;ω)

dt
φj(t;ω) x̃i(t) + φi(t;ω)φj(t;ω)

dx̃i(t)

dt

]
= φj(t;ω)M [x(t;ω);ω] , (B.9)

then taking expectations,

E [φj(t;ω) ]︸ ︷︷ ︸
0

dx(t;ω)

dt
+

NDO∑
i=1

[
E

[
dφi(t;ω)

dt
φj(t;ω)

]
x̃i(t)

+ E [φi(t;ω)φj(t;ω) ]
dx̃i(t)

dt

]
= E [φj(t;ω)M [x(t;ω);ω] ] , (B.10)

where the first expectation on the left-hand side is again equal to zero because φj(t;ω)

is a zero-mean stochastic process. Taking the inner product of (B.10) with the kth

mode,

NDO∑
i=1

[
E

[
dφi(t;ω)

dt
φj(t;ω)

]
〈 x̃i(t) , x̃k(t) 〉︸ ︷︷ ︸

δik

+ E [φi(t;ω)φj(t;ω) ]

〈
dx̃i(t)

dt
, x̃k(t)

〉
︸ ︷︷ ︸

0

]

= 〈E [φj(t;ω)M [x(t;ω);ω] ] , x̃k(t) 〉 , (B.11)

where the first inner product on the left-hand side is equal to the Kronecker delta δik

due to the orthonormality of the modes and the second is equal to zero due to the

DO condition (B.3). (B.11) then reduces to

E

[
dφk(t;ω)

dt
φj(t;ω)

]
= 〈E [φj(t;ω)M [x(t;ω);ω] ] , x̃k(t) 〉 . (B.12)
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Switching k indices for i indices and substituting back into (B.10),

NDO∑
i=1

[
〈E [φj(t;ω)M [x(t;ω);ω] ] , x̃i(t) 〉 x̃i(t) + C(i,j)

dx̃i(t)

dt

]
= E [φj(t;ω)M [x(t;ω);ω] ] , (B.13)

where the definition of the mode coefficient covariance matrix

C(i,j) = E [φi(t;ω)φj(t;ω) ] ∀i, j ∈ {1, . . . , NDO}

has been used for the second expectation in (B.10). Rearranging,

NDO∑
i=1

C(i,j)
dx̃i(t)

dt
= E [φj(t;ω)M [x(t;ω);ω] ]

−
NDO∑
i=1

〈E [φj(t;ω)M [x(t;ω);ω] ] , x̃i(t) 〉 x̃i(t)

= E [φj(t;ω)M [x(t;ω);ω] ]− PVDO
[ E [φj(t;ω)M [x(t;ω);ω] ] ]

= PV⊥
DO

[ E [φj(t;ω)M [x(t;ω);ω] ] ] . (B.14)

In matrix form,

C


dx̃1(t)

dt
...

dx̃NDO
(t)

dt

 =


PV⊥

DO
[ E [φ1(t;ω)M [x(t;ω);ω] ] ]

...

PV⊥
DO

[ E [φNDO
(t;ω)M [x(t;ω);ω] ] ]

 . (B.15)

Note that the elements of the vectors in (B.15) are themselves vectors. Since the mode

coefficient covariance matrix is necessarily positive definite, it is always invertible
dx̃1(t)

dt
...

dx̃NDO
(t)

dt

 = C−1


PV⊥

DO
[ E [φ1(t;ω)M [x(t;ω);ω] ] ]

...

PV⊥
DO

[ E [φNDO
(t;ω)M [x(t;ω);ω] ] ]

 . (B.16)
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The elements of (B.16) are equivalent to (B.5), the DO evolution equations for the

modes.

To derive the governing equations for the mode coefficients (B.6), we take the

inner product of (B.7) with the jth mode,

〈
dx(t;ω)

dt
, x̃j(t;ω)

〉
+

NDO∑
i=1

[
dφi(t;ω)

dt
〈 x̃i(t) , x̃j(t) 〉︸ ︷︷ ︸

δij

+ φi(t;ω)

〈
dx̃i(t)

dt
, x̃j(t)

〉
︸ ︷︷ ︸

0

]
= 〈M [x(t;ω);ω] , x̃j(t;ω) 〉 , (B.17)

where, as for (B.11), the second inner product on the left-hand side is equal to the

Kronecker delta δij due to the orthonormality of the modes and the third is equal to

zero due to the DO condition (B.3). Substituting (B.4),

〈E [M [x(t;ω);ω] ] , x̃j(t;ω) 〉+
dφj(t;ω)

dt
= 〈M [x(t;ω);ω] , x̃j(t;ω) 〉 , (B.18)

and rearranging,

dφj(t;ω)

dt
= 〈M [x(t;ω);ω]− E [M [x(t;ω);ω] ] , x̃j(t;ω) 〉 . (B.19)

Switching j indices for i indices yields (B.6), the DO evolution equations for the mode

coefficients.
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Appendix C

Subspace Equivalency in the

GMM-DO Filter

If the prior probability distribution for state variables is represented by a GMM

distribution and the observation likelihood function is Gaussian (as in (3.16)), the

posterior state variable distribution is given by

pX|Y (x |y) =

NGMM∑
j=1

πX|Y ,j ×N
(
x ; µX|Y ,j , ΣX|Y ,j

)
∀x ∈ RNX , (C.1)

where

πX|Y ,j =
πX,j ×N

(
y ; HµX,j , HΣX,jH

T + R
)∑NGMM

k=1 πX,k ×N
(
y ; HµX,k , HΣX,kHT + R

) , (C.2)

µX|Y ,j = µX,j + Kj

(
y −HµX,j

)
, (C.3)

ΣX|Y ,j = (I−KjH) ΣX,j (C.4)

∀j ∈ {1, . . . , NGMM}

and

Kj = ΣX,jH
T
(
HΣX,jH

T + R
)−1 ∀j ∈ {1, . . . , NGMM} . (C.5)
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The equivalent posterior GMM coefficient distribution is proposed to be

pΦ|Y (φ |y) =

NGMM∑
j=1

πΦ|Y ,j ×N
(
φ ; µΦ|Y ,j , ΣΦ|Y ,j

)
∀φ ∈ RNDO , (C.6)

where

πΦ|Y ,j =
πΦ,j ×N

(
ỹ ; H̃µΦ,j , H̃ΣΦ,jH̃

T + R
)∑NGMM

k=1 πΦ,k ×N
(
ỹ ; H̃µΦ,k , H̃ΣΦ,kH̃T + R

) , (C.7)

µΦ|Y ,j = µ′Φ|Y ,j −
NGMM∑
k=1

πΦ|Y ,k × µΦ|Y ,k
′ , (C.8)

ΣΦ|Y ,j =
(
I− K̃jH̃

)
ΣΦ,j (C.9)

∀j ∈ {1, . . . , NGMM}

and

ỹ = y −Hx , (C.10)

H̃ = HX , (C.11)

K̃j = XTKj ∀j ∈ {1, . . . , NGMM} , (C.12)

µ′Φ|Y ,j = µΦ,j + K̃j

(
ỹ − H̃µΦ,j

)
∀j ∈ {1, . . . , NGMM} . (C.13)

In [129], the authors show that (C.1) is equivalent to (C.6) through the affine trans-

formation

x(t;ω) = x(t) +X (t)φ(t;ω) (C.14)

given a concurrent state vector mean update

x(t+) = x(t−) +X
NGMM∑
k=1

πΦ|Y ,k × µ′Φ|Y ,k (C.15)
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by deriving (C.6) starting from (C.1). Here, we take a slightly different approach to

demonstrate the same. We first propose an intermediate mode coefficient distribution:

pΦ|Y (φ |y)′ =

NGMM∑
j=1

πΦ|Y ,j ×N
(
φ ; µ′Φ|Y ,j , ΣΦ|Y ,j

)
∀φ ∈ RNDO , (C.16)

with parameters as defined above. Then we note that due to the affine transformation

(C.14), to demonstrate the equivalence between (C.1) and (C.16), it is sufficient to

show that the parameters of the two GMMs are related through

πX|Y ,j = πΦ|Y ,j , (C.17)

µX|Y ,j = x+XµΦ|Y ,j , (C.18)

ΣX|Y ,j = XΣΦ|Y ,jXT (C.19)

∀j ∈ {1, . . . , NGMM} .

This can be accomplished by considering the analogous relations between the parame-

ters of the prior GMM state variable distribution and the prior GMM mode coefficient

distribution

πX,j = πΦ,j , (C.20)

µX,j = x+XµΦ,j , (C.21)

ΣX,j = XΣΦ,jXT (C.22)

∀j ∈ {1, . . . , NGMM} .

Substituting (C.21) and (C.22) into (C.2),

πX|Y ,j =
πX,j ×N

(
y ; H

(
x+XµΦ,j

)
, H

(
XΣΦ,jXT

)
HT + R

)∑NGMM

k=1 πX,k ×N
(
y ; H

(
x+XµΦ,k

)
, H

(
XΣΦ,kXT

)
HT + R

)

=
πX,j ×N

(
y −Hx ; HXµΦ,j , HXΣΦ,j (HX )T + R

)∑NGMM

k=1 πX,k ×N
(
y −Hx ; HXµΦ,k , HXΣΦ,k (HX )T + R

) . (C.23)
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Substituting (C.10) and (C.11) into (C.7),

πΦ|Y ,j =
πX,j ×N

(
y −Hx ; HXµΦ,j , HXΣΦ,j (HX )T + R

)∑NGMM

k=1 πX,k ×N
(
y −Hx ; HXµΦ,k , HXΣΦ,k (HX )T + R

) . (C.24)

The right-hand side of (C.23) is equal to the right-hand side of (C.24). Therefore,

the posterior state and intermediate mode coefficient GMM component weights are

related through (C.17).

Substituting (C.21) into (C.3),

µX|Y ,j = x+XµΦ,j + Kj

(
y −H

(
x+XµΦ,j

))
. (C.25)

Substituting (C.8) into the right-hand side of (C.18),

x+XµΦ|Y ,j = x+X
(
µΦ,j + K̃j

(
ỹ − H̃µΦ,j

))
. (C.26)

Substituting (C.10), (C.11), and (C.12) into (C.26),

x+XµΦ|Y ,j = x+X
(
µΦ,j +XTKj

(
y −Hx−HXµΦ,j

))
= x+XµΦ,j +XXT︸ ︷︷ ︸

I

Kj

(
y −H

(
x−XµΦ,j

))
= x+XµΦ,j + Kj

(
y −H

(
x−XµΦ,j

))
, (C.27)

where XXT is equal to the identity matrix due to the orthonormality of the modes.

The right-hand side of (C.25) is equal to the right-hand side of (C.27). Therefore,

the posterior state and intermediate mode coefficient GMM component mean vectors

are related through (C.18).

Substituting (C.22) into (C.4),

ΣX|Y ,j = (I−KjH)XΣΦ,jXT . (C.28)
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Substituting (C.9) into the right-hand side of (C.19),

XΣΦ|Y ,jXT = X
(
I− K̃jH̃

)
ΣΦ,jXT . (C.29)

Substituting (C.11) and (C.12) into (C.29),

XΣΦ|Y ,jXT = X
(
I−XTKjHX

)
ΣΦ,jXT

=
(
X −XXT︸ ︷︷ ︸

I

KjHX
)
ΣΦ,jXT

= (I−KjH)XΣΦ,jXT , (C.30)

where XXT is again equal to the identity matrix due to the orthonormality of the

modes. The right-hand side of (C.28) is equal to the right-hand side of (C.30).

Therefore, the posterior state and intermediate mode coefficient GMM component

covariance matrices are related through (C.19).

The intermediate GMM mode coefficient distribution (C.16) is thus equivalent to

the posterior GMM state variable distribution (C.1) through the affine transformation

(C.14). Applying the expectation operator to (C.16), the mean of the intermediate

mode coefficient distribution is found to be

E [ Φ |y ]′ =

NGMM∑
k=1

πΦ|Y ,j × E
[
N
(
φ ; µ′Φ|Y ,j , ΣΦ|Y ,j

) ]
=

NGMM∑
k=1

πΦ|Y ,j × µ′Φ|Y ,k . (C.31)

Examining (C.8), we can then recognize that the proposed posterior mode coefficient

distribution (C.6) is the zero-mean equivalent of the intermediate mode coefficient

distribution (C.16). (C.6) is thus equivalent to (C.1) through the affine transformation

(C.14) if the state vector mean is concurrently updated by (C.15). This validates the

reduced dimensionality approach to Bayesian state variable inference employed by

the GMM-DO filter.
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Appendix D

Microorganism Reaction Equation

Linearization

The numerical approach to solving the DO evolution equations (3.4)–(3.6) developed

in [141] is most effective when the stochastic differential equations of the system

under consideration are expressed as polynomials of the stochastic state variables.

To achieve this condition for the stochastic microorganism tracer system, a local

linearization of the non-polynomial microorganism reaction equation is performed, as

suggested in [91].

Consider any single microorganism concentration state variable ρ(t;ω) within the

concentration state variable vector ρ(t;ω) for the stochastic microorganism tracer

system. The expansion (3.1) dictates

ρ(t;ω) = ρ(t) +
∑NDO

i=1 φi(t;ω)ρ̃i(t) , (D.1)

where ρ(t) represents the mean of the concentration state variable and ρ̃i(t) represents

the element in the ith mode corresponding to the concentration state variable.

Dropping temporal and stochastic indices and substituting into the reaction equa-
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tion (5.2),

Fρ(ρ) = g
(ρ+

∑NDO

i=1 φiρ̃i)(ρmax − ρ−
∑NDO

i=1 φiρ̃i)

ρmax − ρ−
∑NDO

i=1 φiρ̃i + kg
− d(ρ+

∑NDO

i=1 φiρ̃i)

= g
ρ(ρmax − ρ)

ρmax − ρ+ kg −
∑NDO

i=1 φiρ̃i
+ g

(ρmax − 2ρ)
∑NDO

i=1 φiρ̃i

ρmax − ρ+ kg −
∑NDO

i=1 φiρ̃i

− g (
∑NDO

i=1 φiρ̃i)
2

ρmax − ρ+ kg −
∑NDO

i=1 φiρ̃i
− d(ρ+

∑NDO

i=1 φiρ̃i) . (D.2)

Let

ε =

∑NDO

i=1 φiρ̃i
ρmax − ρ+ kg

.

Then, (D.2) becomes

Fρ(ρ) = g
ρ(ρmax − ρ)

ρmax − ρ+ kg

1

1− ε
+ g(ρmax − 2ρ)

ε

1− ε

− g(ρmax − ρ+ kg)
ε2

1− ε
− d(ρ+ (ρmax − ρ+ kg)ε) . (D.3)

Using a first-order Taylor approximation around ε = 0,

Fρ(ρ) ≈ g
ρ(ρmax − ρ)

ρmax − ρ+ kg
(1 + ε) + g(ρmax − 2ρ)ε− dρ− d(ρmax − ρ+ kg)ε

=

[
g
ρ(ρmax − ρ)

ρmax − ρ+ kg
− dρ

]
+

[
g

(
ρmax − 2ρ+

ρ(ρmax − ρ)

ρmax − ρ+ kg

)
− d(ρmax − ρ+ kg)

]
ε

= Fρ(ρ) +

[
g

ρmax − ρ+ kg

(
ρmax − 2ρ+

ρ(ρmax − ρ)

ρmax − ρ+ kg

)
− d

]∑NDO

i=1 φiρ̃i .

(D.4)

(D.4) represents a linearized form of the microorganism reaction equation. It has

been found that E [ ε ] < 0.1 for all experiments conducted with the stochastic mi-

croorganism tracer system, justifying the first-order approximation employed in the

derivation of (D.4). Experiments conducted with the linear term in (D.4) removed

(i.e. using a zero-order approximation) showed minimal effects on the efficacy of the

inference methodology presented in Chapter 5.
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Appendix E

Conditional Entropy Identity

Starting from the expected value of the entropy of the posterior state variable distri-

bution,

Ey [H [X |y ] ] =

∫
pY (y)H [X |y ] dy

=

∫
pY (y)

(
−
∫
pX|Y (x |y) log pX|Y (x |y) dx

)
dy

= −
∫∫

pX|Y (x |y) pY (y) log pX|Y (x |y) dx dy

= −
∫∫

pX|Y (x |y) pY (y) log
pY |X(y |x) pX(x)

pY (y)
dx dy

= −
∫∫

pX|Y (x |y) pY (y) log pY |X(y |x) dx dy

−
∫∫

pX|Y (x |y) pY (y) log pX(x) dx dy

+

∫∫
pX|Y (x |y) pY (y) log pY (y) dx dy

= −
∫∫

pY |X(y |x) pX(x) log pY |X(y |x) dx dy

−
∫∫

pY |X(y |x) pX(x) log pX(x) dx dy

+

∫∫
pX|Y (x |y) pY (y) log pY (y) dx dy
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= −
∫
pX(x)

(∫
pY |X(y |x) log pY |X(y |x) dy

)
dx

−
∫
pX(x) log pX(x)

(∫
pY |X(y |x) dy

)
dx

+

∫
pY (y) log pY (y)

(∫
pX|Y (x |y) dx

)
dy

= −
∫
pX(x)H [Y |x ] dx

−
∫
pX(x) log pX(x) dx

+

∫
pY (y) log pY (y) dy

= Ex [H [Y |x ] ] +H [X ]−H [Y ] .

Rearranging,

Ey [H [X |y ] ]−H [X ] = Ex [H [Y |x ] ]−H [Y ] .
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