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Dabry fit le point.
‘Nous arriverons bientôt devant le Pot-au-Noir’, alla-t-il crier à l’oreille de
Mermoz.
Le Pot-au-Noir.
Le grand obstacle, l’éternelle et obscure barrière et dont tant de navigateurs à
Dakar et à Rio avaient parlé à Mermoz. Les paquebots le contournaient à
l’ordinaire. Mais, obligé de ménager sa provision d’essence et de couper au plus
court, Mermoz devait passer à travers la zone redoutable. Comment
franchirait-il ce domaine d’effroi et de sombres légendes ?

Mermoz, Joseph Kessel
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Abstract

Continuous progress on developing ever better, safer and more autonomous cyber-physical
systems has brought the need for efficient and optimal automatic decision making. Long-range
mission drones especially, whether flying in atmospheric wind fields or diving in oceanic cur-
rents, are faced with the challenge to optimally plan the route they follow to fulfill their mission
in a highly dynamic, unfavorable and uncertain environment, on space scales of hundreds or
thousands of kilometers and on time windows spanning tenths of hours or several days.

In this thesis, solving such routing problems for long-range airborne or underwater ve-
hicles is the main focus. The routing problems tackled consist in traveling optimally from a
given point to a destination in a strong, unsteady and uncertain flow field, in the presence of
diffuse hazard and strictly forbidden zones, with key metrics being travel time, spent energy
or exposure to hazard. The considered environment geometries are either the planar 2D space
or the Earth’s 2D spherical space. The methods at stake are indirect methods, whether using
extremals from Pontryagin’s Maximum Principle or solving numerically a relevant Hamilton-
Jacobi-Bellman equation.

First, the properties of an extremal-based algorithm to compute time-optimal trajectories
in an unsteady and possibly strong flow field are studied. In given applications cases, simi-
lar existing algorithms from the literature are shown to reach their limit. Improvements are
proposed for the latter and demonstrated to leverage the encountered caveats.

An extension of extremal-based algorithm is then proposed to handle hard obstacles,
whether still or moving. The modified algorithm proves capable to compute time-optimal
trajectories with obstacles but loses the ability to compute the optimal cost of the problem ev-
erywhere in space.

The navigation problem is then extended by adding the speed of the vehicle as a time vari-
able and the total energy expense as an optimization metric. In this framework, the difference
between energy-time-optimal trajectories and time-optimal trajectories is studied. On realis-
tic examples, it is shown that an order of magnitude of 10% reduction in energy expense is
possible when allowing the vehicle speed to adjust dynamically during the travel.

Hazard is added in the navigation problem as a dynamical and diffuse quantity. A
Hamilton-Jacobi-Bellman partial differential equation is solved to get reachability sets for the
vehicle in a hazard-physical space, from which hazard-time-optimal trajectories are computed.
On realistic settings, it is shown that hazard-time-optimal trajectories are able to avoid a signif-
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icant amount of hazard in the environment while increasing moderately the total travel time,
thus proving the relevance of hazard-time-optimal planning in operational contexts.

Finally, uncertainty is tackled in the planning problem. A most important source of uncer-
tainty comes from the flow field prediction. Weather ensemble predictions provide a collec-
tion of possible weather scenarios that help quantify uncertainty in the flow field data. On an
airborne problem, the approach consisting in computing time-optimal trajectories in each sce-
nario and simulating the variation in travel time incurred by following the trajectory in differ-
ent scenarios is evaluated. The average travel time is overall constant over the possible paths,
but there exist paths minimizing the dispersion in the travel duration. Next, a PMP formula-
tion on ground paths rather than trajectories is proposed. It enables the writing of differential
equations satisfied by extremals candidate to average travel time optimality. These average-
time-optimal trajectories are shown to solve for the minimal average travel time in an example,
however not with a significant reduction compared to classical time-optimal trajectories in the
considered case.
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Résumé de la thèse

Les systèmes cyber-physiques modernes tendent vers toujours plus de capacités, de sûreté de
fonctionnement et d’autonomie. Dans ce contexte, la prise de décision automatique devient un
enjeu central pour de tels systèmes. C’est d’autant plus vrai pour les drones aériens ou sous-
marins de longue endurance, pour lesquels le routage dans un environnement dynamique,
défavorable et incertain constitue un défi, avec des distances à franchir de plusieurs centaines
à quelques milliers de kilomètres et des temps de trajet de plusieurs heures à plusieurs jours.

Dans cette thèse, on s’intéresse à de tels problèmes de routage optimal pour des véhicules
à longue endurance, aériens ou sous-marins. Les problèmes considérés consistent à atteindre
une destination dans un champ de flot instationnaire, fort et incertain, avec un danger diffus
dans l’environnement et des obstacles infranchissables, et une métrique de performance pou-
vant être le temps de trajet, l’énergie dépensée ou l’exposition au danger. L’environnement
considéré sera toujours soit plan soit sphérique. Les méthodes utilisées sont des méthodes
indirectes, soit le calcul d’extrémales tirées du Principe du Maximum de Pontryagin, soit la
résolution d’une équation aux dérivées partielles du type Hamilton-Jacobi-Bellman.

Dans un premier temps, un algorithme basé sur les extrémales pour le calcul des trajec-
toires temps-optimales dans un champ de flot instationnaire et possiblement fort est décrit
puis analysé. Des exemples permettent de montrer les limites des algorithmes de la littérature
basés sur des extrémales, et que l’algorithme proposé dans ce travail permet de dépasser ces
dernières.

Une version modifiée de l’algorithme est proposée pour calculer les trajectoires temps-
optimales en présence d’obstacles fixes ou mobiles. En revanche, cette version n’est plus capa-
ble de calculer la fonction valeur du problème partout dans l’espace.

Par la suite, la vitesse du véhicule est autorisée à varier durant le trajet et l’énergie totale
dépensée est ajoutée en tant que métrique de performance. Dans ce cadre, la différence entre
les trajectoires énergie-temps optimales et les trajectoires temps-optimales est étudiée. Des
exemples réalistes montrent qu’un gain de l’ordre de 10% peut être espéré pour un véhicule
avec vitesse variable comparé à une vitesse fixe.

Le problème de navigation est alors enrichi par l’ajout d’un champ de danger diffus et insta-
tionnaire dans l’environnement. Une équation aux dérivées partielles de type Hamilton-Jacobi-
Bellman est résolue pour calculer l’ensemble atteignable pour le véhicule, duquel peuvent être
déduites les trajectoires danger-temps optimales. Des exemples réels montrent que les trajec-
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toires danger-temps optimales sont capables d’éviter une quantité de danger significative tout
en augmentant modérément le temps de trajet, validant ainsi la pertinence d’utiliser l’approche
dans un contexte opérationnel.

Enfin, l’incertitude est ajoutée au problème. L’accent est mis sur l’incertitude inhérente à
la prédiction du champ de flot en considérant ce dernier donné comme un ensemble de pré-
dictions météorologiques. Sur un cas aérien, des trajectoires temps-optimales sont calculées
par scénario puis la variation de temps de trajet est évaluée pour chacune d’elles dans chaque
autre scénario. La moyenne du temps de trajet varie peu en fonction du chemin choisi mais
en revanche la variance du temps de trajet est moins forte pour certains chemins. Pour car-
actériser l’optimalité d’une trajectoire relativement au temps de trajet moyen tous scénarios,
une application du principe du maximum de Pontryagin est proposée, basée sur chemin sol
plutôt que sur trajectoire. Sur les exemples considérés, la méthode permet en effet de trouver
les trajectoires optimales en moyenne de temps de trajet, mais sans écart significatif avec les
trajectoires temps-optimales calculées par scénario.
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Mathematical notations

Throughout the whole thesis, we use the following mathematical conventions

• Symbols for vectors appear in bold, i.e. x is a vector while x is a real number.

• xᵀ denotes the transpose of vector x.

• By default, vectors are column vectors, noted either

(
x
y

)
or (x y)ᵀ depending if they

appear inside paragraphs or in equations.

• The vector scalar product is thus implicitly written as the usual matrix product, that is,
xᵀy is the scalar product of x and y.

• The norm of vectors is noted ‖x‖. If not specified differently, it refers to the Euclidean

norm ‖(x1 x2 . . . xn)ᵀ‖ =
√

∑n
i=1 x2

i .

• If f : x 7→ f (x) is a function, we sometimes refer to the function using the notation f (·)
to avoid confusing with particular images of the function.

• When f : x := (x1 x2 . . . xn)ᵀ 7→ f (x) is a differentiable multivariate function, its first
derivative is rigorously the 1× n row vector d f

dx = ( ∂ f
∂x1

∂ f
∂x2

. . . ∂ f
∂xn

).

• When f : x := (x1 x2 . . . xn)ᵀ 7→ f(x) = ( f1(x) f2(x) . . . fm(x))ᵀ is a differentiable
multivariate vector function, its first derivative is the m× n Jacobian matrix

df
dx

=


∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

...
...

∂ fm
∂x1

∂ fm
∂x2

· · · ∂ fm
∂xn


• Total or partial derivative evaluations are noted using the bar notation. For instance,

df
dx

∣∣∣∣
x?1 ,..., x?n

is the evaluation of the Jacobian of f at point (x?1 . . . x?n)ᵀ.
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MATHEMATICAL NOTATIONS

• For derivatives w.r.t. the time variable, the dot notation is often used, e.g. ẋ(t) =
dx
dt

∣∣∣∣
t
.

We use the following list of symbols

List of symbols

B (x, r) Ball of center x and radius r
R Set of real numbers

R (θ) Rotation of angle θ

S1 Unit circle
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Introduction

Context

1930. French aviator Jean Mermoz crosses the Atlantic between Saint-Louis, Senegal and Natal,

Brazil and opens for the first time an air mail route for Aéropostale reaching South America.

The crossing is 3000 km long and took 21 hours to complete. The crew struggled in the dark,

the heat, the heavy rain showers and the gusts when flying in the doldrums, this zone around

the equator where the wind circulation stops and large storms form.

1930. Mathematician Ernst Zermelo publishes a resolution for the problem of the optimal

steering of an air vehicle in the wind (Zermelo, 1930), probably inspired by the first round-the-

world airship navigation by the Graf Zeppelin in 1929.

The first story is that of a hard and risky challenge that was met. At ISAE-SUPAERO, it

inspired the Mermoz challenge (Gavrilovic et al., 2023, 2019) consisting in the development of

an Uninhabitated Air Vehicle (UAV) to cross the Atlantic on the same route as Jean Mermoz

(Fig. 1) but with a significant reduction in greenhouse gas emissions. The UAV will have to

cross 3000 km with a cruise speed of around 80 km/h, thus flying for about 36 h over the ocean.

In such conditions, the effect of the wind can be significant on the trajectory: first, the great

circle route to destination is not guaranteed to be the fastest; furthermore, in case of very strong

wind, the reachable space for the UAV can be very limited. Additionally, over such a time scale,

the wind field can evolve significantly, and this evolution can be difficult to predict, especially

at the end of the time window, where weather forecast models show the most dispersion. As
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INTRODUCTION

Figure 1: Map of French air mail company Aéropostale. The network spans to South America using a route
over the Atlantic that was opened by Jean Mermoz on May 12th, 1930. From websites.isae-supaero.fr/
drone-for-earth.

Jean Mermoz a century before, the UAV will also face zones with difficult flight conditions,

especially in the Inter-Tropical Convergence Zone (ITCZ), where very active storms form.

The second story is the beginning of a century of work around the optimal routing of ve-

hicles immersed in a flow field, both theoretically and numerically. Work which is now a fun-

damental basis for the resolution of complex trajectory planning problems, such as the one

described in the previous paragraph, with all its different features.

The work presented in this thesis tries to connect the two stories. We will use the tools

of optimal control to address trajectory planning problems: time-optimal navigation, obstacle

avoidance, energy optimization, hazard avoidance or navigation in uncertain environments. To

address this wide variety of problems, we first need to set the appropriate level of abstraction

to model the situation, and review the sources of data available for trajectory planning.

The Mermoz drone

Before moving on to the trajectory planning problem itself, let us give some details about the

Mermoz drone, the backbone application underlying the mathematical development to come.

The Mermoz drone development started at ISAE-SUPAERO in 2019 to fulfill the challenge

20
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Figure 2: Fuel cell principle

of crossing the Atlantic between Dakar, Senegal and Natal, Brazil with a significant reduction

in greenhouse gas emissions. While electric propulsion quickly appeared as a solution, electric

power storage with lithium-based batteries did not provide a sufficient energy to mass ratio

to cross the 3000 km. Thus, dihydrogen was selected as energy source, with a fuel cell to pro-

duce electric current from the combustion of dihydrogen with dioxygen. The fuel cell principle

is sketched in Fig. 2 and recalled here. Dihydrogen H2 flows continuously in one circuit and

supplies protons H+ to the electrolyte at the anode. The cathode is in contact with the oxy-

dant (dioxygen O2) which is reduced by the protons to form water H2O, producing heat as

byproduct. The stream of protons feeds a reverse stream of electrons, which creates an electric

current.

The top-level requirements for the design of the Mermoz drone are the following ones:

1. able to cross the distance of 3000 km;

2. total mass of less than 25 kg;

3. hydrogen fuel cells as primary power source.

The design chosen for the Mermoz drone is a classical configuration of a fixed-wing, 4 m
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Figure 3: The Mermoz drone in the version integrating a 7L liquid dihydrogen tanK.

wingspan drone with a front propeller and vertical and horizontal stabilizers at the rear (Fig. 3).

The fixed-wing configuration offers much more range capacity than the multi-rotor configura-

tion, which fits to the mission. However, take-off and landing require much more care and

constraints for fixed-wing configuration than for multi-rotors. The selected high aspect ratio

wing (high length, low width) allows high aerodynamic efficiency for reduced drag in cruise.

The fuselage shape and width is set to integrate a fuel cell and hydrogen storage. In a first ver-

sion, that already flew at the time this thesis is written, hydrogen was stored in gaseous form

in a 300 bar tank. But the energy density of a hydrogen-based power supply can be further

improved by resorting to liquid dihydrogen, which can store more energy in the same vol-

ume than compressed dihydrogen in commonly used 300 bar or 700 bar tanks. Thus, a second

version of the Mermoz drone is being developed to integrate a liquid dihydrogen tank. The

challenge for liquid dihydrogen is to store it below its boiling point, i.e. at a temperature below

20.39 K. This requires a very efficient isolating tank to store the dihydrogen. Furthermore, as no

tank is perfect, heat continuously flows into the tank, heating up liquid dihydrogen that turns

into gas and accumulates in the tank. The tank is regulated to keep the pressure inside under a

given threshold. If this threshold is reached, the tank jettisons dihydrogen into the atmosphere.

The outgoing flow of gaseous dihydrogen that balances the constant gas supply from the tank
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Figure 4: Diagram of a liquid dihydrogen power plant, producing electricity from the combustion of dihydrogen
and dioxygen in a fuel cell. From Gavrilovic et al. (2023)

is called the boil-off rate. For a perfect operation of the tank, one would size its propulsive sys-

tem to operate precisely at this boil-off rate, neither losing dihydrogen nor drawing too much

on the tank (thus requiring a heating system to increase the boil-off). The general liquid H2

power system is depicted in Fig. 4. More details about the sizing of the hydrogen power plant

for the Mermoz drone can be found in Gavrilovic et al. (2023).

Models

In this section, the appropriate abstraction model for long-range path planning is chosen, and

the different features of the navigation problem are discussed.

Vehicles

Advected or not? Different classes of vehicles are subject to the problem of long-range

route planning in free space and dynamic environments. Aircraft, UAVs, ships, submarines,

Autonomous Underwater Vehicles (AUVs) are examples of such vehicles (examples of au-

tonomous marine vehicles are depicted in Fig. 5). There is an important difference between

vehicles that are subject to advection by a flow field present in the environment and the ones

that are not. Airborne and underwater vehicles are examples of vehicles that feel the push of
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(a) (b)

Figure 5: (a) An example of an autonomous sailing vessel (Source: NOAA and Saildrone Inc.). (b) An example of
an AUV (Source: Bluefin Robotics).

the wind or the ocean currents acting on their trajectories. But for ships, the advection by sur-

face currents is generally negligible compared to the ship’s speed, whether the ship is powered

by an engine or is a sailship. In this thesis, we focus on the class of vehicles that are subject to

advection.

Large Scale Point Of View In the literature of long-range route planning, the most common

way to model the vehicle is to use a Large-Scale Point Of View (LSPOV) model of the situation.

This means that the vehicle is assimilated to a single point with position vector x. The trajectory

of the vehicle is the function of time noted x(t). From the LSPOV, the forces acting on the

vehicle are balanced and the vehicle has no acceleration. It thus evolves through the following

kinematic model

vg = u + v f

where

1. vg := dx
dt is the ground velocity of the vehicle.

2. u is the vehicle’s Velocity Relative to the Flow (VRF). Its norm ‖u‖ is called the Speed
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Start, x0

Target, xt

Velocity relative to flow
u

Flow velocity
v f

Ground velocity
vg

Vehicle

Ground
velocity

x(t) u
‖u‖

Heading vector

Large scale Small scale

Figure 6: Left, the navigation problem: steering a vehicle from a start point to a destination in a flow field. Right,
the velocity composition leading to the ground velocity of the vehicle.

Relative to the Flow (SRF). In the case of an airborne vehicle, it is the airspeed. The nor-

malized VRF u
‖u‖ is called the heading vector and is noted h.

3. v f is the flow field vector. In the airborne case, it is the wind vector, and in the underwater

case it is the ocean current.

The vector summation is detailed in Fig. 6.

Dimension of the state space

For long-range routing problems, there are different ways to model the free space depending

what the routing is made for. The most common models are:

1. the 2D planar space, where x = (x y)ᵀ;

2. the 2D spherical space, where x = (ϕ λ)ᵀ with ϕ the longitude and λ the latitude;

3. the 3D space, where x = (x y z)ᵀ.

Of course, the 3D space is the most comprehensive one because it makes no particular as-

sumptions to reduce the state space dimension, but many long-range navigation problems do
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not need the third dimension. It is the case for aircraft flying at a (almost) fixed altitude, given

either by the optimum conditions of flight or by constraints (near the sea level for the Mermoz

drone). It is also the case for autonomous underwater gliders that alternate upward and down-

ward moving phases to produce thrust, and thus from the LSPOV it is as if they were at the

average depth. Now, if the third dimension is useless, one has to choose between 2D planar

space or 2D spherical space. The 2D planar space comes with the simplicity of equations: most

results for optimal routing (formulas or open-source codes) are given in cartesian coordinates

and can consequently be applied directly in this space. But the 2D spherical is the most ac-

curate when moving on Earth, because it captures the sphericity. It appears that, for routing

missions of up to three of four thousands of kilometers, projections of the Earth do not entail

much distortion of the routing problem, so that the 2D planar model can be chosen. But for

larger problems, the 2D spherical model may be needed. For instance, for the 3000 km length

scale of the Dakar to Natal navigation problem, a Lambert projection can keep the relative error

on distances under 1.6 %, so that trajectories optimized on the projected space are expected to

be very close to what would be obtained by optimizing in the spherical space.

It must be noted that the proposed parameterization of the spherical space in longi-

tude/latitude is far from being the only possible one. While being canonical (a lot of appli-

cations use longitude/latitude to locate points on Earth), this coordinate system suffers from

degeneration at the poles, which in practice can lead to bad numerical conditioning, or other

errors. Other two-variable coordinate systems can shift the problem away from poles if needed,

but there will always be a singularity somewhere in the representation.

Velocity Relative to the Flow

Depending on the dimension of the problem, the VRF u will be of dimension 2 or 3. If the

problem is spherical, this velocity vector will belong to the tangent plane to Earth at the given

position (and still be of dimension 2).

In dimension 2, taking the LSPOV has strong consequences on the sets of values U ⊂ R2
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that the VRF can take. Let’s focus on the small-scale vehicle behavior and note Us the set of

admissible VRF for the small scale. This VRF results from an equilibrium of forces between

actuators and drag forces. Because the vehicle has limited onboard power, this VRF is bounded

‖u‖ ≤ umax. Furthermore, the set of admissible VRF Us has to be circularly symmetric: when an

SRF u1 = ‖u‖ is reachable, the vehicle can use it with any heading to move around.

So the set Us is either a disk or a collection of annulus contained in B (0, umax). Vehicle

that can idle (u = 0) like AUVs indeed have Us = B (0, umax). But for vehicle relying on a

lift force to sustain motion like aircraft, pure idling is impossible and Us is indeed an annulus

Us =
{

u ∈ R2
∣∣ umin ≤ ‖u‖ ≤ umax

}
.

But when using the LSPOV, the set of admissible controls U is really the convex hull of

Us. Indeed, if u1 and u2 are admissible controls in Us, then consider actuating the vehicle at

small-scale with the high frequency control

u(t) =

 u1 if t mod T ∈ [0, αT]

u2 if t mod T ∈ [αT, T]

with the period T being of the small-scale time magnitude (for instance minutes for an aircraft).

Then from the LSPOV, the vehicle will appear to have VRF

u = αu1 + (1− α)u2

So any convex combination of the small-scale admissible VRF leads to an admissible VRF

for the large scale. Thus, U is a convex, circularly-symmetric set, so it is a disk. To sum up, in

dimension 2 and using the LSPOV on the routing problem, it makes sense for any vehicle to

consider that the admissible set of VRFs is a disk

U = B (0, umax)

27



INTRODUCTION

In particular, from the LSPOV, an aircraft can idle. This is easy to implement in practice by

making the aircraft loop around a point.

Flow field

In the routing problem, the flow field (wind or oceanic current) is a time-space vector field

v f (t, x) of the same dimension as the state space (tangent to Earth in the spherical case). In

some cases, it will be also useful to consider steady flow fields, i.e. flow fields that do not depend

on time v f (x).

Many methods for optimal routing require evaluations of the flow field at arbitrary times t

and positions x, which motivates the functional model for the flow field t, x 7→ v f (t, x). But

in practice, we don’t have access to the flow field value at arbitrary times and positions. The

flow field data always comes from a weather model or an ocean model (Fig. 7). These models

use the laws of physics to compute on a 3D grid (xi,j,k) and for different times t0, t1, . . . , tn, the

state of the atmosphere (resp. ocean) Ψ
(0)
i,j,k, Ψ

(1)
i,j,k, . . . , Ψ

(n)
i,j,k, where Ψ is a vector containing all

the variables describing the state of the atmosphere (resp. ocean) at a given time and position.

Usually, models can work in forecast mode, predicting future values for the state of atmosphere

(or ocean), or in reanalysis mode, using past observed data to build a comprehensive gridded

representation of the atmosphere (or ocean).

For global forecast of atmospheric data, models such as the Global Forecast System1 (GFS),

or the European Centre for Medium-Range Weather forecast model2 (ECMWF) provide open-

source access to weather forecasts. For reanalyses of atmosphere data, the Copernicus Data

Store provides access to the open-source ECMWF Reanalysis in fifth version3 (ERA5) that

provides a wide variety of atmospheric parameters on multiple pressure levels from 1940 to

present. For the ocean, the HYbrid Coordinate Ocean Model4 (HYCOM) or the operational

1https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast
2https://confluence.ecmwf.int/display/DAC/ECMWF+open+data%3A+real-time+forecasts+from+IFS+

and+AIFS
3https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels
4https://www.hycom.org/data/glby0pt08/expt-93pt0
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Mercator Ocean model output5 (Copernicus Marine Data Store) provide forecast data.

Weather models give a gridded prediction for the flow field [v f ]
(s)
i,j,k. To get a continuous

representation, one needs to resort to interpolation. Several methods are available, with different

accuracy levels, as presented in Table 1.

Method Pros Cons

Nearest neighbor Very fast, simple implementation Discontinuous, not physically
relevant between data points

Linear Fast, continuous Derivative discontinuous

Cubic splines Smooth (C1 class) More costly, not necessary com-
prehensively implemented in all
code libraries6

Akima splines Smooth (C1 class), reduces oscil-
lations

More costly, not necessarily
available in all libraries

Table 1: High-level comparison of interpolation methods.

The most widely used interpolation method is the linear one, because it achieves a trade-off

between simplicity and consistency of the interpolation: it achieves continuity between grid

points, which is what is expected for physical quantities, and it is available in a wide variety of

code implementations.

Problems

Reachability

With all the previous elements defined, the first interesting problem is to compute the reachable

set of the vehicle in some duration τ, from the start date t0 and the start position x0, which we

noteRt0,x0,v f (τ). It is the collection of all positions that can be reached departing from (t0, x0) in

duration τ. A sketch is presented in Figure 8. The complexity of the reachable set is essentially

5https://data.marine.copernicus.eu/product/GLOBAL_ANALYSISFORECAST_PHY_001_024/description
6In Python, the package scipy implemented a cubic spline interpolator, but it is only recently, on April 3rd, 2024

with version 1.13 that the possibility to automatically compute derivatives of the interpolator was released. It is a
key feature, intensively used in the algorithms presented in Chapters 3 and 4 for the derivatives of the flow field.
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x0

xt
Rt0,x0,v f (τ)

Figure 8: The reachable set from start point x0. Two example trajectories are depicted: one reaches the border of the
reachable set while the second falls inside.

governed by the comparison of the vehicle’s SRF to the flow field magnitude.

1. vr �
∥∥v f

∥∥. When the SRF is way superior to the flow magnitude, the reachable set looks

like a slightly deformed disk (in 3D, a sphere). It is the case, for instance, for commercial

aircraft.

2. vr >
∥∥v f

∥∥. When the SRF is comparable to the flow magnitude, the reachable set can be

way deformed compared to the disk case. UAVs usually fall in this category.

3. vr <
∥∥v f

∥∥. If the SRF is less than the flow magnitude, then the reachable set is not

increasing anymore: positions that are reachable at some time may be out of reach at

a later date, because the flow is pushing. AUVs are often confronted to this mode of

operation.

4. vr �
∥∥v f

∥∥. If the SRF is way smaller than the flow magnitude, then the trajectory is

essentially the one of a free particle in the flow. In this case, control is not really useful.

When the SRF is always superior to the flow magnitude vr >
∥∥v f

∥∥, the reachable set is

increasing, and even better, all the state space is reachable, provided one has sufficient time.

In this case, the control system (the vehicle) is said to be controllable: there exist a control (a
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t = τ1 t = τ2 t = τ3

x0

Rx0,v f (τ1)

v f
Rx0,v f (τ2)

Unreachable

Figure 9: Example reachable sets in a stream flow. In the upper row, the flow field magnitude is inferior to the ve-
hicle’s SRF and the reachable set is increasingRx0,v f (τi) ⊂ Rx0,v f (τi+1). In the lower row, the flow field magnitude
is superior to the vehicle’s SRF and the latter property does not hold.

sequence of heading vectors h(t)) that steers the vehicle to any position in space. It is not

necessarily the case when the flow is strong (vr <
∥∥v f

∥∥). An example of this is given in Figure 9

Time optimality

When a location is reachable for the vehicle, an important question is to know how to steer

the vehicle to this location in a minimal amount of time. This means finding a solution to the

following Time-optimal Navigation Problem (TNP)

(TNP)


min
u(·)

t f

ẋ(t) = u(t) + v f (t, x(t))

x(t0) = x0, x(t f ) = x f

This problem has been entailing much research, starting with the work of mathematician
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Ernst Zermelo in 1930 (Zermelo, 1930). It is known under the name of Zermelo’s Navigation

Problem (ZNP). A wide variety of optimization techniques exist to solve this problem and will

be reviewed in Chapter 1. In Chapters 3 and 4, a specific technique will be detailed to solve this

problem, first in its original formulation and then in the presence of obstacles.

Multi-objective optimality

Computing time-optimal trajectories is really the entry point in the trajectory optimization

world. But of course, in routing problems, time is not the only relevant criteria.

Energy

Energy is an important matter in routing problems. Careful energy management is required for

vehicles with low energy capacity but long missions. The energy expense depends on how the

vehicle spends its power which, once the forces are balanced (assumption of the LSPOV) turns

out to be a function of the VRF u. Some vehicle can also gain energy, for example harnessing a

time-space field such as the solar power. So in general the spent power g(t, x, u) is a function

of time, space, and the VRF, and the total energy spent is its integral:

E f =
∫ t f

t=t0

g(t, x(t), u(t))dt

The energy is a new objective that gets added to the travel time, so the routing problem be-

comes a multi-objective optimization problem that we call Energy-time-optimal Navigation Prob-

lem (ENP)

(ENP)



min
u(·)

[t f , E f ]

ẋ(t) = u(t) + v f (t, x(t))

x(t0) = x0, x(t f ) = x f

E f =
∫ t f

t=t0

g(t, x(t), u(t))dt

In this case, an object of particular interest is the Pareto front of the energy-time graph, i.e.
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Feasible region

Energy

Time

Pareto front

Figure 10: For a navigation problem, possible pairs of travel duration and energy expense, depicted as a yellow
region. The solid red curve depicts the Pareto-optimal pairs.

the collection of pairs (t f , E f ) such that no other pair exist with strictly less travel time and

spent energy value at the same time.

Chapter 5 presents a discussion on assessing if the SRF has a significant impact on the

energy expense, or not, for flying vehicles.

Hazard, collection

In routing problems, it may exist a time-space field ϕ(t, x) (or several ones ϕ1(t, x), . . . , ϕn(t, x))

that are beneficial or detrimental to the vehicle. For example, exposure to heavy rain and storms

is detrimental to UAVs, in which case ϕ is called a hazard field. But if ϕ is the density of algae

or fish for an AUV to collect, then it is beneficial and it is subsequently called a collection field.

In any case, the total accumulated amount of exposure to the given field:

Φ f =
∫ t f

t=t0

ϕ(t, x(t))dt

is a quantity that one may want to minimize (hazard) or maximize (collection). Here, again, the

routing problem becomes a multi-objective problem, with a trade-off between travel time and

total accumulation of the field to balance: in the case of hazard, balance between high exposure

to hazard but reduced travel time or longer travel but safer; in the case of collection, balance
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between short travel times and high collection.

In Chapter 6, we will focus on the Hazard-time-optimal Navigation Problem (HNP)

(HNP)



min
u(·)

[t f , Φ f ]

ẋ(t) = u(t) + v f (t, x(t))

x(t0) = x0, x(t f ) = x f

Φ f =
∫ t f

t=t0

ϕ(t, x(t))dt

Obstacles

Reachability, time-optimality or multi-objective optimality problems can all be enriched with

the addition of obstacles that the vehicle has to avoid. These obstacles can come from problem

physical limits (e.g. coastlines for AUVs) but also from operational limits such as forbidden

zones, very hazardous weather zones, other vehicles in space. . .

In general, an obstacle (or barrier) can be represented as a sublevel set B(t) := {ϕ(t, x) ≤ 0}
of a piecewise smooth function ϕ ∈ C∞

pwc. The adaptation of a trajectory optimization technique

to the presence of obstacles is discussed in Chapter 4, where the focus will be on the Constrained

Time-optimal Navigation Problem (C-TNP)

(C-TNP)



min
u(·)

t f

ẋ(t) = u(t) + v f (t, x(t))

x(t0) = x0, x(t f ) = x f

ϕi(t, x(t)) ≤ 0, i = 1, . . . , nobs

(0.1)

Uncertainty

In the routing problem, different sources of uncertainty can alter the planning process. There

can be uncertainty in the vehicle’s motion because of positioning errors, control imprecisions,

wrong value of the flow field at the local scale compared to the global scale prediction. . . There
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can also be uncertainty in the flow field prediction, particularly in its evolution, as the atmo-

sphere or the ocean are chaotic systems. In each case, taking into account that parameters are

uncertain can be done theoretically, and the optimal planned trajectory in the presence of un-

certainty can be adapted for better statistical or averaged performances. This will be the focus

of Chapter 7.

Organization of the thesis

In this thesis, we will try to develop general theoretical tools and perform numerical appli-

cations to answer practical questions raised by the Mermoz drone crossing the Atlantic. In a

first chapter (Chapter 1), the state of art on long-range optimal path planning in flow fields

is reviewed. Then, a collection of chapters are proposed to provide answers to the following

scientific questions:

1. What are the properties of the navigation problem in its long-range abstraction? (Chap-

ter 2)

2. How to efficiently determine time-optimal trajectories for light vehicles on long-range

missions when evolving in an unsteady and possibly strong flow field? Is it possible to

have guarantees on the optimality? (Chapter 3)

3. How does optimal trajectories change when adding obstacles in the problem? How to

adapt time-optimal computation methods in this case? (Chapter 4)

4. Can time-optimal methods be adapted to the case when the speed of the vehicle is vari-

able and when the key metric is energy instead of time? What does the addition of this

new variable change in the planning problem? Is there much to be gained by using

energy-minimizing trajectories instead of time-minimizing ones? (Chapter 5)

5. How to handle diffuse hazard zones, that would not be correctly modelled by hard ob-

stacles, into the trajectory planning procedure? What does it change in practice to follow

36



hazard-avoiding trajectories instead of time-optimal trajectories? (Chapter 6)

6. How can one decide best for a trajectory when the environment is uncertain? Can previ-

ous trajectory optimization methods be directly used in an uncertain context? (Chapter 7)

All these questions concur in making the strategic trajectory planning the most comprehen-

sive possible. The general conclusions of this work will be drawn at the end of this dissertation

in a dedicated chapter.

Code

A lot of numerical applications presented in this thesis are based on a companion module

called7 DABRY developed during the PhD by the author. A frozen version of the code is avail-

able at https://doi.org/10.5281/zenodo.13939206. It is the version used to generate the

results presented in the present manuscript. The evolving Git repository for the code is at

github.com/dabry-route/dabry.

Throughout the manuscript, some references to Python notebooks used to generate results

are given in footnotes. They can be found in the Zenodo archive in the thesis-notebooks

directory. The notebooks are provided ‘as is’ in an open-source effort, and may sometimes

needs some manual adjustments to work correctly.

7Jean Dabry was the navigator onboard with Jean Mermoz for the crossing of the Atlantic on May 12th, 1930
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Chapter 1

Literature review

This chapter is dedicated to reviewing the literature of work solving Zermelo’s navigation

problem. As explained in the introduction, references span from aerial vehicles in wind fields

to submarines in ocean currents, sometimes also including ship routing. This review is focused

on time-optimal navigation in a deterministic and possibly strong flow field, since it is the

‘entry point’ of the literature for vehicle routing in flow fields. To solve this problem, a wide

variety of methods was proposed, as will be seen in this chapter.

References dealing with upgrades of Zermelo’s problem such as obstacles, energy-optimal

routing or routing in uncertain flow fields are kept for dedicated reviews in the corresponding

chapters of this thesis.

Similar, well-documented literature reviews around trajectory optimization for vehicles in

flow fields can be found in Lolla (2016), with an underwater flavor or in González Arribas

(2019), with an aeronautics flavor.

Before reviewing contemporary work on trajectory optimization, we take a step back in

history. Indeed, most tools that we manipulate in trajectory optimization have taken centuries

to get mature, and it is useful to understand where the tools come from, to better understand

how they work.
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CHAPTER 1. LITERATURE REVIEW

Trajectory optimization: Historical background

Before being the computer-based discipline that it is now, trajectory optimization went through

centuries of evolution in mathematics and physics that gave it its own shape. In the end of the

17th century, Jean Bernoulli solved the canonical trajectory optimization problem called the

brachistochrone, i.e. finding the optimal shape of a curve over which a freely moving heavy ball

would reach its end the fastest possible. This work was contemporary with the development

of the calculus of variations, which really set the first fundamental mathematical tools for opti-

mization. In the wake of these developments, in the following centuries, physicists formalized

the powerful stationary-action principle. This principle states that every physical system de-

scribed by a finite amount of parameters tends to evolve so that the action - i.e. the integral

of the difference between kinetic energy and potential energy - is minimized. Much of the

terminology used in modern optimal control inherits from physics’ terminology around this

principle. Thus, to contextualize the optimal control notions that will be used throughout the

whole thesis, we shall quickly review what the stationary action principle implies in physics.

If a physical system is described by a multivariate state vector q = (q1, . . . , qn), let us note

q̇ the instant variation of these parameters in time. Let T(q, q̇, t) be the kinetic energy of the

system at time t, state q and variation of state q̇ and V(q, t) the potential energy (which by

nature does not depend on the variations). Then, let

L(q, q̇, t) := T(q, q̇, t)−V(q, t)

which we call the Lagrangian of the physical system. For a trajectory t 7→ q(t) defined between

t0 and t f , and with known values at these boundaries, the action is

S[q] :=
∫ t f

t=t0

L(q(t), q̇(t), t)dt

It is a functional on the space of possible trajectories. The stationary-action principle states that
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the trajectory effectively followed by the system is the one verifying

q = arg min
q̃ admissible traj.

S[q̃]

This is very convenient for physicists since a lot of different physical systems (conservative

ones) can be totally characterized by their energy in Lagrangian form. The system’s trajec-

tories are then consequences of the stationary-action principle applied to the corresponding

Lagrangian. So, physical systems naturally draw optimal trajectories in the sense of the phys-

ical quantity of the action. This is what fostered the development of the calculus of variations

to study physical systems.

Then, an important branching occurs on how to characterize trajectories according to this

principle.

Euler-Lagrange One can derive Necessary Conditions of Optimality (NCO) that trajectories

must verify. This is done by differentiating the action with respect to the state vector, and this

leads to the Euler-Lagrange equations

d
dt

∂L
∂q̇i
− ∂L

∂qi
= 0 for i = 1, . . . , n (1.1)

Integrating these equations in time is usually sufficient to reconstruct the system’s trajectories.

Hamilton-Jacobi There exist another formulation of these equations, called Hamiltonian for-

mulation. For the latter, physicists define conjugate moments p = (p1, p2, . . . , pn) as

pi :=
∂L
∂q̇i

for i = 1, . . . , n

Usually, this formula is revertible in q̇i so they become a function of qi and pi

q̇i = fi(qi, pi)
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Then, the Hamiltonian of the system is defined as follows:

H(q, p, t) = p f (q, p)− L(q, f (q, p), t)

It is homogeneous to an energy. Euler-Lagrange equations (1.1) are then equivalent to the

Hamiltonian formulation

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

for i = 1, . . . , n (1.2)

In Hamiltonian mechanics, to get the system’s evolution in time, on uses canonical trans-

formations of the coordinate system. Without going too much into the details, the stationary-

action principle is equivalent to the existence of some function S called Hamilton’s principal func-

tion satisfying the non-linear Partial Derivatives Equation (PDE) called Hamilton-Jacobi equa-

tion:

H
(

q,
∂S
∂q

, t
)
+

∂S
∂t

= 0 (1.3)

There are n significant integration constants α1, . . . , αn in the solution of this equation (n + 1

in total but one of them is a non-significant summation constant). The solution depends on

coordinate variables and on these constants and we note S(q1, . . . , qn, α1, . . . , αn, t). Because of

the nature of S, the new canonical coordinates:

q′i :=
∂S
∂αi

i = 1, . . . , n (1.4)

are constant in time q̇′ = 0. So, in (1.4), the left hand term is a constant and the right hand term

makes q1, . . . , qn appear with time t and constants among α1, . . . , αn. Thus, the inversion of this

equation leads to the deduction of the system’s trajectory.

These methods for computing trajectories of physical systems will be advantageously

adapted in optimal control theory to solve trajectory optimization problems for any kind of

dynamical system.
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Brief introduction to Optimal Control

Control theory soared in the middle of the 20th century, benefiting from centuries of advances

in calculus of variations and contemporary progress in numerical methods. As will appear in

what follows, it inherits much from physics’ terminology.

We give here some fundamental definitions. A dynamical system is defined by a smooth

function f : Rn → Rn, and its trajectories satisfy

ẋ(t) = f (t, x(t))

x(0) ∈ X0

(1.5)

where X0 is a subset of Rn containing possible initial states, and the function f is called the

dynamics. Many interesting properties can be studied for such a system (periodicity, stability,

response time, oscillations, . . . ). But to get interaction with the system, one needs to consider

control systems.

A control system is a dynamical system parameterized at each time step by a control law. For

any possible control law t 7→ u(t), the corresponding trajectory satisfies

ẋ(t) = f (t, x(t), u(t))

x(0) ∈ X0

(1.6)

Different properties can be studied for control systems:

• What is the reachable set of the system i.e. the set of all possible values for the state when

the control law varies?

• Can we stabilize the system around a given point using a specific control law?

• Can we steer the system using a minimum amount of a time/effort?

The last question is what optimal control studies. In general, one wants to minimize a given

cost J that can have several forms:
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Lagrangian form J =
∫ T

t=0 L(t, xu(t), u(t))dt

Mayer form J = ϕ(T, xu(T))

Bolza form J = ϕ(T, xu(T)) +
∫ T

t=0 L(t, xu(t), u(t))dt

where L is a Lagrangian cost, ϕ is a terminal cost, and we write xu to make clear that x

depends on the control function t 7→ u(t) (as it results from the integration of Eq. 1.6). The final

time T may be fixed or free. For instance, with free terminal time, L = 1 and ϕ = 0 entails a

minimum-time problem. To find the control which minimizes the functional J, control theory

will make use of the same methods as physics did for physical systems.

Euler-Lagrange, Pontryagin’s Maximum Principle The NCO for control systems sometimes

appear in the form of Euler-Lagrange equations in textbooks (Hestenes, 1966; Bryson and Ho,

1975) by analogy with physics’ Euler-Lagrange equations (Eq. 1.1). But a comprehensive, rig-

orous formulation of necessary conditions for optimality that is now a reference in optimal

control is the one proposed by Soviet mathematician Lev Pontryagin (Boltyanskiy et al., 1962),

known as Pontryagin’s Maximum Principle (PMP).

We give here the general idea, and further explanations will be given in Chapter 3 where

the PMP is used to build trajectory optimization algorithms. For control system:

 ẋu(t) = f (t, xu(t), u(t))

J(τ, ξ; u) = ϕ(xu(T), T) +
∫ T

t=0 L(t, xu(t), u(t))dt

we define a Hamiltonian1

H(t, x, p, u) = pᵀ f (t, x, u) + L(t, x, u)

It should not be mixed up with physics’ Hamiltonian, despite having the same name, as in this

1We omitted the cost multiplier parameter in front of L for clarity in a first approach. It distinguishes between
normal and abnormal extremals. This presentation focuses on the most common ones, normal extremals, for which
the multiplier can be assumed equal to 1.
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case it does not embody an energy but it is a mathematical tool to write optimality conditions.

The PMP states that

• the p vector, called costate vector shall evolve2 with

ṗ(t) = −∂H
∂x

ᵀ

(reminiscent of physics’ Hamiltonian)

• the optimal control t 7→ u?(t) minimizes the Hamiltonian for almost every time

u?(t) ∈ arg min
u

H(t, x(t), p(t), u) for a.e. t ∈ [0, T]

and additional boundary conditions shall be satisfied whether there is a target set to reach

or if the final time is free, for instance. This method can be very efficient, when the optimal

control argmin extraction is cheap and when one has a good way to find solutions satisfying

the boundary conditions. In particular, this method is often preferred when the dimension

of the problem increases, as it suffers less from the ‘curse of dimension’ than its PDE-based

counterpart that is detailed in the following section. For a comprehensive presentation of the

PMP, the reader is referred to Trélat (2005) (French) or Vinter (2010) (English).

Hamilton-Jacobi-Bellman If we parametrize control problems using the start point ξ and the

start date τ, we get a family of control systems


xu(τ) = ξ

ẋu(t) = f (t, xu(t), u(t))

J(τ, ξ; u(·)) = ϕ(xu(T), T) +
∫ T

t=0 L(t, xu(t), u(t))dt

2The most natural definition of the costate vector is without the transpose on the Hamiltonian partial derivative,
which makes p a row vector. However, in this thesis, we prefer to make the costate a column vector, like the state
vector.
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The only variable left in this family is the control t 7→ u(t). The value function V(τ, ξ) of this

family of control systems is

V(τ, ξ) = inf
u(·)

J(τ, ξ; u(·))

It can be shown that this value function satisfies a Bellman optimality criteria (Trélat, 2005)

V(τ, ξ) = inf
u(·)

{∫ τ′

t=τ
L(t, xu(t), u(t))dt + V(τ′, xu(τ

′))
}

for any τ′ such that τ ≤ τ′ ≤ T. Under sufficient assumptions, this optimality criteria is

equivalent to the following PDE

∂V
∂τ

+ inf
u

[
H
(

τ, ξ,
∂V
∂ξ

, u
)]

= 0 (1.7)

where H is the Hamiltonian defined in the previous section. This PDE is called the Hamilton-

Jacobi-Bellman (HJB) equation, as it is of the same form as physics’ Hamilton-Jacobi PDE

(Eq. 1.3) and found using the recursive general optimality principle attributed to Richard Bell-

man. Solving the HJB equation provides comprehensive information about how the optimal

cost propagates in a problem and provides subsequently a collection of optimal trajectories to

the target. However, HJB-based methods are known to scale badly with dimension (indeed,

exponentially with dimension), so that they can only be used in practice on low dimension

problems. Empirically, in strategic long-range navigation problems for which computation

power is available (the reference being a modern laptop), depending on the spatial resolution,

the problem dimension can be brought up to 3 or 4, but not really higher, if the computation

time shall be kept under an hour. This is a rule-of-thumb assessment that of course depends

on the computational power available, the resolution of the problem and the efficiency of the

software implementation. Nevertheless, it helps assess the curse of dimension of HJB-based

methods practically.

The PMP and the HJB PDE are strong tools from optimal control to build numerical opti-

46



mization techniques. They will be the basis on indirect optimization methods, presented in the

following section.

Zermelo’s Navigation Problem

Zermelo Navigation Problem (ZNP) is an optimal control problem that received much attention

in the literature since Zermelo presented it in 1930. A very large diversity of approaches have

been proposed to solve it. For some problem settings, the explicit or semi-explicit resolution of

the problem is possible.

Analytical solutions In only a very limited number of problem settings does the ZNP have

analytical solutions. First of all, in the presence of a uniform flow field, it is well known that

the optimal control is constant, as a result of optimal control theory. Then, in non-uniform

flow fields, exact solution for the ZNP are scarce. In Girardet (2014) annex F (French), the ZNP

is solved analytically for a linear wind gradient (the expression is recalled in Example 3.1.3).

In Bonnard et al. (2021), optimal trajectories are studied in the presence of Helmholz-Kirchhoff

vortices in the flow field, and in Techy (2011), in the presence of sources and sinks.

But for general flow fields, exact solutions cannot be exhibited. In the case of non-uniform

but weak flow field compared to the speed of the vehicle, as is the case for commercial air-

craft, Jardin and Bryson (2001) derived analytical near-optimal solutions for the ZNP with ap-

plication to aircraft flights over the USA. The idea is that in these conditions, the time-optimal

trajectory is close to the great circle between origin and destination, so they linearize the opti-

mization problem around this great circle to get an explicit near-optimal control law.

It shall also be noted that work was proposed for vehicle navigation based on a so-called

Zermelo-Markov-Dubins model. This model is an extension of the kinematic Zermelo model

(Eq. 2.1) when the turning rate of the vehicle is constrained (combination of Zermelo’s kine-

matics and the behavior of a Markov-Dubins vehicle). It would correspond to medium-scale-

point-of-view routing problems, when the magnitude of the turns is not negligible compared
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to the distance crossed. In this case, analytical solutions have been proposed for a constant

wind drift (Bakolas and Tsiotras, 2010a; Techy and Woolsey, 2009; McGee et al., 2005). For the

medium-range point of view, the constant wind drift can be a valid approximation in many

cases. However, when this drift varies in time, Bakolas and Tsiotras (2010b) gave a method to

compute Voronoï diagrams, i.e. a partition of space based on a grid of points for which each

partition is the closest (in the sense of travel time) to a corresponding point in the grid.

General case In the general case, one must resort to computer methods to build a numerical

solution to the problem. So, by essence, even if the ZNP is formulated in a continuous space

over continuous data, the result of the optimization will be a discrete object approximating the

true optimum of the problem. Thus, an important choice is when to resort to discretization in

the problem solving. This important question divides the methods into two categories called

direct methods and indirect methods. In the former, discretization is performed directly (in the

model of the state space or the flow field for instance), and optimization is performed over the

discrete representation (‘discretize first, optimize then’). In the latter, some optimal criteria are

applied prior to the numerical search for a solution (‘optimize first, discretize then’).

Overall, this review splits the literature into five main categories. They are listed below,

with a (D) or a (I) whether the method family belongs to direct or indirect methods.

• Control parameterization methods (D)

See a trajectory as a collection of waypoints linked together by an integration scheme

• Graph-based methods (D)

See state space as a finite collection of points with connections

• Sampling-based methods (D)

Build trajectories progressively by sampling new points in the state space

• Extremal methods (I)
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Figure 1.1: Sketch of collocation methods principle. The trajectory of the vehicle is discretized at given time stamps
and interpolated in between, usually using a polynomial function.

Characterize candidate solutions to optimality (NCO)

• Front propagation methods (I)

Propagate iso-costs fronts in space

We now give important references of work belonging to each of the families and addressing

routing optimization in flow fields. While some references indeed solve precisely the ZNP, we

also include other references doing route optimization on more complex models of vehicles

than the pure kinematic Zermelo vehicle, and also vessel routing references because of their

proximity with the matter.

Direct methods

Control parameterization

When looking for discretizing the optimization problem, one idea may be to discretize the

time axis. This is what control parameterization is doing. The principle is to replace the

time-continuous representation of the trajectory and the control by a discrete one. This

simplifies an infinite-dimensional optimization problem (the decision variable is the control
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t 7→ u(t)) into a finite-dimensional one: the control values are chosen at discretization points

(u(t1), u(t2), . . . , u(tn)) and interpolated in between. This is sketched in Fig. 1.1. Since there

are underlying dynamics governing the evolution of the state, the values of the control at the

discretization nodes must satisfy constraints given by an integration scheme. One is then left

with a Non-Linear Programming (NLP) problem with finitely many optimization variables and

constraints, and general-purpose solvers can be used to minimize a cost on the whole trajectory

(SNOPT, IPOPT, . . . ). This has made the method attractive since general-purpose solvers have

become increasingly powerful thanks to advances in optimization and numerical methods.

Because discretization leaves empty choices for the values of the control and the state in the

intervals between discretization nodes, there are different flavors of control parameterization

depending on the interpolation. Transcription, collocation, pseudo-spectral methods are such

flavors of control parameterization. Their differences are well documented in the literature

review from González Arribas (2019), and we refer the reader to the latter for more details.

Overall, control parameterization methods have the main advantage that they can handle

a complex model of the vehicle subject to trajectory optimization, definitely more complex

than the kinematic abstraction presented in Eq. 2.1. It has been successfully applied to re-

fined models of commercial aircraft (Hargraves and Paris, 1987) even with flight regulation

constraints (Betts and Cramer, 1995). In Wang et al. (2019), AUV path planning problems are

solved with state constraints as well as constraints on the acceleration of the vehicle. Control

parameterization is also a very useful tool to investigate special trajectory optimization prob-

lems such as the energy minimization of flight in the presence of a wind gradient, mimicking

the behavior if the albatross for efficient long-range flight, such as in Bonnin (2015).

The main limit of control parameterization is that most efficient methods solving the under-

lying NLPs are made to find local minima, thus there is no guarantee that the solution found is

the best globally for the problem. This may or may not be a problem depending on the applica-

tion case.
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Figure 1.2: Sketch of graph-based methods principle. The motion of the vehicle is abstracted to a motion on a grid,
with commutation time adjusted for the flow field advection.

Graph-based methods

Another useful way to discretize the trajectory optimization problem is to cast it to the problem

of finding a shortest path in a graph. This enables the usage of an exhaustive, well established

literature on graphs: for undirected, non-negative weights graphs, Dijkstra’s algorithm can

compute a shortest path between two points; for the same problem in a directed graph with

possibly negative weights, there is the Bellman-Ford algorithm.

Turning the navigation problem into a graph can be done, for instance, by sampling points

in the environment (vertices) and creating connections between neighboring points (edges)

and assigning the elementary travel time from the kinematic model (depending on the flow

magnitude and direction) as cost on edges, as sketched in Fig. 1.2. In such a graph, shortest

paths are time-optimal paths for the navigation problem.

Dijkstra’s algorithm was really though to solve shortest path problems efficiently in any

kind of graph. But for trajectory optimization problem, the underlying graph is embedded in a

metric space. Thus, a very useful upgrade of Dijkstra’s algorithm is the A* (A star) algorithm.

The principle of the A* algorithm is to bias cost propagation in priority in a direction provided

by a heuristic function. For instance, in the 2D planar space for robot motion planning in the
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presence of obstacles, the Euclidean distance to the target is a valid heuristic (the heuristic

value always has to be an underestimation of the real cost to destination for the algorithm to

converge to the true optimum of the problem). The A* algorithm is an extension of Dijkstra’s

algorithm in the sense that if the heuristic function is chosen identically null, then the algorithm

is Dijkstra’s algorithm.

The approach proved efficient to solve trajectory optimization problems for AUVs in steady

but non uniform flow fields (Garau et al., 2005; Kularatne et al., 2016). The graph construction

can also be advantageously biased in the flow direction for reduced computation cost, as shown

in Li et al. (2020). The A* approach efficiency relies on a proper choice of the heuristic function.

This choice can be simple in the case of steady and weak flow fields. But for unsteady, strong

flow fields, it may be less obvious if not unsuited. Still, the A* star principle, which is to

prioritize computation where it is most likely needed, can often be included as refinement of

an existing algorithm, as done in the graph-based method presented in Eichhorn (2015).

For vessel route optimization, Mannarini et al. (2016) proposed a graph-based method valid

in time-varying currents. The authors compared their approach to a level-set method in Man-

narini et al. (2020). It appeared that to have similar resolution in the optimal trajectories, the

graph-based method was computationally more intensive than the level-set method.

Other approaches such as the Bellman-Ford algorithm proved efficient, for instance for air-

craft routing in atmospheric wind fields (Legrand et al., 2018).

Sampling-based methods

Discretization can also be performed progressively in the exploration of the state space. It is

how sampling-based methods operate. In this class of methods, the optimization is performed

asymptotically, meaning that when the number of state space sampled points increases, the

solution trajectory built converges to the optimal trajectory. The principle is sketched in Fig. 1.3.

The first renown general sampling-based approach is that of Probabilistic Road Maps

(PRMs). The PRM approach samples points in the environment, creates connections when-
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Figure 1.3: Sketch of sampling-based methods principle. The space of possible trajectories for the vehicle is sampled
progressively as the algorithm moves on.

ever possible (out of obstacles) and then performs graph-based shortest path computation of

the created graph. So, PRMs are more of a graph generation procedure than a new optimization

method. But we mention them as they are the entry point to sampling methods.

The more modern Rapidly-exploring Random Trees (RRTs) sampling-based methods are

now very popular. They proved efficient for robot path planning in the presence of obstacles.

The principle relies on sampling the state space randomly and connecting new sampled points

to previous ones according to a distance criteria, thus building a tree. The method is especially

attractive for problems in a high-dimensional state space since this search heuristic can build

elementary paths between two states given constraints in a computationally efficient way. But

the raw method is not exact (neither does it find the global optimal path nor a local optimum),

so a popular refinement is RRT*, which can achieve asymptotic optimality.

For vehicles in flow fields, the issue is to take advection into account. In Rao and Williams

(2009), a modification of RRT* is proposed so that the tree expansion is biased by the flow field,

thus converging faster to the time-optimal path. In Oettershagen et al. (2017), a RRT* search

combined with Dubins-path is used to create optimal paths in a non-uniform flow field for a

UAV. Their application puts a primer on the real-time computation feature since the algorithm

is supposed to run on an onboard computer. Thus, the method needs not be exact but qualita-
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tively approximate optimal paths while being fast. The vast majority of RRT applications occur

in such a context.

Combining ideas from RRT and fast marching methods (presented in Section ‘Front prop-

agation’) led to the construction of the Fast Marching Tree (FMT*) algorithm by Janson et al.

(2015) (the star highlighting its asymptotic optimality). The principle is similar to RRT in the

sense that one samples the environment and iteratively builds a tree. But FMT* does it follow-

ing hypersurfaces of constant cost, as fast marching methods do or even Dijkstra’s algorithm

in a graph sense. It has been shown to outperform RRT* and PRMs in several applications.

Once again the method seduces because of its efficiency to compute near-optimal trajectories

with a satisfactory trade-off between computation time and error to the global optimum. It

has proven efficient for real-time decision problems such as emergency trajectory computa-

tion (Guitart et al., 2022) or UAV path planning in the presence of obstacles (Schneider, 2016).

However, both previous applications do not consider wind advection.

In Chakrabarty and Langelaan (2013), an original sampling strategy was developed to take

into account the kinematics of a glider through the use of so-called motion primitives. The re-

sulting method, called kinematic tree, can then deal with time-varying environments, because

the discretization occurs on control variables and not on the position. The method has proven

efficient for the computation of time-optimal paths for a glider in a 3D dynamic environment

featuring thermal updrafts.

Intersections

Of course, the current method classification attempt fails at some point. Methods are not in-

compatible with one another, and some authors choose to harness the advantages of several

methods at the same time. It is the case of Borndörfer et al. (2020), where the authors use a

coarse graph-based method to initialize a finer control parameterization method for aircraft

trajectory optimization. They harness the exhaustiveness of the graph search on a coarse dis-

cretization with the efficiency of the NLP solver to find a smooth solution, thus less suffering
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Figure 1.4: Sketch of extremal-based methods principle. Trajectories candidate for optimality are integrated forward
in time from the origin of the problem and a search is performed to find the ones satisfying terminal conditions.

from the problem of falling in local minima.

Out of categories

Out of the previous categories, the approach presented in Soulignac (2011) is also worth noting.

While the proposed method does not really fit in the previous families, it belongs nevertheless

to the class of direct methods. The proposed approach computes regions of approximately

constant flow field and makes the discretization of the trajectory happen on the borders of

these regions. This simplification of the flow field is valid when the latter does not exhibit

strong local variations. In the regions of constant wind, control theory states that the control

value must be constant. Thus, the search for optimality results in adjusting the state at the

border of the constant-wind regions, creating a piecewise linear approximation of the optimal

trajectory.

55



CHAPTER 1. LITERATURE REVIEW

Indirect methods

Extremal methods

The ZNP appearing in Eq. 2.6 exhibits some mathematical structure that can be exploited before

casting to discrete representation for numerical resolution. In particular, one can characterize the

only possible candidate solutions to optimality, in other words, one can apply necessary con-

ditions for optimality to the optimization problem. But here the decision variable at stake (the

control function t 7→ u(t)) is infinite-dimensional, so a special tool must be used. Thus tool is

Pontryagin’s Maximum Principle (PMP) (Boltyanskiy et al., 1962). The PMP reduces the search

space to a collection of trajectories candidate to optimality called extremal trajectories or simply

extremals. They will be the basis of the discussion presented in Chapters 3, 4. When applying

the PMP, a virtual additional state called the costate t 7→ p(t) is added to the problem and sat-

isfies conditions at the final time, as opposed to the state which satisfies initial conditions. So

in general, one has to solve a Two-Point Boundary Value Problem that can be solved using a

shooting method, as sketched in Fig. 1.4.

Ship routing was addressed with extremals in Bijlsma (1975) and then extended to aircraft

in Bijlsma (2009). In 2D spherical space, which is required for long-range commercial aircraft

flights to account correctly for the Earth’s sphericity, methods based on the shooting of ex-

tremals on the sphere were proposed in Jardin and Bryson (2010); Marchidan and Bakolas

(2016). For AUV navigation, Rhoads (2013) proposed a general algorithm that will be discussed

and compared to what is proposed in Chapter 3.

A special mention shall be added to the chord length parameterization point of view on the

navigation problem, which leads a different writing of the NCO. Indeed, it is possible to re-

verse the role of space and time in the trajectory optimization problem, considering a trajectory

parameterized by its chord length s 7→ x(s) rather than time. Thus, the time evolution is de-

duced from the slowness of the vehicle, which depends on the location and on the direction dx
ds

of the path (compared to the direction of the flow field). This point of view is adopted in Davis
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Figure 1.5: Sketch of front propagation methods principle. Iso-cost level-set are compute forward in time. Optimal
trajectories can be deduced by backtracking the gradient of the level-set function.

et al. (2009) to shoot extremals, and proved efficient in the case of weak flow field for the com-

putation of optimal trajectories. Chord length parameterization will be the basis of an approach

proposed in Chapter 7.

In an aerospace context, apart from the long-range navigation problem in wind fields, the

shooting of extremals was applied to many different other problems. Of course to spacecraft

optimal routing and orbit transfers, but this is beyond the scope of this thesis. For aircraft

applications we can find the optimization of aircraft vertical flight profile (Nguyen, 2006), the

optimal decision of aborting landing given wind shears (Bulirsch et al., 1991a,b) or contrail

avoidance (Sridhar et al., 2011).

Finally, for a review of extremal methods for the ZNP in the presence of state constraints,

the reader is referred to Chapter 4.

Front propagation methods

Instead of focusing on trajectories, one can try to solve for the vehicle’s reachable set. If a

function φ(t, x) is such that φ(t, x) < 0 if x is reachable in time t′ < t, φ(t, x) = 0 if x is reachable

in time t and φ(t, x) > 0 if x is not reachable in time less than t, then it can be shown (Lolla,
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2016, Theorem 1) that φ satisfies the following PDE

∂φ

∂t
+

∂φ

∂x
v f + umax

∥∥∥∥∂φ

∂x

∥∥∥∥ = 0 (1.8)

with initial condition φ(t0, x) = ‖x− x0‖. It is well known that the solution of this PDE can

have irregularities that make it non-smooth (shocks). So, φ cannot be searched as a classical

solution of the PDE. Instead, it should be searched as a viscosity solution of the PDE, which is

an extension of the definition of a solution to a PDE that allows cusps, as proposed in Crandall

and Lions (1983).

In the front propagation method family, optimality is thus characterized through a PDE,

and the discretization occurs when solving the equation. Optimal trajectories can be deduced

from φ by backtracking the gradient of φ, as depicted in Fig. 1.5. For instance, if x f is reachable

in optimal time t?, then the optimal trajectory from (t0, x0) to (t?, x f ) is found by integrating

the backward Ordinary Differential Equation (ODE) (Lolla, 2016)

ẋ(t) = −umax
∂φ

∂x

∣∣∣∣
t, x(t)
− v f (t, x(t))

from x(t?) = x f .

Equation 1.8 belongs to the general class of Hamilton-Jacobi-Bellman PDEs, presented in

the previous section.

To find solutions of the ZNP, it is also possible to solve a PDE directly on the value func-

tion of the problem (as Eq. 1.7) as done in Doshi et al. (2022). This presents the advantage of

computing simultaneously all the backward reachable sets reaching the target in some window

[T − ∆T, T].

In general, fast marching methods to solve this kind of PDEs were presented by Sethian

(1996). It shall be noted that a strong simplification occurs when the flow field is weak, i.e.

smaller than the vehicle’s SRF
∥∥v f (t, x)

∥∥ < umax for all t and x. In this case, the solutions of the
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ZNP can be found by solving the eikonal equation (see e.g. Lolla (2016))

umax

∥∥∥∥dψ

dx

∥∥∥∥+ dψ

dx
v f − 1 = 0

where the function x 7→ ψ(x) is the function mapping the optimal time to come to each po-

sition x. For eikonal equations, ordered upwind methods were proposed for improved per-

formance (Sethian and Vladimirsky, 2003). For the medium-range point of view where the

vehicle’s trajectory cannot take arbitrary curvature, efficient fast marching methods were pro-

posed in the eikonal regime such as Mirebeau (2018). Practical resolutions of the ZNP in the

eikonal regime using fast marching methods can be found in Petres et al. (2007) for AUVs or

in Girardet et al. (2014) for aircraft trajectory planning.

Extensions of this review

The literature review focused on references dealing with the ZNP, which is about time-optimal

trajectory computation in free space and deterministic environment. Chapter 4 will briefly re-

view references for the application of the PMP in the presence of state constraints. In Chapter 5,

references dealing with energy-time trajectory optimization will be provided. Lastly, Chapter 7

will review the references dealing with uncertainty in the flow field data.

Conclusion of the review

The literature on trajectory optimization is very rich and features many different families of

methods able to solve trajectory planning problems. Whether graph-based, sampling-based or

based on Non-Linear Programming, the class of direct methods features many successful res-

olutions of trajectory planning problems. The indirect family with extremals and front propa-

gation also proved successful, with comparatively less references than the direct group, which

could be explained by the increased complexity in the theory underlying the methods. The
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latter family of methods does not need the weak flow assumption and can provide guarantees

of optimality by computing the cost map in a given navigation problem, which is the reason

why it is the family that will give the building blocks of what comes in the following chapters.

Research gaps

In general, complex navigation problems featuring flow fields with possibly strong magni-

tude, obstacles, whether still or moving, diffuse hazard in the environment or energy opti-

mization have been mostly addressed using direct methods in the literature. Indeed, the latter

can be easily implemented on top of an arbitrarily complex model of the navigation problem.

However, the approximations usually done by direct methods and the local optimum property

(for some of direct methods), if acceptable to reduce the computation cost for fast resolution

or onboard applications, are not desirable when the trajectory planning problem is solved at

the strategic level, i.e. when high computation power is available and computation time up to

an hour is acceptable. Indirect methods, while being computationally intensive, can provide

the appropriate precision level for strategic trajectory planning. Nevertheless, references im-

plementing indirect methods with complex problem feature are not numerous. In particular,

extremal methods have received comparatively less attention than the other, despite their po-

tential for efficiency even in high-dimensional problems. These research gaps motivated the

work presented in this thesis.
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Chapter 2

Properties of the navigation problem

Abstract

In this chapter, the mathematical properties of the navigation problem when
adopting Zermelo’s kinematic model are under study. The mathematical frame-
work required to build a rigorous basis for considering a continuous model for
trajectories is presented. It is highlighted that in strong flows, some directions of
motion are not possible for the vehicle. When a specific direction is indeed pos-
sible, an expression for the control steering the vehicle accordingly is given. The
equivalence between forward reachability and backward reachability is stated, so
that the problem of finding possible positions of the vehicle after some time is
mathematically the same as knowing from which positions the vehicle can reach
a target in some given time. The notion of ground paths is dissociated from the
notion of trajectory, as it can be the basis of a different model for the navigation
problem. The notion of value function for optimal control problems is introduced,
in particular for time-optimal navigation problems. Lastly, the kinematic model is
adapted to spherical coordinates.
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Résumé en français

Dans ce chapitre, on s’intéresse aux propriétés mathématiques du problème de navigation
basé sur le modèle cinématique de Zermelo. Un cadre mathématique rigoureux nous per-
mettant de travailler sur un modèle continu pour les trajectoires est introduit. Le manque
de contrôlabilité pour le véhicule dans le cas d’un champ de flot fort est étudié, avec des
directions de mouvement qui deviennent inaccessibles. Pour les directions de mouvement
possibles, une expression du contrôle suivant cette direction à vitesse maximale est don-
née. L’équivalence entre ensemble atteignable en temps croissant et ensemble atteignable
en temps décroissant est établie, de sorte que le problème de trouver les états atteignables
pour le véhicule en un certain temps est mathématiquement équivalent à trouver les états
depuis lesquels on peut rejoindre une cible en un temps donné. La notion de chemin sol
est dissociée de la notion de trajectoire, l’utilisation d’un objet ou de l’autre amenant à des
modèles différents du problème de navigation. Enfin, le modèle cinématique est adapté
aux coordonnées sphériques pour les applications nécessitant la prise en compte de la
courbure de la Terre.

Contents
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The simple kinematic vehicle model

dx
dt

= u(t) + v f (t, x(t)) (2.1)

coming from the LSPOV has some interesting properties that should be discussed before ad-

dressing any routing optimization problem. This chapter discusses these properties. The en-

vironment is assumed to be the 2D planar space R2 (or a subspace of it) for the simplicity of

definitions and properties.
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Chapter’s main questions

• Mathematically, what are the properties of the large-scale point of view model
adopted for long-range trajectory planning?

• Is the large-scale point of view adaptable to spherical coordinates?

2.1 Mathematical basis

For now, the trajectory of the vehicle t 7→ x(t) was implicitly defined as a function of time,

without additional precisions. Intuitively, if the following are fixed:

• The starting date t0

• The starting position x0

• The flow field t, x 7→ v f (t, x)

• The control law t 7→ u(t)

then the vehicle’s trajectory t 7→ x(t) should be unambiguously defined.

Mathematically speaking, it is the Cauchy-Lipschitz theorem which ensures the previous

intuitive fact. In what follows, the dot notation is used for time derivation ẋ = dx
dt . We consider

the Cauchy problem:  ẋ(t) = u(t) + v f (t, x(t))

x(t0) = x0

(2.2)

We call D the domain of the state space allowed for the vehicle. Under the following assump-

tions:

(H1) ∀x ∈ D, t 7→ v f (t, x) is continuous

(H2) ∀t ∈ I, x 7→ v f (t, x) is piece-wise Lipschitz continuous, i.e. there exists a finite collection

of pairwise disjoint open sets (Ωj)j∈J such that D = ∪j∈JΩj and for all t ∈ I, x 7→ v f (t, x)

is Lipschitz continuous on Ωj
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(H3) [t0,+∞[ 3 t 7→ u(t) is bounded

problem 2.2 admits a solution x(·) which is:

• defined either over [t0,+∞[ or [t0, tu] with tu the time upper bound and x(tu) ∈ ∂D;

• absolutely continuous (thus continuous and differentiable almost everywhere);

• unique over its definition window.

In particular, the uniqueness ensures that defining the vehicle’s evolution using its velocity

is unambiguous, which fits to intuition.

Remark

The common Cauchy-Lipschitz theorem is stated for Lipschitz continuous dynamics

w.r.t. the state variable. However, hypothesis (H2) differs from this. A rigorous justifica-

tion of this extension is proposed in Appendix A. The extension is needed since we want

to be able to consider simplified analytical problems that may violate the pure Lipschitz

hypothesis. The ideal stream flow appearing in Subramani and Lermusiaux (2016) (see

Fig. 5 in the article) is an example of flow field that is only piece-wise Lipschitz continuous

(it has discontinuities).

The set of control functions is

U := U[t0,+∞[ = B (0, umax)
[t0,+∞[

Flow of equation (2.2) In navigation settings (t0, x0, v f ) with a given control function u(·) ∈
U , if the evolution of the vehicle given by equation (2.2) is noted x(·), we define the output

application (also called the flow of 2.2), for τ ≥ 0

φ
u(·)
t0,x0,v f

(τ) = {x(t0 + τ)}
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umax

v f

u1

u2u3

v f = 0
∥∥v f

∥∥ > umaxv f 6= 0

Unreachable

Figure 2.1: Sets of possible ground velocities (in red) depending on the flow magnitude. Left, three example control
vectors are shown among the possible ‖u‖ ≤ umax. In this case the ground velocity is equal to the control (no flow).
Middle, a weak flow pushes the vehicle. All directions of motion are still possible for the ground velocity, but the
speed is higher with the flow in the back than in the front. Right, strong flow case where some directions are not
possible anymore for the ground velocity.

If t0 + τ is superior to the maximum definition date tu for the trajectory, then we set

φ
u(·)
t0,x0,v f

(τ) = ∅. It is an application that maps a start time and position (t0, x0) in a flow field v f

to the vehicle’s future position after duration τ by following control u(·). Because the solution

to equation (2.2) is unique, φ
u(·)
t0,x0,v f

(τ) always contains at most one element.

2.2 Controllability

The advection of the vehicle by the flow field changes the way the vehicle can evolve in space.

In particular, as stated in the introduction, the vehicle can reach the whole state space if umax >∥∥v f (t, x)
∥∥ for all t and all x. It is not necessarily the case if the latter condition is not satisfied.

This because at a given time and position, the ground velocity of the vehicle is the summation

of the flow field and the possible VRFs. The available ground velocity vectors are depicted in

Figure 2.1 depending on the flow magnitude.

Since some directions of movement are sometimes not allowed for the vehicle, it is useful

to put a name on possible directions.
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Definition 1 (Valid direction). Direction d ∈ R2 is said valid for (t, x) if there exists a control

steering the vehicle in the given direction, i.e. ∃u ∈ B (0, umax) , u + v f (t, x) = λ d for some λ > 0.

Remark

The previous definition is independent of the norm of the direction vector d

Directional time-optimal control If the problem is to find the fastest way to follow a given

valid direction d, we prove that the control achieving this goal is unique.

Property 2.1

If d ∈ R2 is a valid direction at point (t, x), then there exists a unique control maximiz-

ing ground speed
∥∥u + v f (t, x)

∥∥ and such that the ground velocity vector u + v f (t, x) is

colinear and of the same direction as d.

Proof. Since the direction d is assumed valid, the set L of λ such that it exists a control

u ∈ B (0, umax) satisfying u + v f (t, x) = λ d is not empty. It is bounded because controls

are bounded. Thus, it has an upper bound λmax, for which the ground speed vector λmax d has

maximal norm. The corresponding control is unique, indeed it is u? = λmax d− v f (t, x).

Since the best directional control is unique, we give it a name and a symbol.

Definition 2 (Directional time-optimal control). For d ∈ R2 a valid direction at (t, x), the unique

control achieving highest speed in the given direction is called the directional time-optimal control. It

is a function of the direction and of the flow field value and we note it u(d, v f ).

The directional time-optimal control has an expression given by the following property.

66



2.2. CONTROLLABILITY

Property 2.2: Directional time-optimal control

For any valid direction d ∈ R2, define the components of the flow field v‖f := v f (t, x)ᵀd

and v⊥f := v f (t, x)ᵀR
(

π
2

)
d.

The directional time-optimal control is:

u(d, v f ) = umax R
(
α− π

2

) d
‖d‖

with α = arctan2
(√

u2
max − (v⊥f )

2, v⊥f
)

The resulting motion has ground speed of v‖f +
√

u2
max − (v⊥f )

2.

Proof. On the following geometric construction

θ f − θd

v⊥f

v‖f

θu − θd

u
v f

d

α

the solid red line indicates the possible values for u to have a ground speed in the direction d.

Among all these control values, the one achieving the maximum ground speed in the direction

d is obtained at the right edge of the solid red line. This edge belongs to the circle ‖u‖ = umax.

With α defined in the figure, we have

α = −arctan2
(√

u2
max − (v⊥f )

2, v⊥f
)

the minus sign coming from the fact that
√

u2
max − (v⊥f )

2 is positive and v⊥f is positive in this
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situation, but α is negative here. And furthermore

θu − θd + α = −π

2

thus

u(d, v f ) = umax R (θs − θd)
d
‖d‖ = umax R

(
α− π

2

) d
‖d‖

2.3 Forward and backward reachable sets

In the introduction, we reckoned reachability as a first key problem in navigation. With navi-

gation settings (start time, start position, flow field) (t0, x0, v f ), the reachable set

Rt0,x0,v f (τ) :=
⋃

u(·)∈U
φ

u(·)
t0,x0,v f

(τ) (2.3)

is the collection of all positions that are reachable in some duration τ. It can also be called

forward reachable set, as it collects the propagation of possible trajectories of the system. We

note the total reachable set

Rt0,x0,v f :=
⋃

τ≥0

Rt0,x0,v f (τ)

the collection of all reachable sets. The subscript in the flow field is dropped whenever there is

no ambiguity.

The dual object to the forward reachable set is the backward reachable set

BRt f ,x f ,v f (τ) :={
x ∈ R2 | ∃u(·) ∈ U , φ

u(·)
t f−τ,x,v f

(τ) = {x f }
} (2.4)

It is the collection of all positions that can be steered to the destination in duration τ, arriving
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at a prescribed time t f

An important remark is that if one knows how to compute forward reachable sets, then one

knows how to compute backward reachable sets, as explained by the following property.

Property 2.3

The backward reachable set is a forward reachable set for a mirror problem in which the

wind field is reversed, i.e.

BRt f ,x f ,v f (τ) = R0,x f ,ṽ f
(τ) with ṽ f (t, x) := −v f (t f − t, x)

Proof. • We first show that BRt f ,x f ,v f (τ) ⊂ R0,x f ,ṽ f
. Let y ∈ BRt f ,x f ,v f (τ). Then let u(·) ∈ U

be the control and x(·) the trajectory satisfying

– ẋ(t) = u(t) + v f (t, x(t))

– x(t f − τ) = y

– x(t f ) = x f

We show that

ũ(t) := −u(t f − t) (2.5)

steers the mirror problem from x f to y in duration τ.

Define z : [t f − τ, t f ] 3 t 7→ x(t f − t). Thus z(0) = x(t f ) = x f . Then:

ż(t) = −(u(t f − t) + v f (t f − t, x(t f − t))

= −u(t f − t)− v f (t f − t, z(t))

= ũ(t) + ṽ f (t, z(t))
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So z is solution of the Cauchy problem

 ż(t) = ũ(t) + ṽ f (t, z(t))

z(0) = x f

Furthermore z(τ) = x(t f − τ) = y which proves φ
ũ(·)
0,xt,ṽ f

(τ) = {y} so y ∈ R0,x f ,ṽ f
.

• The reverse inclusion is shown in a same manner by using the mirror operation 2.5 on the

control.

The latter property ensures that if a method is able to compute forward reachable sets, then the

same method can be used to compute backward reachable set with only a simple transforma-

tion of the problem data.

2.4 Ground paths

A very intuitive object in navigation problem is the ground path. It corresponds literally to a

curve drawn from a given point to a destination on the ‘map’ of the state space. While ground

paths are drawn by the vehicle when it moves, one can also draw a ground path from scratch

and ask the vehicle to follow it. But because of the advection of the flow field, any ground path

is not necessarily followable by the vehicle. In this section, we define mathematically ground

paths, show their space exhibit an equivalence relation (quotient), and then define valid paths

for a given navigation problem.

First of all, we give a precise mathematical definition of what we call a ground path

Definition 3 (Ground path). A ground path q is a continuous mapping q : [a, b]→ R2.
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Remark

The intrinsic parameterization of a ground path does not matter. That is, if γ : [a, b] →
[a, b] is a warping functiona then q′ : h 7→ q(γ(h)) describes the same ground path as q.

aA warping function is a mapping [a, b] → [c, d] such that γ(a) = c, γ(b) = d, γ invertible and γ, γ−1

continuous.

The previous remark provides a way to quotient the space of ground paths

Definition 4. For q : [a, b] → R2, r : [c, d] → R2, we say that q(·) and r(·) are equivalent in the

sense of ground paths and we note q(·) ≡γ r(·) if there exists γ : [a, b] → [c, d] a warping function

such that

∀t ∈ [a, b], q(γ(t)) = r(t)

Definition 5 (Valid ground path). A ground path q : [0, 1] → R2 is said valid for navigation

settings (t0, x0, v f ) if a vehicle starting at q(0) at time t0 can entirely follow the path up to q(1) in some

amount of time. That is

• q(0) = x0

• ∃τu > 0, ∃u(·) ∈ U , ∃γ warping function [t0, t0 + τu]→ [0, 1] such that

∀τ ∈ [0, τu], φ
u(·)
t0,x0,v f

(τ) = {q(γ(t0 + τ))}

Ground paths will be intensively used in Chapter 7 to develop a performance evaluation

for trajectories when the weather scenario changes.

2.5 Time optimal navigation

In the introduction, we identified the Time-optimal Navigation Problem (TNP) problem or

Zermelo’s navigation problem as being a key problem in long-range routing. When a given
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location is reachable by the vehicle, the problem consists in finding a trajectory achieving min-

imal travel time between origin and this location. The TNP is an optimal control problem and

we recall its formulation

(TNP)


min

u(·)∈U
t f

∀t ≥ t0, ẋ(t) = u(t) + v f (t, x(t))

x(t0) = x0, x(t f ) = x f

(2.6)

A strong result is that there exist time minimal trajectories to every point x that is reach-

able, i.e. for all x ∈ Rt0,x0 . This is ensured by a control theory theorem called Filippov’s ex-

istence theorem because the control law u(·) takes its values in the closed and bounded set

U = B (0, umax).

Value functions An important object for optimal control problems is the value function, i.e.

the mapping giving the minimal cost to reach a point in space, when the point is reachable. It

is the object at the basis of dynamic programming or Hamilton-Jacobi-Bellman methods. We

specify some definitions for varying ways to consider value functions for problem 2.6. In what

follows, MTD stands for ‘Minimum travel duration’.

Definition 6 (Origin value function). The origin value function J : x 7→ J(x) is defined as the

minimum duration to reach a given point in space:

J(x) :=

 MTD from (t0, x0) to x, if x ∈ Rt0,x0

+∞ else

Similarly, we define destination value functions

Definition 7 (Destination value function). The destination value function V : x 7→ V(x) is defined
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Figure 2.2: Gyre flow field with the destination value function (minimum time to come) from any point in space to
the center of the image indicated with the color scale. Two example time-optimal trajectories reaching the center
point from two different starting locations are depicted in black. The sharp change of color between red and blue
in the center of the image is a numerical approximation of a discontinuity in the value function. The figure is
from Rhoads et al. (2010)

.

as the minimum duration to reach the destination at t f from a given point in space

V(x) :=

 MTD from x to (t f , x f ), if x ∈ BRt f ,x f

+∞ else

For the destination value function, it is also of interest to study the possibility to reach the

destination from several time-position pairs; hence, the following definition:

Definition 8 (Multi-time destination value function). The multi-time destination value function

V : t, x 7→ V(t, x) is defined as the minimum duration to reach the destination from a given point in

space and a given starting time, with a time limit at destination:

V(t, x) :=

 MTD from (t, x) to x f , if ∃t̃ ≤ tmax, x f ∈ Rt,x(t̃− t)

+∞ else
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Remark

We use the same symbol for both functions as they can be discriminated against each other

by the number of arguments.

The origin value function answers the question of what duration is required to reach any

point in space when starting from a given location and a given time, which is the canoni-

cal time-optimal problem answer. In ship navigation, level sets of the origin value function

{x | J(x) = c} are called isochrons and can be used for optimized routing.

Even if the problem data is smooth, for instance a C∞ flow field function, the origin value

function can be non-differentiable or even discontinuous. For instance, in Fig. 2.2, a strong gyre

flow entails a discontinuity in the destination value function. A consequence is that for very

close starting locations, time-optimal trajectories to the center point can be very different near

the discontinuity.

Similar to the origin value function, the destination value function gives the minimal travel

duration from a point in space to reach the destination at a given date. Since imposing a termi-

nal date can be restrictive in the interpretation of the value function, the multi-time destination

value function offers more flexibility in the data it holds because it provides the minimum time

to reach the destination from any pair of time-position. This value function is the basis for the

development of Hamilton-Jacobi multi-time reachability as presented in Doshi et al. (2022).

2.6 Navigation on the sphere

To finish this chapter, we explain how to write the equations of motions for a LSPOV vehicle in

2D spherical space, and the corresponding TNP in spherical coordinates.

The Earth is approximated by a sphere of radius RE = 6.371 km. In this setting, using the
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Figure 2.3: Spherical coordinate system

longitude ϕ and latitude λ variables, the mapping of the lon/lat space to the physical space is

Φ : ]−π, π]×
]
−π

2
,

π

2

[
3

ϕ

λ

 7→


RE cos λ cos ϕ

RE cos λ sin ϕ

RE sin λ

 ∈ R3

Note that this corresponds implicitly to projecting the Earth using a plate-carrée (or

equirectangular) projection. We exclude the poles so that this mapping is a C∞-diffeomorphism.

This choice of coordinate system is thus inappropriate to study phenomena happening around

the poles. However, for most real world trajectory planning problems, it provides an easy and

sufficient way to take the Earth’s curvature into account.

At every point on the sphere (ϕ, λ), we have a local frame tangent to the sphere (see fig-
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ure 2.3)

(
eϕ, eλ

)
:=

(∥∥∥∥∂Φ
∂ϕ

∥∥∥∥−1 ∂Φ
∂ϕ

,
∥∥∥∥∂Φ

∂λ

∥∥∥∥−1 ∂Φ
∂λ

)
=



− sin ϕ

cos ϕ

0

 ,


− sin λ cos ϕ

− sin λ sin ϕ

cos λ


 .

The flow field vector map v f (t, ϕ, λ) is tangent to the sphere at each point (ϕ, λ), and it is

also the case for the control vector u. The ground velocity is still the sum of the two vectors

vg = u + v f (t, ϕ, λ)

Remark

If we note un = ‖u‖ and write the decomposition u = un
(
sin ψ eϕ + cos ψ eλ

)
, then ψ

corresponds to the usual definition of the heading angle, having u pointing towards the

geographical North when ψ = 0 and turning clock-wise when ψ increases.

The velocities vg, u and v f can be decomposed on the local frame at every point

vg = vg, ϕ eϕ + vg, λ eλ

u = uϕ eϕ + uλ eλ

v f = v f , ϕ eϕ + v f , λ eλ

The components on the ϕ-axis are commonly called zonal components while the ones on the

λ-axis are called meridian components.

The previous velocity vectors having only two degrees of freedom, we will now represent
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them using the 2D angular velocity vectors

ωg =
(
ωg, ϕ ωg, λ

)ᵀ := 1
RE

(
vg, ϕ vg, λ

)ᵀ
χ =

(
χϕ χλ

)ᵀ := 1
RE

(
uϕ uλ

)ᵀ
ω f =

(
ω f , ϕ ω f , λ

)ᵀ := 1
RE

(
v f , ϕ v f , λ

)ᵀ

If the velocities are provided in m/s, then angular velocities are in rad/s.

To write the dynamics of the vehicle in spherical coordinates, one simply has to remark that

λ̇ is the angular velocity of the vehicle over the current meridian, so:

λ̇ = ωg, λ

Similarly, the angular velocity ϕ̇ is the velocity of the vehicle around the South-North axis and

the vehicle is rotating on a shrunk circle of radius RE cos λ. So:

ϕ̇ =
vᵀ

g eϕ

RE cos λ
=

ωg, ϕ

cos λ

And with the new state vector ξ := (ϕ λ)ᵀ, we have the following dynamics:

ξ̇ = M(λ)
(
χ + ω f

)
M(λ) :=

 1
cos λ 0

0 1

 (2.7)

which is very similar to equation (2.1).

The model is now stated in closed form in spherical coordinates and we can write the Spher-

ical Time-optimal Navigation Problem (S-TNP)
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(S-TNP)


min

χ(·)∈U
t f

ξ̇ = M(λ)
(
χ + ω f

)
ξ(t0) = ξ0, ξ(t f ) = ξ f

(2.8)

The methods applied to solve problem (2.6) can also be applied to the latter problem to solve

for exact trajectories in spherical coordinates.

Conclusion

This chapter defined tools to study trajectory optimization or reachability for vehicles in flow

fields with the LSPOV abstraction model. With these tools defined, we are now ready to ad-

dress the problem of computing time-optimal trajectories for navigation problems in arbitrary

flow fields, which is the focus of the following chapter.

Chapter’s main questions – Answers

• Mathematically, what are the properties of the large-scale point of view model
adopted for long-range trajectory planning?

The LSPOV model captures the kinematic behavior of a vehicle immersed in a flow field.
It enables a time- and space- continuous modelling of trajectories. It captures the local loss of
controllability in strong flow, with excluded directions of motion.

• Is the large-scale point of view adaptable to spherical coordinates?

In longitude/latitude coordinates, the LSPOV model differs from the planar model only
by a multiplicative matrix in the kinematics.
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Chapter 3

Time-optimal navigation problem:

Algorithms

Abstract

In this chapter, necessary conditions of optimality for time-optimal trajectories
solving Zermelo’s navigation problem in the presence of an unsteady and pos-
sible strong flow field are given by using Pontryagin’s Maximum Principle. Three
equivalent augmented ordinary differential equations defining the trajectories can-
didate to optimality (extremals) are given and commented against their use in
the literature. Similar optimality conditions are written in spherical coordinates,
showing few differences with the planar case. An algorithm based on the resam-
pling of extremals and similar to what is found in the literature is detailed and
studied. The origin resampling scheme is shown to reach its limit in a real world
example featuring high winds because it requires too much precision on the ini-
tial condition. An improvement of the latter algorithm is proposed, with resam-
pling happening along extremals rather than on the initial condition. It manages
to solve the real world case where the first algorithm failed. Finally, some possi-
ble improvements for the algorithms are suggested to improve the computation
efficiency.
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Résumé en français

Dans ce chapitre, les conditions nécessaires d’optimalité pour les trajectoires optimales en
temps résolvant le problème de navigation de Zermelo dans un écoulement fort et insta-
tionnaire sont données en utilisant le principe du maximum de Pontryagin. Trois équa-
tions différentielles ordinaires augmentées équivalentes définissant les trajectoires candi-
dates à l’optimalité (extrémales) sont données et commentées par rapport à leur utilisa-
tion dans la littérature. Des conditions d’optimalité similaires sont écrites en coordon-
nées sphériques, montrant peu de différences avec le cas plan. Un algorithme basé sur
le rééchantillonnage des extrémales et similaire à ce que l’on trouve dans la littérature est
détaillé et étudié. Il est démontré que le principe de rééchantillonnage à l’origine atteint
ses limites dans un exemple réel comportant des vents fort, parce qu’il exige trop de pré-
cision sur la condition initiale. Une amélioration de ce dernier algorithme est proposée,
le rééchantillonnage se faisant le long des extrémités plutôt que sur la condition initiale.
Il parvient à résoudre le cas réel où le premier algorithme a échoué. Enfin, des pistes
d’amélioration sont suggérées afin d’améliorer l’efficacité des algorithmes décrits.

Contents
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The previous chapter described the tools to study optimal navigation problems both in

planar space and spherical space. We now provide computer methods to actually solve the

navigation problem and compute the different quantities of interest such as trajectories and

reachability sets.

The following development will be made in planar space for simplicity. But the results

easily generalize to spherical coordinates.
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The previous chapter elaboration on a continuous mathematical model for navigation prob-

lems paved the way for the use of indirect methods. Indeed, in this chapter, we present algo-

rithms belonging to the ‘Extremal methods’ category of the literature. Extremal computation

for the time-optimal navigation of vehicles in flow fields has been studied in the past, whether

for underwater vehicles (Rhoads et al., 2013; Wang et al., 2016; Bijlsma, 1975) or for aircraft (Bi-

jlsma, 2009; Sridhar et al., 2011; Marchidan and Bakolas, 2016), but it is in general less popular

than other methods such as front propagation or direct methods, because screening extremals

can be difficult in strong flow field environment. Nevertheless, these extremals are helpful to

get a fine understanding of why some trajectories are optimal, as their construction results from

applying necessary conditions of optimality.

Chapter’s main questions

• How to compute efficiently trajectories that minimize the travel time in the long-
range navigation problem?

• Can we provide guarantees that a given trajectory is indeed a global optimum of the
problem?

• What are the typical shapes of time-minimizing trajectories?

3.1 Extremal trajectories

Pontryagin’s Maximum Principle (PMP) (Boltyanskiy et al., 1962) provides necessary condi-

tions of optimality that a trajectory must satisfy to be a solution of an optimal control problem.

Trajectories satisfying the PMP conditions are subsequently called extremals. They are candi-

dates to optimality, in the sense that if a solution trajectory exists for the optimal control at

stake, then it is a particular extremal of the problem. We are going to build extremals (shooting

method) for the TNP (2.6) and look for the solution to our problem in the set of all extremals.

We first define the Hamiltonian of problem (2.6) as
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H : R×R2 ×R2 ×R2 ×R → R

t, x, p, u, λ 7→ pᵀ
(
u + v f (t, x)

)
+ λ

(3.1)

In the previous equation, a new vector p called the costate vector was introduced. It is a

virtual state, a mathematical tool that will help write the characterization of optimality. λ =

λ× 1 is a multiplier for the marginal cost of (2.6), which is 1 as we do time optimality. It does

not vary with time. In the canonical PMP, it comes with a minus sign in the Hamiltonian. But

in our case, we are minimizing a cost, so it comes with a plus sign (it is equivalent to say that

we maximize the opposite of total travel time).

To apply the PMP, we need to assume that the flow field is piece-wise C1.

The costate p is an absolutely continuous function of time which is characterized by its

evolution in time, given as:
dp
dt

= −∂v f

∂x

∣∣∣∣ᵀ
t, x(t)

p (3.2)

The PMP states NCOs for the solution trajectory of control problems. It states that if t 7→
(x∗(t), p∗(t), u∗(t), λ∗) is an optimal trajectory, then:

1. (Point-wise minimization)

For a.e. t ∈ [0, T], u∗(t) ∈ argminu∈U H(t, x∗(t), p∗(t), u, λ∗)

2. (Costate transversality condition) p(T) is orthonormal to the tangent space to the target set

at x(T)

3. (Free final time transversality condition)

min
u∈U

H(T, x∗(T), p∗(T), u, λ∗) = 0

The first important result is that in our case, (1) leads to an explicit link between the optimal

82
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control and the value of the costate.

Property 3.1: NCOs for the TNP

The necessary optimality conditions for the solutions of the TNP write

for a.e. t ∈ [0, T], u∗(t) = −umax
p∗(t)
‖p∗(t)‖ (3.3)

Proof. H(t, x, p, u, λ) = pᵀu + pᵀv f (t, x) + λ is minimal in u when u is opposite to the costate

p with maximal norm.

Property 3.1 is interesting in the sense that the argmin extraction operation is expected to be

computationally intensive in non-linear optimal control problems. But in this setting, we have

an analytical link between costate and optimal control which paves the way for computational

efficiency. If we consider the system to be defined not only by its position vector x but also

by its costate vector p, then the previous property turns the control system into a closed-loop

system, which one we will study in Section 3.1.1. But before moving on, we need to see what

conditions (2) and (3) imply for extremals.

As regards the transversality condition (2), it is void since the TNP 2.6 has a point as target

set, so the tangent space is {0} which admits R2 as orthogonal space.

Finally, the final time transversality condition shall be considered. We have:

min
u∈U

H(T, x∗(T), p∗(T), u, λ∗) = p∗(T)ᵀ
(
−vr

p∗(T)
‖p∗(T)‖ + v f (T, x f )

)
+ λ∗

Because the PMP is invariant by scaling of (p∗(·), λ∗), we can suppose that λ∗ = 1. Condi-

tion (3) thus writes:

p∗(T)ᵀ
(
−vr

p∗(T)
‖p∗(T)‖ + v f (T, x f )

)
= −1

which we can rewrite:

‖p∗(T)‖
(

p∗(T)ᵀ

‖p∗(T)‖v f (T, x f )− vr

)
= −1
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This necessary condition links the costate norm and direction at final time. Because it sat-

isfies the ODE 3.2, under sufficient smoothness assumption, the costate is entirely defined by

specifying a particular value p(t1) = p1. So, we could try to use the information of condition

(3) to set the costate vector at final time and integrate backwards to the origin the extremal of

interest. But this means we have to pick a final time T arbitrarily to do so. So, in practice we

would have to integrate from several final times to try to find the optimum one. This is what is

done in Rhoads et al. (2010).

In what follows, we will prefer to set the costate vector using an initial condition. Because

it will be the basis to build efficient algorithms, and also because Property 3.2 shows that the

costate magnitude does not matter, i.e. ‖p‖ can be scaled by any positive factor without chang-

ing the trajectory in the physical space. We will ensure the trajectory we find is globally optimal

by screening exhaustively into the set of all extremals.

3.1.1 Extremal system, costate form

We define an augmented state by stacking the state and the costate vector y = (x p)ᵀ. We

gather ODEs in a single extremal system that writes:



ẏ(t) =


−umax

p(t)
‖p(t)‖ + v f (t, x(t))

−∂v f

∂x

∣∣∣∣ᵀ
t, x(t)

p(t)



y(0) = y0 =

x0

p0


(3.4)

We will call trajectories y(·) extremals as well, in a small abuse of terminology. Then, we

notice that this system exhibits a special property about the costate vector.
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Property 3.2

Extremal system 3.4 produces the same x-trajectories if the initial condition p0 is replaced

by αp0 with α > 0.

Proof. Let α > 0 and let y(·) = (x(·), p(·)) be the trajectory integrated from 3.4 with initial

condition (x0, p0). Define p′(·) := αp(·) and y′(·) := (x(·), p′(·)). Observe that p(t)
‖p(t)‖ =

αp(t)
‖αp(t)‖ ,

so

ẋ(t) = −umax
p(t)
‖p(t)‖ + v f (t, x(t)) = −umax

p′(t)
‖p′(t)‖ + v f (t, x(t))

Then

ṗ′(t) = αṗ(t) = −α
∂v f

∂x

∣∣∣∣ᵀ
t, x(t)

p(t) = −∂v f

∂x

∣∣∣∣ᵀ
t, x(t)

p′(t)

So y′ satisfies the ODE of system 3.4, and furthermore we have

y′(0) = (x0, αp0)

The Cauchy problem 3.4 being well posed (Lipschitz dynamics), solutions are unique for given

initial conditions and we deduce that y′ is the trajectory from system 3.4 obtained for initial

conditions (x0, p′0) where p′0 = αp0. This proves that the x part of y trajectories integrated from

system 3.4 does not change when the initial condition on the costate is multiplied by a positive

factor.

The previous property shows that the extremal system 3.4 is over-determined, in the sense

that there are too many dimensions among the four dimensions. Hence, other equivalent,

lower-dimensional systems of ODE can capture the dynamics of extremals in the physical

space, as will be shown in the following sections.
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3.1.2 Extremal system, heading vector form

The extremal system 3.4 can also be formulated using the heading vector h that belongs to the

unit circle and thus has only one degree of freedom as opposed to the costate vector.



ẋ(t)

ḣ(t)

 =


umax h(t) + v f (t, x(t))

−∂v f

∂x

∣∣∣∣ᵀ
t, x(t)

h(t) +

(
h(t)ᵀ

∂v f

∂x

∣∣∣∣
t, x(t)

h(t)

)
h(t)


x(0)

h(0)

 =

x0

h0


(3.5)

If we note h := − p(t)
‖p(t)‖ the heading vector, then Cauchy problem 3.4 is equivalent to the

problem 3.5. We prove this in Property 3.3.

3.1.3 Extremal system, heading angle form

The heading vector h always belongs to S1, so in reality its only degree of freedom is the head-

ing angle θ such that:

h :=

cos θ

sin θ


It is possible to write the extremal system only using the heading angle θ variable:



ẋ(t)

θ̇(t)

 =

 umax h(t) + v f (t, x(t))

−∂v f , 1

∂x2
cos2 θ +

(
∂v f , 1

∂x1
− ∂v f , 2

∂x2

)
cos θ sin θ +

∂v f , 2

∂x1
sin2 θ


x(0)

θ(0)

 =

x0

θ0


(3.6)

This characterization of extremals using the heading angle appears in Rhoads et al. 2013,
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Eq. 5 or Sridhar et al. 2011, Eq. 15 but also in chemistry for reaction fronts Megson et al. 2015,

Eq. 1b or Mahoney et al. 2012, Eq. 2b.

Property 3.3

The x-trajectories of 3.4, 3.5 and 3.6 are the same when values θ0, h0, p0 satisfy

h0 = − p0

‖p0‖
=

cos θ0

sin θ0



Proof. • We first show that the ODE on p(·) and h(·) are equivalent.

We have
d
dt
‖p‖ = ṗᵀ p

‖p‖

so
d
dt

(
p
‖p‖

)
=
‖p‖ ṗ− ṗᵀ p

‖p‖ p

‖p‖2

=
ṗ
‖p‖ −

[(
ṗ
‖p‖

)ᵀ p
‖p‖

]
p
‖p‖

=

−∂v f

∂x

∣∣∣∣ᵀ
t, x(t)

p

‖p‖ −



−∂v f

∂x

∣∣∣∣ᵀ
t, x(t)

p

‖p‖


ᵀ

p
‖p‖

 p
‖p‖

with h = − p
‖p‖ we then have:

ḣ(t) = −∂v f

∂x

∣∣∣∣ᵀ
t, x(t)

h +

(
hᵀ ∂v f

∂x

∣∣∣∣
t, x(t)

h

)
h (A)

which shows that the new ODE on h(·) is just a reformulation of the ODE on p(·).
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• Then, writing h = (cos θ sin θ)ᵀ, and using k = hᵀ ∂v f
∂x h, equation (A) now writes


−θ̇ sin θ = −∂v f , 1

∂x1
cos θ − ∂v f , 2

∂x1
sin θ − k cos θ

θ̇ cos θ = −∂v f , 1

∂x2
cos θ − ∂v f , 2

∂x2
sin θ − k sin θ

Thus, multiplying line 1 with (− sin(θ)) and line 2 with cos θ, and adding it together, the

left-hand side is just θ̇ and the term in factor of k vanishes, so that:

θ̇ = −∂v f , 1

∂x2
cos2 θ +

(
∂v f , 1

∂x1
− ∂v f , 2

∂x2

)
cos θ sin θ +

∂v f , 2

∂x1
sin2 θ

Linear flow field

One of the most canonical example of a Zermelo problem is navigating in a linear flow field

that is aligned with the axes. The flow field writes:

v f (x) :=

0 a

0 0

 x (3.7)

with a = 1 in what follows. The navigation problem is:



min τ

ẋ = u + v f (x)

x(0) = (0, 0)

x(τ) = x f

We display some extremal trajectories for this problem in Fig. 3.1, with the one reaching the

target x f = (1, 0) in red1.

1The code can be found in the notebook linear_extremals.ipynb at .
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Linear flow field

Figure 3.1: Time-optimal extremals in the linear flow field. The extremals are integrated for different initial heading
values.

For the considered problem, there exist an analytical solution for extremals that is given for

instance in Girardet (2014), Appendix F. We write the expression and adapt it to the fact that in

our case we start from (0, 0) and want to reach a specified target x f (the opposite in Girardet’s

thesis).

ξθ0(θ) :=


1
2

vr

a

(
−1

cos θ0
(tan θ0 − tan θ) + tan θ

(
1

cos θ0
− 1

cos θ

)
− ln

tan θ0 +
1

cos θ0

tan θ + 1
cos θ

)
vr

a

(
1

cos θ
− 1

cos θ0

)


where θ is both a parameter of the path and the heading angle of the vehicle. This expression

satisfies ξθ0(θ0) = (0, 0). To find the optimal trajectory to x f , one has to find a θ0 for which

equation ξθ0(θ) = x f admits a solution θ f ≤ θ0. When found, say θ?0 , the optimal path is then

{ξθ0(θ) | θ ∈ [θ f , θ0]}. For other analytical resolutions of the TNP, see Techy (2011); Bonnard

et al. (2021).
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3.2 Extremals in spherical coordinates

We can write a Hamiltonian for the optimal control problem 2.8 where we note π := (πϕ πλ)
ᵀ

the costate vector and π0 the cost multiplier:

H(ξ, π, χ, π0) = πᵀM(λ)
(
χ + ω f

)
+ π0

To write the costate evolution, we first need to differentiate the dynamics of the problem.

We set the dynamics:

f (t, ϕ, λ) := M(λ)
(
χ + ω f (t, ϕ, λ)

)

We have:

∂ f
∂ϕ

= M(λ)
∂ω f

∂ϕ
=

 1
cos λ

∂ω f , ϕ

∂ϕ

∂ω f , λ

∂ϕ


∂ f
∂λ

= M(λ)
∂ω f

∂λ
+

dM
dλ

(λ)

χϕ + ω f , ϕ

χλ + ω f , λ


=

 1
cos λ

∂ω f , ϕ

∂λ

∂ω f , λ

∂λ

+

 tan λ
cos λ (χϕ + ω f , ϕ)

0


=

 1
cos λ

∂ω f , ϕ

∂λ + tan λ
cos λ (χϕ + ω f , ϕ)

∂ω f , λ

∂λ


The evolution π̇ = −

(
∂ f
∂ϕ

∂ f
∂λ

)ᵀ
π thus writes:

π̇ϕ

π̇λ

 = −

 1
cos λ

∂ω f , ϕ

∂ϕ

∂ω f , λ

∂ϕ

1
cos λ

∂ω f , ϕ

∂λ + tan λ
cos λ (χϕ + ω f , ϕ)

∂ω f , λ

∂λ


πϕ

πλ



The Hamiltonian is differentiable w.r.t. the control variable ψ and:
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∂H
∂ψ

= πᵀM(λ)

−va cos ψ

va sin ψ


∂2H
∂ψ2 = πᵀM(λ)

−va sin ψ

−va cos ψ



Thus, to have a minimum in ψ, i.e. ∂H
∂ψ = 0 and ∂2 H

∂ψ2 ≥ 0, the control s =

sin ψ

cos ψ

 shall be:

s = − M(λ)π

‖M(λ)π‖

which is very similar to the planar case, with a correction matrix to take spherical geometry

into account. We thus have a closed form for the optimal control and as in the planar case, we

can shoot extremals to solve the OCP.

3.3 Algorithms

In this section, we assume the problem is set so that t0 = 0 for simplicity. We formalize algo-

rithm ideas to solve the TNP (2.6). More precisely, we want to build the optimal trajectory from

the construction of extremals, since Pontryagin’s Maximum Principle states that the optimal

trajectory is an extremal.

We will consider the dynamics function:

F : R×R4 → R4

(t, y) = (t,

x

p

) 7→


−umax

p
‖p‖ + v f (t, x)

−∂v f

∂x

∣∣∣∣ᵀ
t, x

p


which comes from the extremal system in costate form 3.4, and solve Initial Value Problems
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(IVPs) of the form: 
ẏ = F(t, y)

y(0) = y0

(3.8)

The function F is not defined for p = 0. But fortunately, solutions of Eq. 3.8 will never

have a vanishing costate. Indeed, if one has for some t1 that p(t1) = 0, then by forward and

backward integration of the costate ODE, one has ∀t, p(t) = 0. So, this never happens if the

costate is initialized to a non-zero value. Thus, we will assume in what follows that we always

work with costate values away from zero by a safety margin pmin:

‖p‖ ≥ pmin > 0

Similarly, we are always going to work on a finite time horizon. We will assume the costate

vector never diverges in finite time, i.e. there exists pmax such that:

‖p‖ ≤ pmax

We assume the flow field is C2 over the domain D. Because the domain is compact (closed

and bounded), the flow field’s Lipschitz constant is well defined and we note:

L1 = sup
t∈[0,T]

x∈D

∥∥∥∥∥∂v f

∂x

∣∣∣∣
t, x

∥∥∥∥∥
Frob

with the Frobenius norm:

∥∥∥∥∥∂v f

∂x

∣∣∣∣
t, x

∥∥∥∥∥
Frob

=

√√√√√√ ∑
i=1,2
j=1,2

(
∂v f , i

∂xj

∣∣∣∣
t, x

)2
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And similarly for the second derivative, the following Lipschitz constant is well defined:

L2 = sup
t∈[0,T]

x∈D

∥∥∥∥∥∂2v f

∂x2

∣∣∣∣
t, x

∥∥∥∥∥
Frob2

with ∥∥∥∥∥∂2v f

∂x2

∣∣∣∣
t, x

∥∥∥∥∥
Frob2

=

√√√√√√√ ∑
i=1,2
j=1,2
k=1,2

(
∂2v f , i

∂xj∂xk

∣∣∣∣
t, x

)2

With these assumptions, we can prove IVP 3.8 is well posed in the sense that function F is

Lipschitz continuous.

Property 3.4: Augmented dynamics Lipschitz continuity

F is Lipschitz with constant

LF =

√(
L1 + umax p−1

min

)2
+ (L1 + L2 pmax)

2

Proof. We first recall that

‖y‖ =

∥∥∥∥∥∥∥
x

p


∥∥∥∥∥∥∥ =

√
‖x‖2 + ‖p‖2

and

max {‖x‖ , ‖p‖} ≤ ‖y‖

Using the following notation for the normalizing function:

ν : p 7→ p
‖p‖
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we have:

F(t, y2)− F(t, y1) =

v f (t, x2)− v f (t, x1)− umax (ν(p2)− ν(p1))

−∂v f

∂x

∣∣∣∣ᵀ
t, x2

p2 +
∂v f

∂x

∣∣∣∣ᵀ
t, x1

p1


Then,

∥∥v f (t, x2)− v f (t, x1)− umax (ν(p2)− ν(p1))
∥∥ ≤ L1 ‖x2 − x1‖+ umax p−1

min ‖p2 − p1‖

≤
(

L1 + umax p−1
min

)
‖y2 − y1‖

and ∥∥∥∥∥−∂v f

∂x

∣∣∣∣ᵀ
t, x2

p2 +
∂v f

∂x

∣∣∣∣ᵀ
t, x1

p1

∥∥∥∥∥ =

∥∥∥∥∥
(

∂v f

∂x

∣∣∣∣ᵀ
t, x1

− ∂v f

∂x

∣∣∣∣ᵀ
t, x2

)
p2 +

∂v f

∂x

∣∣∣∣ᵀ
t, x1

(p1 − p2)

∥∥∥∥∥
≤ L2 ‖x2 − x1‖ ‖p2‖+ L1 ‖p2 − p1‖

≤ (L2 pmax + L1) ‖y2 − y1‖

Thus,

‖F(t, y2)− F(t, y1)‖ ≤
√((

L1 + umax p−1
min

)
‖y2 − y1‖

)2
+ ((L2 pmax + L1) ‖y2 − y1‖)2

≤ LF ‖y2 − y1‖

with

LF =

√(
L1 + umax p−1

min

)2
+ (L1 + L2 pmax)

2

Notation 1. If y(t) =

x(t)

p(t)

 is a solution of extremal system 3.4 with initial condition y(0) = y0,

we note:

• φt (y0) := y(t) the flow of system 3.4

• φx
t (y0) := x(t) the x-component (first two components) of the flow of system 3.4
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Figure 3.2: An example of an extremal set in blue and an extremal surface in green for the linear flow field case 3.7.
Three extremals are also depicted.

Notation 2. When x0 is fixed in a given context, we may note φt (y0) = φt (p0) to emphasize that the

only dependency left is on the initial costate value.

Definition 9 (Extremal set). The set of all extremals initialized in the state space at x0 and evaluated

at time t is noted:

Ex0(t) :=
⋃

p0∈R2

{φt (p0)}

Definition 10 (Extremal surface). The set of all extremals initialized in the state space at x0 and

evaluated over time window [0, τ] is noted:

Sx0(τ) :=
⋃

t∈[0,τ]

Ex0(t)

For the case of a linear flow field as presented in page 88, we depict2 an extremal set and an

extremal surface in Fig. 3.2.

2The code can be found in the notebook linear_extremals.ipynb at .
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Notation 3. To only consider the state component of extremals, we use the notation:

Ex
x0
(t) :=

⋃
p0∈R2

{φx
t (p0)}

Sx
x0
(τ) :=

⋃
t∈[0,τ]

Ex
x0
(t)

Property 3.5

In the TNP, it is sufficient to sample the circle to get the entire extremal set in the physical

space

Ex
x0
(t) :=

⋃
p0∈S1

{φx
t (p0)}

Proof. It is a consequence of property 3.2.

The following property will bound the behavior of two neighboring extremals integrated

forward in time.

Property 3.6: Grönwall’s inequality

If a state initial condition x0 and two costate initial conditions p(1)
0 and p(2)

0 are given, the

following bound on the two extremals holds:

∥∥∥φt

(
p(1)

0

)
− φt

(
p(2)

0

)∥∥∥ ≤ ∥∥∥p(2)
0 − p(1)

0

∥∥∥ eLFt (3.9)

Proof. This results from the application of Grönwall’s inequality to 3.4.

Remark

The previous property shows that p0 7→ φt (p0) is a continuous application.

Then, we establish the structure of the extremal set with the following property.
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Property 3.7

Ex
x0
(t) is a loop.

Proof. Ex
x0
(t) is the image of the loop S1 by the continuous application φx

t (·) composed with the

projection (continuous) on the x-space.

Finally, we highlight the link between extremals and the optimal travel time in a navigation

problem.

Property 3.8

If τ?(x f ) is the minimum travel duration from x0 to x f , then

τ?(x f ) = min
{

τ
∣∣ {x f } ∩ Ex

x0
(τ) 6= ∅

}

Proof. This is just a reformulation of Pontryagin’s minimum principle. Extremals are candi-

dates to optimality which means the optimal trajectory of the problem is to be found among

the set of extremals. When the extremal set hits the target for several duration values, the

smallest one is indeed the minimum travel time.

Remark

τ? is the origin value function J from Definition 6.

3.3.1 Piecewise linear approximation of extremal surface

Since the extremal surface is a continuous object, we have to define a numerical way to approx-

imate it. We build a piecewise linear approximation of the extremal surface for a given finite

number of extremals and a number of time steps3. This is illustrated in figure 3.3.

3The code can be found in the notebook linear_extremals.ipynb at .

97

https://doi.org/10.5281/zenodo.13939206


CHAPTER 3. TIME-OPTIMAL NAVIGATION PROBLEM: ALGORITHMS

Figure 3.3: Left: Piecewise linear approximation of the exact extremal surface using a finite collection of extremals
for the linear flow field 3.7. Right: The same object represented in 3D with time as third dimension. It is the
approximate value function Japp(x).

For any neighboring pair
(
p−0 , p+

0

)
, we want to use the approximation:

∀p0 ∈ [p−0 , p+
0 ], α ∈ [0, 1], φx

t
(
(1− α)p−0 + αp+

0
)
≈ (1− α)φx

t
(
p−0
)
+ αφx

t
(
p+

0
)

in order to build the extremal set partial approximation:

Ep−0 ,p+
0
(t) :=

{
(1− α)φx

t
(
p−0
)
+ αφx

t
(
p+

0
) ∣∣ α ∈ [0, 1]

}
≈

⋃
p0∈[p−0 ,p+

0 ]

{φx
t (p0)}

Then, the collection of all these segments in time provides an approximation of the extremal

surface ⋃
t∈[0,τ]

{
(1− α)φx

t
(
p−0
)
+ αφx

t
(
p+

0
) ∣∣ α ∈ [0, 1]

}
≈ Sx0(τ)

The previous collection depends on the knowledge of the extremal values at any time step

t in the working time window. But we will solve the IVP for extremals on a given time dis-

cretization (ti)i∈{0,...,nt−1}. Thus, we define the extremal surface partial approximations by the

triangles:

S(i,−)
p−0 ,p+

0
:= conv

(
φx

ti

(
p−0
)

, φx
ti+1

(
p−0
)

, φx
ti

(
p+

0
))
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and

S(i,+)

p−0 ,p+
0

:= conv
(

φx
ti

(
p−0
)

, φx
ti

(
p+

0
)

, φx
ti+1

(
p+

0
))

We can then build an approximation of the origin value function (Definition 6) from the

the linear interpolation of travel times over the triangles forming the approximate extremal

surface. First let lin(x; a, b, c, α, β, γ) be the value at position x of the linear function of R2 that

is uniquely defined by:

lin(a; a, b, c, α, β, γ) = α

lin(b; a, b, c, α, β, γ) = β

lin(c; a, b, c, α, β, γ) = γ

We then define partial value functions as:

J(i,−)p−0 ,p+
0
(x) :=

 lin
(

x; φx
ti

(
p−0
)

, φx
ti+1

(
p−0
)

, φx
ti

(
p+

0

)
, ti, ti+1, ti

)
if x ∈ S(i,−)

p−0 ,p+
0

+∞ else

and

J(i,+)

p−0 ,p+
0
(x) :=

 lin
(

x; φx
ti

(
p−0
)

, φx
ti

(
p+

0

)
, φx

ti+1

(
p+

0

)
, ti, ti, ti+1

)
if x ∈ S(i,+)

p−0 ,p+
0

+∞ else

And then we have an approximation for the value function over the time window [t0, tnt−1]:

Japp(x) := min
i∈{0,...,nt−1}

(p+
0 ,p−0 ) neighboring pair

min
{

J(i,−)p−0 ,p+
0
(x), J(i,+)

p−0 ,p+
0
(x)
}

(3.10)

In the time direction, the error made on the computation of the augmented state is con-

trolled and it depends on the integration scheme. In the extremal initial parameter p0 space

though, it is more difficult to provide a bound between the linear approximation and the actual

extremal set. But keeping in mind practical applications, we are going to work under the as-

sumption that if all pairs of neighboring extremals are close enough, say distant by a maximum
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of ε, then the approximate value function Japp(x) is sufficiently representative of the true value

function.

Assumption 1 (Extremal set approximation). For every neighboring pair
(
p−0 , p+

0

)
, if the following

property holds:

∀t ∈ [0, τ],
∥∥φx

t
(
p−0
)
− φx

t
(
p+

0
)∥∥ ≤ ε (3.11)

then the value function approximation is close to the real value function:

Japp(x) ≈ J(x)

Working under Assumption 1 implicitly states that the true value function does not exhibits

features under the scale of ε. This is limiting the variety of value functions that we can correctly

represent with the extremal scheme. Still, it seems a reasonable assumption as regards the

LSPOV, because we previously chose to study long-range navigation problem disregarding

the small-scale behavior of the vehicle. Thus, it does not seem to make sense to try to resolve

small features of the value function.

Similarly, trying the solve the TNP by exactly reaching the target state x f does not make

sense numerically. So, in practice we are going to look for solutions as trajectories reaching a

ball around the target B(x f , ρ), with ρ small compared to the problem’s characteristic length,

and set to an operational value for which we can consider the target is reached. It would then

make sense to take the precision threshold ε equal to the tolerance radius ρ around the target.

Now that we are working under Assumption 1, we define the validity index for a pair of

neighboring extremals.

Definition 11 (Validity index). For any neighboring pair
(
p−0 , p+

0

)
, the validity index iVI is

iVI := max
{

i
∣∣∣ ∀j ≤ i,

∥∥∥φtj

(
p−0
)
− φtj

(
p+

0
)∥∥∥ ≤ ε

}
In other words it is the largest time index up to which inequality 3.11 holds for the considered pair.
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With this definition of proximity between extremals, it is now possible to design algorithms

that sample extremals close to one another to approximate the extremal set and thus solve

navigation problems.

3.3.2 Equisampling algorithm

When an initial costate vector p0 is given, the computation of the associated extremal φt (p0)

can be done in a efficient way using any IVP solver, for instance scipy’s solve_ivp function.

A first idea of algorithm is to shoot a large number of extremals this way. But how do we

ensure 3.11 is satisfied for all pairs of neighboring initial costates? One way could be trial

and error: if the selected number of extremals is insufficient for all pairs of extremals to be

close enough, then rerun the computation with more extremals. We can also try to predict the

required number of extremals. For this, using the Grönwall inequality 3.9, we predict for a pair

of neighboring extremals (p−0 , p+
0 ) that it will satisfy 3.11 at least up to a certain time:

tG :=
1

LF
ln

(
ε∥∥p+

0 − p−0
∥∥
)

So, if we sample costate vectors:

p(k)
0 =

(
cos

(
2πk

n

)
sin
(

2πk
n

))ᵀ

, k ∈ {0, 1, . . . , n− 1}

each pair
(

p(k)
0 , p(k′)

0

)
with k′ − k ≡ 1[n] will be valid on the whole time window [0, T] if

n ≥ Ncons :=
⌈

2π ε−1 eLFT
⌉

(3.12)

where we used the approximation, valid for n � 1, that
∥∥∥p(k′)

0 − p(k)
0

∥∥∥ ≈ 2π
n . This is the

basis of a first algorithm, which is presented in Algorithm 1.
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Remark

The presence of the term LFT in the exponential suggests that the “complexity” of the

behavior of extremal trajectories in a navigation problem is mostly influenced by the mag-

nitude of this product. Indeed it shall increase exponentially with it.

Data: x0, xt, vw, T B Start, target, flow field, time window upper bound

1 Parameters: ε, L BMax. dist. between extremals, Lipschitz constant of aug. dynamics

Result: lextr BList of extremals covering reachable set

2 n←
⌈
2π ε−1 eLT⌉;

3 lextr ← [];

4 for k ∈ {0, 1, . . . , n− 1} do

5 p0 ←
(

cos
(

2πk
n

)
sin
(

2πk
n

))ᵀ
; B Sample init. costates on the unit circle

6 y0 ← (x0 p0)
ᵀ; B Set initial condition for IVP solver

7 y← SolveIVP(F, y0, 0, T); BDyn. F, init. cond. y0 at t = 0, integr. up to t = T

8 lextr ← lextr :: [y]; BAdd extremal to list

9 end
Algorithm 1: Equisampling extremal algorithm for the TNP.

If C(t) is an upper bound on the computation cost of φt (p0) for all p0 ∈ S1, then the de-

scribed algorithm has cost bounded by C(T)
⌈
2π ε−1 eLFT⌉. We depict4 an example of extremals

sampled by the equisampling algorithm in the case of a linear flow field in Fig. 3.4. The figure

shows that the spacing between extremals can vary highly depending on the neighboring pair

considered.

3.3.3 In-depth sampling algorithm

The exponential cost on the problem complexity LFT is a major downside of the previous ap-

proach. But in the preceding analysis, we used a conservative bound to compute the level of

4The code can be found in the notebook gyre_extremals.ipynb at .
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Figure 3.4: Extremals in the gyre flow. Some extremals shot from the center of the figure are depicted in black with
their endpoints as diamonds. The blue curve is a high resolution approximation of the exact extremal set.

precision needed for the costate initialization so that condition 3.11 holds. What may happen

in practice is that this precision level is indeed too much for most portions of the extremal

front, and only required for some of them (this is shown in page 107). This leads to the idea of

resampling trajectories from the origin only in sectors where the invariant is violated.

A similar idea for the resampling of extremals is given in (Rhoads et al., 2010), but with

a heuristic choice of resampling only between a maximum amount of k neighbors leading to

the largest distance between endpoints. A real systemic initial heading angle bisection idea

appears in Marchidan and Bakolas (2016), but the check for bisection occurs on the endpoint of

trajectories as opposed to the synchronous pairwise distance that will be described below.

The resampling principle is illustrated in figure 3.5 and formalized in Algorithm 2.

First (Fig. 3.5a), we choose an initial discretization of [0, 2π], here with 16 points. We choose

an arbitrary discretization of time, and our goal is to compute a collection of extremals that is

valid up to time step number 5. The different radiuses depict time, precisely time steps 1, 2, 3,

4 and 5.
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Figure 3.5: Extremal polar plot. The angle represents the initial heading angle. The radius corresponds to time,
with increasing time for increasing radius. The green disk shows the maximum time for which the extremal field is
considered valid, i.e. a correct approximation of the value function.
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Then (Fig. 3.5b), we integrate forward in time (Algorithm 2, line 8) the initial set of 16 ex-

tremals and give them letters. The solid dots show the time step at which integration stopped.

Here, integration stopped for all extremals at the last time steps, but it will be different in the

following sections.

For every pair of extremals, we remove from the list of neighbors all pairs with a validity

index having reached the end of the time window (function checkNeighbors, Algorithm 2,

line 16, detailed in Algorithm 3). For the remaining pairs, we depict an unfilled dot at the

validity index to the member of the pair that is at the clock wise extremity. We make solid points

orange to depict that these points do not guarantee the proximity to their counter clockwise

neighbor.

Thus (c), when validity fails to be proven up to the final time step, we add new extremals for

shooting as “children” of previous ones (Algorithm 2, line 20), with initial costate vector being

the average of the parents’ initial costate vectors. A new child break its parents’ pair to form

two new pairs: the first parent and the child, the second parent and the child (Algorithm 2,

lines 24 and 25).

We then continue the process up to the point where every pair of neighbors satisfies 3.11 up

to the final time step.

Definition 12 (Overall validity index). The Overall Validity Index (OVI) is defined as the smallest

validity index among all pairs of neighbors.

Remark

The green circle in figure 3.5 is a graphical representation of the OVI.
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Data: x0, xt, vw, T B Start, target, flow field, time window upper bound

1 Parameters: ε, ninit BMax. dist. between extremals, init. number of extremals

Result: dextr BDictionary of extremals covering reachable set

2 dextr ← emptyDictionary();

3 lneigh ← [];

4 for k ∈ {0, 1, . . . , ninit − 1} B Shoot initial set of extremals

5 do

6 p−0 ←
(

cos
(

2πk
ninit

)
sin
(

2πk
ninit

))ᵀ
;

7 y0 ←
(
x0 p−0

)ᵀ;

8 y← SolveIVP(F, y0, 0, T); BDyn. F, init. cond. y0 at t = 0, int. up to t = T

9 dextr[p−0 ]← y;

10 p+
0 ←

(
cos

(
2π(k+1)

ninit

)
sin
(

2π(k+1)
ninit

))ᵀ
;

11 lneigh ← lneigh ::
[(

p−0 , p+
0

)]
; BKeep track of neighboring relations

12 end

13 l′neigh ← lneigh;

14 while l′neigh 6= ∅ BResample extremals until precision reached

15 do

16 lneigh ← checkNeighbors(l′neigh, ε, T, dextr); BRemove pairs of extremals that are

close enough. See Algorithm 3

17 l′neigh ← [];

18 for
(
p−0 , p+

0

)
∈ lneigh B For all pairs too far from one another

19 do

20 p0 ← 1
2

(
p−0 + p+

0

)
; B Init. on mean costate value

21 y0 ← (x0 p0)
ᵀ;

22 y← SolveIVP(F, y0, 0, T); B Integrate extremal

23 dextr[p0]← y; BRegister extremal

24 l′neigh ← l′neigh ::
[(

p−0 , p0
)]

; BRegister new pairs of neighbors

25 l′neigh ← l′neigh ::
[(

p0, p+
0

)]
;

26 end

27 end
Algorithm 2: In-depth sampling extremal algorithm for the TNP.
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Input: lneigh, ε, T, dextr BList of pairs of neighb. extremals, max. dist. between

extremals, time window up. bound, dictionary matching init. costate to extremal

Result: l′neigh BList of neighboring extremals that are too far from one another

1 l′neigh ← [];

2 for
(
p−0 , p+

0

)
∈ lneigh do

3 y− ← dextr[p−0 ]; BGet extremal corresponding to init. costate

4 y+ ← dextr[p+
0 ];

5 if ∃t ∈ [0, T], ‖y−(t)− y+(t)‖ > ε BExtremals violate Assumption 1

6 then

7 l′neigh ← l′neigh ::
[(

p−0 , p+
0

)]
BAdd pair to returned list

8 end

9 end
Algorithm 3: checkNeighbors routine. Keep only the pairs of initial costates for which

extremals are too far from one another.

Comparison of equisampling to in-depth sampling

We compare the equisampling algorithm to the in-depth sampling algorithm on a case with a

multi-gyre flow, i.e. the flow field is form:

v f (x) := a

− sin(x′1) cos(x′2)

cos(x′2) sin(x′1)

 ; x′1 =
2π

λ1
(x1 − c); x′2 =

2π

λ2
(x2 − c) (3.13)

We set λ1 = λ2 = 2, a = 1, c = (0.5 0.5)ᵀ so that we work in that same settings as in Kularatne

et al. (2016).

Starting from point (0.6 0.6)ᵀ we want to reach (2.4 2.4)ᵀ with a precision ε = 0.1. The

precision means that at the time the target is reachable, we want that 3.11 holds for all pairs of

initial costate vectors. We display a target circle of radius ε to visually account for this precision

requirement in Figure 3.6.

We run the equisampling algorithm and empirically adjust the number of extremals to ap-
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Gyre

T 0.8 1.2 1.6

Equisampling

Number of trajectories 500 2000 8000
Max. dist. extremals at T 0.1113 0.1013 0.1126

In depth

Number of trajectories 128 264 501
Max. dist. extremals at T 0.09888 0.09931 0.09987

Table 3.1: Comparison of equisampling to in-depth sampling. For different time window upper bounds T, the
number of extremals required to achieve a distance between neighbors of approximately 0.1 is given for the equi-
sampling algorithm or the in-depth sampling algorithm.

proximately match the ε precision requirement on the extremal set spacing. We allow the spac-

ing to be slightly over the ε requirement because what matters is the order of magnitude for the

number of extremals. We let both algorithms run their computation in free space i.e. we do not

set boundaries for the problem. We want to understand how the number of extremals evolves

with the time upper bound.

We also run the in-depth sampling algorithm and note its number of extremals5. Results

are shown in Table 3.1.

In each case, the in-depth principle shows a major reduction in the required number of

extremals to achieve comparable precision on the front. As depicted in Fig. 3.6, the spacing

between neighboring extremals is also better balanced.

3.3.4 Closure

For now, we have considered the case where integration is always possible on the whole time

window. But as can be noticed on previous figures, the extremal set grows in every direction,

some of them being useless for the computation of the optimal path under study, i.e. parts of

the front going away front the target point. For this reason, we may want to frame the problem

i.e. add borders to the problem which make the integration stop. We may stress that on a first

5The code can be found in the notebook algo_comparison.ipynb at .
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Figure 3.6: Comparison of equisampling to in-depth sampling of extremals. On top, fronts of extremals computed
through (a) equisampling or (b) in-depth sampling. Color indicates the distance between neighboring extremals.
The more red, the further away they are. Color is scaled by the maximum distance in each case. (c) Distribution of
distances among all pairs of neighboring extremals.
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approach, these borders are really integration stoppers and not obstacles. Obstacles will be

discussed in Chapter 4. We also note that by adding a frame we choose to look for a solution

within the defined frame of the problem.

We now have to derive a modified version of the in-depth resampling algorithm that ac-

counts for the fact that some extremals can fail to integrate up to the end of the time window.

We call these extremals closed and depict their endpoint as a cross. Because these extremals

cannot proceed further in time, the OVI will be stuck forever by closed trajectories. We thus

need to define a new validity index which goal is to track the progression of the computation

validity over the full time window, taking closed trajectories into account.

Definition 13 (Closure-aware validity index). The Closure-Aware Validity Index (CAVI) is the

smallest validity index among all neighboring pairs of extremals excepting pairs where one extremal

at least is closed and the pair’s validity index equals its closure index.

Remark

Because it is a minimum taken on a smaller set of values, the CAVI is always greater than

the OVI.

The CAVI ensures that all pairs of neighboring extremals either satisfy 3.11 up to it or were

closed before the index and valid at time of closure. The closure and CAVI update mechanism

is displayed in Fig. 3.7. We do not display the algorithm updated with the closure mechanism

as it is almost the same as the in-depth algorithm, the difference being that the checkNeighbors

function does not feed pairs of neighbors for shooting if one of the members of the pair is closed

and the pair’s validity index equals its closure index.

Limit of the in-depth algorithm

We document a real wind field case in which the in-depth sampling algorithm fails to converge.

The failure is in the sense that the algorithm indeed find extremals reaching target, say at time
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Figure 3.7: Extremal polar plot depicting the closure of some extremals. (a) Extremals A to E were integrated, but
the integration of B and C was stopped (these are closures). B is not close enough to its neighbor C at the time of
closure so it is invalid at time of closure and consequently depicted in yellow. But C is, so it is depicted in green. (b)
In-depth sampling is performed: A-1-0 and B-1-0 are integrated. A-1-0 is close enough to A at time step 5 and B at
time step 3 (which is the closure index of B). B-1-0 is close enough to B at time step 3 and C at time step 4. So, each
pair of neighbors satisfy the precision criteria 3.11 and there is no further integration to be done. The algorithm
terminates.
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Figure 3.8: Navigation problem from Dublin, Ireland (black dot) to Reykjavik, Iceland (black star) near sea level. The
wind field is the ERA5 reanalysis surface wind field for 2021-11-01 05:00Z. The figure is a plate-carrée projection
of Earth, and the wind data is sliced and resampled in an oblique Mercator band adjusted between origin and
destination. The black and white line is the geodesic path from origin to destination.

index i2, but the CAVI gets stuck at some time index i1 way below i2. Consequently, the al-

gorithm cannot guarantee to have the correct value function at time index i2. Thus, it cannot

guarantee the solution found is a global minimum of the problem.

The problem setting6 is that of taking off from Dublin, Ireland on 2021-11-01 at 05:00 UTC

and reaching Reykjavik, Iceland the fastest possible at 23 m/s. The wind data is the ERA5

Reanalysis surface wind field extracted from the the Copernicus climate Data Store (CDS), with

a time resolution of 3 hours and a spatial discretization of 0.5 deg both in longitude and latitude.

The general situation is depicted in Fig. 3.8.

We choose to cast the problem to planar 2D space for simplicity and to make the problem

non-dimensionalized. The casting to 2D space is performed using an oblique Mercator pro-

jection: it is achieved by rotating the equator to the great circle passing through origin and

6The code can be found in the notebook reykjavik_dublin.ipynb at .
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destination. Thus, in the projected space, no error is done on distances computed along the

great circle between origin and destination, and moderate error is done when computing dis-

tances near the borders of the domain. For the considered case, the accuracy of the projection

is not a concern as the main focus is to work with wind fields representative of real-world data

but which are set up on a planar space. For a discussion on the difference between working in

projected space or spherical coordinates, the reader is referred to Appendix D.

In the projected space, Dublin is at (1857× 103 743× 103 ) (in meters) and Reykjavik

at (371× 103 743× 103 ).

We make the problem non-dimensionalized by building a rectangular frame of aspect ratio

1.5 aligned with the origin-destination axis and centered at the midpoint between them, with a

width of 3/2 the great circle distance between Dublin and Reykjavik. We then set the height of

the rectangle as the reference length, i.e. we divide all distances by a factor kl = 1486× 103 m.

We then build a time scale by dividing the length scale by the vehicle’s airspeed. Hence, the

time scale kt = 64.6× 103 s ≈ 17 h 57 min. By construction, in the non-dimensionalized prob-

lem, the vehicle has an SRF of 1. We depict snapshots of the wind field in Figure 3.9.

We run the in-depth algorithm for this problem. The maximum distance between extremals

is set to the tolerance radius around the target, which is set to 1/80th of the rectangle diagonal,

that is 2.25× 10−2 in the non-dimensionalized problem. The numerical integrator is the ‘RK45’

method implemented in scipy 1.13. This integrator is free to choose its time step but we set

an upper bound of ∆tmax = 0.05 for the latter. We run the algorithm with a manual control

of the ‘while’ loop (Algorithm 2). We observe that the CAVI stops increasing with entries in

the while loop. We thus stop the algorithm after 13 iterations of the while loop. There is a

total of 8382 extremals shot. They lead to the construction of a candidate value function for

the problem. It is depicted as color contours in Fig. 3.10. To validate the value function, we

compute reachability fronts for the vehicle using the MSEAS Path Planning Level Set software.

They are depicted in dashed lines in Fig. 3.10.

We see that, even though the value function is in accordance with the reachability fronts, the
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validity principle in the sense of closeness between extremals (Assumption 1) fails to guarantee

that the value function is valid for the problem. This is because the CAVI did not reach the end

of the time window (or at least, the candidate time to optimality), and we depict this using

hatches where the value function is considered safe.

To understand why the value function seems correct but fails to be proven valid, we dis-

play in Fig. 3.11 a behavior occurring for many pairs of neighboring extremals in the previous

computation. We identify three extremals: B, R and Y associated to colors red, blue and yellow.

B and R and neighbors up to a given index after which they diverge. Y is the children of B

and R, shot in the while loop of Algorithm 2 with mean costate value as initial condition. Y is

expected to be between B and R because it has the mean costate initial condition. But as we see

in the figure, it ends up staying close to B. What is very bad is that it is not closer to B than R

was, so the shooting of the yellow trajectory does not move the validity forward as expected.

We explain this phenomenon by chaos occurring between extremals too close to one an-

other. For instance, B and R have very close initial costate vectors p(B)
0 and p(R)

0 , with∥∥∥p(B)
0 − p(R)

0

∥∥∥ = 5.10× 10−5. At the first discretization time step t1, we have a very small differ-

ence in the positions of extremals x(B)(t1) and x(R)(t1), with
∥∥∥x(B)(t1)− x(R)(t1)

∥∥∥ = 7.48× 10−7.

One fix for this may be to ask for more precision from the numerical solver by lowering

∆tmax. But this much increases the cost of the method. And furthermore, the fact that the

approximated, unproven value function (color contours in Fig. 3.10) is a good approximation

of the real value function makes one feel that more precision is not really what is needed. In the

following section, we propose a way to work with interpolation of extremals instead of always

going back to initial conditions.

3.3.5 In-depth interpolated algorithm

In Fig. 3.4, we can see that the principle of sampling extremals from the origin leads to a set

of extremals that will be very dense around the origin and sparse at the border of the reach-

ability front. This property is shared by both the equisampling algorithm and the in-depth
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Figure 3.10: Result of running the in-depth sampling algorithm on the Dublin-Reykjavik case. Color contours are
inter-level-sets of the approximate value function build from extremals Japp(x) between times that are multiples of
0.1. Dashed lines are level-sets of the true value function for times multiples of 0.1, computed using an external
tool. The hatched portion is the part of the approximate value function that is proven valid by the algorithm. Grey
lines in the background are the extremals shot by the algorithm.

Figure 3.11: Triplet of extremals B (blue), R (red) and Y (yellow) that are integrated forward from different initial
angles. Y is the children extremal of B and R, which means its initial costate vector is the mean of B and R’s costate
vectors. It is expected to follow the dashed yellow line, but actually follows the plain line.
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Figure 3.12: Result of running the in-depth interpolated sampling algorithm on the Dublin-Reykjavik case in the
same setting as for the in-depth sampling algorithm. Color contours are inter-level-sets of the approximate value
function build from extremals Japp(x) between times that are multiples of 0.1. Dashed lines are level-sets of the
true value function for times multiples of 0.1, computed using an external tool. Grey lines in the background are
the extremals shot by the algorithm. The red trajectory is the solution found by the in-depth interpolated sampling
algorithm. The blue trajectory is the solution found by the external level-set solver.

algorithm. Intuitively, one may think that trajectory integration performed at the beginning

of the time window are redundant with one another since trajectories are very close to their

neighbors. Furthermore, it was shown in page 110 that abusive dichotomy on the initial angle

for extremals falls into the caveat of numerical errors and chaos. This motivates the idea not to

create new trajectories from the origin but from the interpolation of neighbors (in the sense of

the augmented state of 3.4).

To validate this new algorithm, we run it on the Dublin Reykjavik test case presented at

page 110. We run the algorithm with the same parameters as the in-depth sampling. The

algorithm terminates using a maximum depth of 19 (number of passes in the while loop) and

we have a total of 2178 extremals shot. The value function is proven valid up to the time the

best extremal reaches the target. So, the problem is solved. We depict the result in Fig. 3.12

The computed value function is in accordance with the external level set solver. The total
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Data: x0, xt, vw, T B Start, target, flow field, time window upper bound
1 Parameters: ε, ninit BMax. dist. between extremals, init. number of extremals

Result: dextr BDictionary of extremals covering reachable set
2 dextr ← emptyDictionary();
3 lneigh ← [];
4 for k ∈ {0, 1, . . . , ninit − 1} B Shoot initial set of extremals
5 do

6 p−0 ←
(

cos
(

2πk
ninit

)
sin
(

2πk
ninit

))ᵀ
;

7 y0 ←
(
x0 p−0

)ᵀ;
8 y← SolveIVP(F, y0, 0, T); BDyn. F, init. cond. y0 at t = 0, int. up to t = T
9 dextr[p−0 ]← y;

10 p+
0 ←

(
cos

(
2π(k+1)

ninit

)
sin
(

2π(k+1)
ninit

))ᵀ
;

11 lneigh ← lneigh ::
[(

p−0 , p+
0

)]
; BKeep track of neighboring relations

12 end
13 l′neigh ← lneigh;

14 while l′neigh 6= ∅ BResample extremals until precision reached

15 do
16 lneigh ← checkNeighbors(l′neigh, ε, T, dextr); BRemove pairs of extremals that are

close enough. See Algorithm 3
17 l′neigh ← [];

18 for
(
p−0 , p+

0

)
∈ lneigh B For all pairs too far from one another

19 do
20 y− ← dextr[p−0 ]; BGet extremal from init. costate
21 y+ ← dextr[p+

0 ];
22 tε ← min {t | ‖y−(t)− y−(t)‖ > ε}; BTime of distance violation
23 pinterp ← 1

2 (p
−(tε) + p+(tε)); BMean init. cond.

24 xinterp ← 1
2 (x

−(tε) + x+(tε));
25 yinterp ←

(
xinterp pinterp

)ᵀ;
26 y← SolveIVP(F, yinterp, tε, T); B Integrate from tε to T
27 p0 ← 1

2

(
p−0 + p+

0

)
BVirtual init. cond., only used for dictionary key

28 dextr[p0]← y; BRegister extremal
29 l′neigh ← l′neigh ::

[(
p−0 , p0

)]
; BRegister new pairs of neighbors

30 l′neigh ← l′neigh ::
[(

p0, p+
0

)]
;

31 end
32 end
Algorithm 4: In-depth interpolated sampling extremal algorithm for the TNP. The lines are
the same as for Algorithm 2 except for the lines in color (16-23).
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number of extremals is reduced by a factor of 4 compared to the in-depth sampling algorithm,

and the convergence is proven.

3.3.6 Trimming

As can be seen for instance on figure 3.6, some parts of the extremal set form loops that fall

inside the reachable set. These parts of the extremal set do not propagate the optimality infor-

mation and become a burden for the IVP solver still integrating them. This is why we may want

to include trimming in the previous algorithm. This means finding a criteria to close suboptimal

trajectories.

Target-based trimming A first method to trim trajectories is to close every trajectory too far

away from target when little time is left. More precisely, if the target x f shall be reached no

later than T, and v f ,max is the maximum flow field magnitude, then close an extremal located

at x(t) at time t if the distance to the target is greater than the distance that would be achieved

with maximum tailwind over the given duration, that is, if:

(
v f ,max + vr

)
(T − t) <

∥∥x(t)− x f
∥∥ (3.14)

This is reminiscent of the heuristic part of the cost in the A star algorithm that guides the search

to the target based on the distance to target.

Cycles-based trimming A trimming method based on cycles detection and eviction is de-

scribed in Rhoads et al. 2013. The principle is to build the line collection formed by all seg-

ments joining neighboring extremals and compute its self-intersections. Intersection points cut

the closed line collection into sub-pieces and one has to find out which pieces fall inside the

reachability front to trim them away.
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Alpha-shape trimming To try to be exhaustive, we mention that it is also possible to try to

trim the extremal front through geometric procedures. While the 2D case enable us to keep

track of the extremal relative ordering for trimming, in the 3D case, the latter is much more

difficult. To overcome the difficulty, Sharp and Ross proposed the use of alpha shapes in the

trimming procedure (Sharp and Ross, 2015). Alpha shapes are a tool to reconstruct a shape

from a set of points, allowing concavities down to a given radius α (see Edelsbrunner and

Mücke 1994).

Conclusion of the chapter

This chapter built algorithms on top of extremals to compute time-optimal trajectories for navi-

gation problems with guarantees of optimality. We showed finding time-optimal trajectories in

our framework reduces to building the appropriate extremal trajectory by a shooting method,

with a single parameter to adjust in the initial condition. We showed the uniform sampling

of test parameters is highly inefficient to find the optimal solution even on simple analytical

problems. The dynamically adjusted sampling of initial parameter values performs much bet-

ter. However, it reaches a limit when the precision on the initial parameter becomes so small

that numerical errors propagate in the shooting method and falsify the computed extremal

trajectory. To overcome this difficulty, we implemented a dynamical sampling where the ini-

tial condition is set between neighboring extremals rather than at the start position. This dy-

namical sampling technique proved efficient to compute time-optimal trajectories in real-world

flow field data, when benchmarked against a level-set based solver. We finished by proposing

heuristics to reduce the search space for extremals.

In our development, we always considered that the space was free of obstacles. We some-

times closed extremals reaching the borders of the problem, but it is not equivalent as con-

sidering the borders of the problem as an obstacle since we did not implement a way for the

trajectories to follow the borders. Thus, in the next chapter, we will see how to extend our
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algorithms to the presence of hard obstacles, whether still or moving.

Chapter’s main questions – Answers

• How to compute efficiently trajectories that minimize the travel time in the long-
range navigation problem?

Necessary conditions for time-optimality characterize trajectories in an infinitesimal
way, i.e. enable the writing of a system of ordinary differential equations that must be sat-
isfied by time-optimal trajectories. Sampling candidate trajectories from such a system of
ODEs with a shooting method is an efficient way to find the optimum of a problem, if an
appropriate sampling procedure is used.

• Can we provide guarantees that a given trajectory is indeed a global optimum of the
problem?

By sampling a sufficiently representative set of extremal trajectories, one can build the
optimal cost function (or value function) of the navigation problem and prove global optimal-
ity of solutions.

• What are the typical shapes of time-minimizing trajectories?

For weak flow fields, time-optimal trajectories stay close to the straight line between
origin and destination. When the flow field magnitude increases, depending on its space-time
structure, time-optimal trajectories can distort significantly away from the straight line.
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Chapter 4

Time-optimal navigation problem:

Obstacles

Abstract

In this chapter, the changes brought by the addition of obstacles in Zermelo’s nav-
igation problem in unsteady and possibly strong flow fields are studied. In the
presence of obstacles, the optimality conditions satisfied by the trajectories can-
didate to optimality (extremals) are derived from Pontryagin’s Maximum Princi-
ple in non-degenerate Gamkrelidze form. The best algorithm from the previous
chapter is modified to handle obstacles. The resulting algorithm is validated on
analytical flow fields and on real wind fields. The algorithm proves able to find
time-optimal trajectories in all the considered cases. However, the algorithm can-
not build the optimal cost map everywhere in space due to the shadowing effect
of moving obstacles.
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Résumé en français

Dans ce chapitre, les changements apportés par l’ajout d’obstacles au problème de naviga-
tion de Zermelo dans des écoulements instationnaires et possiblement forts sont étudiés.
En présence d’obstacles, les conditions d’optimalité satisfaites par les trajectoires candi-
dates à l’optimalité (extrémales) sont dérivées du principe du maximum de Pontryagin
sous la forme de Gamkrelidze non dégénérée. Le meilleur algorithme du chapitre précé-
dent est modifié pour prendre en compte les obstacles. L’algorithme résultant est validé
sur des champs d’écoulement analytiques et sur des champs de vent réels. L’algorithme
s’avère capable de trouver des trajectoires optimales en temps dans tous les cas consid-
érés. Cependant, l’algorithme ne peut pas construire la carte de coût optimal partout dans
l’espace en raison de l’effet d’ombrage des obstacles en mouvement.
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Real world problems usually come with obstacles that need to be avoided in the planning

of trajectories. Problem borders, land coastlines for AUVs, hazardous zones, forbidden zones

are examples of obstacles that one may want to consider. These obstacles can be still or time-

varying.

In what follows, we will explain how to adapt the algorithms from Chapter 3 to the presence

of obstacles.
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Chapter’s main questions

• How to compute efficiently trajectories that minimize the travel time in the long-
range navigation problem, when there are strictly forbidden zones in the environ-
ment?

• Can we provide guarantees that a given trajectory is indeed a global optimum of the
problem in this case?

• How do extremals behave for the time-optimal navigation problem in the presence
of state constraints?

4.1 Maximum principle

Obstacles are very challenging for the definition of extremals. When constraints on the state

variable are present in an optimal control problem, one cannot use the standard form of the

maximum principle anymore. To overcome the difficulty, other statements of the maximum

principle have been proposed, for instance the Gamkrelidze or the Dubovitskii–Milyutin forms.

A comparison of these two approaches is proposed in Arutyunov and Karamzin (2020). As

regards the addition of state constraints in the Zermelo problem, Chertovskih et al. have pro-

posed a semi-analytical resolution for planar problems (Chertovskih et al., 2021) as well as

3D problems (Chertovskih et al., 2020) that makes use of the Gamkrelidze form in the resolu-

tion. The Gamkrelidze form is the one we are going to use in what follows, because it relies

on smoothness assumptions on the obstacles that we can afford to make, and it has a simpler

formulation that the Dubovitskii–Milyutin.

Let (Bi(t))1≤i≤nobs := {x | gi(t, x) ≥ 0} be the collection1 of time-varying obstacles with gi

1The references, in particular (Arutyunov and Karamzin, 2020), unfortunately use a reverse convention for ob-
stacles gi(t, x) ≥ 0 as the one we stated in the introduction with ϕ(t, x) ≤ 0. In this chapter, we will stick to the
convention gi(t, x) ≥ 0 so that the transition with the references is straightforward. In DABRY, the convention is the
contrary.
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smooth and let the constrained TNP be

(C-TNP)



min
u(·)∈U

t f

ẋ(t) = u(t) + v f (t, x(t))

x(t0) = x0, x(t f ) = x f

ϕi(t, x(t)) ≤ 0, i = 1, . . . , nobs

(4.1)

Following Arutyunov and Karamzin 2020, Definition 2.10, we are going to consider tra-

jectories satisfying Pontryagin’s Maximum Principle in non-degenerate Gamkrelidze’s form

(PMP-G). They are ensured to be candidate solutions of Problem 4.1 thanks to Arutyunov and

Karamzin 2020, Theorem 2.5, in the sense that any solution of Problem 4.1 satisfies the PMP-G.

We continue to call them extremals.

We introduce as many real multipliers µ := (µ1, . . . , µnobs) as obstacle functions and we

write an augmented Hamiltonian for this problem (Arutyunov and Karamzin 2020, p. 707):

H(t, x, p, u, µ, λ) :=

(
p−∑

i
µi

∂gi

∂x

ᵀ
)ᵀ (

u + v f
)
−∑

i
µi

∂gi

∂t
+ λ

The costate evolution ṗ = − ∂H
∂x

ᵀ
is also changed:

ṗ = −∂v f

∂x

ᵀ
(

p−∑
i

µi
∂gi

∂x

ᵀ
)
+ ∑

i
µi

(
∂2gi

∂x2 (u + v f ) +
∂2gi

∂t∂x

ᵀ
)

(4.2)

The Hamiltonian minimization w.r.t. the control variable u still leads to a closed form for

the optimal control:

u? = − p−∑i µi
∂gi
∂x

ᵀ∥∥∥p−∑i µi
∂gi
∂x

ᵀ∥∥∥ (4.3)

For (x(·), p(·), u(·), µ(·), λ) to satisfy the PMP-G, µ(·) has to be a decreasing function (mean-

ing each component decreases). Because of Arutyunov and Karamzin 2020, Eq. 24, µi does not

vary where gi(t, x) < 0. This means that the only time windows where µi is allowed to decrease
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Figure 4.1: Extremals from the PMP-G with a problem constrained on the x1 axis. (a) The flow field is represented
as well as extremals in black and red. (b) For the red extremal, the difference of multipliers µ := µ1 − µ2 is plotted,
where µ1 is associated to the right border and µ2 to the left border. (c) For the red extremal, control values are
displayed. From Chertovskih et al. (2021).

are when the trajectory touches the border of an obstacle, in the sense that gi(t, x) = 0. This

is illustrated in Fig. 4.1. In the figure, different extremals are plotted with their corresponding

control values. The difference in the µi multipliers is noted µ := µ1 − µ2. Multiplier µ1 is asso-

ciated to the right border and µ2 to the left border, hence µ increases on the graph even though

the individual µi can only decrease in the PMP-G.

Thus, we will distinguish the behavior of extremals between the free mode and the con-

strained mode, whether the extremal lies out of obstacle boundaries or on it.

This PMP-G formulation encapsulates symmetries. Indeed (see Arutyunov and Karamzin

2020, p. 708), the PMP-G is invariant by the transformation:

p← p + ∑
i

ai
∂gi

∂x

ᵀ

∀i, µi ← µi + ai

(4.4)
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The previous remark motivate the definition of an alternate costate vector by:

q := p−∑
i

µi
∂gi

∂x

ᵀ

This alternate costate vector is now insensitive to the previous symmetry. And because of the

symmetry, we can always suppose that the µi coefficients start at 0, ∀i, µi(t0) = 0.

At times where the alternate costate expression is differentiable w.r.t. time, we have:

q̇ = ṗ−∑ µi

(
∂2gi

∂t∂x

ᵀ

+
∂2gi

∂x2 (u + v f )

)
−∑ µ̇i

∂gi

∂x

ᵀ

(4.5)

The non-differentiable time stamps will typically be the non-differentiability time stamps

of the µi (visible in 4.1), where a jump in the alternate costate will occur to satisfy the kinematic

constraint of evolving on the border of obstacles (jump of the heading vector).

So, combining 4.5 with 4.2, we have:

q̇ = −∂v f

∂x

ᵀ

q−∑ µ̇i
∂gi

∂x

ᵀ

(4.6)

Out of obstacles, this is equation is simply the usual costate evolution Eq. 3.2 since µ̇i = 0

when the extremal is not on the boundary of obstacle i. The optimal control now also has a

simple expression:

u? = −umax
q
‖q‖ (4.7)

reminiscent of Eq. 3.3.

The application of the PMP-G gave similar building blocks for an algorithm as the stan-

dard PMP gave in the previous chapter. Thus, it is now possible to start describing a general

procedure to find time-optimal trajectories out of extremals in the presence of obstacles.
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4.2 Still obstacles

To derive an algorithm in the presence of obstacle, we will first suppose that the obstacles

are still for the simplicity of explanations. So, in this section, the collection of obstacles is

(Bi)1≤i≤nobs := {x | gi(x) ≥ 0}. In the following section (Sec. 4.3), we will explain how to adapt

the algorithm to moving obstacles.

4.2.1 Hybrid integration

We will build an algorithm taking obstacles into account by modifying algorithms from Chap-

ter 3.

We first notice that extremal legs in free mode are computed in a same fashion as in Chap-

ter 3. With y = (x q)ᵀ, the free evolution is solution of:

(FREE)



ẏ(t) =


−umax

q(t)
‖q(t)‖ + v f (t, x(t))

−∂v f

∂x

∣∣∣∣ᵀ
t, x(t)

q(t)



y(0) = y0 =

x0

q0


(4.8)

Now, when an extremal hits a boundary for some tobs at x(tobs) = xobs, say gi(xobs) = 0 for

some i, we have to change the time evolution of the extremal so that it follows the boundary of

obstacle i. Rigorously, we shall use Eq. 4.6 and solve for the value of µi that leads to a ground

speed colinear to the obstacle border.

But instead, we are going to make use of the directional time-optimal control u(d, v f ), de-

fined in Prop. 2.2 to integrate trajectories on the border of obstacles. The evolution of a con-

strained leg is solution of:
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(OBS)


ẋ(t) = u

R
(
σ π

2

) ∂gi

∂x

∣∣∣∣ᵀ
x(t)∥∥∥∥∥∥

∂gi

∂x

∣∣∣∣ᵀ
x(t)

∥∥∥∥∥∥
, v f (t, x(t))

+ v f (t, x(t))

x(tobs) = xobs

(4.9)

with the orientation given by the sign of σ:

σ =

 +1 if
(

R
(

π
2

) ∂gi
∂x (xobs)

ᵀ
)ᵀ

u(t−obs) > 0

−1 else.

where u(t−obs) = limt→tobs
t<tobs

u(t). The orientation constant σ is chosen at the contact with the

obstacle depending on the control direction. This choice of orientation is a consequence of the

link between the control, the costate, and the (µi)i∈{1,...,nobs} multipliers, as in Eq. 4.3, and the

fact that each µi can only decrease. This is explained and depicted in Fig. 4.2. The alternate

costate update at t+obs is done remembering that the costate p is absolutely continuous thus

continuous so p(t+obs) = p(t−obs).

Rigorously, the σ parameter shall be allowed to change in time, depending on the sign of(
R
(

π
2

) ∂gi

∂x

∣∣∣∣ᵀ
x(t)

)ᵀ

u(t). This corresponds to extremals doing a turn-around on the obstacle

border. While they may exist in the general case, we choose from now on not to include them

in the resolution, as it seems they are more the exception than the norm. Hence, σ does not

depend on time in what follows.

Costate tracking in obstacle mode

What is noticeable in IVP 4.9 is that there is no alternate costate vector left. Indeed, the control

is now entirely defined by the fact that the vehicle follows the obstacle border with a given

orientation σ, so there is no need to track the alternate costate values. Nevertheless, it would
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q
(
t+obs
)
= p

(
t−obs
)
− µi

(
t+obs
)︸ ︷︷ ︸

< 0

∂gi
∂x

ᵀ

u
(
t+obs

)
vg
(
t+obs

)

σ = +1

∂gi

∂x

ᵀ

vg
(
t−obs

)
u
(
t−obs

)

v f (tobs)

q
(
t−obs

)
= p

(
t−obs

)

Figure 4.2: Left, obstacle collision. The control vector, the ground velocity vector and the alternate costate vector are
displayed at a time t−obs infinitesimally close to tobs and inferior to it. Right, the collision is resolved for a time t+obs
infinitesimally close to tobs and superior to it. There are two possible controls to follow the obstacle. One of them is
barred by a black cross because it is incompatible with the values that the µi multiplier can take. The yellow sectors
shows the possible values for the control when µi varies from 0 to −∞.

be possible to do so. On the obstacle border, the equation:

− umax

p− µi
∂gi

∂x

∣∣∣∣ᵀ
x∥∥∥∥p− µi

∂gi

∂x

∣∣∣∣ᵀ
x

∥∥∥∥ = u

R
(

σ
π

2

) ∂gi

∂x

∣∣∣∣ᵀ
x(t)∥∥∥∥∥∂gi

∂x

∣∣∣∣ᵀ
x(t)

∥∥∥∥∥
, v f (t, x(t))

 (4.10)

has at most one solution in µi ∈] −∞, 0] (see Fig. 4.2). It has exactly one solution when the

border is followable, i.e. the vehicle is neither forced inwards or outwards of the obstacle. In

this case, µi is implicitly defined by System 4.10 and we note µi := mi(t, x, p) its solution. So µi

must be initialized at value mi(tobs, x(tobs), p(tobs)). Then, dividing Eq. 4.10 by (−umax) leads

to an equation of type:

ν(q(t)) = f (t, x(t))

where ν(ξ) = ξ
‖ξ‖ is the normalization function.
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By differentiation w.r.t. time and using Eq. 4.6 with µj = 0, j 6= i one has:

ν′(q(t))
(
−∂v f

∂x

ᵀ

q− µ̇i
∂gi

∂x

ᵀ)
=

d
dt

f (t, x(t))

where ν′ is the jacobian matrix of the normalization function.

Finally:

ν′(q(t))
∂gi

∂x

ᵀ

µ̇i = −ν′(q(t))
∂v f

∂x

ᵀ

q− d
dt

f (t, x(t)) (4.11)

which correctly defines the multiplier evolution µ̇i as long as ν′(q(t)) ∂gi
∂x

ᵀ
is not null. Because

of the structure of the normalization function’s jacobian matrix, ν′(q(t)) ∂gi
∂x

ᵀ
is null if and only

if q(t) and ∂gi
∂x

ᵀ
are aligned, which corresponds to a control vector pointing either fully towards

or outwards of the obstacle. This is a degenerate case that can be neglected in a first approach,

thus Eq. 4.11 provides a time evolution for µi.

So, the system evolution is entirely governed by the combination of the state evolution 4.9,

the alternate costate evolution 4.6 and the multiplier evolution 4.11. This provides a way to

keep track exactly of the costate vector, but in what follows we will proceed without tracking

it, resorting directly to the use of the directional time-optimal control.

Continuity of the multipliers

In the PMP-G, the (µi)i∈{1,...,nobs} are continuous. This means that the trajectory hitting the

obstacle in Fig. 4.2, is not an extremal of the problem, because µi(t−obs) = µi(t0) = 0 and clearly

a non-zero µi value is required at t+obs to follow the border µi(t+obs) < 0. So, the true extremals

are only the trajectories entering obstacles with a tangent ground velocity vector.

But tangent trajectories are difficult to capture using the in-depth sampling algorithm. In-

deed, in the finite collection of extremals shot in the algorithm, while there are usually several

trajectories touching a given obstacle, it is not sure that some of them will be tangent to it, in the

sense ∂gi
∂x vg ≈ 0. So, instead, we resort to using a tolerance atol, and decide to allow the entrance

of the obstacle mode to all pseudo-tangent trajectories with
∣∣∣ ∂gi

∂x vg

∣∣∣ /
(∥∥∥ ∂gi

∂x

∥∥∥ ∥∥vg
∥∥) < atol. Em-
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FREE CLOSED

END

OBS_ENTRY

OBS_EXIT

OBS

Forced obstacle penetration

Forced obstacle penetration

Unable to follow 
obstacle anymore

Forced exit 
to free space

Regular leg

Regular
obstacle leg

Regular obstacle legCollision with obstacle

Figure 4.3: State machine for the integration of extremals in the presence of obstacles. The entry point is the ‘FREE’
state. Integration is performed using IVP 4.8 on red arrows and IVP 4.9 on blue arrows. Red parallelograms are
transition states, meaning that the integration never stops in these cells, either resuming by switching integration
mode or falling to the ‘CLOSED’ state. Hexagon states are terminal states.

pirically, the parameter atol was sometimes required to be as large as 0.7, allowing angles up to

45 deg, so that the algorithm does not trim out useful extremals.

State machine

We now have useful ingredients to build an algorithm able to deal with obstacles. We will

integrate the extremals in time using a combination of free legs using IVP 4.8 and constrained

legs using IVP 4.9. The general principle is summed up in Fig. 4.3.

4.2.2 Algorithm

The previous sections paved the way to adapt the in-depth interpolated sampling algorithm

to the presence of obstacles. The new algorithm taking obstacles into account will be called
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the in-depth interpolated obstacle-aware algorithm. We do not provide a pseudo-code for it, as its

principle is very close to the in-depth interpolated sampling Algorithm 4 but with technicality

in the handling of the sub-cases that would make a pseudo-code not readable. Instead, we refer

the reader to the Python implementation of the algorithm in the code of the DABRY module.

In the following sections, we describe the additional principles to build the in-depth inter-

polated obstacle-aware algorithm.

Interpolated resampling between FREE and OBS

If we are to apply the same principle as in Algorithm 4, we have to explain how to create an

interpolated extremal between two neighbors with one in the free mode and the other in the

obstacle mode. Let’s suppose we are in Algorithm 4, line 22 and that x−(tε) is in the free space

while x+(tε) lies on an obstacle, say gi(x+(tε)) = 0. Then, we face the problem that we chose not

to track the costate in obstacle mode for simplicity. We thus don’t have a q+(tε) to create qinterp.

But we have the control value u+(tε) that constrains the direction of q+(tε) thanks to Eq. 4.7.

Still, we lack the norm of q+(tε). So, we overcome the difficulty by defining an approximate

alternate costate built from the direction of the control in obstacle mode and the norm of the

costate in free mode q̃+ := ‖q−(tε)‖ u+(tε)
‖u+(tε)‖ and thus we take qinterp = 1

2

(
q−(tε) + q̃+

)
.

Voluntary exits

In the PMP-G, extremals are allowed to exit the obstacle mode. If y(·) satisfies the PMP-G up

to texit and lies on obstacle i at texit, i.e. gi(x(texit)) = 0, then denoting by yFREE(·) the solution

of IVP 4.8 with initial condition yFREE(texit) = y(texit) over [texit, texit + τ] (τ sufficiently small

so that the trajectory lies in free space), the concatenation of y(·) over [t0, texit] and yFREE(·)
over [texit, texit + τ] still satisfies the PMP-G. But resuming the integration of IVP 4.9 with

yOBS(texit) = y(texit) integrated over [texit, texit + τ′] and concatenating y(·) and yOBS(·) leads to

a trajectory also satisfying the PMP-G. This is depicted in Fig. 4.4. Both trajectories share the

same ground velocity vector at texit but not the same curvature, due to the ODE being different.
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vg

Figure 4.4: A captive leg (in red) that can be continued either by a free leg (in blue) or a captive leg (in green),
depending if IVP 4.8 or IVP 4.9 is used.

In particular, in obstacle mode, µ̇i 6= 0, but in free mode, µ̇i = 0 which changes the dynamics

of the alternate costate vector. We can see the change in µ̇i on obstacle exit in Fig. 4.1.

So, in the PMP-G, extremals are not only characterized by the initial costate p0, but also

their sequence of exit durations. For instance, if we look for solutions of the problem with a

maximum of 3 obstacle legs, then any extremal would be characterized by its initial costate p0

and a sequence (τ1, τ2, τ3) of exit durations, with also the possibility τi = ∞ if the extremal does

not exit the obstacle.

This is a problem for the bisection principle: when two neighboring extremals have differ-

ent initial costates p−0 and p+
0 and exit durations τ−1 and τ+

1 , how to set up the child trajectory?

There is no reason that taking ‘middles’ leads to the creation of a ‘median’ extremal that in-

creases the precision between parent extremals. Worse, there may be degeneration in the sense

that multiple couples (p0, τ1) entail extremals that are identical from the time they leave the

first obstacle.

Fortunately, the interpolated resampling described in page 134 approximates exiting trajec-

tories with good accuracy. So, in the algorithm, we do not consider voluntary exits and let the

resampling procedure approximate these exiting trajectories.
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Forced obstacle exits

Because of the flow field, an extremal can be forced out of an obstacle. In this case, the same

problem as in page 134 arises: we have to provide an alternate costate vector initial value to

initialize IVP 4.8. Its direction is opposite to the control vector, but its norm is lacking. In this

case, we assume the extremal has a free neighbor, and use its norm to build the alternate costate

in a similar fashion as in page 134. If it happens that the extremal only has neighbors in obstacle

mode, then we use 1 as default norm. This may still be working fine in most cases when the

costate is not evolving much in amplitude.

Neutering

We have to add a neutering screening in the algorithm to avoid bringing the bisection principle

into dead ends. With
(
p−0 , p+

0

)
a pair of neighboring costates, we denote by y−(·) the extremal

associated to p−0 and y+(·) the one associated to p+
0 . We say that we neuter a pair of neighboring

costates
(
p−0 , p+

0

)
if we remove the latter from the list of costates considered for child creation

(l′neigh in Algorithm 4). Consequently, a neutered pair does not yield the resampling of a child

extremal.

We neuter a pair of neighboring costates
(
p−0 , p+

0

)
if the associated extremals enter obstacle

mode with dissimilar orientation σ− 6= σ+. It has to be ensured because when a branching

on the obstacle orientation occurs between neighboring extremals, their children would then

alternatively have one or the other orientation, and thus very dissimilar trajectories that will

never ensure the proximity condition Eq. 3.11. This leads to infinite resampling of trajectories

without the CAVI going forward. Hence the need for neutering.

4.2.3 Experiments

In this section, we demonstrate the results of the in-depth interpolated obstacle-aware algo-

rithm.
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Figure 4.5: Disk obstacle. Left, the detail of the extremals shot, colored by depth in the in-depth interpolated
obstacle-aware algorithm. It can be noticed that some grey, 0-depth trajectories reaching the obstacle are being
closed, because their ground velocity vectors are not in the tangency tolerance. Right, the resulting value function
as color contours, extremals reaching target in black and the solution extremal in red.

No flow

We first study the behavior of extremals with obstacles in the absence of flow field. We run

the computation2 in the presence of a disk obstacle (Fig. 4.5), two bars and a concave shape

(Fig. 4.6). In each case, the extremals are able to find a consistent value function for the prob-

lems at stake. It must be noted that the tangency tolerance value shall be adjusted depending

on the problems to avoid missing obstacle-captured trajectories.

With flow

Next, we see how the algorithm performs in the presence of a flow field. We run3 the algorithm

in the classical case of the linear flow field but with a barrier blocking the way. We also run

again the two bars example but add adversarial flow field around the corners (Fig. 4.7) with

2The code can be found in the notebook obstacle_simple.ipynb at .
3The code can be found in the notebook obstacle_moving.ipynb at .
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Figure 4.6: Two examples of shortest path computation using extremals in the absence of flow field with obstacles
featuring concavities.
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in the middle. Right, the bars example with wind bubbles blocking the path around corners.

138



4.3. MOVING OBSTACLES

equation:

v f (x) :=

−max (r1 − ‖x− xc,1‖ , 0)

0

+

−max (r2 − ‖x− xc,2‖ , 0)

0


with the centers xc,1 = (0.3 0.3)ᵀ, xc,2 = (0.6 0.6)ᵀ and the radiuses r1 = r2 = 0.15.

Again, the algorithm shows consistent results. Computation times never exceed a minute

per case on a laptop4.

4.3 Moving obstacles

The preceding section presented the main modifications of the in-depth interpolated sampling

algorithm to make it take still obstacles into account. The restriction to still obstacles was useful

to give all the bases of the new algorithm without too much information.

In this section, we will explain the modifications to take time-varying obstacles into

account. Obstacles are now described by time-space smooth functions (Bi(t))1≤i≤nobs :=

{x | gi(t, x) ≥ 0}.

4.3.1 Directional offset time-optimal control

When obstacles are time-varying, staying on the border of the obstacle is not simply having a

ground velocity colinear to the border, because of the obstacle’s own velocity.

If x(t) lies on the border of obstacle i, then gi(t, x(t)) = 0, which we differentiate w.r.t. to

get:
∂gi

∂t

∣∣∣∣
t, x(t)

+
∂gi

∂x

∣∣∣∣
t, x(t)

(
u(t) + v f (t, x(t))

)
= 0

So, defining d = R
(

π
2

) ∂gi
∂x

ᵀ∥∥∥ ∂gi
∂x

ᵀ∥∥∥ and n = R
(

π
2

)
d, one has the equation:

4Intel® Core™ i5-10210U CPU @ 1.60GHz × 8
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nᵀu = −nᵀv f +

∥∥∥∥∂gi

∂x

ᵀ∥∥∥∥−1 ∂gi

∂t

which is reminiscent of Property 2.1. So, in a similar fashion as for Property 2.1, we define

the directional offset time-optimal control:

Definition 14 (Directional offset time-optimal control). The directional offset time-optimal control

for direction d and offset a is:

u(d, v f , a) :=

 argmaxu∈Udᵀ
(
u + v f (t, x)

)
nᵀ
(
u + v f (t, x)

)
= a

Remark

We use the same symbol as the directional time-optimal control because both can be dis-

criminated against the other by the number of arguments. And we have the relation:

u(d, v f ) = u(d, v f , 0).

The directional offset time-optimal control existence is found using the same ideas as in

Property 2.1.

So, we see how to modify the algorithm for time-varying obstacles. The constrained legs

will now be integrated using:

(OBS-TV)


ẋ(t) = u

R
(
σ π

2

) ∂gi

∂x

∣∣∣∣ᵀ
t, x(t)∥∥∥∥∥∥

∂gi

∂x

∣∣∣∣ᵀ
t, x(t)

∥∥∥∥∥∥
, v f (t, x(t)),

∥∥∥∥∥∂gi

∂x

∣∣∣∣ᵀ
t,x(t)

∥∥∥∥∥ ∂gi

∂t

∣∣∣∣
t, x(t)

+ v f (t, x(t))

x(tobs) = xobs

(4.12)

The same rules hold as regards the interpolation of children, forced obstacle exits, neuter-

ing.

140



4.3. MOVING OBSTACLES

u

v f

∂gi

∂x

ᵀ

d

n

a =

∥∥∥∥∂gi

∂x

ᵀ∥∥∥∥−1 ∂gi

∂t

vg

Figure 4.8: Directional offset time-optimal control to follow a moving obstacle. The green circle is {u | ‖u‖ = umax}.
The green, thick segment are the values of the control respecting nᵀ

(
u + v f (t, x)

)
= a, with a the obstacle ‘local

speed’. The directional offset time-optimal control is the green arrow that is not barred, achieving maximum ground
speed in the direction d. The resulting ground velocity is depicted in black. For this figure, ∂gi

∂t > 0, meaning the
obstacle is extending in space.

4.3.2 Experiments: No flow case

We first test the obstacle-aware algorithm without flow field on moving obstacles. We test a

moving disk (Fig. 4.9), a moving bar (Fig. 4.10) and a collection of moving objects (Fig. 4.11).

• For the moving disk case, the disk has radius 0.1. Its center starts at (0.5 0.7)ᵀ and moves

towards decreasing y with a speed of 0.4.

• For the moving bar case, the bar has width 0.05, length 0.4 and rounded corners. Its exact

obstacle function is g(t, x) := infb∈B(t) ‖x− b‖ − 0.025 with B the bar, i.e. B = {0.5} ×

([0.5, 0.9]− vb t) with speed vb = 0.4. The bar is moving towards decreasing y.

• For the moving objects case or ‘road crossing’ example, three obstacle objects are

moving. Each one of the three obstacles is a bar, with obstacle function gi(t, x) :=

infb∈Bi(t) ‖x− b‖ − wi
2 for i = 1, 2, 3. B1(t) = {0.5} × ([0.75, 0.85]− v1 t) with v1 = 0.5,

B2(t) = {0.5} × ([0.45, 0.55]− v2 t) with v2 = 0.5, and B3(t) = {0.7} × ([0.3, 0.5] + v3 t)
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with v3 = 0.3. The widths are all the same w1 = w2 = w3 = 0.05. The total obstacle

function is the minimum of all obstacle functions g(t, x) = mini=1,2,3 gi(t, x).

The algorithm manages to track extremals on the border of these moving obstacles. It also

manages to resample interpolated extremals between free and captive extremals so that the

reachability front is tracked by extremals. However, in all three cases, we see that the algo-

rithm is not suited to resolve the value function in the wake of obstacles. For instance, Fig. 4.9,

the value function is clearly wrong in the wake of the disk because there is a jump in the value

function (for instance from the inter-level set between 0.3 and 0.4 and the one between 0.6 and

0.7 around point (0.5 0.6)). This is because the first extremals passing in the zone are the one

who performed a full loop around the obstacle, while in reality, the optimal commuting to

(0.5 0.6) would be to follow an extremal reaching the obstacle, following the obstacle without

momentum relative to it (‘riding’ the obstacle) and waiting to be ‘dropped’ at the right place.

But this kind of behavior is not encompassed in the PMP-G as presented by Arutyunov and

Karamzin (2020). Indeed, the maximum principle they derive is valid only if the endpoints

(origin and destination) are compatible with the constraints (see Arutyunov and Karamzin 2020,

Definition 2.4), which means in particular that the origin and destination lie out of obstacles.

This explains why the extremals we sample are not capable of drawing the right value func-

tion in the wake of obstacles: if we were to place the destination point in a position that gets

eclipsed by an obstacle at a time when it would be reachable without the obstacle, then the

optimal trajectory to this destination is in general not an extremal in the sense of Arutyunov

and Karamzin 2020, Definition 2.10 (the one we use).

The previous observation is not a problem as long as the destination stays out of obstacles,

which for practical applications is a reasonable assumption: in a situation where the destination

alternates between being forbidden and allowed, it seems that finding fastest routes to the

destination can be less important than finding safe routes, so, in such a case, extremals are not

the most relevant tool for the problem.
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Fast obstacle

The case of a fast obstacle is also studied, ‘fast’ meaning the obstacle moves faster than the

vehicle. Once again, a disk a radius 0.1 is considered, starting from position (0.5 1.2)ᵀ and

moving towards decreasing y with speed 1.4 greater than the vehicle speed which is 1. The

results are depicted in Fig. 4.12. The optimal trajectory shows a sharp turn that corresponds

approximately to the moment when the path to the target is clear from the moving disk. The

sharp turn is a result of the resampling scheme that happens between a free extremal and

another one captured on the border of the moving obstacle. On the last subfigure, the optimal

cost map is displayed. Starting from the point where the turn happens (around (0.4 0.6)ᵀ)

and going towards decreasing y, the optimal cost map is not resolved by the method on a

band of width approximately 0.1. This illustrates once again the ‘shadowing’ effect of moving

obstacles in the optimal cost map computed by extremals. The band where the optimal cost is

not resolved indeed lies again in the wake of the obstacle. The information about the optimal

cost in this band would have been brought by trajectories following the obstacle with non-

maximal speed in the orthoradial direction in the obstacle frame, which are not part of the

extremals set we consider, as explained for the previous examples. However, in the direction

of the target, the propagation of extremals is consistent and the information about the optimal

cost is resolved.

This example shows the ability of the method to deal with obstacles faster than the vehicle,

in the limit of the shadowing effect of moving obstacles.

4.3.3 Experiments: Active flow case

Analytical flow field

We then test the algorithm with a moving obstacle immersed in the classical linear flow field

(Fig. 4.13). Once again, the algorithm proves capable of computing the extremals. The obstacle

moves sufficiently slowly so that the reachability front is well resolved behind the obstacle,
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CHAPTER 4. TIME-OPTIMAL NAVIGATION PROBLEM: OBSTACLES

as opposed to the moving disk case. So, even though the PMP-G extremals are not made to

resolve the value function in the wake of obstacles, in this case they manage to resolve it.

Real wind field

We now test the algorithm with real-world, time-varying wind and moving obstacles. For

this, we extract the 100m wind reanalysis from ERA5 for Sep. 28, 2021 and a three days time

window. We also extract the total precipitation reanalysis. This date corresponds to a creation

of a storm between Dakar and Natal, so this constitutes challenging weather for the Mermoz

drone. Storms create high winds that can be attractive for a time-optimal path planner. But

going into the eye of the storm may lead to the loss of the vehicle, and this is where moving

obstacles are going to be useful to forbid this zone. In this case, we forbid the access to the eye

of the storm by defining a circle of radius 427 km (0.2 in rescaled space) around the position of

maximum precipitation as a moving obstacle (Fig. 4.14). As the time evolution of the maximum

is erratic, in the sense that this maximum can jump to another location at the next time frame,

we smooth the sequence of centers by averaging positions over a 10 hours window (one time

step every hour, so smoothing over 10 time steps). We want to see if the algorithm can solve the

constrained problem, and if so, how the new optimum compares with the no-obstacle situation.

We project the wind and rain fields to planar space using a Lambert projection with stan-

dard parallels −7 deg and 14 deg, showing a maximum relative error in the distances of 1.7 %

at the top and bottom borders of the problem (meaning measuring a distance on the Lambert

map leads to a measure that is 1.7 % more than the real distance). A discussion on the differ-

ence between working in projected space or in spherical coordinates for this case is proposed

in Appendix D.

We scale distances and speeds so that space and time coordinates are of the order of 1, for

good numerical conditioning. The start date is chosen to Sep 29th, 2021, 06:00Z for the storm to

hinder the UAV on its path.

We show the results in Fig. 4.15. The computation takes around a minute to complete on
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CHAPTER 4. TIME-OPTIMAL NAVIGATION PROBLEM: OBSTACLES

a laptop5. The algorithm manages to find a solution in the constrained case. This solution

makes use of the obstacle border. This example show the ability of the method to deal with

real-world trajectory planning scenarios with constraints that can be formulated as moving

forbidden zones.

Remark

This storm case was used in (Schnitzler et al., 2023a), but at the time the article was written,

the DABRY module was not able to deal with moving obstacles so a fixed obstacle was

used.

Conclusion of the chapter

We presented how to handle hard obstacles in time-optimal trajectory planning when using

extremals. State constraints in Pontryagin’s Maximum Principle are very challenging, still we

gave some references trying to overcome the difficulty in trajectory planning problems. We

explained a set of best-effort adaptations to add to the extremal-based time-optimal algorithm

for it to work in the presence of obstacles. The resulting algorithm is capable of finding the

time-optimal solutions of different analytical test problems and also on one real-world example

as well. Still, the extremals we used are not appropriate if one is to compute the full value

function of the navigation problem. Indeed, ‘shadow zones’, where no extremal propagate,

appear around moving obstacles, where consequently no information on the optimal travel

time is available. This is not a problem for time-optimal trajectory planning as long as the

destination point lies out of moving obstacles.

With obstacles now included in the time-optimal trajectory planning procedure, one has

then a tool for trajectory planning that tends to comprehensiveness. Yet, time may not be the

only cost of interest in navigation problems. Indeed, focusing on the energy expense rather

than on travel time changes the optimization procedure. It is studied in the following chapter.

5Intel® Core™ i5-10210U CPU @ 1.60GHz × 8
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4.3. MOVING OBSTACLES

Chapter’s main questions – Answers

• How to compute efficiently trajectories that minimize the travel time in the long-
range navigation problem, when there are strictly forbidden zones in the environ-
ment?

The exist adaptations of the necessary conditions of optimality for trajectories in the
presence of obstacles, whether still or moving. From these conditions, extremals can be char-
acterized, and an efficient method can be built by shooting extremals in a similar fashion as
when obstacle are absent.

• Can we provide guarantees that a given trajectory is indeed a global optimum of the
problem in this case?

In a similar fashion as in the absence of obstacles, sampling extremals enables the build-
ing of the optimal cost map of a problem. However, extremals designed for navigation prob-
lems where the endpoints lie out of obstacles are consequently not able to propagate the infor-
mation of the optimal travel time in the wake of obstacles. Different extremal trajectories, with
free speed along obstacle borders (in obstacle frame) would be required to get this information.

• How do extremals behave for the time-optimal navigation problem in the presence
of state constraints?

In the presence of state constraints, extremals are composed of a succession of legs alter-
nating between the free space and the borders of obstacles. Extremals designed for problems
where the endpoints lie out of obstacles are using the maximum allowed speed at all times.
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Chapter 5

Energy-time optimal navigation

problem

Abstract

In this chapter, Zermelo’s navigation problem in unsteady and strong flow fields is
extended by adding the notion of energy. In the large scale point of view kinematic
model, it is shown that the power function can be convexified. The power function
can be made non-dimensional, with different properties whether the idling of the
vehicle is costly or not. The properties of the non-dimensional two-terms drag
polar power function for aircraft are thoroughly reviewed. Necessary conditions
of optimality for trajectories are written using Pontryagin’s Maximum Principle,
characterizing the candidates to energy-time-optimality (extremals) for any kind
of power function. Energy-time-optimal extremals are computed in the cases of
a one-dimensional moving gust of wind, a bidimensional gyre flow and realistic
wind fields over the Atlantic. In each of the previous cases, trade-offs between total
travel time and total energy expense are studied. Tenths of percent reduction in
energy consumption can be expected from using energy-time-optimal trajectories
instead of time-optimal trajectories in favorable cases. Lastly, hints are given on
how to adapt the previously built extremal-based algorithms to the energy-time-
optimal case.
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Résumé en français

Dans ce chapitre, le problème de navigation de Zermelo dans un champ de vent fort et
instationnaire est étendu en ajoutant la notion d’énergie. Dans le modèle cinématique
grande échelle, il est montré que la fonction de puissance peut être convexifiée. La fonc-
tion de puissance peut être adimensionnée, avec des propriétés différentes selon que le
régime de vitesse grande échelle nul soit coûteux ou non. Les propriétés de la fonction
de puissance du vol issue de la polaire en deux termes et adimensionnée sont examinées
en détail. Les conditions nécessaires d’optimalité des trajectoires sont données à l’aide du
principe du maximum de Pontryagin, caractérisant les candidats à l’optimalité en énergie
et temps (extrémales) pour tout type de fonction de puissance. Les extrémales optimales
en énergie et temps sont calculés dans les cas d’une rafale de vent mobile unidimension-
nelle, d’un écoulement tourbillonnaire bidimensionnel et de champs de vent réalistes au-
dessus de l’Atlantique. Dans chacun des cas précédents, les compromis entre le temps de
déplacement total et la dépense énergétique totale sont étudiés. Dans les cas favorables,
on peut s’attendre à une réduction de la consommation d’énergie de l’ordre de quelques
dizaines de pourcents en utilisant des trajectoires optimales en énergie et temps plutôt que
des trajectoires optimales en temps. Enfin, des indications sont données sur la manière
d’adapter les précédents algorithmes basés sur les extrémales au cas de l’optimisation en
énergie et temps.
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5.1. LITERATURE REVIEW

In the previous chapters, we studied the problem of minimizing the travel time from an

origin to a destination. We focused on travel time because it is the most simple metric for this

kind of control problem, and it is of obvious interest for navigation problems. Nevertheless, we

have seen that time-optimal navigation requires the vehicle to be operated at maximum SRF

(Property 3.1). It is an energy-intensive way to operate the vehicle. Most navigation missions

are not races and the most important goal is the fulfillment of the mission rather than spar-

ing half an hour of travel time over 30 hours. Thus, studying the possibility of reducing and

adapting the SRF to the flow field conditions is interesting to understand how much energy

can be saved this way, and consequently how much margin can be gained on the expected final

onboard energy at the end of the mission, concurring in reducing the risk of mission failure.

In this chapter, we will focus on adapting optimality conditions when the key metric is

energy rather than travel time.

Chapter’s main questions

• Is it beneficial for the vehicle to make its own speed vary throughout travel in terms
of total energy expense?

• If so, what is the amount of energy that can be saved?

• How to compute numerically such energy-saving trajectories?

• How different are energy minimizing trajectories from time minimizing ones?

5.1 Literature review

The focus of this thesis is on long-range trajectory optimization. By nature, for long-range

mission, autonomy and thus energy is a key metric. While time-optimal trajectory were the

entry point in the literature for trajectory optimization, most authors also enlarge the problem

by adding the energy dimension to it.

For underwater vehicles, Albarakati et al. (2020) used a control parameterization approach
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CHAPTER 5. ENERGY-TIME OPTIMAL NAVIGATION PROBLEM

for time-energy trajectory optimization of AUVs in 3D underwater environment. The same

type of methods was used by Bonnin (2015) to find albatross-like, energy-minimizing 3D tra-

jectories for UAVs. Control parameterization was also used by González Arribas (2019) to

perform time-energy optimization of aircraft trajectories. The approach proved efficient in all

mentioned cases to find optimal trajectories, still control parameterization cannot guarantee

the global optimality of the solutions found.

RRT methods were used by Rao and Williams (2009) to find AUV paths using less energy

than constant SRF paths.

For 2D, time-energy optimal trajectory planning, Doshi et al. (2023) solve the PDE govern-

ing the vehicle’s reachable set in an augmented space composed of the physical space and the

energy dimension. They are able to build the Pareto front of time-energy pairs for a navigation

problem, with guarantees of optimality. Though, Hamilton-Jacobi type methods scale badly

with the dimension, and the 3D augmented state space increases much the computation effort.

For commercial aircraft, Franco and Rivas (2011) or Jafarimoghaddam and Soler (2023) use

extremals to perform time-energy 2D trajectory optimization, on a more refined aircraft model

than the kinematic model (Eq. 2.1). Extremal methods are also used by Dobrokhodov et al.

(2020) for the long-range time-energy-optimal navigation of a liquid hydrogen powered UAV,

which is very similar to the driving application case of this thesis (the Mermoz challenge).

Commercial aircraft performance variation with airspeed and wind conditions were also in-

vestigated by Delgado and Prats (2013) from the air traffic control point of view. The authors

showed reducing airspeed when approaching a congested airport can reduce delays and fuel,

and that this is exacerbated in the presence of wind.

Without surprise, the diversity of methods illustrated in the literature review chapter is

also found for the time-energy-optimal navigation problem. The following development still

focuses on extremal methods for time-energy optimization. Thus, connections are made, when

possible, with the aforementioned references belonging to the group of indirect methods.
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5.2. POWER EXPENSE

5.2 Power expense

5.2.1 Kinematic model, large scale point of view

We want to study how energy is spent in the large-scale navigation of vehicles. We still want to

keep the useful LSPOV that represents the vehicle with a kinematic model. We recall that the

vehicle evolves in space with:

ẋ(t) = u(t) + v f (t, x(t))

The control u is a 2D variable and its norm is called the Speed Relative to the Flow (SRF),

which we note vr = ‖u‖, while the direction vector is called the heading vector and we note

h = u
‖u‖ . The vehicle’s energy is spent to counter the forces acting against the vehicle, resulting

in a mechanical equilibrium that gives the vehicle an SRF of vr. So, to maintain this equilibrium,

the vehicle has to provide power to an amount that is governed by the SRF, noted gtotal(vr).

However, in what follows, we are going to focus on the pure mechanical power that is spent to

counter the fluid’s forces, which we note gSS(vr). The difference with the previous one is that

the total power expense (one can think fuel flow or current out of a battery) takes into account

the different efficiencies involved in the power chain. By focusing on the mechanical power,

we do not need a model of the full power chain, and we can provide a lower bound on the

energy spent by the vehicle. The SS subscript means that it is the small scale power expense, as

opposed to the power function seen by the LSPOV. The LSPOV indeed sees a different power

expense than the small scale. We note g(vr) the LSPOV power function, without subscript as it

is the one that is going to be used in the following sections. Because of the LSPOV abstraction,

we have a relation between the small scale power function and the large scale power function.
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vr

Power
gSS

g

Figure 5.1: Example of a fictitious small scale power function (gSS, red) and associated LSPOV power function (g,
blue).

Property 5.1

g is the convex hull of the function

g̃(vr) :=

 min gSS if vr = 0

gSS(vr) else

Proof. 1. Why the LSPOV power is the convex hull of the small scale power.

If gSS,1 := gSS(vr,1) and gSS,2 := gSS(vr,2) are possible power values, then alternating in the

small scale between SRF vr,1 and vr,2 in a frequency that is high compared to the large scale time

scale will give the vehicle an apparent SRF of 1
2 (vr,1 + vr,2) and an apparent power expense of

1
2 (gSS,1 + gSS,2) in the LSPOV. Thus,

• if gSS
( 1

2 (vr,1 + vr,2)
)
≤ 1

2 (g1 + g2), then flying at vr = 1
2 (vr,1 + vr,2) in the small scale

is better than alternating between vr,1 and vr,2, and the resulting large scale power is

g(vr) = gSS(vr);

• else if g
( 1

2 (vr,1 + vr,2)
)
> 1

2 (g1 + g2) then alternating between vr,1 and vr,2 in the small

scale is better than operating at fixed 1
2 (vr,1 + vr,2) and the resulting large-scale power is
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5.2. POWER EXPENSE

1
2 (g1 + g2).

In both cases, the LSPOV sees an SRF of 1
2 (vr,1 + vr,2) and a power that is less than or equal to

1
2 (g1 + g2). Thus, the LSPOV power is the convex hull of the small scale power function.

2. Why the point with zero SRF and minimal power can be added to the graph of the convex

large scale power.

If we note vr,min the SRF achieving minimum small scale power vr,min = arg min gSS(vr),

then, as explained in Chap. 2, we can operate the vehicle at vr,min in the small scale but ar-

tificially lengthen the small scale path so that the large scale resulting SRF is a lower value

vr < vr,min. In particular, we can fake the idling of the vehicle: the LSPOV sees vr = 0 but the

vehicle is doing circles in the small scale at vr,min. This justifies that the vehicle spends a power

gSS(vr,min) at vr = 0.

The convex hull relation from the previous property is sketched in Fig. 5.1. This property shows

that in the LSPOV, only convex increasing power functions are consistent with the large scale

abstraction.

5.2.2 Specific range

To cross the infinitesimal length dl at SRF vr, the vehicle takes dt = dl
vg

where vg is the ground

speed of the vehicle. But the infinitesimal energy spent is:

dE = g(vr)dt =
g(vr)

vg
dl

Thus, the specific range Rs := dl
dE , i.e. the distance that the vehicle can cross with one unit of

energy is:

Rs =
vg

g(vr)
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We note that since vg =
∥∥u + v f

∥∥, the flow field appears in the formula and thus changes the

local specific range depending on the ground velocity direction. The inverse of the specific

range 1
Rs

will be called the energy intensity in what follows.

5.2.3 Drag models

Aircraft drag

In steady level flight, an aircraft spends its propulsive energy countering the drag, which has

the following expression:

D =
1
2

ρ S v2
r CD

where ρ is the air specific density, S the aircraft’s wing surface and CD is the drag coefficient.

The corresponding power expense is:

PD =
1
2

ρ S v3
r CD

Generally, the drag coefficient can depend on many parameters, but at a given altitude, in

steady level flight with a known aircraft, it only depends on the lift coefficient CL through a

drag polar:

CD = f (CL)

where the lift coefficient is:

CL =
W

1
2 ρ S v2

r
(5.1)

with W the weight of the aircraft, assuming that lift equals weight (steady level flight). The

drag polar is usually tabulated using wind tunnel testing.

So, noting KCL = W
1
2 ρ S

and KP = 1
2 ρ S, the power of flying at SRF vr at the small scale for an

aircraft (AC) is of the form:
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gAC(vr) = KP v3
r CD

(
KCL

v2
r

)

Two-terms drag polar

Sometimes, an abstraction accurately approximates the drag polar, for instance the two-terms

drag polar (Torenbeek, 2013, Sec. 4.4.1) originating from Prandtl’s lifting line theory1:

CD = CD,0 + KLC2
L

The power function corresponding to this Two-Terms (TT) drag polar is:

gTT(vr) = Kp,1 v3
r + Kp,2

1
vr

with Kp,1 = 1
2 ρ S CD,0 and Kp,2 = KL W2

1
2 ρ S

.

The maximum range (R) SRF2 for this power function is:

v(R)
r = 4

√
Kp2

Kp1
=

√
W

1
2 ρS

4

√
KL

CD,0

It is also the minimum drag airspeed.

The minimum power (P) SRF is different than the no-wind maximum range:

v(P)
r = 4

√
Kp2

3Kp1
=

√
W

1
2 ρS

4

√
KL

3CD,0
=

1
4
√

3
v(R)

r

It is also the maximum loitering airspeed (speed at which one can spend the longest time doing

circles over a position).

1For even more accuracy, a non-symmetrical drag polar of form CD = CD,0 +KL(CL−CL,0)
2 can also be plugged

in the gAC power function.
2In French: Vitesse de finesse maximale
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Non-dimensioning For further study, it is useful to non-dimension this power function.

With:

g(vr) = K̃p,1 v3
r + K̃p,2

1
vr

as generic two-terms drag polar power function, we want its maximum range SRF v(R)
r to be 1.

This imposes:

K̃p,2 = K̃p,1

Then, normalizing the power expense at the maximum range SRF g(1) = 1 gives:

2 K̃p,2 = 1 =⇒ K̃p,2 =
1
2

Thus, the Standard (non-dimensional) Two-Terms (STT) drag polar power function is:

gSTT(vr) =
1
2

(
v3

r +
1
vr

)
(5.2)

This expression encompasses the power expense of a wide range of fixed-wing flying vehicles

for which the two-terms drag polar is accurate. However, effects such as stall or transsonic

drag are neglected in this model. The minimum of this function is reached for the loiter SRF

which is 1
4√3
≈ 0.760. We note the minimum gmin = gSTT

(
1

4√3

)
≈ 0.877. Thus, the Standard

LSPOV Two-Terms (SLTT) drag polar power law is:

gSLTT(vr) =


1
2

(
v3

r +
1
vr

)
if vr >

1
4√3

gmin else
(5.3)

We depict the graphs of gSTT and gSLTT in Fig. 5.2.
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Figure 5.2: Standard Two-Terms Drag Polar Power function, with or without the LSPOV. Speed is in units of the
maximum lift-to-drag ratio speed. Power is in units of the power corresponding to the maximum lift-to-drag ratio
speed.

Submarine drag

For underwater vehicles, the drag writes the same as for aircraft:

D =
1
2

ρ S v2
r CD

But in this case, there is no changing of lift coefficient with airspeed that changes the drag

coefficient. Even for underwater gliders alternating up and down phases, overall, the drag

coefficient can be considered constant. So, the resulting power is simply in the cube of the

vehicle’s speed:

g(vr) = k v3
r

However, this relation is only valid under the cavitation limit, i.e. for speeds under a given

threshold. For speeds over the latter threshold, the vehicle goes so fast that water vaporizes in

fixed or moving parts of the vehicle at the interface with the flow, making the drag diverge and
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E

T

∝ gmin T

Feasible region

E

T

Feasible region

Figure 5.3: Time-energy graph possible shape for costly idling vehicles (left) or free idling vehicles (right).

possibly damaging the vehicle. Thus, the normal operation mode for underwater vehicles is to

stay under this limit.

5.2.4 Costly idling vs. free idling vehicles

The large-scale models for airborne and underwater vehicles show a main difference in that

the idling of the vehicle can be costly (i.e. g(vr = 0) > 0, airborne case) or not (g(vr = 0) = 0,

underwater case). This difference will give different features to the time-energy diagram, i.e.

the diagram of a navigation problem where we plot all the possible time-energy pairs from

origin to destination. For instance, the time-energy diagram for costly idling vehicles will be at

most tangent to the line E = gmin × T, whereas the time-energy diagram for free idling vehicle

will not have such a bound. This is depicted in Fig. 5.3.

Another fundamental difference is that for costly idling vehicles, there exists an optimal

SRF achieving maximum range. For aircraft, it is the maximum lift-over-drag ratio SRF (or air-

speed). It is the one achieving maximum specific range. For free idling vehicles, this optimum

SRF does not exist because the power is not bounded by a positive constant. In other words,

reducing the SRF always reduces the energy expense on a given travel, in the absence of flow

field, for this kind of vehicles.

In the next section, we study the influence of the flow field on the optimal SRF for costly
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Figure 5.4: Standard LSPOV Two-Terms Drag Polar Power Law and different tangent lines for varying flow field
magnitudes. Speed is in units of the maximum lift-to-drag ratio speed (without wind). Power is in units of the
power corresponding to the maximum lift-to-drag ratio speed (without wind).

idling vehicles.

5.2.5 Flow field influence on the optimal SRF for costly idling vehicles

We now consider the effect of the flow magnitude on the best SRF to minimize the energy

expense. For simplicity, we start by studying what happens when the flow field is colinear to

the ground velocity. We note v f the signed value of the flow field (positive is flow field pushing

the vehicle, negative is flow field against the vehicle).

Locally, the best SRF is defined by achieving the maximum specific range:

Rs =
vr + v f

gSLTT(vr)

This corresponds graphically to finding the maximum slope α such that vr 7→ α(vr + v f ) is

tangent to the graph of vr 7→ gSLTT(vr). This is depicted in Fig. 5.4. The optimal SRF is thus in
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direct relation with the flow field value v f , which relation we note v?r (v f ). The optimal SRF v?r

is the minimizer of the energy intensity:

vr 7→
v3

r +
1
vr

2(vr + v f )

We solve numerically this minimization and plot the results in Fig. 5.5.

From applying NCO to function vr 7→ v3
r+

1
vr

2(vr+v f )
, the optimal SRF solves

v5
r +

3
2

v f v4
r − vr −

v f

2︸ ︷︷ ︸
ϕ(vr ,v f )

= 0 (5.4)

The slope dv?r
dv f

is found by differentiating the previous relation:

ϕ(v?r , v f )︸ ︷︷ ︸
0

+
∂ϕ

∂vr
dv?r +

∂ϕ

∂v f
dv f = 0

=⇒ dv?r
dv f

= −
∂ϕ
∂v f

∂ϕ
∂vr

=
1− 3 v4

r
10 v4

r + 12 v f v3
r − 2

Hence the slope dv?r
dv f

= − 1
4 at v f = 0 (thus v?r = 1) appearing in Fig. 5.5.

Similarly, when v f � 1, Eq. 5.4 looks like:

3
2

v f v4
r −

v f

2
= 0

which gives vr =
1

4√3
, the asymptotic value of v?r for a high positive flow magnitude (depicted

in Fig. 5.5b).

Looking for the asymptotic behavior for high |v f |, negative v f , we write vr = α v f and inject

in Eq. 5.4 to have: (
3
2

α4 + α5
)

v5
f −

(
α +

1
2

)
v f = 0

So, for |v f | � 1, only the term in v5
f matters and we find α = − 3

2 .
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Figure 5.5: Standard Two-Terms Drag Polar optimum SRF for varying flow field magnitudes. (a) Variation of the
optimal SRF with the flow field value. (b) The same relation but with a twice larger value range for the flow field.
Positive flow field is pushing the vehicle forward, negative is acting against it.
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Figure 5.6: Specific range as a function of the longitudinal flow field. Flow field pushes the vehicle when its value
is positive, and is acting against it when its value is negative. The graph is normalized so that the specific range is
1 for the no-flow case v f = 0.

Effect on specific range Now that we analyzed the best SRF for varying flow magnitude, we

are interested in knowing how using the optimal value affects the specific range. In Fig. 5.6, we

plot the specific range as a function of the flow field magnitude, assuming the vehicle operates

at the optimal SRF. We also compare it to the operation mode where the SRF does not vary and

is fixed to the no flow field, maximum range value (1 in our case).

All in all, the specific range extension provided by adjusting the SRF is not significant when

the flow field is small compared to the nominal vehicle speed (no wind maximum range SRF).

In Table 5.1, we give the bounds on the flow field magnitude that guarantee a bound on the

maximum loss of specific range entailed by operating at fixed SRF compared to adjusting the
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Specific range variation v f ,min v f ,max

-0.5% -0.171 0.244

-1% -0.228 0.381

-2% -0.300 0.635

-5% -0.419 1.60

Table 5.1: Specific range maximum variation when operating at fixed SRF equal to the no-flow maximum range SRF
instead of adjusting the SRF to the flow-optimal value.

speed to the optimal value. For instance, if in the considered navigation problem the flow field

magnitude (absolute value) is less than 22.8% of the nominal vehicle speed when acting against

the vehicle and less than 38.1% when pushing it, then it is guaranteed that the range extension

that one would get by varying the SRF cannot exceed 1% of the achieved range. This really

states that the flow magnitude should be strong compared to the nominal speed before seeing

a benefit from the variation of SRF for saving energy.

In the weak flow regime, the range extension or diminution entailed by the flow field varies

linearly with the flow magnitude (kinematic behavior). For strong pushing flow field (v f � 1),

the range extension increases linearly with the flow magnitude, at a rate of 0.14 units of specific

range gained with one unit of flow magnitude, when using the flow-optimal SRF. For strong

flow field acting against the vehicle, the fixed SRF strategy falls down when the flow value

reaches −1, as at this point, the vehicle does not move anymore. The flow-optimal SRF adjusts

to such flow fields, and even bigger magnitudes. When v f � −1, v?r ≈ − 3
2 v f , so the ground

speed in this regime is vg ≈ − 1
2 v f . The specific range never vanishes with this approach, but

tends asymptotically to zero.
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5.3 The one-dimensional case

Now that we clarified how power is spent for the considered classes of vehicles, we see how

we can optimize energy resources in the presence of a flow field. We start by considering a 1D

navigation problem.

5.3.1 Problem statement

We focus on the following problem

(ENP-1D)


min

vr(·), h(·)

∫ T

t=0
g(vr(t))dt

ẋ(t) = vr(t) h(t) + v f (t, x(t))

x(t0) = x0, x(t f ) = x f

(5.5)

where the ‘heading’ h is simply a scalar. For this system, we have the following Hamiltonian:

H(t, x, p, vr, h, λ) = p (vr h + v f (t, x)) + λg(vr)

We look for normal extremals and thus assume λ = 1. First, the Hamiltonian is clearly mini-

mized in h for h = −sign(p). Then, we have:

∂H
∂vr

= p h + g′(vr) = −|p|+ g′(vr)

and ∂2 H
∂v2

r
= g′′(vr) ≥ 0 since g is convex. Thus, if |p| ≤ g′(umax), ∂H

∂vr
= 0 has one solution

(g̃′)−1(|p|) which minimizes the Hamiltonian. Else, if |p| > g′(umax) then ∂H
∂vr

< 0 and the

minimum in the Hamiltonian is reached for the maximal possible SRF vr = umax. Thus, the

optimal SRF is:

v?r = min
{
(g̃′)−1(|p|); umax

}
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T̃

Ẽ = min
∫ T̃

0
g(vr(t))dtẼ

Figure 5.7: For a fixed T̃, the minimum energy to reach the target Ẽ forms with T̃ a point that lies on the bottom part
of the time-energy graph of all possible time-energy pairs reaching the destination.

Trajectories candidate to optimality for this problem are solutions of the ODE in the augmented

vector y = (x p)ᵀ: 

ẏ(t) =


−v?r (|p(t)|) |p(t)|+ v f (t, x(t))

−∂v f

∂x

∣∣∣∣
t, x(t)

p(t)



y(0) =

x0

p0


(5.6)

If the final time T is considered fixed, shooting extremals over the window [0, T] will help find

the energy-minimal trajectory arriving in time T at destination. In other words, extremals can

be used to find the time-energy pairs (T, E) with E being the minimal amount of energy to reach

the target in duration exactly T. This means that extremals can be used to find the bottom of

the time-energy graph, as depicted in Fig. 5.7.

Free final time If the final time T is considered free, this means that we are looking for the

absolute minimum of energy spent for the navigation problem, and we don’t know for which

travel time T this minimum will be found. In this case, as for the time-optimal case, there is

a transversality condition at final time on the reduced Hamiltonian (Hamiltonian in which the
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optimal control values are plugged). The reduced Hamiltonian writes:

Hr(t, x, ṽr
?) = −g′(ṽr

?)
(
ṽr

? + v f (t, x)
)
+ g(ṽr

?)

The terminal condition Hr(T, x(T), ṽr
?(T)) = 0 thus writes:

−g′(ṽr
?(T))

(
ṽr

?(T) + v f (T, x(T))
)
+ g(ṽr

?(T)) = 0

We recognize the equation for an extremum of the energy intensity g(vr)
vr+v f

.

Steady flow field If the flow field is steady, the reduced Hamiltonian does not depend on

time and the terminal condition is valid for all times. In other words, in a steady flow field, the

minimum energy trajectory is the one using the maximum range SRF adapted to the flow field

magnitude at all times.

Unsteady flow field With an unsteady flow field, the previous remark is not valid anymore

as the reduced Hamiltonian now depends on time. It is generally false that the vehicle uses

the flow-optimal maximum range SRF at all times in an unsteady flow field. The main reason

is that, in the presence of time-varying flow field, it may be interesting to spend some more

power at some time, being energetically inefficient, to reach a favorable zone that will enable a

lower power expense, compensating the previous increase. This is shown in Section 5.3.2.

Consequence of the power function’s convexity Let’s suppose we have a vehicle reaching

target in duration T with an SRF law t 7→ vr(t). Its energy expense is:

Evarying =
∫ T

t=0
g(vr(t))dt

Now, let’s suppose another vehicle operates at a fixed SRF equal to the averaged SRF ṽr :=

1
T

∫ T
t=0 vr(t)dt and that this vehicle arrives at time T′. Its energy expense is thus Efixed :=
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T′g(ṽr). But the convexity of g gives:

g(ṽr) = g
(

1
T

∫ T

t=0
vr(t)dt

)
≤ 1

T

∫ T

t=0
g(vr(t))dt =

1
T

Evarying

Thus,

Efixed ≤
T′

T
Evarying

So, if the averaged-SRF vehicle ever reaches the destination earlier than the varying SRF vehicle

T′ < T, then for sure it would have spent less energy in total than the varying SRF trajectory.

In particular, in the absence of flow field, both strategies arrive simultaneously but the varying

SRF consumes more energy.

This short analysis shows that varying the SRF consumes more energy than using a fixed

SRF in the absence of flow field. So, if a cut in energy expense shall exist for varying SRF trajec-

tories, it can only be because the varying SRF allows the vehicle the harness the surrounding

flow field, eventually reducing its total spent energy. This phenomenon is shown in the follow-

ing section.

5.3.2 Case study: the moving gust

Description

To better understand the time-energy trade-off, we choose to study a simplified, idealized case.

We consider the problem of navigating in 1D space from x0 = 0 to x f = 1, with a gust flow

field defined by:

v f (t, x) =

 vgust if |x− c(t)| ≤ w

0 else

and the center of the carpet c(t) = c0 + vcenter t. We call l0 = c0−w the spatial offset of the gust

with x = 0 at t = 0. We set c0 = 0.25, w = 0.15, vcenter = 1, vcarpet = 0.5. This flow field is

depicted in Fig. 5.8.
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c(t)

l0 w

t = 0 t = t1 > 0 t = t2 > t1

vgust

Figure 5.8: Moving gust of wind on a single axis. The gust is moving away from the origin with a flow field vector
in the same direction.

From the equations of extremals we deduce that the control shall be constant in regions

where the flow field is constant. Thus, we consider two types of trajectories:

1. varying SRF trajectories, that adopt an SRF vr,1 in the beginning and switch to a different

SRF vr,2 when reaching the gust;

2. fixed SRF vr, f trajectories.

For varying SRF trajectories, we limit the study to trajectories effectively reaching the gust

before the target, so:

vr,1 ≥
vcenter

1− l0

Similarly, inside the gust, we discard trajectories that are too slow to follow the gust. So we

enforce:

vr,2 ≥ vcenter − vgust

The time spent before reaching the gust is:

∆tfree =
l0

vr,1 − vcenter

When reaching the gust, the position is vr,1 ∆tfree. So, the duration left before reaching
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destination is

∆tgust =
1− vr,1l0

vr,1−vcenter

vr,2 + vgust
=

(1− l0)vr,1 − vcenter

(vr,1 − vcenter)(vr,2 + vgust)

All in all, the total energy expense is g(vr,1)∆tfree + g(vr,2)∆tgust, which we note:

Evarying(vr,1, vr,2) = g(vr,1)
l0

vr,1 − vcenter
+ ∆x1(vr,1)

g(vr,2)

(vr,2 + vgust)

where we stress the dependency on the variables vr,1 and vr,2 and where ∆x1 =
(1−l0)vr,1−vcenter
(vr,1−vcenter)

is the remaining distance to cross after entering the gust.

In the previous expression, we notice the minimum of Evarying w.r.t. vr,2 is independent of

vr,1: it results of the minimization of the term g(vr,2)
(vr,2+vgust)

, where we recognize the expression of

the energy intensity. So, the minimization of the energy expense in the gust phase is simply

setting the SRF to the less energy intensive value.

Similarly, there is an energy expense associated to fixed-SRF trajectories, for vr, f ≥ vcenter
1−l0

:

Efixed(vr, f ) = g(vr, f )
vr, f + l0 vgust − vcenter

(vr, f − vcenter)(vr, f + vgust)

In this development, we voluntarily kept the power function g undefined. We will now see

how the two different energy expenses vary, depending on the chosen power model.

Quadratic polar

In this subsection, we choose a quadratic power model for the vehicle

g(vr) = 1 + k v2
r

For k ≈ 1, this models a vehicle with costly idling and increasing power expense with vr. If

k → 0, the model is independent of the SRF. If k → +∞, it is as if the idling was not costly

(idling power negligible compared to the power for vr > 0), up to the rescaling of the energy
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axis.

For this power model, we have an analytical expression for the flow-optimal SRF.

Property 5.2

For the quadratic polar, the less energy-intensive SRF is:

v?r =

√
1
k
+ v2

gust − vgust

For numerical applications, we take k = 1. Energy-time pairs are displayed in Fig. 5.9 for

the constant SRF law without the gust, the constant SRF law with the gust, and the varying SRF

law to compare for total travel time and total energy.

We first see that the gust reduces the travel time and energy for fixed SRF laws compared

to a no flow situation. The gust indeed pushes the vehicle towards its objective. Furthermore,

some varying SRF laws achieve time-energy pairs that dominate constant SRF performances.

In particular, the minimum amount of energy is ≈ 0.9, spent for vr,1 ≈ 1.6 and vr,2 ≈ 0.8. It is

less than the reference minimum energy without flow field, which is 1, and also the constant

SRF approach, which achieves an energy expense of at least 0.95.

Two-terms drag polar

We now change the power law for the standard LSPOV two-terms drag polar power law from

Eq. 5.3. As in the previous case, energy-time pairs are computed for the constant SRF law

without the gust, the constant SRF law with the gust, and the varying SRF law. Results are

displayed in Fig. 5.10.

The same behavior as for the preceding case is observed, in that the travel time and energy

are smaller for fixed SRF than in the no flow case, and some time-energy pairs for varying SRF

trajectories dominate constant SRF performances. However, the time-energy domain gained

with varying SRF trajectories is smaller than for the previous power law. The minimum amount
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Figure 5.9: Energy-time trade-off for the moving gust case with a quadratic polar. The purple crosses are the
reference time-energy points in the no-flow case, with the quadratic power model. Red crosses are the result of
choosing a fixed SRF for the travel. Blue, yellow and green crosses are the result of choosing a varying SRF law with
values vr,1 and vr,2. The vr,1 value is given by the color, while the vr,2 value is labelled on the green sequence, with
dashed lines indicating same values for vr,2.
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a description of the sequences, refer to Fig. 5.9. For the varying SRF sequences, vr,1 corresponds to the color of the
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of energy is found to be ≈ 0.85, achieved for varying SRF trajectories. The reference minimum

energy for the travel without flow field is still 1. The minimum energy spent by constant SRF

trajectories is ≈ 0.95.

These experiments show that a cut in energy expense by an order of magnitude of 10% can

be expected from the adoption of a varying SRF law.

5.4 The bidimensional case

5.4.1 Problem statement

We now open up the state space and consider a vehicle evolving in free 2D planar space. The

total energy spent over duration T by this vehicle is:

E =
∫ T

t=0
g (vr(t)) dt

In a similar fashion as for the 1D case, the energy-optimal navigation problem writes:

(ENP)


min

vr(·), h(·)

∫ T

t=0
g(vr(t))dt

ẋ(t) = vr(t)h(t) + v f (t, x(t))

x(t0) = x0, x(T) = x f

(5.7)

We note h(θ) = (cos θ sin θ)ᵀ to parametrize the control with variables (vr, θ). The Hamilto-

nian for this problem writes:

H(t, x, p, vr, θ, λ) = pᵀ(vr h(θ) + v f (t, x)) + λg(vr)
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We study normal extremals, so we can rescale the pair (p, λ) so that λ = 1. The variations of

the Hamiltonian with the control values are:

∂H
∂vr

= pᵀh(θ) + g′(vr)

∂H
∂θ

= vr pᵀR
(π

2

)
h(θ)

The Hessian matrix of the Hamiltonian w.r.t. the control variables is:

∇2H =

 ∂2 H
∂v2

r

∂2 H
∂vr∂θ

? ∂2 H
∂θ2

 =

g′′(vr) pᵀR
(

π
2

)
h(θ)

? −pᵀh(θ)


where we hid the redundant symmetric coefficient with a star. So, if (vr, θ) minimizes the

Hamiltonian, we have:
∂H
∂θ

= 0⇔ vr pᵀR
(π

2

)
h(θ) = 0

which means:

h? = ε
p
‖p‖

with ε = ±1. Now, for such a value of h, the Hessian is:

g′′(vr) 0

0 −ε ‖p‖


But (vr, θ) is assumed to minimize the Hamiltonian so this matrix has to be non-negative. The

coefficient g′′(vr) is positive because the LSPOV power function is convex. Thus ε = −1 and

the optimal heading is still the same as in the time-optimal case:

h = − p
‖p‖
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5.4. THE BIDIMENSIONAL CASE

Then, we use the second NCO:

∂H
∂vr

= 0⇔ pᵀ
(
− p
‖p‖

)
+ g′(vr) = 0⇔ g′(vr) = ‖p‖ (5.8)

Here, the LSPOV is very useful since the function g is convex, thus g′ is increasing. Moreover

due to the definition of g, the minimum tangent slope is to be found at vr = 0 and has value

g′(0). For the considered models, this value is zero g′(0) = 0, and the limit in +∞ is +∞,

limvr→+∞ g′(vr) = +∞. The monotonicity and these boundary conditions makes Equation 5.8

have a unique solution. So, the optimal SRF is:

v?r = (g′)−1(‖p‖) (5.9)

If there is a maximum SRF umax, and for some p(t) we have (g′)−1(‖p(t)‖) > umax, then since:

∂H
∂vr

= g′(vr)− ‖p‖

we have ∀vr ≤ umax, ∂H
∂vr
≤ 0. So, vr = umax still minimizes the Hamiltonian. So, in the case of

a bounded SRF, one needs to modify Eq. 5.9 in the following manner:

v?r = min
{
(g′)−1(‖p‖), umax

}
(5.10)

Transversality condition As in the 1D case, when the final time T is not fixed, which means

we look for the absolute minimum of energy for the navigation problem, there is a terminal

condition on the reduced Hamiltonian Hr(t, x, p) = H(t, x, p, v?r , h?):

Hr(T, x(T), p(T)) = 0

Which gives:

g(v?r (T))− g′(v?r (T))
(
v?r (T) + h?(T)ᵀv f (T, x f )

)
= 0
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When v f (T, x f ) = 0, it reduces to g(v?r (T))− g′(v?r (T))v?r = 0, which is the equation of the no-

flow maximum range SRF. When v f (T, x f ) 6= 0, we could have expected that, in a similar way

than in the 1D case, the previous equation would be the equation for the flow-optimal SRF, but

it is not the case in general.

As always in the PMP, this transversality condition is an additional necessary condition for

optimality, and in this case, necessary condition to have an absolute minimum in energy. So, if

one discards the condition, one is only left with more extremals but is still guaranteed to find

the solution of the problem within the set of extremals.

5.4.2 Optimal SRF expressions

Powers of the SRF For power expenses of the form g(vr) = k vn
r , n ≥ 2, Eq. 5.9 gives an

analytical link between the costate and the optimal SRF:

v?r =

(‖p‖
k n

) 1
n−1

Remark

This formula can be found in Doshi et al. (2023).

Two-terms drag polar In the two-terms drag polar case, Eq. 5.9 gives an analytical link be-

tween the costate and the optimal SRF

Property 5.3

For the standard two-terms drag polar power profile 5.2, the optimal SRF is:

v?r =
1√
3

√
‖p‖+

√
‖p‖2 + 3

184



5.4. THE BIDIMENSIONAL CASE

Proof. We have:

g′(vr) =
1
2

(
3 v2

r −
1
v2

r

)
So g′(vr) = ‖p‖ can be rewritten to:

v4
r −

2 ‖p‖
3

v2
r −

1
3
= 0

which is a degree two polynomial in v2
r . There is thus two solutions for v2

r but one of the two is

negative and cannot be a square. We conclude by taking the root of this solution for v?r , as SRFs

are positive quantities.

Remark

It is the same formula as (Dobrokhodov et al., 2020, Eq. 21).

5.4.3 Case studies

We now study particular cases for energy-time trade-offs. The focus is on determining when

the SRF variation entails a clear benefit in the time-energy performance. Furthermore, the focus

is mostly on airborne vehicles, with two cases out of three using the standard two-terms drag

polar power function.

Linear flow field, quadratic power

We begin case studies with the particular example of the standard linear flow field navigation

problem, with a quadratic power expense. This case is interesting because it is one of the very

rare cases for which an analytical formula can be found for the varying-SRF energy-time Pareto
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front. For this case, the navigation settings are:

x0 = (0, 0)

x f = (1, 0)

v f (x) =

0 g

0 0

 x

with power:

g(‖u‖) = k ‖u‖2

The derivation of the following formulae is kept in Appendix C. The energy-time Pareto front

for SRF-varying trajectories is:

Evary =
k

t f

(
1 +

g2 t2
f

12

)
Unfortunately, the energy-time curve for fixed-SRF trajectories does not have an analytical ex-

pression (to the best of the author’s knowledge). Thus, we solve numerically

vr

g

(
sin θ0

cos2 θ0
+ arctanh(sin θ0)

)
= 1 (5.11)

for the initial angle θ0 and get the resulting optimal travel time:

t f =
2 tan θ0

g
(5.12)

The corresponding energy expense is Efixed = k t f v2
r .

For different values of the flow field gradient g, we plot the energy-time graphs in Fig-

ure 5.11. We take k = 1 as it is a multiplicative scaler for both Evary and Efixed.

First of all, in all situations and for fixed SRF strategies as well as varying SRF strategies,

allowing more travel time reduces the total energy expense. Varying SRF trajectories achieve

better time-energy pairs, but the difference with constant SRF time-energy pairs is not signif-
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icant. The relative difference is only significant in very high flow field gradient (g = 5, red

curves) and large travel times. For travel times close to 1 and a flow field gradient close to 1 as

well, the performances are very close to one another.

The observed behavior was expected. Indeed, Fig. 5.6 shows that the difference in energy

savings in ‘tailwind’ conditions is weak between constant and varying SRF. Furthermore, this

simple analytical flow field does not show a complex spatial structure, neither does it show

time variations, limiting the available features for the varying SRF approach to save energy.

Gyre flow, airborne-like power function

We now move on to a more spatially complex flow field with the gyre flow. We go gradually

in the flow field features by choosing a steady flow field in this second case. We use the same

navigation settings as in Sec. 9. In a similar way as for time-optimal extremals, we can plug

the necessary conditions for optimality into the dynamics to get an augmented system on y :=

(x p)ᵀ: 

ẏ(t) =


−v?r (‖p(t)‖) p(t)

‖p(t)‖ + v f (t, x(t))

−∂v f

∂x

∣∣∣∣ᵀ
t, x(t)

p(t)



y(0) =

x0

p0


(5.13)

Because of the term v?r (‖p(t)‖), this system is not invariant in the costate norm anymore. Thus,

to be exhaustive, the sampling of extremals cannot be reduced to p0 ∈ S1 anymore. For this

example, we empirically adjust a lattice of initial costate vectors of the form:

p(i,j)
0 = ri

cos θj

sin θj


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5.4. THE BIDIMENSIONAL CASE

with (ri)i∈{0,1,...,n−1} and (θj)j∈{0,1,...,m−1} being uniform samplings of given intervals. In the

numerical application, r0 = 0.1, rn−1 = 10, n = 20, θ0 = 0.6, θm−1 = 1.7, m = 400.

We shoot extremals over the time interval [0, 2] with nt = 150 time discretization points. We

verify empirically that the trajectories shot end up around the target, and that the resolution in

the extremal front is fine enough around the target. We select candidate solutions as trajectories

close enough to the target, i.e. trajectories for which there exist some t f for which
∥∥x(t f )− x f

∥∥ <

r f , with r f = 0.1. We also use the time-optimal algorithm with different fixed SRF values to get

the energy-time curve for fixed SRF trajectories. The energy-time curves and the SRF laws are

depicted in Fig. 5.12, and the resulting trajectories in Fig. 5.13.

Overall, the gyre flow field enables savings as regards time and energy for constant SRF

trajectories as well as varying SRF trajectories. However, no improvement is found by varying

the SRF. On the energy-time diagram, constant SRF and varying SRF end up describing two

curves that are not distinguishable from one another. Moreover, varying SRF laws do not vary

much in SRF, and are thus close to the value of the constant SRF achieving the same time-energy

performance. Lastly, trajectories are very similar in the state space.

These observations were expected, because optimal trajectories harness the ‘tailwind’

regime where the flow field pushes the vehicle forward at all times. As shown in Fig. 5.6, the

benefit from using the optimal SRF in the tailwind regime for a two-terms drag polar is very

weak and explains why varying SRF trajectories do not gain performance on the energy-time

graph.

This canonical trajectory planning example shows that vehicles with two-terms drag polar

power expense do not show easily a benefit from adopting a varying SRF, especially if the case

features a tailwind route to the target.

Atlantic crossing by an air drone

We complete the case study with a last example, where we consider a realistic, time-varying

flow field. We use the same problem settings as the Dakar to Natal crossing from Sec. 4.3.3, but
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Figure 5.13: Fixed and varying SRF trajectories in the physical space. Varying SRF performances are noted in blue,
constant SRF performances in red.
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Energy (no dim.)
Constant SRF Varying SRF Difference

Group A 1.64 1.51 -8.0%

Group B 2.01 1.77 -12%

Group C 2.63 2.34 -11%

Table 5.2: Comparison of energy expense for the pairs A1/A2, B1/B2 and C1/C2 that have very close travel dura-
tion. The difference is relative to the constant SRF value.

without obstacles. The goal here is to use energy-optimal extremals to build the Pareto front

of time-energy pairs for varying SRF trajectories, and to compare it to fixed SRF trajectories, to

see if a benefit can be gained on real-world airborne examples when applying a varying SRF

law.

For this case, we have r0 = 3, rn−1 = 7, n = 30, θ0 = −2.56, θm−1 = −2.26, m = 151. As

presented in Sec. 4.3.3, the problem is rescaled for good numerical conditioning. In particular,

speeds are divided by 16.46 m/s. In the rescaled space, we use the standard two-terms drag

polar power function that has a maximum range airspeed of 1, so it means implicitly that the

airborne vehicle in the real world has a maximum range airspeed of 16.46 m/s. The energy-

time curves and the SRF laws are depicted in Fig. 5.14, and the resulting trajectories in Fig. 5.15.

In this case, we are able to see a benefit from using a varying SRF law compared to a constant

SRF law. As for the previous example, we isolate three pairs of varying-SRF/constant-SRF

trajectories and study their differences. Table 5.2 compares the energy expense for these pairs

(that have very similar travel duration). The overall benefit from a varying SRF law is of the

order of a 10% reduction for this case. It is bigger at high SRF than low SRF. On the SRF

graph (Fig. 5.14), we see that the main variation in SRF occurs in regions of high flow field. The

strategy is always to reduce the speed when passing through high tailwinds and augmenting

it back when the wind weakens.

There is also a remarkable feature: the heading law and the speed law are almost decoupled.

For instance, the pair showing the biggest difference in their ground paths is A1/A2. For this
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Figure 5.15: Fixed and varying SRF trajectories on the gyre case. Fixed SRF trajectories are depicted in red and
varying SRF in blue. The underlying wind field is the time-varying wind field frozen at its first data frame, i.e.
2021-09-29 06:00Z
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pair, the maximum distance between ground paths is approximately of 4% their total length.

But in comparison, the airspeed diagram shows variations up to approximately 20%, so the

difference is much more significant in airspeed than on the ground path. This is even more

true for B1/B2 and C1/C2 as their ground paths are closer and they still show high variations

in the airspeed.

The previous remark tends to hint at a simplified optimization procedure: compute

constant-SRF (time-optimal) trajectories for various SRF values and build the corresponding

time-energy diagram; let an operator select the satisfying time-energy trade-off; draw the corre-

sponding path and optimize for airspeed along this path. This approach is computationally less

intensive than looking for energy-optimal trajectories and can lead to a suboptimal choice that

can be very close to the true optimum, because of the heading/SRF decoupling phenomenon.

5.5 Idea of algorithm

We finish this chapter by giving hints of how to build an algorithm based on extremals, in

a similar fashion as in Chapter 3, that can find the energy-time Pareto front of a navigation

problem.

Initial sampling As noticed in Sec. 5.4.3, the extremals now depend on the norm of the initial

costate. So, the initial sampling of costate vectors must be bidimensional. Because of the differ-

ent roles played by the heading and the SRF, we propose to do this sampling on an annulus-like

grid of type:

p(i,j)
0 = ri

cos θj

sin θj


with (ri)i∈{0,1,...,n−1} being a uniform sampling of some interval [rmin, rmax] bounding the costate

norm and (θj)j∈{0,1,...,m−1} is a uniform sampling of [0, 2π]. Such a sampling is depicted is

Fig. 5.16.
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Figure 5.16: Example of costate space sampling to initialize extremals. Here, four different values for the costate
norm are set, corresponding to the four crowns, and a discretization for angles is also chosen. Neighboring relations
are set on a the lattice of triangles depicted here.
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Figure 5.17: ‘Embedded triangles’ resampling procedure. (a) At some time, trajectories B and C are too far from one
another. (b) Resampling is performed, adding middle points to all edges, and connecting edges consequently.

Resampling Once a discretization is chosen, trajectories can be integrated forward in time.

As for the time-optimal case, neighboring trajectory will diverge at some point, and the in-

formation about the optimal cost between them will be inaccurate if not lost. So once again,

resampling of extremals will be useful to keep the neighboring distances under a given thresh-

old. Because the collection of extremals changed its geometry from a loop to an annulus when

moving to energy-optimality, the resampling scheme has to be thought in order to preserve

the structure of the extremal lattice. We propose to resample using an ‘embedded triangles’

scheme, as depicted in Fig. 5.17. When two extremals get too far from one another, e.g. B and

C in Fig. 5.17, we take the middle point, F and initialize it with mean costate value (as in Al-

gorithm 4) for further integration in time, and connect it to neighbors B and C. But to preserve

a structure of extremals that is auto-similar, we also add the corresponding neighbors E, G,

H and I to form new triangles of relation EFG and FHI. To preserve computation effort, the

new extremals that did not result from the violation of the distance threshold (E, G, H, I) can
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be build from interpolating their parent neighbors. For instance, the state and costate values

for E can be build from the mean of A and B values instead of starting a costly integration of

E. But this shall stop when the distance threshold between A and B is violated, and a proper

integration of extremal E must then start.

Conclusion of the chapter

In this chapter, the consequences of adding the vehicle’s Speed Relative to the Flow as a vari-

able on the total energy expense were studied. In the large-scale abstraction model, airborne

and underwater vehicles show a similar type of relation between spent power and SRF: the

power increases with the SRF and is convex. Still, airborne vehicles have a cost for idling while

underwater vehicles don’t. Without flow field, varying the SRF can only increase the total en-

ergy expense on a given travel. However, in the presence of a flow field, varying the SRF can

be very beneficial, as demonstrated on a one-dimensional gust example, where higher SRF val-

ues were used to quickly reach the gust and lower values used when inside the gust, the latter

pushing in the direction of motion, with overall reduction in total travel time compared to a

fixed SRF approach. In a realistic airborne setting, it was found that savings of the order of ten

percents could be expected when using a varying SRF law compared to a fixed SRF law. While

for almost every example considered, the energy-time Pareto front was approximated numer-

ically, in the case of a linear flow field and a quadratic power law, an analytical expression for

the energy-time Pareto front was found, providing easy insight for a parametric study of its

variations. Finally, hints are left to build a comprehensive extremal sampling algorithm for

energy-time trajectory optimization in a similar fashion as the time-optimal algorithms from

Chapter 3.

This chapter broadened the trajectory optimization problem to the case when several costs

are to be minimized: namely, the energy expense and the travel time. But there may also be

other costs which shall be minimized in a trajectory planning problem. In particular, if there is
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a diffuse hazard in the environment that one wants to avoid, then it is of particular interest to

find trade-off trajectories between travel time and exposure to hazard. This is under study in

the following chapter.

Chapter’s main questions – Answers

• Is it beneficial for the vehicle to make its own speed vary throughout travel in terms
of total energy expense?

When there is no flow, since the power function is convex, no, it increases the energy
expense. In the presence of a flow field, depending on the flow field magnitude, energy can be
saved by increasing speed to reach favorable flow field zones and reducing speed when in the
zone.

• If so, what is the amount of energy that can be saved?

When the flow is weak, only a few percents of energy can be saved by varying the vehicle’s
speed. In realistic airborne settings, orders of tenths of percent reduction in the total energy
expense can be reached when adapting the speed.

• How to compute numerically such energy-saving trajectories?

All the methods applied to find time-optimal trajectories can generalize to the case of
energy minimizing with varying speed. In particular, there are still differential equations to
characterize the trajectories minimizing energy for fixed arrival time (extremals), that enables
the use of shooting to find energy minimizing trajectories.

• How different are energy minimizing trajectories from time minimizing ones?

In realistic settings, the shape of energy minimizing trajectories does not change much
from time minimizing ones. However, the vehicle’s speed can show high deviations from its
averaged value to minimize the energy expense.
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Chapter 6

Hazard-time optimal navigation

problem

Abstract

In this chapter, Zermelo’s navigation problem in unsteady and strong flow fields
is extended to the presence of time-varying hazard in the environment. A level-set
based method is proposed to compute hazard-time-optimal trajectories achieving
trade-offs between travel time and exposure to hazard. The method is used on
two case studies: the first one is the crossing of the Atlantic Ocean by an air drone
avoiding stormy conditions and the second one is a collaboration mission between
an air drone and a sea drone where each of the vehicle has to avoid hazard in the
environment while completing its navigation mission. The case studies demon-
strate that significant reduction in the exposure to hazard can be achieved when
diverting from time-optimal trajectories to hazard-time-optimal trajectories.
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Résumé en français

Dans ce chapitre, le problème de navigation de Zermelo dans un écoulement fort et insta-
tionnaire est adapté à la présence d’un danger instationnaire diffus dans l’environnement.
Une méthode basée sur les ensembles de niveau est proposée pour calculer des trajectoires
réalisant un compris entre temps de trajet et exposition au danger. La méthode est utilisée
sur deux cas d’application: le premier étudie la traversée de l’Atlantique par un drone
aérien en évitant les conditions orageuses et le second présente une mission collaborative
entre un drone aérien et un drone sous-marin où chacun doit éviter une forme de dan-
ger tout en atteignant son but. Ces études de cas montrent qu’une réduction significative
de l’exposition au danger est possible avec un temps de trajet modérément plus élevé en
suivant les trajectoires danger-temps optimales à la place des trajectoires temps-optimales.
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In the introduction, we briefly depicted the Atlantic crossing by Jean Mermoz on May 12th.

One important challenge that the crew faced was the crossing of the ITCZ, where large thunder-

storms form, creating very unfavorable conditions for flight. The previous chapters presented

methods to optimize routes for vehicles in flow fields, providing a way to find quickest or min-

imum energy routes, while avoiding forbidden zones. One may thus include thunderstorm

areas as obstacles in the navigation problem. But looking at the data (see e.g. Fig. 6.2), these

areas are very large, and the risk within, diffuse. Thus, the rigid-obstacle approach would be

overconservative for such a problem. Instead, one can model thunderstorms as a space-time

hazard field with high values where the thunderstorm is active and lower values else. This

way, an accumulated exposure to hazard can be computed along trajectories, so that one can
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ponder trajectories on their travel duration and their total exposure to hazard, to decide what

route is the best. In this chapter, we thus study hazard-time optimal trajectories, i.e. trajec-

tories achieving a trade-off between exposure to a space-time hazard field and travel time to

destination.

Chapter’s main questions

• How can we compute trajectories achieving trade-offs between travel time and ex-
posure to hazard?

• Is it possible to give guarantees that a trajectory is indeed the best possible trade-off?

• How much exposure to hazard can be avoided when adapting paths on real exam-
ples?

• How do trajectories change (shape, travel time) when we allow for longer travel time
to avoid hazard?

6.1 Background

6.1.1 General background

Hazard-time optimal path planning has been addressed in the past, both for UAVs and AUVs,

with different sources of hazard.

In Miller et al. (2011), UAV hazard-time-optimal path planning is solved using extremals

(solving a Boundary Value Problem (BVP)) in the context of a UAV flying over regions of threat

either in 2D or in 3D. However, no wind field is considered in this approach. Weather hazard

for aircraft is tackled in Zhang et al. (2014), where the authors implement a path planning prin-

ciple based on D* which accounts for the hazard of thunderstorms by computing an empirical

risk based on weather ensemble predictions1. Paths achieving a trade-off between travel time

and exposure to hazard are computed, and the authors demonstrate the possibility to reduce

exposure to hazard when allowing for longer travel times. Similarly, Rudnick-Cohen et al.

1Weather ensemble forecast will be addressed specifically in Chapter 7.
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(2016) use graph-based-like methods to minimize travel time and crash risk for UAVs. Still,

the flow field advection is not incorporated in the previous approaches. Pereira et al. (2013)

combine ocean current advection and hazard avoidance in the problem of routing AUVs in

the ocean while avoiding maritime traffic. The authors formulate the problem as an Markov

Decision Process (MDP) and solve it using policy iteration to provide risk-minimizing paths in

expectation. This work is a little out of scope of this chapter because it relies on a stochastic

model of the vehicle, which will only be addressed in Chapter 7.

6.1.2 Level-set methods for path planning

The work conducted in this chapter was the result of a collaboration with the MIT-MSEAS

research group (the author took part in a 3-months visit at MIT). MIT-MSEAS is specialized in

level-set methods for routing underwater vehicles in the ocean, as testify the numerous level-

set method references given in the literature review that belong to this group. Thus, the work

on hazard-time optimal trajectory planning presented in this chapter is not based on extremals,

but based on the numerical resolution of the PDE governing the level-set function describing

the vehicle’s reachable set (Lolla et al. (2014), Bhabra et al. (2020)).

6.2 Methodology

In the ‘Front propagation methods’ section from the literature review, we already explained

the principle of defining a function φ(t, x) such that φ(t, x) < 0 if x is reachable in time t′ < t,

φ(t, x) = 0 if x is reachable in time exactly t and φ(t, x) > 0 if x is not reachable in time less than

t, and we gave the PDE satisfied by this function (see Lolla et al. (2014)). We also recalled that,

because reachable fronts can feature shocks, i.e. non-differentiabilities, the correct framework

for solutions of this type of PDE is the framework of viscosity solutions, which satisfy the PDE

in a weak sense and allow non-differentiabilities.

In this chapter, we extend the level-set function to an augmented state space composed
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of the physical space variable x and the accumulated hazard variable η. We will do our de-

velopment keeping a 2D planar model for the physical space, but it should be noted that the

development adapts straighforwardly to 3D physical space. The only main difference is that

PDE based methods scale badly with dimension, and using a 3D physical space can lengthen

computation times significantly. The work presented in what follows is adapted from Schnit-

zler et al. (2024).

6.2.1 Problem statement

The problem at stake is that of computing the paths of vehicles that minimize both travel time

in a dynamic flow environment v f (t, x) and accumulated exposure to a dynamic hazard field2

h(t, x). Indeed we want to predict the reachable sets in the spatial and cumulative hazard

dimensions, and all Pareto-optimal paths for the corresponding two costs, travel time and cu-

mulative hazards.

The space-time instantaneous hazard field h(t, x) is a positive field representing a hazard for

the operation of the vehicle that is diffuse in the sense that what matters is the accumulation

of exposure to hazard more than the instantaneous value itself. This models phenomenons

that can deteriorate the vehicle with some probability at all time instants, with independence

between the instants. The overall expected safety state for the vehicle at the end of the time

window is thus really a matter of the integral of all risk taken. Hence, the modelling of hazard

through the h field.

Examples of hazard fields h can be:

• a function of the precipitation (rain) field p(t, x), i.e. h = h(t, x, p);

• a function of hazardous ocean currents or wind fields v f (t, x), i.e. h = h(t, x, v f );

• a function of variables such as expected vessel traffic density field ρv(t, x), i.e. h =

2Note the notations are different from Schnitzler et al. (2024) to match the conventions of this thesis. For instance,
in this thesis, the time variable always appears first in space-time functions.
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h(t, x, ρv) (can be of interest for underwater vehicles but also for airborne vehicles fly-

ing at low altitude such as the Mermoz drone);

• . . .

In the (x, η) space, the vehicle evolution is now composed of the physical evolution and the

accumulated hazard evolution:


dx
dt

= u(t) + v f (t, x)

dη

dt
= h(t, x)

(6.1)

The Hazard-time-optimal Navigation Problem (HNP) at stake can be summarized as the

following optimal control problem:

(HNP)



min
u(·)

[t f , η(t f )]

Eqs. 6.1

x(t0) = x0, x(t f ) = x f

η(t0) = 0

(6.2)

6.2.2 Resolution

To solve the HNP, we compute the augmented reachable set for the vehicle, i.e., the set of

all values (x, η) that are reachable at some time t. We represent the reachable set by a scalar

function φ(t, x, η) whose subzero level set is the reachable set at time t, in a similar manner as

for time-optimality but this time including the hazard dimension with the η variable. It can

be proven (see the derivation in Bhabra (2021)) that the level set function φ is governed by the

following exact Hamilton-Jacobi-Bellman PDE:

∂φ

∂t
+ umax

∥∥∥∥∂φ

∂x

∥∥∥∥+ ∂φ

∂x
v f (t, x) + h(t, x)

∂φ

∂η
= 0 (6.3)

For each of the applications presented in the following section, we scale variables and
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inputs (domain boundaries, v f (t, x), h(t, x)) such that the governing equations are non-

dimensional and the problem is numerically well conditioned, e.g., the coordinate variables

x, y, η are of an order of magnitude of 1. To compute the values of φ(t, x, η), we initialize φ to

φ0, the signed distance to a ball centered at the origin (x0, 0) with radius ρinit:

φ0(x, η) :=

∥∥∥∥∥∥∥
x

η

−
x0

0


∥∥∥∥∥∥∥− ρinit

In theory, the perfect initialization would be obtained for ρinit = 0, but in practice, this would

lead to no grid point being part of the subzero level set, so the numerical scheme could not

compute the evolution of the latter. We thus set ρinit to be twice the grid spacing.

To compute the evolution of the subzero level set, we use a second-order Essentially Non-

Oscillatory (ENO) scheme in space and a second-order scheme in time (described for instance

in Doshi et al. (2023)).

Once φ(t, x, η) is computed, we obtain the Pareto-optimal ways to reach any destination

point x f in physical space and cumulative hazard level η. If x f is reachable, we have the mini-

mum duration τ? to reach x f as:

τ? := min
{

τ | ∃η ∈ [ηmin, ηmax], φ(τ, x f , η) = 0
}

.

It is the first time the zero level set of φ reaches the segment
{
(x f , η) | η ∈ [ηmin, ηmax]

}
in the

augmented state space. Then, for larger durations τ ≥ τ?, we can extract the minimum possible

amount of hazard to reach the destination point in the exact given duration, i.e. :

η?(τ) = min
{

η | φ(τ, x f , η) = 0
}

.

The collection of points:

{(τ, η?(τ)) | τ ≥ τ?}
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τ

η

Feasible region

τ1

η?(τ1)

η?(τ2)

τ2

Figure 6.1: Hazard-time solution domain: feasible region and Pareto front. The horizontal axis is the total travel
time and the vertical axis is the total accumulated hazard. The shaded region corresponds to feasible solutions
(τ, η). The thicker lower curve contains the pairs (τ, η?(τ)) corresponding to hazard-only minimizing trajectories,
for each time τ. The red portion of the curve encompasses the hazard-time optimal or so-called Pareto-optimal
solutions.

is then the hazard-minimal curve to reach x f . A pair of travel time value and total accumulated

hazard value (τ, η) is said to be Pareto-dominated if there exist a trajectory reaching the target

in time τ′ and hazard η′, with τ′ < τ or η′ < η. If a pair is not Pareto-dominated by any other

pair, it is Pareto-optimal. These kind of pairs are particularly interesting in multi-objective

optimization as they provide the best possible trade-offs between the objective values. Pareto-

optimal pairs (τ, η?(τ)) can be deduced from the hazard-minimal curve by removing Pareto-

dominated points. An example of such a curve is given in Fig. 6.1. In this figure, the red dot

(τ1, η?(τ1)) corresponds to a Pareto-optimal hazard-time pair while the purple dot (τ2, η?(τ2))

is Pareto-dominated, because there are trajectories arriving earlier with the same amount of

accumulated hazard.

When a designated pair (τ, η?(τ)) is chosen, one may then ask how to compute a trajectory

that links the starting point in the augmented state space (x0, 0) to the destination point with

this performance. To solve for this, we perform backtracking of trajectories using the gradient of
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φ. Using Eqs. 6.1, the backtracking ODEs in the augmented space are:


dx
dt

= −vmax h?(t, x, η)− v f (t, x)

dη

dt
= −h(t, x)

(6.4)

where h?(t, x, η) :=

∥∥∥∥∥∂φ

∂x

∣∣∣∣
t, x, η

∥∥∥∥∥
−1

∂φ

∂x

∣∣∣∣
t, x, η

. These ODEs are initialized at time τ at position

(x f , η?(τ)). After performing the integration, one obtains a trajectory (x(·), η(·)) from (x0, 0) at

t = 0 to (x f , η?(τ)) at t = τ.

6.3 Case studies

We propose a first application case where we consider airborne drones and hazard-time opti-

mal long-distance missions with rain avoidance. It focuses on the conditions that the Mermoz

drone would face over the Atlantic with storms to avoid.

In a second application case, we study hazard-time optimal collaborative mission between

air and sea drones. An air drone must transport an ocean vehicle optimally to a target location

exploiting winds and avoiding storms, and the ocean vehicle must subsequently complete its

mission leveraging currents and avoiding vessel traffic hazards. It is motivated by missions off

the US East Coast, around the New England Seamounts region (MSEAS NESMA Ex., 2024).

6.3.1 Rain-avoidance–time optimal planning for air drones

We consider the crossing of the Atlantic between Dakar, Senegal, and Natal, Brazil, by a UAV

with a cruising speed of 23 m s−1, 100 m above sea level. In this application, we predict optimal

trajectories for such an airborne drone providing all possible trade-offs between travel time by

exploiting instantaneous winds and hazards by limiting thunderstorm exposure. Most pre-

cisely for the latter, we select the rain field as a proxy for thunderstorms. Since thunderstorms

commonly imply heavy rain, this choice is conservative in avoiding rain, possibly avoiding
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zones with only some rain but no thunderstorms. Another reason why we work with rain

data rather than thunderstorm data is because the former is available in practically all weather

products. For instance, rain is available in both ERA5 reanalysis data and ECMWF forecasts,

two open-access data sources. This is not the case for parameters such as the number of light-

ning per surface unit area or the cloud coverage, which may be found in reanalyses but not

necessarily in forecasts.

We thus take h(t, x, p(t, x)) := a p(t, x), where p(t, x) is the ECMWF 3h-accumulated rain

forecast and a is a dimensional scaling parameter that relates the hazards to the drone as a

function of the rain. Of course, different parameterization for instantaneous hazards can be

selected such as higher-order polynomials or other functions that increase hazards nonlinearly

as the rain increases and are representatives of the risks to the air drone. For our specific ap-

plication, we select a linear function of the 3h-accumulated rain and the ECMWF rain forecast

issued on 2024-04-25 00:00Z. For the environmental flows v f (t, x), we employ the correspond-

ing ECMWF wind forecast. Snapshots of these wind and rain fields are given in Fig. 6.2, clearly

indicating the prevailing northeasterly trade winds and strong rain storms around the equator.

The air drone takes off on 2024-04-27, at 15:00Z. It flies to the destination in the fastest

possible time leveraging winds while avoiding high accumulated exposure to rain. Example

key questions include: Will rain avoidance lead to significantly different paths from the fastest

ones, both in travel time and shape of the path? What are all of the hazard-time optimal paths so

that the drone operators can select the paths most appropriate to their level of risk and desired

arrival time? What is the cumulative hazard that corresponds to the fastest time path? Is there

an arrival time that avoids the forecast rain? Our hazard-time optimal analysis provides clear

answers to all such questions.

Solving Eq. 6.3, we obtain the hazard-time reachable set and reachability front. We can then

compute all rain-travel-time Pareto-optimal paths solving the backtracking Eqs. 6.4. They min-

imize the accumulated rain and travel time and include the overall minimum travel time path,

i.e., the path that minimizes travel time by optimally exploiting the wind field while ignoring
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(a) t = 0.1 (b) t = 0.6

(c) t = 0.7 (d) t = 0.8

(e) t = 0.9 (f) t = 1

Figure 6.3: Hazard-time optimal air drone crossing the Atlantic Ocean: Reachable set evolution in the augmented
state space (x, y, η). The hazard dimension is flipped (the vertical axis is indeed a−η axis) to more directly visualize
the hazard-minimizing part of the reachable set; in these graphs, the minimum hazards are thus at the top of the 3D
reachable set. The start location is depicted as a green dot with a green line in the direction of increasing hazards.
Similarly, the final location is depicted as a red diamond with a red line in the same direction. All times t, space
(x, y), and cumulative hazard η are non-dimensional.

212



6.3. CASE STUDIES

rain. In Fig. 6.3, we display the evolution of the reachability front, which is the zero-level set

of the value function φ in the cumulative hazard η and physical space (x, y). In Fig. 6.3a, the

reachable set started propagating from its initial position. There is no rain around the starting

point so the shape of the reachable set is governed by time-optimal trajectories in the winds.

The width of the reachable set on this frame in the hazard direction remains twice ρinit. At

t = 0.6 (Fig. 6.3b), the reachable set has reached the rain zone and hazards started to accumu-

late: the front there changed appearance from flat to rough, reflecting the rain patterns. As

stronger hazardous rain is encountered, the reachable set goes down (Fig. 6.3c). In Figs. 6.3d–

e, the part of the front that is the closest to the red line corresponds to trajectories close to the

time-optimal ones. This part of the front accumulates much hazard and is thus much lower

than the original flat portion of the front. Finally, in Fig. 6.3f, we observe how slower but less

hazardous trajectories are found within portions of the front intersecting the destination red

line with lower accumulated hazard.

In Fig. 6.4, we show three snapshots of hazard-time optimal paths for four optimal travel

times and cumulative hazards, the first path (blue) being the strictly time-optimal path (ig-

noring rain). We find that, while the pure time-optimal path rushes through the rain, other

trajectories computed for longer travel time but lower exposure to hazard manage to avoid

heavy rains. We also observe that winds are quite steady, but the rain field evolves quickly.

The time-optimal trajectory in blue crosses a zone of high precipitation (Fig. 6.4b). The orange

trajectory encounters less rain by taking a route north of the great circle between Dakar and

Natal. The green and red trajectories deviate even more from the great circle path: while the

rain exposure is not significant enough, they both first follow the strictly time-optimal path,

but then leave it (Fig. 6.4a) and meander along an evolving, quiet zone (Fig. 6.4b) with less rain

before reaching the final destination (Fig. 6.4c).

In Fig. 6.5, we show Pareto-optimal travel times and cumulative hazards. The values are

given in Table 6.1. We find that a moderate increase in travel time can result in a significant

decrease in exposure to hazards. For example, simply changing from the strictly time-optimal,
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(a) (b)

(c)

Figure 6.4: Hazard-time optimal air drone crossing the Atlantic: (a, b, c) Snapshots at three different times of four
hazard-time Pareto-optimal trajectories overlaid on the corresponding rain and wind fields. The paths are colored
according to their arrival time and cumulative rain hazard level, as shown in Fig. 6.5.
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Figure 6.5: Hazard-time optimal air drone crossing the Atlantic: Minimum total cumulative rain hazard for various
travel times for the Dakar-Natal crossing. Solid curves are Pareto optimal values. The four colored dots on the
Pareto-front correspond to paths shown with their color in Fig. 6.4.

blue trajectory to the orange one gives a reduction in rain hazards of 54%, while increasing

the travel time by only 5.9%. The table shows the operational benefit of our joint hazard-time

trajectory optimization by providing the operator with a variety of optimal paths with different

performance. The operator or the drone itself can select its preferred optimal path depending

on the criticality of being on time compared to being exposed to hazards.

In Fig. 6.5, we also show non-Pareto-optimal portions on the hazard-time graph (dashed

line). This confirms that increasing the travel time is not a sufficient condition for lowering

exposure to rain. For instance, if heavy rain is barring the road, any trajectory passing through

to ensure a given travel time will inevitably have a high accumulated hazard when reaching

the destination.

6.3.2 Hazard-time optimal air-sea collaboration

This second mission consists of two parts. First, a transport air drone departs from Boston, MA

on 2024-02-17, 10:00 UTC, and drops a sea drone in the region of the New England seamounts
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Travel duration τ Total hazard η?(τ)

0.944 - 0.160 -

1.000 +5.9% 0.0743 -54%

1.100 +17% 0.0423 -74%

1.178 +25% 0.0310 -81%

Table 6.1: Hazard-time optimal air drone crossing the Atlantic: Travel times and cumulative rain hazards for the
four backtracked trajectories of the Dakar-Natal air mission. Both travel time and hazard are non-dimensionalized
variables which have no units.

Figure 6.6: A map showing the position of the New England seamounts. (Source: NOAA)
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(see Fig. 6.6) at point [63◦W, 38.5◦N] in fastest time, taking advantage of favorable winds and

avoiding unfavorable ones. However, it faces forecast stormy conditions with high wind bursts

and hazardous rain that require a trade-off between exposure to hazards and travel time. Sec-

ond, once the sea drone has been dropped, its mission is to proceed to the north of the Atlantis

II seamount in fastest time in accord with dynamic ocean currents. However, it needs to limit

its exposure to hazards from expected vessel traffic, hence a second ocean hazard-time optimal

reachability analysis is completed.

For this collaborative air-sea mission, example key questions include: Can the transport air

drone reach its final location soon enough for the sea drone while avoiding regions with too

strong storms? What are all the rain-hazard, vessel-traffic-hazard, and time optimal choices

for the air and sea drone operators? What are the optimal sea drone paths that collect the

desired ocean data in fastest time while minimizing vessel-traffic hazards? Our collaborative

hazard-time optimal analysis can answer all such questions.

Rain-hazard and time optimal transport air drone

For our application, for the transport by the air drone, we employ data from the ERA5 atmo-

spheric reanalysis from the European Center for Medium-range Weather Forecasts (ECMWF),

accessible through the Copernicus climate Data Store (CDS). For the environmental flows

v f (t, x), we extract the hourly 100 m wind field, and for the rain hazard, the 1h-accumulated

rain field p(t, x). Once again, we define the instantaneous hazard from the rain field as

h(t, x, p(t, x)) := a p(t, x) where the dimensional scaling parameter a ensures that the result-

ing h represents the instantaneous hazard due to rain. We depict the wind and rain conditions

at 2024-02-17 18:00 UTC in Fig. 6.7. There is a storm with counter clock-wise winds passing

through the region, creating favorable conditions for trajectories that bend southward. The

maximum of precipitation passes through the shortest-distance great circle between the start

and destination locations, also encouraging trajectories to avoid this shortest-distance path to

the destination. The dynamic behavior can also be seen in Fig. 6.8.
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Figure 6.7: Instantaneous wind (100 m) and rain snapshots from the ERA5 reanalysis. The path planning start point
is depicted as a black circle, the endpoint as a black star, and between them the shortest-distance great circle is
drawn.

We again solve Eq. 6.3 to obtain the hazard-time reachability front and the Pareto front,

and then the backtracking Eqs. 6.4 to highlight Pareto-optimal paths to the destination. Four

of these Pareto-optimal trajectories are depicted in Fig. 6.8. The corresponding Pareto front is

shown in Fig. 6.9.

As shown in Figs. 6.8-6.9, the presence of a storm featuring high winds accelerating the

vehicle but also much rain entails a clear variation in the amount of total hazard depending

on the desired travel time. From the monotonic Pareto front (Fig. 6.9), trajectories going the

fastest are the most exposed to the rain. Other trajectories accepting longer travel times can

follow the wake of the storm, thus avoiding most of the rain. What is noticeable is that with an

order of magnitude of 23 m/s for the speed of the air drone, optimal trajectories are bending

significantly south, taking the western side of the storm and differing much from the great

circle joining the start to the destination. For example, the fastest blue trajectory is much longer

than this shortest distance. Nonetheless, it encounters rain in the back of the storm (Fig. 6.8b-

c). Other Pareto-optimal trajectories that don’t take full advantage of the strong winds can

drastically reduce their total exposure to this rain hazard by remaining in the dryer side of

the storm while still arriving only a bit later. For example, the orange and green trajectories
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(a) (b)

(c)

Figure 6.8: Hazard-time optimal air-sea collaboration. Air drone reaching the New England Seamounts in hazard-
time optimal fashion, transporting the sea drone: (a, b, c) Snapshots of four hazard-time Pareto-optimal trajectories,
overlaid on rain and wind fields. The paths are colored according to their arrival time and cumulative rain-hazard
level, as shown in Fig. 6.9.
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Figure 6.9: Hazard-time optimal air-sea collaboration: Minimum total cumulative rain-hazard for various travel
times for the air drone transporting a sea drone to the New England Seamounts. Solid curves are Pareto optimal
values. The four colored dots on the Pareto-front correspond to paths shown with their color in Fig. 6.8.

(Fig. 6.8) reduce the cumulative rain hazard by about 100 to 500 percent while only increasing

travel time by 10 to 20 percent, see Fig. 6.9.

Vessel-traffic-hazard and time optimal sea drone

Once the air drone reaches its destination at approximately 2024-02-18 01:00 UTC, it drops a

sea drone in the vicinity of the New England Seamounts. This sea drone then travels along

the ocean surface at a nominal speed of 3 m/s to location [64◦W, 40.5◦N], north of the Atlantis

II seamount in fastest time to collect data and rendezvous with a research vessel in the area.

During this journey, it faces a trade-off between travel time and exposure to expected hazards

due to interfering vessel traffic.

For the ocean environmental flows v f (t, x), we utilize the ocean current hindcasts from the

MIT-MSEAS primitive-equation ocean model (Haley and Lermusiaux, 2010; Haley et al., 2015;

Lermusiaux et al., 2024). For the surface vessel traffic hazard, we employ the historical traffic

density data from the Global Maritime Traffic Density Service (GMTDS) in terms of hours of
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vessel traffic per square kilometer. We thus define the instantaneous hazard from this expected

vessel traffic density field ρv(t, x) as the linear function h(t, x, ρv(t, x)) := b ρv(t, x) where the di-

mensional scaling parameter b ensures that the resulting h represents the instantaneous hazard

due to vessel traffic. As noted for the rain hazards (see Sec. 6.3.1), different parameterization

for instantaneous vessel hazards can be selected such as higher-order polynomials or other

functions that increase hazards nonlinearly as vessel traffic density increases and are represen-

tatives of the risks to the chosen ocean vehicle. In general, ρv can be data that varies with the

time of the day or a fully dynamic forecast ρv(t, x). In our example, we utilized the historical

time-averaged vessel traffic GMTDS data so ρv is a spatial field steady in time.

We solve Eq. 6.3 to obtain the hazard-time reachability front and all Pareto-optimal solu-

tions. We then solve the backtracking Eqs. 6.4 to highlight Pareto-optimal paths the destina-

tion. Three of these Pareto-optimal trajectories are depicted in Fig. 6.10. The corresponding

traffic-hazard and time Pareto front is shown in Fig. 6.11.

As shown in Fig. 6.10, the sea drone is operating in an area with several historical transit

lanes, visible in yellow and white in the figure background. A fast Pareto-optimal path (shown

in blue) takes advantage of the forecast currents but goes across some high-density and wide-

double vessel traffic lanes hence has a high cumulative hazard, as shown in Fig. 6.11. Two

other Pareto-optimal paths with lower cumulative hazard (shown in red and green) minimize

hazard-time by first crossing the southern transit lane at the area of lowest historical traffic

density at approximately [63◦W, 39.5◦N]. Both of the lower hazard paths then move to the west.

By doing so, the ocean vehicle is only required to cross one additional transit lane (instead of a

wide double-lane to the east), and avoids the large intersection that occurs near [63.5◦W, 40◦N].

Conclusion of the chapter

In this chapter, hazard was introduced in the environment as a diffuse quantity to avoid. It

leaves more freedom to design trajectories avoiding possibly dangerous zones than the ban-
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Figure 6.10: Hazard-time optimal air-sea collaboration: Pareto-optimal trajectories for the sea drone, overlaid on the
non-dimensional traffic density field and MIT-MSEAS forecast ocean current vectors. The three paths are colored
according to their arrival time and cumulative traffic-hazard level, as shown in Fig. 6.11. From Schnitzler et al.
(2024).
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Figure 6.11: Hazard-time optimal air-sea collaboration: Minimum total cumulative traffic-hazard for various travel
times for the sea drone. Solid curves are Pareto optimal values (Pareto front). The three colored dots on the Pareto-
front correspond to paths shown with their color in Fig. 6.10. From Schnitzler et al. (2024).

ning of areas with hard obstacles. It is shown that hazard-time-optimal trajectory planning can

be performed by using already existing tools for collection-time-optimal trajectory planning.

A Partial Differential Equation on a level-set function describing the reachable space for the

vehicle was solved to find all hazard-time optimal trajectories. The problem’s dimension is in-

creased by one when adding the hazard dimension, which is challenging for Hamilton-Jacobi-

like methods solving PDEs. However, the level set method showed satisfying performance for

strategic planning with computation times never exceeding half an hour for each considered

application case. Hazard-avoiding paths were shown to differ much from time-optimal paths

in the physical space but sometimes with little difference in the total travel time and significant

reduction in the exposure to hazard, which proves that hazard-time-optimal trajectory plan-

ning is relevant in applied contexts. Hazard-time-optimal path planning also ensured more

safety for the success of collaborative air-sea missions than pure time-optimal path planning,

showing that storms and vessel traffic could be avoided in the paths of an air drone and a
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sea drone, with moderate, hence likely acceptable, increase in time at rendez-vous points and

highly reduced exposure to hazardous phenomenons.

In this chapter, risks in the navigation were accounted for through the use of a determinis-

tic, time-varying hazard field, assessed on environmental data. But risks can also come from

the uncertainty in the capacity to predict the state of the environment at future times. In the

following chapter, the focus will be on the risk coming from an uncertain weather prediction.

Chapter’s main questions – Answers

• How can we compute trajectories achieving trade-offs between travel time and ex-
posure to hazard?

By adding the hazard dimension to the state space, the problem of finding trajectories
achieving trade-offs between travel time and exposure to hazard boils down to computing
the reachable set for the vehicle in the augmented state space. The evolution of the reachable
set is governed by a partial differential equation that can be solved numerically. From the
knowledge of the reachable set evolution in time, one can find optimal trajectories by the
backtracking of the gradient of the level set function describing the reachable set.

• Is it possible to give guarantees that a trajectory is indeed the best possible trade-off?

If one is able to compute the exact reachable set for the vehicle in the aforementioned
augmented state space, as is the case when solving the governing partial differential equation,
then one knows for what times and hazard accumulation values the destination is reachable
or unreachable, and thus one can check the Pareto-optimality of a given trajectory, or in other
words if a pair of travel time and accumulated hazard is a best trade-off or not.

• How much exposure to hazard can be avoided when adapting paths on real exam-
ples?

Depending on the case, a division by 3 or 4 in the total hazard was demonstrated in
practical cases. In special cases with large null hazard zones it is even possible to avoid all
the hazard with longer travel times.

• How do trajectories change (shape, travel time) when we allow for longer travel time
to avoid hazard?

The hazard-time-optimal trajectories’ shape can differ much from the time-optimal trajec-
tory, harnessing the areas of minimal hazard. On the considered real cases, from the minimal
travel time up to 50% more, the total hazard decreases significantly, but for longer travel
time, the decrease is weaker.
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Chapter 7

Optimal navigation in the presence of

uncertainty

Abstract

In this chapter, Zermelo’s navigation problem in unsteady and strong flow fields
is extended by adding uncertainty in the problem. Uncertainty models are distin-
guished whether they put uncertainty in the infinitesimal motion or only in the
flow field data. In the case of ensemble prediction for the flow field on a real
world example, as many time-optimal trajectories as weather scenarios are com-
puted, and the travel times resulting from following these trajectories in each of
the different scenarios are computed. This analysis shows that there is little vari-
ation in the expected travel time among paths, but that some paths can reduce
the variance in travel time. In a second time, a trajectory model based on ground
paths and an average-time-optimal path planning problem are introduced. For
the latter, necessary conditions of optimality for paths are given using Pontrya-
gin’s Maximum Principle the characterize trajectories candidate to optimality (ex-
tremals). The ability of path-based extremals to find the minimum average-time
path is demonstrated on an analytical case of a moving vortex with unknown di-
rection of motion. There is however no significant gap in the optimum average
time found compared to the averaged travel time on other paths computed using
the regular time-optimal approach on the considered example.
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Résumé en français

Dans ce chapitre, le problème de navigation de Zermelo dans un écoulement fort et insta-
tionnaire est étendu en ajoutant de l’incertitude au problème. Les modèles d’incertitude
sont différenciés selon qu’ils introduisent de l’incertitude dans le mouvement infinitési-
mal ou seulement dans les données de l’écoulement. Dans un cas réel de prédiction
d’ensemble pour l’écoulement, autant de trajectoires optimales en temps que de scénarios
météorologiques sont calculées, et les temps de parcours résultant du suivi de ces trajec-
toires dans chacun des différents scénarios sont calculés. Cette analyse montre qu’il y a
peu de variation dans le temps de parcours attendu entre les trajectoires, mais que cer-
taines trajectoires peuvent réduire la variance en temps de parcours. Dans un deuxième
temps, un modèle de trajectoire basé sur les chemins au sol et un problème de planifica-
tion de trajectoire optimale en temps moyen sont introduits. Pour ce dernier, les conditions
nécessaires d’optimalité des trajectoires sont données en utilisant le principe du maximum
de Pontryagin pour caractériser les trajectoires candidates à l’optimalité (extrémales). La
capacité des extrémales basées sur les chemins à trouver la trajectoire minimale en temps
moyen est démontrée sur un cas analytique d’un tourbillon en mouvement avec une di-
rection de mouvement inconnue. Il n’y a cependant pas d’écart significatif entre le temps
moyen optimal trouvé et les temps de parcours moyennés sur les autres chemins optimaux
en temps sur l’exemple considéré.
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Throughout all the previous chapters, maybe the reader found fault with the high confi-

dence placed in the problem data (flow field values, obstacle description, hazard fields, . . . ).

The present chapter will try to open up the discussion to the cases for which the problem data
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is not precisely known. The most canonical uncertainty source comes from the weather predic-

tion, since atmospheric or oceanic systems are chaotic and thus increasingly difficult to predict

the further we go in the future. But perturbations can also occur on the small scale: positioning

errors, unpredicted sub-grid phenomena in the flow field, actuator malfunction. . . In any case,

taking into account these sources of uncertainty in the planning process is beneficial for the

decision-making, provided one has a good model of uncertainties.

Chapter’s main questions

• When the problem contains sources of uncertainty, is it possible to plan for an opti-
mal operation of the vehicle that prevents unexpected situations in the navigation?

• Can the benefit of choosing safer or riskier trajectories be quantified?

7.1 Uncertainty models

The literature shows two main ways to deal with uncertainty. The first one is the framework of

stochastic processes, where there is random noise acting at the local scale perturbing the vehi-

cle’s trajectory. The second one is based on weather scenarios, that is, when weather prediction

centers generate not a single prediction but a collection of predictions.

7.1.1 Stochastic processes

The formalism of stochastic processes is the most general framework to model quantities that

evolve in time and that are subject to random perturbations. The goal of this subsection is

to describe how stochastic processes can be used to model uncertainty, without digging too

much into the details. In particular, we keep the mathematical definition minimal, and refer to

textbooks for further details.

Particular attention has been put on Markov processes. These processes do not depend on

the full history of their values, i.e. if one knows the history of values Ht up to time t for the
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Markov process x(t), then the conditional probability density p(x(s) | Ht) of a future value at

time s > t, only depends on the last value of the history p(x(s) | Ht) = p(x(s) | x(t)). The

previous property make Markov process convenient for calculus.

Forgetting the maths, from the operational perspective, one can be interested in modelling

uncertainty through the addition of noise in the dynamics

dx
dt

= u(t) + v f (t, x) + ε(t) (7.1)

with ε a 2D vector of white noise. It is as if the ground velocity is perturbed at all time instants

by an error ε(t) that shows no special structure of auto-correlation in time. The problem is

that the latter is not a well posed mathematical formulation since introducing a discontinuous

function (the white noise) in an ODE is not rigorous. A rigorous way to describe an evolution

in time influenced by noise can be done through the use of Stochastic Differential Equations

(SDEs), in particular Itô’s SDEs. The non-rigorous Equation 7.1 would be turned into the SDE

dx =
(
u(t) + v f (t, x)

)
dt + Σ dW (7.2)

with W a 2D Brownian motion and Σ a 2×2 coefficient matrix. This SDE models the infinites-

imal behavior of the vehicle influenced by perturbations through the Σ dW term. To build

trajectories out of this SDE, one uses Itô’s integral, which is an extension of Riemannian inte-

gration to stochastic processes. The Itô integral of Eq. 7.2 is a stochastic process. It is even a

Markov process. Realizations of this process are possible trajectories for the vehicle under the

influence of random perturbations. For a thorough introduction to stochastic processes and Itô

integrals, the reader is referred to Särkkä and Solin (2019).

Trying to minimize a cost, for instance the expected travel time, with a stochastic model of

motion is the interest of stochastic optimal control (see e.g. Fleming and Rishel (1975)).

The independence of noise in time is a satisfying way to model positioning errors, unex-

pected deviations of the flow’s true value from the forecast, or any perturbation in general.
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In Parkinson et al. (2020), a model based on SDEs is used for human navigation in mountain-

ous environments, and a corresponding HJB equation is formulated for the optimal navigation

in the presence of uncertainty, with the cost being an expected deviation from target. The au-

thors solve the HJB equation to find an optimal control law and then simulate trajectories using

this law to see the variability of possible paths, and how the magnitude in the noise influences

the trajectories. The formalism of viscosity solutions still applies to solve stochastic optimal

control problems with an HJB PDE (Gozzi et al., 2000). The authors demonstrate the efficiency

of a Hamilton-Jacobi approach in a stochastic context to solve for optimal trajectories with an

averaged cost.

The discrete analog to diffusion processes is the MDP, where the environment is discretized

into a finite collection of states for an agent to explore, and at all times the latter has a finite

collection of actions to pick what action to do. Usually, it is not possible to compute explicitly

the optimal policy (i.e. the optimal mapping from state to action) because it requires too much

space or computation effort, and an approximate approach such as Reinforcement Learning

(RL) shall be used. It is the approach used in Biferale et al. (2019) to solve Zermelo’s navigation

problem in very chaotic flow field environments. The goal is to build a control law (or policy,

in the RL terminology) with optimal performances in the presence of perturbations (here the

chaos in the flow field), and RL provides an approximate yet successful way to do so. But

modern approaches based on MDPs can now solve for the optimal policy without resorting to

approximate approaches. In Chowdhury et al. (2022) the AUV energy-time, stochastic routing

problem is turned into a MDP and solved explicitly, making use of GPU computation to cut

the computation time and allow for the exact computation of the policy function. An MDP was

also used by Hentzen et al. (2018) for aircraft navigation in the presence of thunderstorms. The

motion of the aircraft is modelled though an MDP and the thunderstorm evolution is described

probabilistically.

229



CHAPTER 7. OPTIMAL NAVIGATION IN THE PRESENCE OF UNCERTAINTY

7.1.2 Scenario-based uncertainty

While the framework of stochastic processes is well established, it is somewhat insufficient to

capture the nature of uncertainty in long-range trajectory planning problems. A major uncer-

tainty source is in the flow field prediction. Because systems such as the ocean or the atmo-

sphere are chaotic, predicting their state becomes increasingly difficult when the time horizon

for the prediction increases. But some weather conditions show more dispersion than others,

and in some favorable cases, the system can be less chaotic than normal. To get a better grasp

of how dispersive the atmosphere or ocean conditions are, ensemble predictions were developed

(see Lewis (2005); Leutbecher and Palmer (2007)). The principle of ensemble forecasting is to

extend the main prediction with a collection of other predictions, produced from perturbed

initial conditions or parameters, or both. When looking at the values of these ensemble mem-

bers at a particular date, one can then see if the members ‘agree’, which means their values

are close, or ‘disagree’, if the value are dispersed. An important fact is that each member

results from the resolution of physics equations, so each member is (in principle) physically

consistent. This motivates an approach that deals with each weather scenario independently,

instead of building local, point-wise statistics from the ensemble and applying the formalism

of stochastic processes over it.

In González-Arribas et al. (2018), the authors optimize aircraft routes on metrics that are ag-

gregated from weather ensemble predictions. Using collocation methods, they find paths min-

imizing a compound metric featuring travel time, fuel burn and difference between maximum

travel time and minimum travel time for robustness. They thus demonstrate the usefulness of

weather ensemble predictions for practical flight path planning. However, collocation methods

cannot prove the optimum found are the global minimizers of the considered problem.

In Subramani and Lermusiaux (2019), the authors compute as many time-optimal trajecto-

ries as the number of flow field realizations v f (t, x, ωi), i = 0, 1, . . . , Nens (realizations can be

thought as ensemble members). The important question is then how to merge the information

from the optimal trajectory to decide what control law, what trajectory or what path to follow

230



7.1. UNCERTAINTY MODELS

to get optimal performances in the uncertain flow field. In particular, one needs a way to as-

sess the performance of optimum trajectory x?(t, ωi) or control u?(t, ωi) that was optimized in

scenario v f (t, x, ωi) in an unexpected weather scenario v f (t, x, ωj). The authors provide three

ways of doing so:

1. computing the Fréchet distance between pairs of optimal trajectories x?(t, ωi) and

x?(t, ωj);

2. applying control law u?(t, ωi) in flow scenario v f (t, x, ωj) and noting the resulting dis-

tance from target at the end of the time window (time upper bound being the optimal

travel time in the j-th scenario);

3. using the optimal trajectory x?(t, ωi) as a path to follow in the j-th scenario, and comput-

ing the resulting delay, with baseline the optimal travel time in the j-th scenario.

When choosing one of these cross-scenario performances, one can then assess which of the

optimal strategy leads to the best statistics of performance among all scenarios.

In Wang et al. (2016), an ensemble of flow realizations is generated by perturbing an analytic

model of gyre flow field. In each scenario, the authors compute the optimal travel time using

extremals. They first shoot a collection of backward-integrated extremals and use the closest to

origin to set a BVP solver. Once the optimal trajectories are computed, they use the same metric

as Subramani and Lermusiaux’s third error metric (the difference in travel time from following

paths). They can then study the statistics of performance of the different optimal paths when

crossing scenarios.

In what follows, we will use our time-optimal extremal-based algorithm on a real case of

UAV path planning with an ensemble weather prediction. We will study the variability in

the performances of the different optimal paths to see what can be expected from real world

airborne navigation cases.
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7.2 Case study: multi-scenario trajectory planning in real wind data

7.2.1 Definition and methods

We set up a navigation problem with real data over the Northern Atlantic. We define the origin

at St John’s, Canada and the destination at Dublin, Ireland. We extract an ECMWF ensemble

prediction issued on 2023-08-25 06:00Z for the following 90 hours. The ECMWF ensemble is

composed of 51 predictions: a reference prediction (the zeroth member) which is unperturbed

and 50 perturbed members. For the ensemble at stake, we depict two particular members

that show a high difference in Fig. 7.1. On this figure, we can see how uncertainty builds by

looking at the difference of wind fields between ensemble member 16 and member 49. At the

beginning of the time window, overall, the difference is weak. After 30 hours, a ridge appears

in the difference field, with high magnitude, corresponding to the uncertainty in predicting a

large stream of wind appearing in each individual member. After 63 hours, the difference field

starts to have features with an order of magnitude comparable to the wind fields themselves.

In this environment, the vehicle has an SRF of 22.8 m/s, which gives a no-wind travel time

from origin to destination to 40.1 h.

We set the trajectory planning start date at 2023-08-26 12:00Z, as if the current date is 2023-

08-25 06:00Z and the vehicle shall take off in 30 hours. Thus, the planning problem is immersed

from the start in an environment that is uncertain. We first want to compute the time-optimal

trajectory in each weather scenario. We then want to evaluate the travel time from following a

given trajectory as waypoint orders in a different weather scenario.

Path-following trajectory computation Suppose we have a trajectory already in ground path

form λ ∈ [0, L] 7→ xi(λ) that was computed in flow field v f ,i and that we want to follow in a

different flow field v f ,j. We first define a mapping di(x) that maps any position to the nearest

direction of the path to follow, i.e. di(x) :=
dxi

dλ

∣∣∣∣
λproj

with λproj := arg minλ∈[0,L] ‖x(λ)− x‖. We
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then use the directional time-optimal control u to define an ODE

dyj

dt
= u(di(yj(t)), v f ,j(t, yj(t))) (7.3)

If we set yj(0) = x0 the origin of the navigation problem, then if xi(λ) is followable in flow

field v f ,j, the trajectory resulting from the integration of Eq. 7.3 follows exactly the ground path

xi(λ) and arrives at destination with some arrival time (can be greater or lower than the travel

time of xi(λ) since the flow field changes). The reason why a global mapping for the direction

of the path was required is that in the integration process, numerical errors always entail some

small difference in position between the path and the trajectory that is supposed to follow it.

The direction vector mapping is thus defined everywhere in space so that it can be evaluated at

any point. But of course, this mapping only makes sense in the vicinity of the considered path.

To implement di in practice, we discretize the reference ground path in (x(k)i )k∈{0,1,...,N−1}

with x(k)i := xi(
k

N−1 L), and kproj := arg mink∈{0,1,...,N−2}
∥∥∥x− x(k)i

∥∥∥, and take for the direction:

di(x) =
x
(kproj+1)
i − x

(kproj)

i∥∥∥x
(kproj+1)
i − x

(kproj)

i

∥∥∥ (7.4)

7.2.2 Results

We run the time-optimal in-depth interpolated sampling algorithm from Chapter 3 in each

individual weather scenario to get the time-optimal trajectory in each case. The resulting tra-

jectories are depicted in Fig. 7.2. We then evaluate the cross scenario performances. We plot the

per-ensemble member statistics in Fig. 7.3 and the per-path statistics in Fig. 7.4.

The overall mean travel duration across all scenarios and all paths is of 29.9 hours, 10.2 h

less than the no-wind travel time, so that the wind is beneficial to the travel. The associated

standard deviation is of 0.783 h which is approximately 47 min. In Fig. 7.3, we see that the flow

field realization highly influences the travel duration. The best performance is achieved in en-

semble member 10. Overall, the dispersion around the mean is of the same order of magnitude
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Figure 7.3: Travel time in each wind ensemble member for the North Atlantic case. Members are sorted by increas-
ing mean travel time across all paths. The blue dots are the optimal travel times in each scenario.
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Figure 7.4: Travel time for each path in ensemble prediction for the North Atlantic case. Paths are sorted by in-
creasing standard deviation of travel time in the different wind scenarios. The path minimal travel duration in its
nominal scenario is depicted as a blue dot.
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for all scenarios, with the exception of the 49th one, which shows a higher spread. It is also the

worst scenario for travel time. Snapshots of this 49th ensemble member are given in Fig. 7.1.

In Fig. 7.4, the path-wise performances show almost similar performances across the paths,

with a sensibly constant mean performance and varying dispersion. Path 49 shows the least

standard deviation from its mean performance, with a worst-case travel time of 31.6 h. In com-

parison, path 48 can see its travel time going up to 35.5 h in an unfavorable case.

Reverse travel

To get other results with this approach, the origin and destination are reversed, keeping all

other parameters identical. For simplicity, only the first ten weather members are used: the

control member at index 0 and nine others. In the reverse direction, the wind is generally

facing the vehicle, increasing the travel time and making the trajectory problem more complex.

The same methodology as previously is applied. The results are depicted in Fig. 7.5. The travel

times are displayed in Fig. 7.6.

Trajectory number 3 has the best nominal travel time (i.e. travel time in the scenario for

which it was optimized) with 42.9 hours of travel, and trajectory number 4 has the worst one

with 48.0 hours of travel. As in the previous case, some paths show more variance in travel

time than others. But what catches attention is that path number 1 has a significantly different

shape than all the others, as can be seen in Fig. 7.5. However, this path has a nominal travel time

comparable to the others, with 44.7 hours. One can think that this trajectory is an outlier, in the

sense that it is one of the possible optimums of the navigation problem in flow field number 1,

so that another optimal trajectory exists with a similar travel time but a shape similar to all the

other paths. But looking at Figure 7.3, there is at least 2 hours of difference with any other path

in the flow field scenario number 1, excluding the preceding possibility.

Besides, path number 1 has the highest standard deviation among all others, as can be

seen in Figure 7.4 (box plots are sorted according to standard deviation). This illustrates the

primary importance of considering multiple scenarios in the presence of uncertainty. Indeed,
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Figure 7.6: Reverse travel in North Atlantic ensemble wind prediction. (a) Travel times in each wind ensemble
member. Members are sorted by increasing mean travel time across all paths. (b) Travel times for each path in the
different wind scenarios. Paths are sorted by standard deviation. For both graphs, the blue dots are the optimal
travel times in the nominal scenarios.

if flow field number 1 would have been the control run (the zeroth member), and an operator

was to optimize its trajectory in the standard prediction without consideration for perturbed

scenarios, the latter would have computed a very uncertain path, in the sense that its variance

in travel time would have been very large with a travel time spanning from around 45 hours in

the best scenario to 65 hours in the worst, while there exists other paths with reduced variance.

Conclusions of the case study This case study shows that for UAVs such as the Mermoz

drone, the uncertainty in the weather prediction can change the travel time by a non-negligible

amount, indeed hours on a travel time of around 30 hours. No path was shown to outperform

the others as regards the expected travel time, however some show reduced variance compared

to the others. Overall, the ground paths show little deviation from one another.
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7.3 Path-based average-time-optimal trajectory planning

In the previous section the main performance metric was the variation in travel time over a

given path when the weather scenario changes. We built the performances of the different

paths based on this criteria and could then select the best path for the problem. The selected

path has the best performances, but only among the explored trajectories. It may happen that

there exists a path with better performances and which was not considered by the previous

approach. This is because we never optimize on the statistical performance, but on the deter-

ministic performance in each scenario.

In this section, we propose an approach that optimizes directly on the aggregate perfor-

mance across scenarios, indeed the average travel time. To do so, we choose to change the

point of view from trajectories to ground paths (see Chapter 2, Sec. 2.4 for an introduction to

ground paths). In Davis et al. (2009), the authors also derive a framework for trajectory opti-

mization based on paths, with similar equations as the ones presented in what follows.

We note x(λ) a ground path in which we choose to parametrize through the chord length

λ. In what follows, we note φ the angle of the ground path in the ground frame. It must not be

confused with the heading of the vehicle, which could be different because of the presence of a

flow field. The evolution over the path is:

dx
dλ

=

cos φ(λ)

sin φ(λ)

 (7.5)

where we stress that φ is a function of λ. The derivative vector is of norm 1 since the path is

parametrized in chord length. There is no notion of velocity in the environment for now, as we

only exposed the differential equation satisfied by the path x(λ) = (x(λ) y(λ))ᵀ. To introduce

the time evolution, we define the slowness of the vehicle along the path. At position x, imposing

a ground path angle of φ to the vehicle makes it find the appropriate heading to match the

direction of motion (d := (cos φ sin φ)ᵀ, the vehicle chooses u = u(d, v f ), the directional time-
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optimal control defined in Chapter 2), and the resulting ground speed vg along the path is:

vg = v‖f +

√
v2

r −
(

v⊥f
)2

with v‖f = v f (t, x) ·

cos φ

sin φ

 and v⊥f = v f (t, x) ·

− sin φ

cos φ

 and vr the SRF of the vehicle. We

thus define the slowness as the inverse of the ground speed:

s(t, x, φ) =
1

v‖f +

√
v2

r −
(

v⊥f
)2

(7.6)

which is a function of time t, position x and direction of ground path φ. In the strong flow case,

some directions of motion are not possible for the vehicle, in which case we set s(t, x, φ) = +∞.

The time variable is now also parametrized in chord length: t(λ1) is the time it takes for the

vehicle to follow the path from λ = 0 to λ = λ1. The derivative of the time variable with chord

length is precisely the slowness of the vehicle:

dt
dλ

= s(t(λ), x(λ), φ(λ)) (7.7)

So, with the current formulation, the Path-based Time-optimal Navigation Problem (P-TNP) writes:

(P-TNP)


min
φ(·)

t(L)

Eqs. 7.5, 7.7

x(0) = x0, x(L) = x f

(7.8)

with control variable being the law of angle for the ground path φ(·). This time, the cost appears

as a terminal cost and not an integral one. In this problem, we did not introduce the variability

of the flow field yet. We first derive the optimality conditions in the deterministic case, before

going through the uncertain case.
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7.3.1 Deterministic path-based extremals

We once again use the PMP to derive necessary conditions for optimality for the path-based

extremals. We introduce an adjoint state p =
(

px py pt
)ᵀ with as many components as state

variables for the problem, i.e. three: two for the physical state and one for the time variable. Its

evolution in time is given by:
dpx

dλ
= − ∂s

∂x
pt

dpy

dλ
= − ∂s

∂y
pt

dpt

dλ
= −∂s

∂t
pt

(7.9)

The Hamiltonian for this system is:

H = px cos φ + py sin φ + s(t, x, φ)

The latter expression is already normalized and excludes abnormal extremals, as, once again,

there are not fundamental for a first approach based on extremals. The Hamiltonian always

has a minimum in φ because:

1. in the controllable case (
∥∥v f

∥∥ < vr) it is continuous in φ and φ takes values in the compact

set [0, 2π];

2. in the non-controllable case, the slowness takes finite values over an interval ]φmin, φmax[,

with limφ→φmin = +∞ and limφ→φmax = +∞, thus there is a minimum for the Hamiltonian

over ]φmin, φmax[.

We first note that the Hamiltonian is autonomous, in the sense that it has no direct dependence

on the λ parameter, i.e. ∂H
∂λ = 0. Moreover, the final chord length L is not fixed so there is a

terminal condition on the Hamiltonian H(t(L), x(L), φ(L)) = 0. Because the Hamiltonian is

autonomous, the transversality indeed holds for all λ ∈ [0, L] and we have:

∀λ ∈ [0, L], px(λ) cos (φ(λ)) + py(λ) sin(φ(λ)) + s(t(λ), x(λ), φ(λ)) = 0 (7.10)
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The Hamiltonian is smooth in φ so we have the NCO ∂H
∂φ = 0 for the the minimizer φ?,

which writes:

−px sin φ? + py cos φ? + pt
∂s
∂φ

∣∣∣∣
t, x, φ?

= 0

The previous equation holds for all λ ∈ [0, L], thus we can differentiate w.r.t. λ to get:

−dpx

dλ
sin φ? − px cos(φ?)

dφ?

dλ
+

dpy

dλ
cos φ? − py sin(φ?)

dφ?

dλ
+

− ∂s
∂t

∂s
∂φ

pt+[
s

∂2s
∂φ∂t

+
∂2s

∂φ∂x
cos φ? +

∂2s
∂φ∂y

sin φ? +
∂2s
∂φ2

dφ?

dλ

]
pt = 0

Now, using Eqs. 7.9, 7.10 simplifies the previous equation to:

[
s

dφ?

dλ
+ s

∂2s
∂φ∂t

+

(
∂2s

∂φ∂x
− ∂s

∂y

)
cos φ? +

(
∂2s

∂φ∂y
+

∂s
∂x

)
sin φ? +

∂2s
∂φ2

dφ?

dλ
− ∂s

∂t
∂s
∂φ

]
pt = 0

Since pt cannot cancel out (non null initial condition and given its ODE), we have an equation

for dφ?

dλ :

dφ?

dλ
= −

s ∂2s
∂φ∂t +

(
∂2s

∂φ∂x − ∂s
∂y

)
cos φ? +

(
∂2s

∂φ∂y +
∂s
∂x

)
sin φ? − ∂s

∂t
∂s
∂φ

s + ∂2s
∂φ2

(7.11)

With this ODE, one can shoot extremal paths as done in Chapter 3 to look for the optimal path

to target. An important fact is that this equation is independent from the costate values, which

is reminiscent of the invariance to costate positive scaling for the PMP applied to the TNP

(Property 3.2).

7.3.2 Average-time-optimal path-based extremals

If the flow field is uncertain and described by an ensemble of possible realizations

(v f ,i)i∈{0,1,...,Nens−1}, the advantage of considering ground paths is that paths will be the same

in each scenario, only the travel time will vary. We note ti(λ) the variable accounting for the
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travel time along the path x(·) up to chord length λ. We note si(ti, x, φ) the slowness of moving

in direction φ when at position x and time ti in flow field scenario i. At this point we also note

the caveat that in some cases, a path may be unfollowable in a strong flow scenario, in which

case ti = +∞ from some λ.

The system evolution is now:

dx
dλ

= cos φ(λ)

dy
dλ

= sin φ(λ)

dti

dλ
= si(ti(λ), x(λ), φ(λ)) i = 0, 1, . . . , Nens − 1

(7.12)

In this uncertain environment, we look for the path that will have the best expected travel time.

We thus want to solve the following Average Time-optimal Navigation Problem (ATNP):

(ATNP) :=


min
φ(·) ∑

i∈{0,1,...,Nens−1}
ai ti(L)

Eqs. 7.12

x(0) = x0, x(L) = x f

(7.13)

where (ai)i∈{0,1,...,Nens−1} is an arbitrary weighting of scenarios, i.e. ∀i, ai > 0, ∑ ai = 1. The

regular average travel time is obtained for the weighting ai = 1
Nens

, but we want to allow

general weightings of scenarios with this formulation. For instance, the zeroth member plays

a particular role and its importance can be amplified compared to the perturbed members.

Resolution We once again introduce an adjoint state p = (px py p0 . . . pNens−1)
ᵀ with Nens +

2 components corresponding to the state variables: 2 physical and Nens time variables. Its
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evolution in time is given by:

dpx

dλ
= −

Nens−1

∑
i=0

∂si

∂x
pi

dpy

dλ
= −

Nens−1

∑
i=0

∂si

∂y
pi

dpi

dλ
= −∂si

∂ti
pi i = 0, 1, . . . , Nens − 1

(7.14)

The Hamiltonian writes:

H = px cos φ + py sin φ +
Nens−1

∑
i=0

pi si(ti, x, φ)

For the same reasons than the previous case, this Hamiltonian admits a minimum for some φ?

either somewhere in [0, 2π[ if the vehicle is controllable in each flow field or somewhere on

an interval ]φmin, φmax[ which is the biggest possible for all the si to take finite values. So once

again, we differentiate the Hamiltonian w.r.t. φ and use that ∂H
∂φ (φ

?) = 0 to write:

− px sin φ? + py cos φ? +
Nens−1

∑
i=0

pi
∂si

∂φ

∣∣∣∣
ti , x, φ?

= 0 (7.15)

The Hamiltonian is once again autonomous (does not depend explicitly on λ), and satisfies a

transversality condition on the final chord length L, so similarly to the previous section, we

have:

∀λ ∈ [0, L], px(λ) cos (φ(λ)) + py(λ) sin(φ(λ)) +
Nens−1

∑
i=0

pi(λ) si(ti(λ), x(λ), φ(λ)) = 0 (7.16)
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We now differentiate Eq. 7.15 w.r.t. λ and get:

−dpx

dλ
sin φ? − px

dφ?

dλ
cos φ? +

dpy

dλ
cos φ? − py

dφ?

dλ
sin φ?+

−∑
i

∂si

∂t
∂si

∂φ
pi+

∑
i

[
∂2si

∂φ∂t
si +

∂2si

∂φ∂x
cos φ? +

∂2si

∂φ∂y
sin φ? +

∂2si

∂φ2
dφ?

dλ

]
pi = 0

which, because of Eqs. 7.14, 7.16, the previous equation ends up writing:

∑
i

pi

[(
si +

∂2si

∂φ2

)
dφ?

dλ
+

∂2si

∂φ∂t
si +

(
∂2si

∂φ∂x
− ∂si

∂y

)
cos φ? +

(
∂2si

∂φ∂y
+

∂si

∂x

)
sin φ? − ∂si

∂t
∂si

∂φ

]
= 0

which finally writes:

dφ?

dλ
= −

∑i pi

[
si

∂2si
∂φ∂t +

(
∂2si

∂φ∂x − ∂si
∂y

)
cos φ? +

(
∂2si

∂φ∂y +
∂si
∂x

)
sin φ? − ∂si

∂t
∂si
∂φ

]
∑i pi

(
si +

∂2si
∂φ2

) (7.17)

In this equation, the values of the costate do not cancel out anymore as in the previous case.

Thus, the transversality condition on the costate at final time cannot be discarded anymore. In

this case, we have a terminal cost function:

ψ(x, y, t0, t1, . . . , tNens−1) = ∑
i∈{0,1,...,Nens−1}

ai ti

The target set in the ξ := (x, y, t0, t1, . . . , tNens−1) space is {x f } × {y f } ×R× · · · ×R︸ ︷︷ ︸
Nens

. The tan-

gent space to this target set is thus T = {0} × {0} ×R× · · · ×R︸ ︷︷ ︸
Nens

. The transversality condition

for the costate writes1:

p(L)− ∂ψ

∂ξ

∣∣∣∣
x(L),y(L),t0(L),...,tNens (L)

⊥ T

1For general extremals, there is a factor in front of the ∂ψ
∂ξ term. But we neglected abnormal extremals in this

approach, so this coefficient can be taken to 1.
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with ∂ψ
∂ξ = (0 0 a0 . . . aNens−1)

ᵀ. Thus, there is no condition on px and py at final chord length,

but there are on the (pi)i∈{0,1,...,Nens−1}, which write:

∀i ∈ {0, 1, . . . , Nens − 1}, pi(L) = ai (7.18)

To get average-time-optimal trajectories, one has thus to solve a boundary value problem by

integrating ODEs on φ and (pi)i∈{0,1,...,Nens−1} (Eqs. 7.17, 7.14) and finding the appropriate initial

conditions such that, for some L, x(L) = x f and ∀i ∈ {0, 1, . . . , Nens − 1}, pi(L) = ai.

The previous development led to a differential characterization of the paths which are can-

didate to average time optimality. By shooting such paths, it is expected that minimum average

travel time trajectories can be found in a given problem. The following section will demonstrate

this on a real world example.

In this section, the focus was put on the minimization of average travel time, because the

linearity of the average operation made it easy to integrate this new cost in optimization prob-

lems. Average travel time served as a first interesting metric to study the behavior of the newly

formulated path-based extremals. In the presence of uncertainty, however, the only priority is

not necessarily to minimize the expected travel time, and variance minimization or robustness

to worst scenarios can be other criteria for which to optimize trajectories.

7.4 Case study: average-time-optimal path on an analytical example

7.4.1 Problem statement

We want to demonstrate that the extremals resulting from the previous resolution can be used

to find average-time-optimal trajectories in flow fields. We set up an analytical case with a
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moving Rankine vortex:

v f ,i(t, x) = A× R
(π

2

) x− ci(t)
‖x− ci(t)‖

×


‖x−ci(t)‖

r0
‖x− ci(t)‖ ≤ r0

r0
‖x−ci(t)‖ else

(7.19)

where A is an amplitude parameter and r0 a radius parameter. ci(t) is the center of the vortex

that is defined as:

ci(t) = c0 + di t

The direction of motion for the vortex di = (cos αi sin αi)
ᵀ is the parameter that changes be-

tween the different ‘weather’ scenarios. It can model for instance a prediction of a storm for

which the direction of motion is uncertain.

For the numerical application, the values are A = 0.9, r0 = 0.2, c0 = (0.5 − 0.2)ᵀ. The

angle takes three different values α0 = 1.1, α1 = 1.6 and α2 = 1.9 (in radians). These values are

chosen in a non-uniform way to break symmetries, in particular so that the second value is not

the average of the two others.

7.4.2 Methodology

We compute the time-optimal trajectories for each flow field scenario using the in-depth inter-

polated sampling algorithm. We discretize extremals from the algorithm on a uniform sam-

pling of the chord length dimension on [0, 1.4] with 500 points. The tolerance radius around

the target in the physical space is of 0.05. We also build the mean flow field:

v f =
1
3
(
v f ,0 + v f ,1 + v f ,2

)
(7.20)

and compute the time-optimal trajectory in this flow field. In general, this mean flow field has

no physical meaning. Still, the time-optimal trajectory in this mean flow field is an experimen-

tally good baseline path when the weather scenarios are not too dispersed.

248



7.4. CASE STUDY: AVERAGE-TIME-OPTIMAL PATH ON AN ANALYTICAL EXAMPLE

Path Duration in FF 0 Duration in FF 1 Duration in FF2 Average

Time-opt. FF 0 1.141 1.481 1.484 1.369

Time-opt. FF 1 1.353 0.9490 0.9554 1.086

Time-opt. FF 2 1.353 1.036 0.8816 1.090

Time-opt. Mean FF 1.314 0.9842 0.9361 1.078

Avg.-time-opt. 1.322 0.9648 0.9302 1.072

Table 7.1: Travel duration for the different paths.

To compute the average-time-optimal path for this problem, we solve a boundary value

problem as described in Sec. 7.3.2. We set up x(0) = x0 and use φ(0) and pi(0), i =

0, 1, . . . , Nens − 1 as parameters. We then shoot the extremal parameterized with this ini-

tial condition by integrating Eqs. 7.17, 7.14 forward in time. We define an error metric

e(x(·), p(·)) = supλ∈[0,λmax]

∥∥x(λ)− x f
∥∥+ ‖p(λ)− a‖ with a = (a0 a1 . . . aNens−1)

ᵀ. This error

metric adds up the error done on the distance to target in the physical space and the error in

the costate variable for the final chord length transversality condition. To find the parameters

φ(0) and pi(0), i = 0, 1, . . . , Nens − 1 that entail the average-time-optimal path, we minimize

the error metric over the latter parameters. We use the global optimization, gradient free solver

scipy.optimize.direct to perform the minimization, with bounds equal to [0.45, 0.8] for φ(0)

(inferred from the time-optimal trajectories) and [0, 1] for pi(0), i = 0, 1, . . . , Nens − 1. We set a

target maximum error of 0.01 for the error function.

Once the computation of all trajectories is completed, we turn each trajectory into a ground

path by discarding the time variable. We then use a path-following control law as described in

Sec. 7.2.1 to build trajectories following ground paths in different scenarios of flow field. Each

path is evaluated in the three scenarios of flow field for the three possible direction of motion

for the vortex.
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Figure 7.7: Varying performance paths for the multi-scenarios vortex case. The underlying flow field is the flow
field at t = 0, which is the same for all three scenarios. FF stands for Flow Field. The start point is depicted as a
black dot and the destination as a black star. The circle around the target shows the tolerance radius for considering
the target reached.
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7.4.3 Results and discussion

The travel times computed by crossing ground paths and flow field scenarios are given in

Table 7.1 and are also depicted in Fig. 7.7b. The five ground paths (time-optimal paths in flow

field scenarios 0, 1, 2, time-optimal path in the mean flow field and average-time-optimal path)

are depicted in Fig. 7.7a, and the position of the vehicle over the different paths is depicted for

the three scenarios of flow field at different timestamps in Fig. 7.8.

While all the paths are similar over around one third of their length, the last two third

can be very different from one path to another. In particular, the time-optimal path in flow

field scenario 0 is widely bent towards increasing x and increasing y to benefit from the vortex

advection. This path has the best performance in its nominal scenario with a travel duration

of 1.141 that is 13.2% less than the best among the other paths (Time-opt. Mean FF), but in

other scenarios the performance is highly deteriorated with a travel time of 1.481 in scenario

1 and 1.484 in scenario 2, respectively 43.0% and 55.3% more than the worst path among the

others (Time-opt. FF 2 in FF 1 and Time-opt. FF 1 in FF 2). This shows the importance of

considering at least a bulk of trajectories in the presence of multiple scenarios for the flow field,

as one particular time-optimal trajectory in one scenario can have bad performances in other

scenarios, even in the controllable regime (
∥∥v f

∥∥ ≤ vr).

The time-optimal paths in flow field scenario 1 and 2 show similar and good performances,

with an average performance close to the optimal average. The average-time-optimal path

indeed has the lowest average travel time among all paths, but with a very narrow margin: it

is only 0.56% less than the average travel time on the mean flow field time-optimal path.

For better insight into the behavior of the average-time-optimal path, the costate compo-

nents are plotted for this path in Fig. 7.9. The components show cusps and steep variations

in their values, with significant variation from their initialization values. At the optimal chord

length λ?, the distance to the destination point in the physical space is less than the defined

threshold of 0.01.
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Figure 7.8: Positions of the vehicle while following the different paths in the three flow field scenarios. The left
column corresponds to flow field scenario 0, the middle one to the scenario 1 and the right one to the scenario 2.
The color of the paths is explained in Fig. 7.7a. For all position marks, the vehicle’s heading vector is also depicted.
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Figure 7.9: Costate components associated to the average-time-optimal path. λmax is the maximum chord length
over which extremals are computed. λ? is the chord length at which the solution extremal minimizes the error
metric.
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Conclusions of the chapter

In this chapter, the addition of uncertainty in the trajectory planning problem was studied. The

focus was put on an approach based on weather ensemble predictions rather than a stochastic

behavior for the vehicle. The former indeed provides a satisfying way to consistently deal with

weather uncertainty while the latter models the different random errors in positioning, control

or measurements. For long-range trajectory planning, the weather uncertainty seems to be

the main challenge to tackle, hence the choice of uncertainty model. The approach from the

underwater vehicle routing literature consisting in computing one time-optimal trajectory per

weather scenario and evaluating each trajectory performance in other scenarios was applied in

an realistic airborne case. It shows that the average travel time is rather the same over all the

different computed paths. Still, the variance of travel time was shown to be reduced for some

paths, showing an opportunity to reduce the risk of unexpected high lengthening of travel time

that can harm a given mission.

In a second part, the point of view was shifted to ground paths and it was shown that paths

minimizing the average travel time over multiple weather scenarios can be characterized by

differential equations by using Pontryagin’s Maximum Principle. To the best of the author’s

knowledge, this approach is not seen in the literature to date. The approach was proved to

work on an analytical example, but the minimal average travel time was not significantly dif-

ferent from the averaged travel time over classical per scenario time-minimizing paths. Further

work would be needed to investigate how much one can reduce the expected travel time by

applying the latter approach compared to the per scenario optimization. The present work was

preliminary and meant to open up the study of uncertainty mitigation in navigation problems

using ground paths and optimality conditions. The metric of average travel time was an entry

point in uncertainty mitigation and it would also be interesting to try to find optimality condi-

tions for paths minimizing the variance of travel time or maximizing the robustness to worst

weather scenarios.
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Chapter’s main questions – Answers

• When the problem contains sources of uncertainty, is it possible to plan for an opti-
mal operation of the vehicle that prevents unexpected situations in the navigation?

When the uncertainty comes from the prediction of the flow field, ensemble forecast pro-
vides a set a physically consistent possible scenarios. Optimal path planning applied in each
scenario provides a set of routes with different cross-scenario performances, for an operator to
select its preferred one (best average travel time, reduced variance of travel time, . . . ).

When the uncertainty comes from random perturbations in the vehicle positioning, con-
trol or measurements, stochastic optimal control provides tools to optimize performances in a
probabilistic sense.

• Can the benefit of choosing safer or riskier trajectories be quantified?

Using weather ensemble forecast, the performance of any path reaching destination can
be assessed in the different weather scenarios (travel time, energy, . . . ). Depending on the
mean and variance of performance, one can assess the expected benefit from choosing a path
and weight it against its variability, that constitutes a risk for the mission if high deviations
are possible.
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Conclusion of the thesis

The success of long-range, high endurance missions for autonomous vehicles is conditioned

by careful strategic trajectory planning that accounts for the different features of the environ-

ment, its threats and opportunities, its variability and its intrinsic uncertainty. A good route is a

route that reaches the destination harnessing favorable environment conditions, avoiding haz-

ard or forbidden areas and keeping a safety margin of autonomy at destination for unexpected

outcomes. This work is based on the problem of crossing the Atlantic Ocean between Dakar,

Senegal and Natal, Brazil with a hydrogen-powered air drone. For this problem, the fulfillment

of the mission is of primary importance. This means that every feature concurring in increasing

the probability of mission success shall be leveraged. Following trade winds to reduce travel

time, adapting the speed to the wind conditions to save energy, avoiding the stormy conditions

of the inter-tropical convergence zone as well as areas of possible interference with other vehi-

cles and reducing the possible variability in travel time are all examples of features concurring

in the mission success. These qualitative features are unknowingly describing an optimization

problem and calling for the use of optimal control to design the best trajectory according to all

the latter criteria.

Consequently, this work focused on optimization techniques to compute trajectories for ve-

hicles evolving in complex unsteady and uncertain flow fields. The kind of long-range naviga-

tion problem at stake, when considered from a large scale point of view, is the same for aerial

vehicle in atmospheric winds than for underwater vehicles in ocean currents. To solve this

problem, a large literature spans on several different families of computer methods with differ-
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ent properties. One main distinction exists between direct and indirect methods depending if

optimization happens after discretization or prior to discretizing. The second group of meth-

ods comes with the advantage of being able to prove the global optimality of the solutions,

but are usually computationally more intensive than their direct counterparts. For strategic

trajectory planning where computation is done offline with high computing power and where

computation times up to an hour are acceptable compared to the planning time window that

lasts tenths of hours or more, indirect methods are attractive as their computing intensity is

not a problem, while the benefit of proving the optimality of trajectories is important for an

operator to trust optimization results.

From the theoretical and numerical perspective, the work presented tried to derive efficient

methods from the application of Pontryagin’s Maximum Principle to the different problems at

stake. The PMP is a powerful tool in optimal control that, unlike its Hamilton-Jacobi-Bellman

counterpart, does not suffer a priori from the curse of dimension. Building algorithms on top

of extremals proved very efficient in many application cases. By building value functions for

the navigation problem from the set of extremals, guarantees for optimality were obtained.

However, extremals start to behave badly the more strong, spatially and temporally complex

the flow field becomes, in the sense that sub-optimal extremals start to outnumber extremals

properly lying on the reachability front (and thus candidate to global optimality). The curse of

dimensionality seems to be turned into the curse of the flow’s intrinsic complexity. Heuristic

trimming can be used to stop the spread of useless extremals, such as target-based trimming

or trimming based on the shape of the extremal set. Overall, using extremals to solve such

optimization problems requires great care in the sampling procedure, but has a good potential

for fast resolution with optimality guarantees and scalabilty to higher dimensional problems.

It is known that dealing with obstacles (constraints on the state vector) is challenging for ex-

tremals. The necessary conditions of optimality reach one step higher in complexity to describe

extremals compatible with state constraints. Still, using algorithmic reasoning to integrate the

additional necessary conditions of optimality, a routine to find time-optimal trajectories in the
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presence of obstacle was successfully designed. It was proven able to compute time-optimal

trajectories in a set of analytical and real world examples featuring obstacles. Still, because

of the kind of optimality conditions used in this work, the obstacle-aware extremals lost the

capacity to propagate the optimal cost everywhere in space. Indeed, in the wake of moving ob-

stacles, the optimal cost is not resolved. This limit is not a caveat for the navigation problems

at stake if the destination always lies out of obstacles.

The necessary conditions of optimality also proved useful when allowing the vehicle speed

to vary to characterize the less energy intensive operation of the vehicle when harnessing the

flow field. Because the power expense is in general a convex increasing function, there is no

energetic benefit from adopting a varying speed in the absence of flow field. However, it is

demonstrated that adjusting the vehicle speed to the flow field local values can much reduce

the overall energy expense, by spending more energy in unfavorable flow conditions to reach

favorable ones, where the power can be reduced. Practically, in the real world case of the Dakar

to Natal crossing by an air drone in the presence of a tropical storm, it is shown that an order

of 10% reduction in total energy expense is possible compared to fixed speed trajectories, with

equal travel time. In this chapter, the computation based on extremals was done empirically,

but hints were left for how to build a general algorithm to find energy-time-optimal trajectories

based on extremals in a similar fashion as what was developed for time-optimal trajectories.

A step aside at MIT gave the opportunity to investigate how to compute trajectories achiev-

ing trade-offs between travel time and exposure to hazard using level-set methods. On real-

istic problems, it demonstrated the existence of paths with limited increase in travel time but

highly reduced exposure to hazard. It is shown that the shape of hazard-time-optimal paths

can change significantly from time-optimal trajectories to harness zones of lowered exposure

to hazard in a given budget of additional travel time. The Hamilton-Jacobi methods used, in

the tridimensional state space of planar physical space plus hazard space still performed well

for strategic trajectory planning, with computation times always under half an hour on a mod-

ern laptop. The method provided a way to smoothly avoid unfavorable navigation conditions,
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such as the storms of the inter-tropical convergence zone for the Mermoz drone, without re-

sorting to using hard obstacles.

Deterministic optimization methods for trajectories can also provide insight when the nav-

igation problem data is uncertain. Atmospheric or ocean prediction centers provide multiple

runs of their physical models with perturbed initial conditions or parameters called ensem-

ble predictions, which gives an operator a collection of possible weather scenarios that help

characterize the uncertainty in the predictions. By optimizing trajectories in each scenario and

assessing the resulting trajectories in every other scenario, it is possible to measure the ex-

pected performance and associated dispersion when following a given path. This procedure,

coming from the literature, while not being designed to minimize the expected travel time or

the variance in travel time, still provides paths with satisfying performance (optimal paths per

scenario), as it is demonstrated in an airborne case. To optimize the operation of the vehicle on

a scenario-aggregated metric, path-based necessary conditions of optimality were formulated

to minimize the scenario-averaged travel time. While not being the most critical metric in an

uncertain setting (compared to variance in the travel or robustness to worst cases), averaged

travel time served as an entry door into the path-based extremal formulation. The approach

proved able to find the average-time-optimal trajectory in an analytical example, still with-

out significant reduction in average travel time compared to paths computed using a regular

time-optimal, per scenario method.

Overall, extremals as well as Hamilton-Jacobi methods proved to be key tools to design

paths that optimize the vehicle’s performances while satisfying navigation constraints. They

need careful setting to work correctly and can demand computational power, but they are

able to provide accurate results and guarantees when solving navigation problems in complex,

time-varying and uncertain flow fields.

260



Perspectives

Throughout the whole thesis, and again the previous conclusions, hints were given at the pos-

sible extension of this work. They are summarized in what follows.

• Energy-time-optimal planning: Algorithm. There is a need to implement an energy-

time-optimal extremal-based algorithm as hinted at the end Chapter 5. Because of the

curse of dimension, an extremal-based solver can start to outperform a level-set based

solver when the dimension increases, which is the case for the energy-time optimal nav-

igation problem. Target-based trimming might be a key feature to avoid sampling too

many extremals, that is, the elimination of extremals that are too far from the target to

reach it before a maximal allowed time or a maximum level of energy.

• Probabilistically optimal vehicle guidance. There is a research gap in the literature of

approaches able to optimize for a cost that aggregates the performance of the vehicle in

an ensemble of flow field predictions. The approach described in chapter 7 of computing

optimal trajectories in each scenario and evaluating their performance in other scenarios

is a best-effort, already very efficient way to take uncertainty into account. But it is not

designed to optimize for probabilistic performance, as for instance the expected travel

time, the variance of travel time or the worst case travel time. In chapter 7, a path-based

model was proposed to minimize the expected travel time on an object that stays the

same in each scenario: the ground path. Only one test case was presented, and it did

not show the existence of a path with significantly better average travel time than time-
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optimal paths computed in each scenario and used as baseline. So, more work is needed

to study if there exist cases in which a clear gain in expected travel time can be found

on particular paths that are not captured by per scenario time-optimal paths. Also, paths

may also not be the right angle at which to look at the problem. The probabilistic optimal

operation of the vehicle might also be better described as a feedback control, for instance.

In each case, more work is needed to assess the possible gain of going further than the

optimize and evaluate approach.

• Energy to absorb uncertainty. The combination of uncertainty with allowing the SRF

to vary could lead to insightful analyses of trajectories in weather ensemble prediction,

because the delay analysis performed by trying to follow a given trajectory in a weather

scenario can be replaced by an analysis where the SRF is allowed to vary, with additional

energy spent. This would remove cases when some paths are not followable in some

weather scenarios, and would quantify uncertainty as an additional amount of energy to

spend to follow a path in unfavorable conditions. This analysis would be helpful to size

energy storage to the typical amount of uncertainty for the navigation missions planned.

• Albatross-like energy optimization. There is an interesting research topic lying in the

combination of energy-time optimal trajectory planning at the large scale and dynamic

soaring at the small scale for UAVs. Dynamic soaring consists in harnessing the gra-

dients of wind in the atmospheric boundary layer near the ocean surface to lower the

energy expense of flight, in a same manner as albatrosses do (see Bonnin (2015)). Dy-

namic soaring overall energy reduction can be abstracted at the large scale depending on

macro-parameters (minimal allowed clearance above surface, angle to the wind, intensity

of the wind, . . . ) and input in the energy-time problem to compute energy-time trajectory

harnessing dynamic soaring. In particular, Bonnin (2015) showed highly significant re-

duction in the energy expense can be expected in the best conditions for dynamic soaring,

and in particular at a path angle close to 45° with the wind field. The question would be
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to understand what optimal trajectories look like and how much energy can be saved in

practice with the addition of this effect.
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Appendix A

Flow field mathematical model

In Chapter 2, hypothesis (H2) is not a regular hypothesis for control systems. Let’s take a

general control system

ẋ = f (t, x, u) (A.1)

with t ∈ R, x ∈ Rd the state variable and u ∈ Rm the control variable. A general textbook

result is that under the following assumptions:

• f continuous in t

• f Lipschitz in x

• f uniformly continuous in u

with a bounded control law u(·) ∈ L∞, the following Cauchy problem admits a unique, glob-

ally defined solution:  ẋ(t) = f (t, x(t), u(t))

x(t0) = x0

(A.2)

This ensures that for any chosen input, the system’s behavior is unambiguously defined by

its start point and dynamics.

If the system is defined in a bounded subspaceD as it is the case in most studied navigation

267



APPENDIX A. FLOW FIELD MATHEMATICAL MODEL

problem, then the previous theorem ensures there exist a unique solution to (A.2) which may

be defined over [t0,+∞[ or [t0, tmax], the second case happening when the trajectory reaches the

border ∂D at some time tmax with outward velocity.

Why it still works for piece-wise Lipschitz continuous functions

If f is only assumed piece-wise continuous in x, then there is a finite collection of pairwise

disjoint open sets (Ωj)j∈J such that D = ∪j∈JΩj and for all t ∈ R and all u ∈ Rm, y 7→ f (t, x, u)

is Lipschitz continuous on Ωj. Let’s call f j the restriction of f over Ωj. The following property

will ensure that f j can be extended to a Lipschitz continuous function over Ωj.

Property A.1: Lipschitz continuous extension

Let Ω be an open set in Rd and ϕ a continuous function over Ω. Then there exists ϕ defined

on Ω such that

1. ϕ Lipschitz continuous on Ω

2. ∀x ∈ Ω, ϕ(x) = ϕ(x)

3. ∀x ∈ ∂Ω, limx→x ϕ(x) = ϕ(x)

Proof. To build ϕ, we first set it to ϕ on Ω. It thus satisfies property (2).

Then, to define ϕ on x ∈ ∂Ω, we use the fact that ∂Ω = Ω\Ω̊ so in particular x is in Ω so

there exist a sequence (xn)n∈N ∈ ΩN such that limn→∞ xn = x. Then (ϕ(xn))n∈N is a Cauchy

sequence since ||ϕ(xn)− ϕ(xm)|| ≤ L||xn − xm||. Thus, since Rd is complete, (ϕ(xn))n∈N con-

verges to a limit. This limit is independent of the generative sequence (xn)n∈N as long as it

converges to x. Indeed if it is the case for (xn)n∈N and (yn)n∈N, then ||ϕ(xn) − ϕ(yn)|| ≤
L||xn − yn|| which shows that (ϕ(xn))n∈N and (ϕ(yn))n∈N have the same limit. Hence we note

the common limit ψ(x). We set ϕ = ψ on ∂Ω. This way, ϕ satisfies property (3).

The only work left is to prove that ϕ is Lipschitz continuous on Ω. Let x, y ∈ Ω. Pick two
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sequences (xn)n∈N, (yn)n∈N ∈ ΩN with limn→∞ xn = x and limn→∞ yn = y. Then

||ϕ(x)− ϕ(y)|| ≤ ||ϕ(x)− ϕ(xn)||+ ||ϕ(xn)− ϕ(yn)||+ ||ϕ(yn)− ϕ(y)|| (A)

But ||ϕ(xn) − ϕ(yn)|| = ||ϕ(xn) − ϕ(yn)|| ≤ L||xn − yn||. And limn→∞ ||ϕ(x) − ϕ(xn)|| =
limn→∞ ||ϕ(yn)− ϕ(y)|| = 0. Thus passing to the limit in (A) leads to

||ϕ(x)− ϕ(y)|| ≤ L||x− y||

which finishes to prove that ϕ is Lispchitz continuous over Ω.

Remark

The Lipschitz continuous extension defined by the previous property is unique.

Noting f j the Lipschitz continuous extension of f j over Ωj, we thus apply the Cauchy-

Lipschitz theorem to f j and get the existence and uniqueness of a trajectory xj which may be

defined either on [t0,+∞[ or [t0, tmax].
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Property A.2: Cauchy-Lipschitz for piece-wise Lipschitz continuous functions

Let D be a bounded set in Rd and

f : R×D ×Rm → Rd

t, x, u 7→ f (t, x, u)

satisfy:

• f continuous in t

• f piece-wise Lipschitz in x

• f uniformly continuous in u

Then there exist a unique maximal solution x(·) to Cauchy problem (A.2) which is either

defined on [t0,+∞[ or [t0, tmax] with x(tmax) ∈ ∂D.

Proof. Let (Ωj)j∈J be the open sets such that D = ∪j∈JΩj and for all t ∈ R and all u ∈ Rm,

y 7→ f (t, x, u) is Lipschitz continuous on Ωj. Then define f j the Lipschitz continuous extension

of f j over Ωj.

Since D = ∪j∈JΩj, x0 belongs to some Ωj0 with j0 ∈ J. Thus, problem (A.2) has a unique

solution y1(·) either defined on [t0,+∞[ or [t0, t1] with y1(t1) ∈ ∂Ωj0 . In the first case, the result

is proven, otherwise if solution stopped at y1(t1) ∈ ∂Ωj0 and could not be further lengthened,

then f (t1, y1(t1), u(t1)) is at outward direction for Ωj0 : so it is either an outward direction forD
at y1(t1) or an inward direction for some Ωj1 . In the first case, y1(t1) cannot be in D̊ so y1(t1) ∈
∂D which proves the result over the maximal window [t0, t1]. In the second case, repeat the

reasoning by initializing the Cauchy problem (A.2) at time t1 and start position x1 := y1(t1)

and using the Lipschitz continuous extension f j1 . End up by concatenating an either finite

sequence of trajectory pieces (y1, ..., yn) over [t0, t1], ..., [tn−1, tn] with yn(tn) ∈ ∂D or an infinite

number of trajectory pieces defining a unique solution over [t0,+∞[.
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Appendix B

Zermelo’s problem in a steady, linear

flow field

B.1 General case

An analytical setting which is of primary importance to study time-optimal navigation is the

case in which the flow field is steady and linear

v f (x) = Ax + b

For this appendix we assume the problem has been scaled so that umax = 1 and thus u = h

and also t0 = 0.
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In this case, the extremal system writes



ẋ(t)

ṗ(t)

 =

Ax(t) + b + h(t)

−Aᵀp(t)


h = − p

‖p‖x(0)

p(0)

 =

x0

p0



Thus

p(t) = e−tAᵀ
p0

and

h(t) = − e−tAᵀ
p0

‖e−tAᵀp0‖

And finally, using Duhamel’s formula on the first ODE

x(t) = etA
(

x0 +
∫ t

s=0
e−sA

(
b− e−sAᵀ

p0

‖e−sAᵀp0‖

)
ds
)

(B.1)

The integral term prevents the formula from being purely analytical. Still, it may be eval-

uated independently by numerical methods and serve as reference optimal trajectory for a

path-planner to compare to.

B.2 Planar case

In what follows, x ∈ R2
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B.2. PLANAR CASE

B.2.1 Diagonalizable matrix

When A is diagonalizable and b = 0, we assume the problem is stated in the matrix’s eigenba-

sis, or equivalently we assume

A =

λ1 0

0 λ2


Using the heading angle formulation 3.6 of extremal trajectories, we have the heading ODE

θ̇ = (λ2 − λ1) cos θ sin θ =
λ2 − λ1

2
sin 2θ

We are thus looking for solutions of Cauchy problem

 θ̇ = λ2−λ1
2 sin 2θ

θ(0) = θ0

(A)

There exist an analytical solution to (A), which we state in the following property

Property B.1

The solution to (A) writes

θ0 6≡ π
2 [π] : θ(t) = arctan

(
tan θ0 e(λ2−λ1)t

)
+ θ∞

θ0 ≡ π
2 [π] : θ(t) = θ0

with θ∞ = n0π and n0 = b 1
π

(
θ0 +

π
2

)
c.

Proof. Because of periodicity, if θ(·) is solution to (A), then θ(·) + π is still solution of (A) with

initial condition θ0 + π. So we only need to study solutions for θ0 ∈ ]−π
2 , π

2 ]. We call k =

λ2 − λ1

For θ0 = 0 (resp. π
2 ), the solution is constant equal to 0 (resp. π

2 ).
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Else if θ0 ∈ ]0, π
2 [, then we first write the ODE from (A) as :

2θ̇

sin 2θ
= k (B.2)

With u = 2θ, the left term is of the form d
dt f (u) = u̇ f ′(u) with f : x 7→ ln | tan u

2 |.

For a given θ0 ∈ ]0, π
2 [, the Cauchy-Lipschitz theorem ensures that there exists a timescale

[0, t∗[ over which the solution ϑθ0 exists. On this interval the solution is differentiable thus

continuous so we take t∗ sufficiently small so that ∀t ∈ [0, t∗[, ϑθ0(t) ∈ ]0, π
2 [. So over this

timescale, u ∈ ]0, π[ over which f is well defined. We integrate (B.2) from 0 to t ∈ [0, t∗[ and

we get:

ln
∣∣∣∣ tan ϑθ0(t)

tan θ0

∣∣∣∣ = kt

The absolute value falls since both tangents have the same sign and we get:

ϑθ0(t) = arctan
(

tan θ0 ekt
)

We notice that we can extend with C1 continuity this expression to t ∈ [0,+∞[.

For θ0 ∈ ]−π
2 , 0[ the steps are the same and we get the same expression as before for ϑθ0(t)

over [0,+∞[.

We then conclude of a general expression by adding the appropriate shifting constant θ∞.

Then, since ẋ = Ax + h, we look for the solution as x(t) = etAy(t) and we get the ODE

ẏ(t) = e−tAh(t)

and
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h(t) =

(−1)n0 1√
1+tan2 θ0 e2(λ2−λ1)t

(−1)n0 tan θ0 e(λ2−λ1)t√
1+tan2 θ0 e2(λ2−λ1)t


so 

ẏ1(t) = (−1)n0 e−λ1t√
1+tan2 θ0 e2(λ2−λ1)t

ẏ2(t) = tan θ0(−1)n0 e−λ1t√
1+tan2 θ0 e2(λ2−λ1)t

Thus the general solution is

x(t) = etA

x0 + F(t)

 1

tan θ0




with

F(t) = (−1)n0

∫ t

s=0

e−λ1s√
1 + tan2 θ0 e2(λ2−λ1)s

ds

which has a closed-form expression that can be found using a formal calculus software

F(t) = − 1
λ1

e−λ1t
√

1 + tan θ0e2(λ2−λ1)t 2F1

(
1,

λ1

2(λ1 − λ2)
+

1
2

;
λ1

2(λ1 − λ2)
+ 1;− tan θ0e2(λ2−λ1)t

)

where 2F1 is the hypergeometric function.

B.2.2 Gradient flow field

When A =

0 a

0 0

 and b = 0, formula B.1 is explicit. It is given in Girardet 2014, Appendix

F. This is a special case of the non-diagonalizable case when matrix A has only one eigenvalue

equal to 0, then it can write as the previous form in the appropriate basis.
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B.2.3 Complex eigenvalues

When A has complex conjugate eigenvalues, it has a simple expression in the appropriate basis.

Property B.2

Let A ∈ M2(R) a matrix with complex (conjugate) eigenvalues u + iv and u− iv. Then A

is similar to

u −v

v u



Proof. Let (e1, e2) the eigenvectors of A associated to (u + iv, u− iv). Write

Ae1 = (u + iv)e1

Ae2 = (u− iv)e2

Then make L1 ← [ L1 + L2 and L2 ← [ i(L1 − L2)

A(e1 + e2) = u(e1 + e2) + iv(e1 − e2)

A(i(e1 − e2)) = −v(e1 + e2) + iu(e1 − e2)

Then define the new basis
ε1 := e1 + e2

ε2 := i(e1 − e2)

and notice that the new matrix in this basis is the required one.

This special form of matrix is studied in Techy (2011).
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Appendix C

Linear flow field, quadratic power

The goal of the appendix is to derive the analytical expression of the energy-time Pareto front

for the navigation problem in the standard linear flow field with a quadratic power function.

The navigation settings are

x0 = (0, 0)

x f = (1, 0)

v f (x) =

0 g

0 0

 x

C.1 Varying SRF energy-time Pareto front

We use the energy-optimal extremals from Sec. 5.4.

The costate evolution is

ṗ =

 0 0

−g 0

p

We consider a quadratic power expense

g(‖u‖) = k ‖u‖2
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So

(g′)−1(a) =
1
2k

a

The optimal control is thus

u? =
‖p‖
2k

(
− p
‖p‖

)
= − p

2k

Thus, the state evolution is

ẋ = − p
2k

+

0 g

0 0

 x

So the evolution of the augmented state is very simple in this case

ż =



0 g − 1
2k 0

0 0 0 − 1
2k

0 0 0 0

0 0 −g 0


︸ ︷︷ ︸

M

z

We have

M2 =



0 0 0 − g
2k

0 0 g
2k 0

0 0 0 0

0 0 0 0


, M3 =



0 0 g2

2k 0

0 0 0 0

0 0 0 0

0 0 0 0


, M4 = 0
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Thus, the augmented costate is

z(t) = etMz0 =

(
I4 + tM +

t2M2

2
+

t3M3

6

)
z0 =



1 gt − 1
2k t + g2

12k t3 − g
4k t2

0 1 g
4k t2 − 1

2k t

0 0 1 0

0 0 −gt 1


z0

At t = t f , the equation on y(t f ) = 0 gives

g
4k

t2
f px,0 −

1
2k

t f py,0 = 0

which simplifies to

t f =
2 py,0

g px,0

Then the equation x(t f ) = 1 gives

(
− 1

2k

(
2 py,0

g px,0

)
+

g2

12k

(
8 p3

y,0

g3 p3
x,0

))
px,0 −

g
4k

(
4 p2

y,0

g2 p2
x,0

)
py,0 = 1

Which gives

− py,0 −
1
3

p3
y,0

p2
x,0

= k g (C.1)

Then, we notice that the instantaneous power is

g
(‖p‖

2k

)
=
‖p‖2

4k
=

1
4k

(
p2

x,0 +
(

py,0 − g px,0 t
)2
)
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So the total energy expense is

E =
1
4k

∫ t f

0

(
p2

x,0 +
(

py,0 − g px,0 t
)2
)

dt

=
p2

x,0

4k
t f −

1
12k px,0 g

[(
py,0 − g px,0 t

)3
]t f

0

=
px,0 py,0

2g k
+

p3
y,0

6px,0 g k

= − px,0

2g k

(
−py,0 −

1
3

p3
y,0

p2
x,0

)
︸ ︷︷ ︸

k g

Eventually

E = −1
2

px,0

So if we use the initial vehicle heading θ0 with the relation

p0 = −‖p0‖ (cos(θ0) sin(θ0))
ᵀ

combining C.1 and C.1 gives

tan θ0

(
1 +

1
3

tan2 θ0

)
=

g k
2E

that we can solve in θ0 to find the initial heading of the trajectory satisfying the boundary

conditions and reaching target with energy expense E.

Then, the costate norm is deduced using a reformulation of C.1

‖p0‖ =
2E

cos θ0

With the explicit initial costate, Eq. C.1 rewrites

t f =
2 tan θ0

g
⇔ tan θ0 =

g t f

2
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Thus, plugging this expression in Eq. C.1 gives the relation between optimal energy expense

and the corresponding travel duration

E =
k

t f

(
1 +

g2 t2
f

12

)

C.2 Fixed SRF energy-time curve

Fixing the SRF and finding energy-optimal trajectories is equivalent to searching time-optimal

trajectories. The time-optimal trajectories of the standard linear flow field navigation problem

have expression (see Example 3.1.3)

ξθ0(θ) :=

 1
2

vr
g

(
−1

cos θ0
(tan θ0 − tan θ) + tan θ

(
1

cos θ0
− 1

cos θ

)
− ln

tan θ0+
1

cos θ0
tan θ+ 1

cos θ

)
vr
a

(
1

cos θ − 1
cos θ0

)
 (C.2)

For time-optimal extremals in these settings, the costate is

p =

 px,0

py,0 − px,0 g t


and tan θ =

py
px

. At the final position

ξθ0(θ f ) =

1

0

 (C.3)

and the lower equation gives θ f = −θ0. But we have

tan θ f =
py,0−px,0 g t f

px,0

tan θ0 =
py,0
px,0
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and tan θ f = − tan θ0, thus

t f =
2 tan θ0

g
(C.4)

Finally the upper equation in Eq. C.3 gives

vr

g

(
sin θ0

cos2 θ0
+ arctanh(sin θ0)

)
= 1 (C.5)

So to build the energy-time curve, one has to solve numerically Eq. C.5 in θ0 and plug back

the value in C.4 to find t f . The corresponding energy expense if t f g(vr) = k t f v2
r .
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Appendix D

Comparison of optimizing in Lambert

projection or in spherical coordinates

In this appendix, time-optimal trajectories computed in a real world case using a projection of

Earth (thus approximations) are compared to the ones obtained using an exact spherical model.

The spherical model for time-optimal path planning was introduced in Chapter 2, Sec. 2.6,

and the corresponding time-optimal problem was given in Chapter 3, Sec. 3.2. The in-depth

interpolated resampling algorithm presented in Chapter 3 was adapted in the DABRY module

in spherical coordinates.

In this appendix, the Dakar to Natal crossing by an air drone is considered. For the pro-

jected problem, the problem data is the same as presented in Chapter 4, Sec. 4.3.3 but without

obstacles. For the spherical problem, the problem data is also the same but is not projected.

The selected projection is a conformal Lambert projection with two standard parallels. This

projection preserves angles locally, and has the advantage to balance distance errors between

slightly shrunk distances between the two paralllels compared to real distances and increased

distances out of the two parallels. For the considered case, the standard parallels are chosen

manually to keep the distortion as low as possible everywhere. The values are −7◦ and 14◦.

To measure distance distortion locally, pairs of points are considered, with the second point
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10 0 10
Latitude [deg]

1530

1540

1550

1560

1570

1580

Di
sta

nc
e 

[m
]

Distance to a point offset by +0.01deg lon and lat
Distance on Lambert map
Real geodetic distance

(a)

10 0 10
Latitude [deg]

0.01

0.00

0.01

Re
l. e

rro
r [

-]

Relative error Lambert distance compared to real distance

(b)

Figure D.1: Difference in the distance measurement on Lambert projection compared to the actual distance on the
globe. (a) Absolute distance for a collection of points with varying latitude. (b) Relative error of the Lambert
projection compared to the actual distance on the globe.

chosen close to the first one, indeed at 0.01◦ North and East of the first point. The Lambert

projection distance distortion measured this way only depends on the latitude and not the

longitude. Thus, a collection of first points are chosen at the middle longitude −26.2◦ and

sampled uniformly from the lowest latitude at −11◦ to the highest latitude at 18◦. The distance

the the corresponding offset second points are computed and the result is shown in Fig. D.1

with the absolute distance and relative distance. The relative error in measuring distances on

the Lambert projection is shown to be always under 1.7% in absolute value compared to the

real distance on the globe, with underestimated distances between the two standard parallels

and overestimated distances out of the standard parallels.

Now, the maximal local error in distances is known. But its impact on the computation

of optimal trajectories still needs to be assessed. Time-optimal trajectories as well as optimal

cost maps are computed on both the Lambert projected space and on the spherical space. They

are depicted in Fig. D.2. In the case, time is scaled by the no-wind travel time from origin to

destination at the nominal speed of 23 m/s rounded to hours, that is 36h. The arrival time of

the trajectory computed on the Lambert projection is 0.997 in rescaled time, while the trajectory
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Figure D.2: Comparison of time-optimal path planning results obtained in a Lambert projected space (red) or di-
rectly in spherical coordinates (blue). Time-optimal trajectories are depicted, starting from the black dot and reach-
ing the black star with a destination threshold depicted as a circle. Optimal travel time level sets are depicted and
labelled in normalized time. The wind field at time 1.01 is depicted in the background.
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computed in spherical coordinates reaches the target in time 1.011. Both time-optimal trajecto-

ries have a very similar shape. The difference in travel time can also be seen in the level sets

of the optimal travel time mapping: the level set computed on the Lambert projection move

faster in the direction of the target than the ones computed in spherical space. There are some

numerical inaccuracies in the level sets on the right border of the problem.

The shorter travel time in the Lambert projection can be explained by the fact that the time-

optimal trajectory in the Lambert projection evolves almost exclusively between the standard

parallels, where distances are underestimated compared to their real values. Thus, trajectories

go faster in the Lambert projection in this region that would be the case on the globe, hence the

reduced travel time. This is corroborated by the shape of the 0.60 optimal travel time level set in

Fig. D.2: in the inter-standard-parallel region, the Lambert level set lies in front of the spherical

level set, but over 14◦, it is the contrary, precisely in the region over the upper standard parallel.

Overall, the difference in shape, travel time and optimal cost map is shown to be of the

order of some percent on the considered example, which is a 3000 km navigation mission by

an air drone flying at 23 m/s in a wind field of maximum magnitude equal to 23.11 m/s. This

serves as a baseline to understand the difference between planning on projection or planning

on the globe. While planning directly on the globe does not suffer from distance distortion,

planning in projected space comes with the great advantage that all optimization techniques

developed in euclidean 2D space directly apply to it. The choice of working on the globe or in

projected space is thus a cost-benefit trade-off between the complexity to integrate sphericity

in methods compared to the benefit of being precise possibly lower than the percent on travel

time, trajectory shape, etc. Yet, in some cases of very long range navigation problems, spherical

coordinates are unavoidable. Also, computation times were longer with the spherical model

compared to the planar model. This may be explained by the cosine term appearing in the

kinematic model of the vehicle in spherical coordinates that is not present in the planar model

and which can lengthen by some percents the integration of all trajectories.
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The illustration on page 1 is a stereographic projection of Earth with the fastest trajectory
for an air drone flying at sea level at 23 m/s between Dakar, Senegal and Natal, Brazil starting
at time 2021-09-29 06:00Z depicted in red. Isochrons, i.e. contours with the same travel time
from the starting point are depicted in black and white. The underlying wind field is the ERA5
reanalysis wind field at sea level (1000hPa) at time 2021-09-29 06:00Z. A stream plot of this
wind field is also depicted. The optimal trajectory and the isochrons are computed using the
open-source DABRY Python module.
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