Reachability Prediction and Optimal Path Planning for Autonomous Ocean Vehicles

by

Ellen M. Mulé

S.B. Mechanical and Ocean Engineering, Massachusetts Institute of Technology, 2018

Submitted to the Department of Mechanical Engineering and the Joint Program in Applied Ocean Science and Engineering in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

September 2025

© 2025 Ellen M. Mulé. All rights reserved.

The author hereby grants to MIT and WHOI a nonexclusive, worldwide, irrevocable, royalty-free license to exercise any and all rights under copyright, including to reproduce, preserve, distribute and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Ellen M. Mulé

Joint Program in Applied Ocean Science and Engineering, MIT-WHOI

August 14, 2025

Certified by: Pierre F.J. Lermusiaux

Professor of Mechanical Engineering and Ocean Science and Engineering, MIT

Thesis Supervisor

Accepted by: Alexandra H. Techet

Professor of Mechanical and Ocean Engineering, MIT

Chair, Joint Committee for Applied Ocean Science and Engineering

Accepted by: Nicolas Hadjiconstantinou

Professor of Mechanical Engineering, MIT

Graduate Officer, Department of Mechanical Engineering

Reachability Prediction and Optimal Path Planning for Autonomous Ocean Vehicles

by

Ellen M. Mulé

Submitted to the Department of Mechanical Engineering and the Joint Program in Applied Ocean Science and Engineering on August 14, 2025 in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

ABSTRACT

For intelligent ocean exploration and sustainable ocean utilization, the need for smart autonomous underwater vehicles (AUVs), surface craft, and small aircraft is rapidly increasing. Creating time-optimal navigation routes for these vehicles has wide-ranging applications, including ocean data collection, transportation and distribution of goods, naval operations, search and rescue, detecting marine pollution, ocean cleanup, conservation, and solar-windwave energy harvesting. In this thesis, we employ the Massachusetts Institute of Technology – Multidisciplinary Simulation, Estimation, and Assimilation Systems (MIT-MSEAS) time-optimal and hazard-time-optimal path planning theory and schemes based on exact Hamilton-Jacobi partial differential equations (PDEs) and Level Set methods. We apply this methodology to ocean gliders and floats during several real-time sea experiments—the Mini-Adaptive Sampling Test Run (MASTR) and Grand Adaptive Sampling Experiment (GRASE) in the Gulf of Mexico, and the New England Seamounts Acoustic (NESMA) experiment in the North Atlantic. Using the MIT-MSEAS multi-resolution ocean modeling and data assimilation system to provide deterministic and probabilistic ocean current forecasts, we compute time-reachable sets as well as time-optimal paths for a variety of ocean vehicle missions. The governing differential equations for reachability analysis and time-optimal path planning were numerically integrated in real time, forced by our large-ensemble ocean forecasts. We illustrated deterministic and probabilistic forward reachability analyses, glider recovery planning, time-optimal routing for gliders in distress, and planning of future glider and float deployments. Results show that the actual paths of gliders were contained within our reachable set forecasts and in accord with the dynamic reachability fronts. These forecasts were successfully employed for glider recovery and informed strategic decisions for future missions. Additionally, we demonstrated the ability to incorporate risk such as severe weather or vessel traffic into hazard-time-optimal path planning for simulated collaborative air-sea drone missions. Overall, the integration of data-driven multi-resolution ocean modeling with exact reachability theory and numerical schemes enables principled, operationally relevant path planning for diverse ocean missions.

Thesis supervisor: Pierre F.J. Lermusiaux

Title: Professor of Mechanical Engineering and Ocean Science and Engineering, MIT

Acknowledgments

First, I would like to thank my advisor, Professor Pierre Lermusiaux, for his exceptional support and mentorship throughout my graduate studies at MIT. Your dedication to your work, to your students, and to MSEAS continues to inspire me. I am deeply grateful for the opportunity to learn from you and alongside you.

I am equally thankful for the help and camaraderie of our MSEAS family. Pat and Chris, your hard work made much of this thesis possible. Thank you for your help with forecasts, scripts, and debugging, and for keeping MSEAS lively with football forecasts and jokes at group meetings. Manan, Aditya, Anantha, and Alonso, thank you for welcoming me into the lab, sharing your expertise so generously, and keeping me sane with Friday crosswords. Sanaa, Marcoul, Bastien, and Akhil, you helped make my time at MSEAS such a rewarding experience. I look forward to seeing the remarkable work you will accomplish in the future. Lisa, your energy brightened every day in Building 5. Thank you for all your help (and for the ukulele sing-alongs).

To my MIT-WHOI Joint Program cohort, I will always cherish our Stata lunches, Peter Pan bus rides, and evenings at Oyster Pond. Your passion for your respective fields is incredible to witness.

Thank you to the United States Navy and the Civilian Institutions Office for its professional and financial support, and for granting me the opportunity to pursue an advanced degree while serving.

We (EM, PFJL, PJH, and CM) are grateful to the Office of Naval Research for support under Grants N00014-19-1-2664 (Task Force Ocean: DEEP-AI) and Tech Candidate grant N00014-21-1-2831 (Compression and Assimilation for Resource-Limited Operations) to MIT. We also thank the Gulf Research Program of the National Academies of Sciences, Engineering, and Medicine under award number 2000013149, and the MIT Portugal Program for support under a Flagship program project (K2D). We thank all members of the New England Seamount Acoustic (NESMA) team and of the Understanding Gulf Ocean Systems (UGOS) Initiative. We thank the HYCOM Consortium and Mercator Ocean for their global ocean model fields, and NCEP for their atmospheric forcing forecasts.

Finally, thank you to my family for your unwavering love and encouragement.