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Abstract

The growing use of autonomous underwater vehicles and underwater gliders for a
variety of applications gives rise to new requirements in the operation of these vehicles.
One such important requirement is optimization of energy required for undertaking
missions that will enable longer endurance and lower operational costs. Our goal in
this thesis is to develop a computationally efficient, and rigorous methodology that
can predict energy-optimal paths from among all time-optimal paths to complete
an underwater mission. For this, we develop rigorous a new stochastic Dynamically
Orthogonal Level Set optimization methodology.

In our thesis, after a review of existing path planning methodologies with a focus
on energy optimality, we present the background of time-optimal path planning using
the level set method. We then lay out the questions that inspired the present thesis,
provide the goal of the current work and explain an extension of the time-optimal
path planning methodology to the time-optimal path planning in the case of variable
nominal engine thrust. We then proceed to state the problem statement formally.
Thereafter, we develop the new methodology for solving the optimization problem
through stochastic optimization and derive new Dynamically Orthogonal Level Set
Field equations. We then carefully present different approaches to handle the non-
polynomial non-linearity in the stochastic Level Set Hamilton-Jacobi equations and
also discuss the computational efficiency of the algorithm. We then illustrate the
inner-workings and nuances of our new stochastic DO level set energy optimal path
planning algorithm through two simple, yet important, canonical steady flows that
simulate a stead front and a steady eddy. We formulate a double energy-time mini-
mization to obtain a semi-analytical energy optimal path for the steady front crossing
test case and compare the results to these of our stochastic DO level set scheme. We
then apply our methodology to an idealized ocean simulation using Double Gyre
flows, and finally show an application with real ocean data for completing a mission
in the Middle Atlantic Bight and New Jersey Shelf/Hudson Canyon region.

Thesis Supervisor: Pierre F.J Lermusiaux
Title: Associate Professor, Department of Mechanical Engineering
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Chapter 1

Introduction

The use of autonomous underwater vehicles(AUVs) and underwater gliders is grow-

ing in a wide range of applications such as oil and gas exploration, ocean floor map-

ping, search and rescue operations, security and acoustic surveillance, and coastal

and global ocean monitoring, conservation, forecast and prediction (Stommel, 1989;

Bachmayer et al., 2004; Bellingham and Rajan, 2007). Ocean sampling is at the heart

of many underwater operations. For coupled sampling and exploration missions be-

ing developed in recent years (e.g. Bhatta et al., 2005; Curtin and Bellingham, 2009;

Bahr et al., 2009; Ramp et al., 2009; Leonard et al., 2010; Schofield et al., 2010), long

endurance and low energy costs are important requirements. Specifically, there is a

need to increase the capability of vehicles to operate for long periods of time at sea,

often either by developing more efficient power supplies (Bellingham and Raj an, 2007)

or by utilizing the environment to reduce energy consumption (Webb et al., 2001).

Similar requirements arise in various other applications where the environment plays

a significant role in navigation such as navigation of land robots, drones, airplanes

etc. Conserving fuel by designing energy efficient paths leads to cost savings and

environmental protection. In the present work, we consider the problem of finding an

energy optimal path for ocean applications.

The task of designing a path for a mobile robot to navigate from start point (s)
to a desired goal (f) (see Fig. 1-1) by optimizing one or more of (a) the time taken for

travel, (b) energy expended, (c) data collected, and (d) vehicle safety, is called path

17
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Figure 1-1: General definition of path planning is the task of designing a path for
mobile robot to navigate from start point (s) to a desired goal (f) by optimizing a set
of objective criterion

(a) (b)

Figure 1-2: (a) is a Slocum glider (b) is SeaExplorer, a propelled AUV from ACSA
ALCEN. (Wikipedia, 2012)

planning. The term path planning has different usage in various fields of science and

engineering. In a general sense, it refers to the set of rules provided to an autonomous

robot for navigation (Lolla et al., 2012). For a general reading of motion planning

algorithms we refer the readers to Hwang and Ahuja (1992) and LaValle (2006). The

problem of path planning has been studied extensively in the context of robotics [see

for e.g. Sheu and Xue (1993); Latombe (1996); Kavraki et al. (1996)]. For AUV

navigation, two main ocean model feedback systems are employed. The first is to use

a model for forecasting the ocean flow field and use it for AUV path planning. The

second is to adaptively gather ocean flow data as the vehicle navigates and perform

onboard routing (Lermusiaux et al., 2014).

18



Typical propelled AUVs have an endurance of 12-25 hrs and speeds upto 5 knots,

and typical gliders have endurance from a few days upto months and typical speeds

upto 1 knot (Sherman et al., 2001; Rudnick et al., 2004; Schofield et al., 2007). Fig. 1-

2 shows an image of a slocum glider and a propelled AUV. The effect of dynamic

nature of ocean currents on the motion of underwater ocean vehicles is significant.

The ocean currents can be comparable to the speed of AUVs (Schmidt et al., 1996;

Elisseeff et al., 1999). For the motion of gliders, the ocean currents are quite often

about 2-3x the glider's thrust. The energy budget of gliders depends on mission goal

and environmental conditions. The largest energy expenditure for a glider is often

to overcome skin friction (Eriksen et al., 2001). Here, the challenge is to develop

rigorous path planning algorithms that intelligently utilize favorable currents and

avoid adverse currents to increase endurance and reduce energy consumption. Also,

once deployed, these vehicles often have little/no human intervention. As such, we

need to design the paths of these vehicles before deployment with information about

the ocean currents predicted (within predictability limit) using modern numerical

ocean prediction systems.

We present the use of a rigorous partial- differential-equation-based path planning

algorithm that is inspired by the level set method to determine energy optimal paths

among all time optimal paths that navigate a vehicle to a target within a dynamic

flow environment. The path so generated also avoids obstacles. For solving the energy

optimal path planning problem, we utilize a novel model order reduction/uncertainty

quantification method called Dynamically Orthogonal equations and further develop

it for stochastic level-set Hamilton-Jacobi equations employed for computational de-

sign, and optimization. We test our algorithm first for two canonical steady flows that

simulate a steady front and a steady eddy. Next we apply our algorithm to idealized

ocean simulations with a double gyre flow and realistic ocean simulations with ocean

data in the Middle-Atlantic Bight region near the New Jersey shelf/Hudson Bay.

In the next chapter we present a literature review. In chapter 3, we introduce a

formal problem statement followed by a background of time optimal level set based

path planning and new energy-related questions that we raise. Chapter 4 deals with

19



the new energy optimal path planning theory that we develop in this thesis. Chapter 5

concerns the algorithms used for implementing the methodology developed in chapter

4. Chapter 6 covers canonical flows to demonstrate the method. In Chapter 7, we

consider path planning in a flow field generated by an idealized double gyre model

which simulates a realistic ocean jet flow. In this chapter, we also apply our theory to

path planning of a glider released from Buzzard's Bay (offshore from WHOI) to reach a

target in Autonomous Wide Aperture Cluster for Surveillance (AWACS) experiment

region near the New Jersey Shelf/Hudson Bay. A summary and conclusions are

presented in Chapter 8.
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Chapter 2

Literature Review

Path planning for robotic systems have received wide attention (see for e.g. Lolla

(2012) for a review). However, underwater path planning in a dynamic and unsteady

ocean has been studied to a lesser extent (Lolla et al., 2014d). Various methods

have been reported in literature for path planning. First we list the methods that we

review. Next, we review these methods with a special focus on energy optimality for

underwater vehicles.

Dynamic programming based methods like Dijkstra's method and A* search have

been used for path planning. Rapidly Exploring Random Trees (RRTs) is also a pop-

ular method. These two are used in discrete domains with grid generation being a key

step. In the continuous domain, algorithms have been developed using fast marching

methods, and using wavefront expansions. Yet another approach is to perform a path

parametrization and designing a path by optimization on these parameters. For ob-

stacle avoidance, potential field methods have been reported. Some other algorithms

use flow structures like Lagrange Coherent Structures to design navigation paths for

vehicles. Another class of methods is based on formulating the path planning prob-

lem as a non-linear optimal control problem. Modified level set based method is used

for rigorous time-optimal path planning. In the discussion that follows, readers are

referred to relevant literature for more information about how the methods reviewed

are used for other optimality (for e.g. time-optimality) and other applications (for

e.g. robotic path planning).
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A* approaches were applied to AUV path planning by Carroll et al. (1992); Garau

et al. (2009a). The key to a successful application of A* algorithm is availability of

a heuristic, and as such, there is no guarantee of optimality when extended from a

discrete grid based path to a continuous path. Moreover, A* paths become infeasible

in strong flows and complex environment. Garau et al. (2009b) applied the A* search

based path planning algorithm in the navigation of underwater gliders surveying the

Western Mediterranean sea and show that planned paths utilize substantially lower

energy compared to straight line paths when ocean currents are comparable to vehicle

speeds.

Rapidly Exploring Random Trees (RRTs)(Lavalle, 1998; Kuffner and LaValle,

2000) is a sampling based method used to explore the workspace for navigating a

robot quickly and uniformly. RRTs have been mostly used for path planning of

ground vehicles. Jaillet et al. (2010) used RRT combined with stochastic optimiza-

tion to obtain minimum work path for a robot. Compared to robotic path planning,

RRTs have been used in fewer application for underwater path planning. Tan et al.

(2004) used RRTs for obtaining an obstacle free path for an AUV, but without con-

sidering oceanic currents. Rao and Williams (2009) used RRT for generating feasible

paths of underwater gliders navigating in ocean currents. They used an A * search to

identify a path from among RRT paths such that an energy based path cost heuristic

which is linear in the nominal glider speed was minimized. However, the authors

report that the method is not capable of identifying minimum energy paths when the

flow is strong. For more information on RRT readers are referred to papers such as

Bruce and Veloso (2002); Melchior and Simmons (2007); Yang et al. (2010); Karaman

and Frazzoli (2011) A related method using a kinematic tree based navigation planner

that is resolution complete was developed by Chakrabarty and Langelaan (2013) for

UAVs in complex unsteady wind fields.

The above methods are discrete node based graph methods. For path planning in

a continuous domain, fast marching methods (Sethian, 1999a) have been used. These

methods are mostly applied in the context of time optimal path planning using an

isotropic cost function by (Sethian, 1999b) and an extended anisotropic version by
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(Petres et al., 2007). Another method for continuous domain path planning is based

on wavefront expansions. These are also mostly used for time optimal path planning

and hence we don't review them here. However, readers are referred to (Soulignac

et al., 2009; Thompson et al., 2009, 2010) for further information.

Path parametrization and an optimization on the path parameters is another

method reported in literature for AUV path planning. Alvarez et al. (2004) intro-

duced a path parametrization in 3D (2 in space and 1 in time) and 4D (3 in space and

1 in time) to obtain candidate paths for vehicles with fixed thrust that are strictly

monotone in x-coordinate. The candidate paths are then optimized through a genetic

algorithm (GA) to minimize energy required to overcome the drag (which is taken

as a path integral of cube of vehicle velocity). The application shown is for path

planning in a simulation of Sicily channel in the Mediterranean Sea using a forecast

from Harvard primitive equation model. However, GA solution is not guaranteed to

converge in finite time and the assumptions might not be applicable for a complicated

flow environment. Readers are referred to Chien-Chou et al. (2014) for an overview

of evolutionary path planning algorithms. Kruger et al. (2007) also introduce a path

parametrization in 4D (3D in space and 1D in time) and attempt to optimize a

weighted cost function that accounts for energy, obstacle avoidance, time of travel

and target visitation. For the energy cost function, the energy required to overcome

drag (quadratic nominal velocity) and provide acceleration (rate of change of nomi-

nal velocity) is considered. Here, the authors allow for variable engine thrust and use

nonlinear optimization techniques to modify each path parameter to find an energy

optimal path. The authors present an example of navigation in a simulation of Hud-

son River around Manhattan. Even though such non-linear optimization techniques

don't have drawbacks of evolutionary algorithms, the choice of parametrization af-

fects the optimization, thereby making straightforward application to a variety of flow

fields rather difficult and potentially computationally expensive. Sequential quadratic

programming has also been employed by Beylkin (2008) to solve a discrete mechan-

ics and optimal control problem of optimally finding a path for a balloon moving in

windy atmosphere by optimizing a cost functional that is the 12-norm of the control.
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Potential field techniques has been used in AUV path planning (Warren, 1990)

and to design robotic paths (Barraquand et al., 1992) that avoid obstacles and forbid-

den regions. These techniques define a potential field function that penalizes paths

passing through a forbidden region. For energy based path-planning, (Witt and Dun-

babin, 2008) combines potential field for avoiding obstacles and perform a swarm

optimization to find minima of a energy cost function on parametrized paths. The

cost function accounts for energy to overcome drag force (quadratic nominal velocity)

and acceleration force (rate of change of nominal velocity). The swarm optimization

is not rigorous and the authors perform refinements of an ad-hoc nature to further re-

fine and optimize paths chosen by swarm optimization. The algorithms are tested by

simulation and experimentally with Starbug AUV using pregenerated forecast data

sets for Brisbane's Moreton Bay.

Lagrange Coherent Structures (LCS) have been shown to be useful for path plan-

ning (Inanc et al., 2005; Zhang et al., 2008). Specifically, the authors illustrate that

the optimal energy-time-weighted paths computed by a "heuristic receding-horizon"

nonlinear programming problem (NLP) method are close to paths along Lagrangian

Coherent Structures (LCS). Paths are generated using B-Spline approximation of cur-

rents and a Nonlinear Trajectory Generation (NTG) software. For cost, the authors

consider a weighted sum of temporal cost and energy cost (quadratic nominal veloc-

ity), and compute solutions for large/small weights of the time and energy costs. The

authors then show that if paths were chosen to be along the dynamically-evolving

LCSs boundaries, they would be near-optimal trajectories. The application area is

Monterey bay and the flow is obtained from HF-radar (CODAR) data. For other ap-

plication of collaborative tracking of LCS in a double gyre simulation, experimental

flow tank, and using ocean data for Santa Barbara Channel along the California coast

from Scripps, we refer readers to Hsieh et al. (2012); Michini et al. (2014).

Time optimal path planning problems can be solved as a non-linear optimal con-

trol problem (Bryson and Ho, 1975; McLain and Beard, 1998; Aghababa, 2012).

Aghababa (2012) formulate a 2-point boundary value problem for energy optimal

path planning by fixing a maximum time to reach, and use evolutionary algorithms
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to solve for a path that minimize an energy based cost function that depends on nom-

inal velocity to the power of 3/2. Specifically the authors compare the performance

of Genetic Algorithms (GA), and Ant Colony Optimization (ACO) with respect to

Conjugate Gradient (CJ) methods in simple test problems.

Modified Level Set Method (Osher and Sethian, 1988; Sethian, 1999b) have been

developed for time optimal path planning (Lolla, 2012; Lolla et al., 2012, 2014c,d,b,a).

The authors develop a rigorous partial differential equation based path planning al-

gorithm that generates a time optimal path in a flow field. By solving the level set

equation forward in time and then a particle tracking equation backward in time, they

generate a path that is time optimal for navigating underwater vehicle in unsteady

moving ocean currents. Further details of time-optimal level set method is provided

in chapter 3. The present thesis builds from the level set based time-optimal path

planning method to develop a methodology to solve the energy optimal path planning

problem.

In this chapter we reviewed the existing literature, with a focus on energy-optimal

path planning for ocean applications. In the the next chapter we summarize the time

optimal path planning results, ask new questions and formally state a mathematical

problem statement for the present thesis.
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Chapter 3

Background and Problem Statement

In this chapter we briefly describe the time optimal path planning using level set

method (Lolla, 2012; Lolla et al., 2012, 2014d,b) that forms the starting point of this

thesis. After summarizing path planning based on level set methods, we proceed to

ask new questions that inspired our work. Then we describe the goal of this thesis

and formally introduce the mathematical problem statement.

3.1 Time-Optimal Path Planning using Level Set Meth-

ods

Osher and Sethian (1988) introduced the use of level set methods as a convenient

numerical framework for front evolution and tracking. The level set of a function

f(x), x E R" is defined as the set of points at which the function takes a given constant

value, i.e, it is the set {xjf(x) = C}, where C is a given constant. Lolla (2012) explore

the novel use of the level set method for computing the reachability set for a vehicle

navigating in any bounded flow field and thereby develop a new methodology for

solving the time optimal path planning problem. Using generalized derivatives, Lolla

et al. (2014d) provide a rigorous derivation for the new level set equation that governs

the reachability front. Specifically, this time-optimal level set evolves normal to itself

at a nominal (engine) speed F and gets advected by the underlying flow field v(x, t).
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The equation so developed is a Hamilton-Jacobi equation,

+ FIVkI + v(x, t) -V = 0 (3.1)

and 0 is its viscosity solution initialized with a signed distance function from the

starting point. The authors prove that all points inside the zero level set contour that

have # < 0 form the reachability set and the zero level set is in fact the reachability

front for the vehicle traveling with nominal engine speed of F. This forms an elegant

method of tracking the points reachable by a vehicle. The authors also prove that

vehicles which have heading angle normal to the evolving level set travel on the

time optimal path. This optimal path (x*), is then computed by a particle tracking

equation integrated backward in time from the target using (3.2) (Lolla et al., 2014d).

dx* _#(x,__)

dt = -v(x, t) - F Vq(X, t) (3.2)
dt I V#(x, 0)1

3.2 New Questions

The above recently developed time optimal path planning theory and algorithm,

combined with our new objectives of energy-optimal path planning give rise to some

new questions that inspired the present thesis. The questions that we ask and address

in our thesis are

1. Can energy-optimal paths in complex, strong and time-varying currents be pre-

dicted? Can it be done for all (or a given set) of arrival times?

2. Can/Should this prediction be formulated as a stochastic PDE-based design

and optimization problem?

3. Can the Dynamically Orthogonal (DO) equations be utilized to efficiently solve

such problems?

4. If yes, what are computational costs/advantages?

5. Are the resulting schemes usable with real ocean systems?
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3.3 Goal

Consider a vehicle with instantaneous nominal (engine) speed given by F(t) navigating

in a flow field v(x, t). The goal of the present work is to compute the optimal energy

path(s) among all time-optimal paths from point A to point B (refer to Fig. 3-1).

The energy cost function to be optimized is given in terms of a power function as,

E = T(x;())P(t)dt (3.3)
0

Importantly, our methodology allows to utilize any type of power consumption, p(t),
dependence with velocity. For example, for a:

" Linear Optimal, p(t) = JF(t)j, which is often used in control theory for ex-

plaining methodologies, see (Athans and Falb, 2006). This can correspond to a

constant drag.

" Quadratic Optimal, p(t) = F(t)2 , also used in control theory manuscripts. This

can correspond to a linear drag.

" Cubic Optimal, p(t) = F(t)3. This can correspond to a quadratic drag.

Diverse power function including higher order dependence with F(t) will be illustrated

in section 6.2.2.

For more realistic experiments, the power function consists of terms proportional

to various forms of drags and of an acceleration term weighted adequately. For the

motion of a glider that is not accelerating, most of the engine thrust expended to

sustain the speed is utilized in overcoming pressure and skin drags (form drag) as

well as induced drag, e.g. (Sherman et al., 2001). The total effective drag is often

observed to be proportional to the square of velocity for medium Reynolds number

flows and for the Slocum and Spray gliders (Rudnick et al., 2004). In the case of the

Seaglider, its laminar-flow shape gives it a drag that increases as U3/ 2 rather than this

more common u2 dependence.

For the power expenditure due to motions, in the present thesis, we will utilize

the more common dependence and thus focus a power consumption due to glider
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motion in u2 . In doing so, we also assume that the total time needed for accelerations

(the sum of speed-switching periods) is much smaller than the total time spent at

constant speed (sum of the times spent without accelerating). In other words, the

glider accelerates or decelerates from time to time, but most of the time, it operates

at a constant speed and we can thus ignore the acceleration costs and only consider

a cost of the form: f F(t)Pdt.

V(x$t -u~t

A - Start (x.)

Figure 3-1: Goal of the present work is to compute the energy optimal path(s) among

all the time optimal paths from point A to point B (Lolla et al., 2012).

3.4 Time-Optimal Path Planning using the level-set

Hamilton Jacobi equation: provided time depen-

dent engine speed

Before providing a statement of the problem that we solve, we obtain a relatively

straightforward extension of the HJ level-set equation (3.1) for the situation where

the engine speed is provided but time-dependent, i.e. the relative vehicle speed F(t)

is given and variable. In that case, the viscosity solution of the Hamilton-Jacobi

level-set equation with the time-dependent speed, i.e.

+ F(t) |V1 + v(x, t) -V0 = 0 (3.4)
at

30



provides the reachability front and the time optimal path is obtained by a backtrack-

ing equation,
dx* - V#r(x,t) (5= -v(x, t) - F(t)V(Xt) (35)
dt I vo(x, 0)1

Let us consider a time t > 0, where the vehicle has a reachability set and front. From

this instance, the vehicle travels at an instantaneous nominal (engine) speed F(t) for

a time interval dt. The reachability front (i.e. the zero level set) evolves normal to

itself with the instantaneous F(t). The reachability front still remains optimal for

this F(t). For backtracking, the heading angle is normal to the zero level set, which

at the instant t, is independent of the instantaneous F(t), and hence the same for all

F(t). For two different F(t), the only difference is the rate at which the reachability

front evolves normal to itself. Hence, for a given and variable F(t), the solution of

equation (3.4) is time-optimal.

3.5 Problem Statement

The problem statement can be formulated as follows.

Let Q E R' be an open set. Consider a vehicle with instantaneous nominal speed

F(t) > 0 navigating from x, to xf (Fig. 3-1); the solution domain is (x, t) E Q x (0, o).
The vehicle heading is chosen such that it reaches xf using F(t) in optimal time. This

implies that all selected paths satisfy (3.4). Hence, we seek a F(9) that minimizes

the energy cost function. i.e.

/T(xf;F(-))
min p(t)dt (3.6a)
F(o) fo

s.t. =(x, t) = -F(t) IVq(x, t) - v(x, t) -Vo(x, t) (3.6b)

in (x, t) E Q x (0, oo)

T(xf; F(e)) = min {(xf, t(xf; F(s))) < O} (3.6c)
t(xf;F(e))

i(x., 0) =0 (3.6d)

O(x, 0) = x- x-8 (3.6e)
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F(t) > 0 (3.6f)

p(.) = F(.)", where n = 2 (3.6g)

For any F(.), based on the result obtained in section 3.4, solving for the viscous

solution of (3.6b) with initial conditions given by (3.6d)-(3.6f) until the time given by

(3.6c), and then solving the backtracking equation (3.5), we obtain the continuous-

time history of time-optimal vehicle heading angles, *(t). These headings guarantee

time-optimality for the particular choice of continuous-time history of engine speed,

F(t), chosen. Then, among all such time optimal paths which reach the target using

F(.), we seek to find an optimum F(e) that minimizes the energy required (3.6a).

Remark 1: As F(.) decreases, on the one hand p(.) decreases, but on the other hand,

T(xf; F(s)) increases. Hence, for some arbitrary choice of two F(.), we could get the

same T(xf; F(e)), but very different energy consumption, and the above optimization

problem will choose the lowest energy F(.) design.

Remark 2: The opposite effect of changing F(o) on the total time to reach and total

energy used, gives rise to a Pareto Front as used in cooperative game theory (LaValle

and Hutchinson, 1998). We show results in Chapter 6. Such a behavior gives the

vehicle operator freedom to choose an energy optimal path that completes a mission

in a given time frame.

Remark 3: In the present thesis, we will focus on p(t) = F(t)2 . However, we also

provide examples for other power functions in 6.2.2. The methodology developed is

directly usable for all cases.

3.6 Conclusion

In this chapter we first presented the background of time-optimal path planning using

level set method. We then laid out the questions that inspired the present thesis,

provided the goal of the current work and explained an extension of the time-optimal

path planning methodology to the time-optimal path planning in the case of variable

F(t). Finally, we stated the problem statement formally and concluded with some
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remarks. In the next chapter, we outline the theory/methodology that we developed

to solve the energy optimal path planning problem stated in this chapter.
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Chapter 4

Methodology

4.1 Introduction

Different approaches can be considered for solving the energy optimal path planning

problem developed in the previous chapter (equation (3.6)). One approach is to

consider the problem as an optimal control problem and use the solution for two

point boundary value problem to find an energy optimal paths (Athans and Falb,

2006). However, such schemes are often inefficient for time-dependent flow and most

schemes are heuristic in nature (see for e.g. Aghababa (2012)).

A second approach for solving the energy optimal path planning problem is to

use heuristic deterministic optimization. Here, starting from a certain type of F(t) or

control (e.g. bang-bang, reduced function space), a heuristic refinement process (e.g.

Bisection method) can be used to update the F(t) to iteratively reach an optimum or

approximate optimum for that class of F(t). This process is intrinsically heuristic and

it can be an inefficient step-by-step search without a guarantee of full optimality. A

better approach would compute the optimal or near-optimal solutions within a class

or certain type of F(t) all at once.

Hence, another method for solving the energy optimal path planning problem

setup is to use stochastic optimization. In this approach, we consider the F(t) in

equation (3.4) as a random variable. This F(t), then acts as an external stochastic

forcing to the level set equations, rendering it stochastic level set equation. Ideally,
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if the stochastic PDE can be solved at once for a given class of stochastic F(t; w),

then the solution for that class is obtained, which would be an advantage when

compared to a step-by-step search. However, it is only for a comprehensive sampling

of F(t; w) in a class of functionals that the stochastic optimization would yield the

truly optimal solution for a large class of F(t). The sampling can be done for F(t; w)

from a probabilistic distribution (e.g. Uniform distribution), or a stochastic process

(e.g. random-walk or a more general suitable markov process). The advantage of this

method is that if it is feasible, the solution within the class would be found in a single,

albeit possibly expensive, stochastic optimization step. Of course, if the class within

which the search is performed is complete, one would get the true solution. If the

class is not complete, one can utilize the optimal result obtained for a given class to

hierarchically generate new classes from the existing ones, hence refining the optima

at each stochastic optimization, aiming to obtain the true solution for a complete

class iteratively. This hierarchical stochastic optimization is an accelerated heuristic

deterministic optimization in the sense that a class of F(t; w) is evaluated at each

step, instead of a single F(t; w).

However, a disadvantage of this stochastic optimization approach is the possible

expensive cost of solving the stochastic PDEs. Fortunately, we can exploit the non-

linearities of fluid flows and investigate if the stochastic level-set equations could be

solved with a Dynamically Orthogonal decomposition (Sapsis and Lermusiaux, 2009).

Based on the above discussion, for the present thesis, we will focus on developing

and applying a new stochastic optimization methodology to solve the energy optimal

path planning problem using new dynamically orthogonal level set equations and an

optimization algorithm on the stochastic simulation output.
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4.2 Stochastic Optimization Setup

Considering the nominal engine speed as a random variable, F(t; W), we obtain the

stochastic level set equation written in the Langevin form

a-(xt;W) = F(t; w)IVo(x, t; w) -v(x, t) -Vo(x, t; w) (4.1)

in the domain given by

(x, t) E Q x (0, oo); w is random event. (4.2)

We solve the SPDE until the first time instant T(xr; F(*; w)) which satisfies

q(xf, T(xf; F(e; w)); w) < 0 (4.3)

using the initial and boundary conditions given by

q(x., 0; w) = 0 (4.4)

0(x, 0; W) = Ix - x"I (4.5)
0X = 0 (4.6)

and non-negative nominal engine speeds,

F(t; w) > 0. (4.7)

Such a stochastic simulation, gives us the distribution of time to reach T(xf; F(*; w))

for a externally forced distribution of F(9; w). An optimization is performed for each

simulated time to reach, to obtain the F*(.) that minimizes the energy objective

function for that time to reach. This can be expressed mathematically in terms of an

integral of power function as

E(F(o; w), T) = f(x;F(e;w)) dt (48)
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F*(t) = arg min E(F(e; w), T) (4.9)
F(-;w)

As discussed in section 3.3, some typical power functions are:

p(t) ~ F(t) (4.10)

p(t) ~ F(t)2 (4.11)

p(t) ~ F(t)3 (4.12)

where (4.10) is a power function that results in a constant grad (also called fuel

optimal in some cases), (4.11) results in a linear drag optimal path, and (4.12) results

in a quadratic drag energy optimal path.

The most straightforward method to solve the SPDE is through a Monte Carlo

(MC) simulation of deterministic simulations of the level set PDE for different re-

alizations of F(t; w). Unfortunately, the MC solution is expensive to compute and

its cost increases with number of realizations. Since in (4.1), v(x, t) is the flow field

velocity, and we consider ocean applications, an efficient solution method for solving

(4.1) would be a methodology that exploits the nonlinearities of the flow, which tend

to concentrate the 4 responses into specific dynamic patterns. Such a methodology is

the DO decomposition (Sapsis and Lermusiaux, 2009, 2012; Ueckermann et al., 2013).

However, this has never been done before for the viscosity solution of (4.1) and we

will thus employ the MC solution to benchmark and evaluate our novel DO-level-set

solution.

4.3 Dynamically Orthogonal Equations

For general stochastic continuous field #(x, t; w), described by a stochastic partial

differential equation (SPDE),

9i(x, t; W) = L[#(x, t; w), x, t; w], (4.13)
tt
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Sapsis and Lermusiaux (2009) applied a generalized dynamic Karhunen-Loeve (KL)

decomposition
S

0(x, t; w) = k(x, t) + E Y(t; w)A5(x, t) (4.14)
i=O

and an orthogonality condition on the evolution of stochastic subspace

(& = 0 V i (4.15)

to obtain dynamically orthogonal equations for the statistical mean, coefficients and

modes as

(x, t) = E [L]; (4.16)

Y (t; w) (L - E[L], I); (4.17)

8a (x, t) I
C,'F E[Yj, (4.18)

j=1

where ,p is the operator which returns the component orthogonal to the stochastic

subspace spanned by q.

Details of this work are explained in Sapsis and Lermusiaux (2009), Sapsis and

Lermusiaux (2012), and Ueckermann et al. (2013). The DO equations are able to

efficiently represent uncertainty in an evolving subspace.

4.4 Stochastic Simulation

To derive new DO Level Set equations we introduce a DO representation for F(t; w),

and O(x, t; w). For brevity of notation, in the DO equations (x, t; w) is dropped, the

notation - refers to the mean of a quantity and ~ refers to the mode of quantities. And

in addition Y refers to the stochastic coefficients of 4 while z refers to the coefficients

of F. The subscript 'i' refers to the 'i'th coefficient or 'i'th mode as the case maybe.

Hence, we have,

F = P + zP (4.19)

39



and

=0 + YA (4.20)

as DO representations of F and #. These time-dependent representations of the

stochastic process F(t) and # are such that if truncated to a subspace of size sF

and s, respectively, each of them capture the most of these processes in the sense

of variance explained (K-L property). We also have by definitions, E(z) = 0 and

E(yi) = 0. Substituting these into the stochastic level set equation (4.1), we get,

+Yi +#dY = -(F + zF) jV( + Yiq$) - v -V(0+ Yi) ) (4.21)
at ot dt

To derive the mean, mode and coefficient equations from (4.21), we need to pay

special attention to the non-polynomial, non-linearity in the SPDE, viz., v + 5Yi2) .

Some approaches are reported in literature in (Debusschere et al., 2005; Julier and

Uhlmann, 1996) for based model order reduction schemes based on the polynomial

chaos expansion. Next, we propose different approaches to evaluate (or find an ap-

proximation to) this term. Each approach leads to new DO equations and they are

described in the following sections. For ease of bookkeeping, we introduce a new

notation for the non-polynomial non-linearity as,

y = IVI (4.22)

For 2-dimensions in space we have,

a = -+y (4.23)

and for 3-dimensions in space we have,

L = +42 +0 (4.24)
9Y y
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We will focus mainly on 2D in space applications, but that the equations that

follow are applicable to applications in larger dimensions.

Hence, (4.21) becomes

oq _ ~ dY_
+i 4d = -(F + zF)y - v -V(0 + Yj) (4.25)

In addition to the analytical derivations and methodological aspects involved in re-

ducing (4.25) to the DO decompositions, we mention the need of paying attention to

numerical properties for stochastic viscosity solutions and their applications to these

new DO equations for (4.25). These will be outlined in section 5.3. Next, we focus

only on the analytical equations.

4.4.1 DO-MC Gamma

The first approach we consider is to evaluate the non-polynomial non-linearity (-Y)

through a Monte Carlo computation without evoking a separate DO representation

for y. This approach will not fully exploit the redundancy in -y that can be obtained

through a stochastic reduced order representation. Nonetheless, we exploit redun-

dancy in # which leads, as we illustrate, to substantial cost savings. The mean, mode

and realization evolution equations for this approach are

S-(FE[y] + E[z-y]F) - v - V0 (4.26)

dY

d = (P(y - E[y]) + P(zy - E[zy]) + Yv- V- k, qi) (4.27)

F(]E[Yy + FE[zYy|)+v -Voi

-C y,(PE[Y1] + FE[zYj-YI) + V , , (4.28)

4.4.2 DO-KL Gamma

The second approach we consider is to introduce a DO representation for the non-

polynomial non-linearity (-y) as

Y = Y + aQij' (4.29)
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where ac and j and coefficients and modes respectively for reduced order representa-

tion for -y. The number of modes for representing -y (s.,) and # (s) can in general be

different. By inserting (4.29) into (4.21), we obtain the mean, coefficient and mode

equations as

-(F + FE[zaI])~y - v - VO (4.30)

dY- - FQ~ - ~E ~ ~I~
-= - Fak + zFa] - E[ak] - FE[zak) k + Ykv -V$ + zFy, q5 (4.31)

dt

= -O-C-:y (E[Yak]$k + CYzF E[Yzak]k) -v Vq5 (4.32)

- (-Cy, (E[Yak ]kF + CyjPF + E[YzakkF) -v -Vi, qn jn

The challenge of this approach is to arrive at an expression for the mean, modes and

coefficients of -y. We consider two methods for overcoming this challenge.

SVD for Gamma

The mean, mode and coefficients are obtained by a reduced order SVD of -y realizations

computed from q5 realizations. i.e.

S= E[ V(O- + Yiqi) 1 (4.33)

We define a matrix of mean removed -y' realizations,

Mv( Y ) - + y (4.34)

where the superscript on Y refers to realization number and m is the number of

realizations.

By taking an SVD of the matrix of realizations, we obtain,

M = U*S*VT (4.35)

a = V*ST (4.36)
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(4.37)

Dimensionality reduction is achieved by choosing the first s, columns of U as the

modes ~.

Taylor for Gamma

A DO/KL representation of the non-polynomial non-linearity can be obtained by

applying a Taylor series expansion of the realizations around q. Such a Taylor series

expansion gives us an expression for -y, a and ~ needed in equations (4.30) to (4.33)

as,

-7= 5+5 (4.38)

ai = Y (4.39)

i=OmV_ +0j (4.40)

where the subscript x and y refer to derivatives with respect to x and y (Osher and

Sethian, 1988)

4.4.3 Comments/Remarks

The DO coefficient equation can be integrated in time by a MC algorithm in the DO

subspace (Ueckermann et al., 2013). Hence, the DO method which is generally used

for uncertainty quantification can be used as a computationally efficient stochastic

optimization technique.

An alternative way to look at the approaches to handle non-polynomial non-

linearity is from the point of view of algorithms. For the time integration of the

mean, mode and coefficient equations a computational estimate of the mean, mode

and coefficient for -y is required. The different approaches described above provide

a method for making this computation. In the SVD for Gamma approach ( 4.4.2),

the modes are estimated by a reduced order SVD. However, in practice computing
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an SVD at each time step has a cost O(mn 2) where m is the number of samples and

n is the number of grid points which can become computationally time consuming

for large problems. A lanczos method or a Krylov subspace method can reduce

the computational effort to O(ns2 ) (Gugercin, 2005), where s is the size of the DO

subspace. As we are only interested in obtaining an approximation for the modes, it is

sufficient to update the modes of -y intermittently. An intermittent SVD computation

is faster than an algorithm which requires SVD computation at every time step, but

produces good approximate results as we will show in 6.4.1.

The algorithm view point of the Taylor for Gamma method is that the mean,

mode and coefficients for the non-polynomial non-linearity are approximated by a

first order Taylor expansion. This approximation gives good results as long as the

pdf of the -y function is well approximated by a locally linear representation. Since

the pdf of -y depends on the pdf of the level sets governed by the sample path eqn

(4.1) and on the pdf of the gradient of level set realizations, this approximation can

be good but not in all cases. This is illustrated in section 6.4.1.

4.5 Optimization

The second part of solving the energy optimal path planning problem is to perform

an optimization of E(F(., w), T) (refer to equation (4.8)) of the stochastic samples

such that some constraints of T(rf;w) are met.

The new stochastic DO-level set equations provide, for each of the sample of

F(t;w) considered, the optimal time-to-reach the target. Thus, in terms of DO rep-

resentation, the optimization becomes,

FDo(t; r) = F + z(t; r)F (4.41)

/T(xf;FDo(e;r))
F;O(t) = arg min FDo(t; r)2 dt (4.42)

FOo(;r) 0

Other power functions can be used as described in @3.3
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4.6 Brief Derivations

4.6.1 DO-MC Gamma Derivation

In this section, we present the new DO level set equations introduced in 4.4 and

briefly describe their derivation.

We first derive equations (4.26) to (4.28). Starting from the level set SPDE given

by (4.1), substituting the DO expansions for F and q, we obtain,

+ Yi 9+ = -(F + z) - v -V(0+ Yiji) (4.43)

The mean equation is obtained by taking expectation on both sides of (4.43)

- -(FE[-y] + FE[zy]) - v -V0 (4.44)

The coefficient equation is obtained by taking an inner product of (4.43) with the

modes and applying the dynamically orthogonal condition,

+ Y2 Kak~i + -i &) (j p'y _p 1,4)- (V -. -YjV -.

(4.45)

First term on the LHS of (4.45) is obtained by taking an inner product of (4.44) with

modes,

(tE- -+ FE[zy]) + v - Ve, q5, (4.46)

Substituting (4.46) into (4.45) we have

0, DO condition

Yi , 7 + ji,= (P(7 - E[-]) + >(z^ - E[zy]) + Yiv V

(4.47)

dY= - (P( - E[y]) + f(zy - E[z-y]) + YkV - V& ki) (4.48)
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(4.47) to (4.48) is because of orthogonality of modes.

Multiplying on both sides of (4.43) by the coefficients and taking expectation we

have

Y4
9tG

dY
+YYi 1t

C90y
cyj Yi -

-(Y yp + zY yP) - Y -V - YYv -Vqj

+ OjCy. dY = -FE[Yy] - FE[zY rl - Cygyv -Voi
3 dt

(4.49)

(4.50)

C y. is obtained by multiplying (4.48) with coefficients and taking expectation as,

dY =
Yjdt =j -y - Yj E [-])F j) - ( (zYj -y - Y;E [zy])FP, j) - YjYk(V Wqk) bi) (4.51)C Y

Cy = -i(E[Y-y]P, i) - (E[zYg])P, k) - Cyjy,(v - Vi, b)

Substituting (4.52) into (4.50) we get the evolution equation for modes

= -Cy, E[Yy]P - C yE[zYy].P - v- Vqi

- (( -C E [Y -y]F - C2, E [zYJF -v -Vqs), V )

(4.52)

(4.53)

4.6.2 DO-KL Gamma Derivation

We now show the key steps required to arrive at equations (4.30) to (4.33). Introduc-

ing a DO expansion for -y in (4.43) we obtain the SPDE,

dY
+ Yig S-(P + zF)(Py + CO) - v -V( + YAbr)

= -(P7j+ Pajn + zP- + zaciP) - v -V(4 + Yq().54)

We then obtain the mean equation by taking expectation of (4.54) as,

= -(Py + PE[zaj]yj) - v- Vq5 (4.55)
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To obtain the coefficient equation we start by taking an inner product of (4.54) with

the modes e as,

+ yi It
at /, -= P KF' aj' + .,y zPjj n

(4.56)

The first term of LHS of (4.56) can be obtained by taking an inner product of (4.55)

with q as

= - (Py + PE[zai]~ + v -V , n) (4.57)

Substituting (4.57) in (4.56) and using the dynamical orthogonality condition we

have,

= - (Pajd; + Fz + F(zai - E[zaj])~7 + Yv - Vqi, &) (4.58)

Using the orthogonality of modes, we then obtain the coefficient equation as,

dY
dt = - (Pak k + PzI + P(zQk - E[zOkI)a k + Yv - V&, i ) (4.59)

For the mode equation, an expectation of (4.54) multiplied with coefficients Y is

taken to get,

Cy b + 0 = -E[Y ai]~yP - CyzF-y - E[Yjzai]~;F - Cyyv - Vi (4.60)

Cy is obtained by multiplying (4.59) with Y and taking an expectation as,

Y dt
= -(PE[Ykk + E[YjzakjI'k + CYyV- Vq-W + Cyzfi', i (4.61)
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Substituting (4.61) in (4.60) and rearranging, we obtain the mode equation as

O~
~~j7

= -C-. (E[Yak] kP + Cy 3, + E[YjzakJ kF) - v -V5 (4.62)

- (-Cy-; (E[YankIkP +C 1,z + E[Y zakI kF - v - qf, &fl

4.6.3 DO-Taylor Gamma Derivation

In this section, we present the first order Taylor approximation for the non-polynomial

non-linearity and describe the key steps in deriving results presented in 4.4.2. We

consider the non-polynomial non-linearity as a function of realizations of spatial

derivatives as,

(4.63)

Hence we have a function on which we apply a first order Taylor approximation,

-Y = (OX, 0)

= f ( X + Yi& ., + YA,)

af q5) Y

Comparing:

ei= Yi

jf(x, ) 00

74 = 44a -

'yi = i. _W _ j

Thus we derive the results presented in 4.4.2.
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(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

f(#O, # ) = # + #2Y

= f(OX,00)+ Yi ( ,

; = f ( , Y)

+ ki O O70
00Y



4.7 Conclusion

In this chapter we obtained a methodology to solve the optimization problem through

stochastic optimization. We also briefly outlined the theory of Dynamically Orthog-

onal equations and derived new DO Level Set Field equations. We carefully pre-

sented different approaches to handle the non-polynomial non-linearity in the Level

Set Hamilton-Jacobi equations. In the next chapter we present the algorithms devel-

oped and utilized in this thesis.
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Chapter 5

Algorithm

This chapter describes the algorithms developed for solving the energy optimal path

planning problem using the methodology developed in Chapter 4. First, we describe

the overall algorithm, then we go into details of each step. Broadly, the algorithm

has a stochastic simulation part followed by an optimization part. For the stochastic

simulation, we develop algorithms to solve the DO equations and for the optimization

part we use well established search and sort algorithms.

5.1 Overall Algorithm

The overall algorithm has 5 major steps, the first three of which are part of stochastic

simulation and last two are part of optimization. Fig. 5-1 shows the flowchart of the

algorithm developed in the present thesis.

5.2 F(t; w) sampling

The solution to the optimization problem depends critically on the stochastic F(t; w)

chosen. As noted in the theory section, we get the optimal solution within the class

of F(t; w) we search in. Moreover, if the class within which the algorithm searches is

complete, we get the true solution. Therefore, a comprehensive sampling strategy for

F(t; w) becomes useful to the quality and efficiency of solution.
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We consider various sampling strategies in this work. They are as follows.

1. Uniform sampling of constant engine speed

2. Bounded Gaussian Random Walk

3. Exponentially correlated random walk

4. Switch Sampling

5. Pseudo-Uniform energy sampling

6. Bang-Bang sampling

Fig. 5-2 illustrates some samples from Uniform, Bounded Gaussian Random Walk,

Exponentially Correlated Random Walk and Switch Sampling strategies.

5.3 Numerical Stochastic DO-Level Set Simulation

The first part of the algorithm solves the new stochastic DO level-set equations de-

veloped in section 4.4. Next, we describe the algorithm used for the initial and

boundary conditions, and advection terms.

5.3.1 Initial and boundary condition for DO equations

The start point (xS) is deterministically known, and so we assume there is no uncer-

tainty initially for the level set fields. The mean level set field is initialized with a

signed distance function centered with respect to the vehicle's start point. The coef-

ficients are initialized to zero. For initializing the level set modes, we experimented

with different strategies and chose the following: The slowest vehicle is evolved deter-

ministically for first few time steps. The SVD of time snapshots of the level set field

for this vehicle is chosen as the initial modes for level set field. For the first few time

steps, all vehicles evolve from the same location radially outward, and the slowest

vehicle captures the possible evolution of all other vehicles. If the fastest vehicle was

twice as fast as the slowest vehicle, for example, then 3 time steps of the slowest
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vehicle will capture the first time step of the fastest vehicle, and all other vehicles

will have been captured in between.

5.3.2 Numerics

An explicit first order time marching scheme is used for time integration of mean,

modes and coefficients (Ueckermann et al., 2013). For advection of the level set by the

underlying flow field, we employ a Total Variation Diminishing scheme (Ueckermann

et al., 2013). The gradient of the level set fields are taken according to (Sethian,

1999b). For the Taylor-Gamma scheme, the derivatives of level set modes are taken

according to the viscosity solution scheme of Sethian (1999b), but the upwind di-

rection choice is made on the basis of mean level set field's upwind direction. The

algorithm is developed in MATLAB using MSEAS/MIT 2.29 Finite Volume Frame-

work (Ueckermann and Lermusiaux, 2011).

5.3.3 Various tests

Extensive tests were conducted to verify the schemes finally used and shown in this

work. Several of these tests are listed in Fig. 5-3

5.4 Optimization

We use a minimum search for finding the least energy path for all DO level-set re-

alizations and their corresponding optimal path that complete a mission in a given

time interval. For obtaining a list of paths that could be used for a mission, we use

MATLAB built in sort function (McKeeman and Shure, 2004) which is an efficient

implementation of the quick sort algorithm (Hoare, 1962).

5.5 Conclusion

In this chapter we briefly outlined the algorithms used for implementing the method-

ology developed in Chapter 4.
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1. Stochastic DO
Simulation

In our examples,
0(1000) faster than
pure Monte-Carlo

2. Optimization I
Comprehensive sampling of F(t)

Solve stochastic DO level set eq. and
obtain time-to-reach for samples of F(t)

Compute Energy Spent by all samples

Identify sample with optimal energy
expenditure for a given time to reach

using Sorting Algorithm

F*(t) is an engine speed that leads to an
energy and time optimal, within F(t)

Update F(t) samples, Iterate

Figure 5-1: Flowchart depicting different steps of the algorithm
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Uniform Sampling of F(tOi)

100 200 300 400 500 600 700
Time Steps

(a) Uniform Sampling

Exponentialy Corelaled Random Wak Sameplng of F(te)

-t 1

100 200 300 400 500 600 700
Ti Steps

(c) Exponentially Correlated Random Walk
Sampling

Random Walk Sampling of F(tw)

0.8
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Time Steps

(b) Bounded Gaussian Random
pling
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05a

0.4

0.3

0.2

0.9

0.8

0.7
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0.4
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Switch Samping of F(t;m)
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(d) Switch Sampling

600 700

Walk Sam-

600 700

Figure 5-2: Samples of F(t; w) from different sampling strategies
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Sampling F
- Uniform energy sampling for F(t), many other choices

Varied numerical parameters
- Number of realization (for F and phi)
- Size (s) of DO subspace.

Initial Conditions
- Initialize modes/coefficients by varied sample sizes/strategies of initial MC runs

Boundary Conditions
- Neumann and Dirichlet BCs for mean and modes, new weak open BCs for phi

Domain and flow
- Different flow strengths
- Different start and end points [Near boundary, near eddy etc]

Numerics
- 2nd order UPWIND vs first order UPWIND for gradient
- RK vs Euler for time stepping

Non-linear term update
- Prognostic equation

Optimization
- QuickSort, MergeSort, Minimum Search

Figure 5-3: List of various tests performed
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Chapter 6

Applications: Canonical Steady Flows

6.1 Introduction

In this chapter we present results from applying our methodology to solve energy

optimal path planning problems in simple illustrative canonical flows by implementing

the algorithm in MATLAB. We consider two canonical steady flows that simulate a

front and an eddy. First we present a benchmark analytical solution for the simulated

front, and test to see if our algorithm is able to get close to the analytical optima.

Next we present an illustrative example to further illustrate the inner-workings and

capabilities of the algorithm. Finally we present energy optimal path planning results

for crossing a steady front, and for traveling in an eddy.

6.2 Jet flow: Simulated Steady Front

In this section, we evaluate how the algorithm performs on a simulated steady front

flow. On a rectangular domain with dimensions a x b, we use a jet flow to simulate

a steady front as,

U 0.4b < x < 0.6b
Ux = (6.1)

S0 otherwise

UY = 0 (6.2)
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10 20 30 40 50

Figure 6-1: The domain with a simulated steady front

the algorithm developed in this thesis
used for testing and illustrating

End * ---
2F2 2

02

Start ------------------ --- ---------

Figure 6-2: Parameters involved in optimal crossing of a jet flow: jet speed V and

width d; start (circle), end (star), distances, vehicle nominal speed and headings are

marked. Adapted from Lolla (2012)

where the subscripts refer to the component in that direction, and U controls the

strength of the flow. The domain with the flow is shown in Fig. 6-1

6.2.1 Benchmark Solution

In this section we present an analytical solution that can be computed to serve as a

benchmark to test our algorithm. Adapting the notation, we reproduce the schematic

from Lolla (2012) in Fig. 6-2. Suppose we wish to determine the optimal engine

operation history such that the corresponding nominal velocity of the vehicle can

vary between Fmin and Fmax at any instant of time. The question then is to determine
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this nominal (relative) vehicle velocity history F(t) such that it minimizes the energy

utilized while still reaching the end point in optimal time. In what follows, we provide

arguments that allow us to derive a double minimization problem whose solution gives

the energy-optimal in the sense defined in Section 3.5, but only for a single arrival

time at a time.

To start the arguments, we first consider the motion from the start point to the

highway. There, the vehicle is not affected by the environment and the level set

grows normal to itself outward at a rate equal to the nominal instantaneous engine

speed. The motion (e.g. total displacement over a give period) achieved by any

time series of nominal engine speed is equivalent to the motion achieved by the mean

nominal engine speed of that time series for the same duration. However, the energy

consumption by the vehicle varies as some power function of the nominal speed that

is of order higher than 1, see section 3.3. As a result, that energy consumption will

be different for each time series F(t).

It can then be shown that the energy consumption to execute a motion is minimum

when the mean speed is used. For illustration, suppose a vehicle travels at Fmin for

time t, and at Fmax for time t2. The motion achieved by this vehicle is equivalent to

the motion achieved by a vehicle travelling at P = (Fm-nti + Fmat2)/(ti + t 2). The

energy utilized by a vehicle using this particular time series is EV = Fnit1 + Pat 2

where the subscript v refers to any vehicle. On the other hand, the energy utilized

by a vehicle traveling at mean speed is Em = P(tl + t2 ). Here n > 1 (see for e.g.

3.3). For n = 2, by simple algebra we have,

Em - Ev = (P - Fmin)(Fmax - F) (6.3)

Hence we have, Em < Ev. This can be generalized to any number of engine switch

(larger than 2), using the Holder's inequality. We also note that similar arguments

can be made for the vehicle motions beyond the highway up to the end point.

To continue the arguments, we now consider the motion of the vehicle within the

steady and uniform jet proper, i.e. within the steady "highway", the motion of vehicle
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in the x-direction is affected. Here also, it can be shown that using a single speed

results in lower energy consumption, and that any time series has an equivalent single

time-mean speed. Therefore, an energy optimal path can only have one speed for the

vehicle from the start point to the highway at some to-be-determined point, then

another speed (same or different) for the time optimal motion in the highway and

finally another speed for the highway to the target. This completes the arguments

that allow us to set-up our double minimization problem, "energy-optimality subject

to time-optimality". This is done next.

Based on the above, we assume that the optimal engine speed varies in time such

that it uses F1 , Fd, and F2 from start to the highway, within the highway, and from

the start point to highway to the end point, respectively.

Let U denote the total effective velocity of the vehicle in the flow, as seen by a

ground observer. Within the highway, we have, componentwise,

U =Fdsina+V (6.4)

and

UY = Fd cos a (6.5)

where U2 and U, are the x and y components of the total vehicle velocity, U. This

gives,

tan# / -U -= tana + - sec a (6.6)
F

Outside of the highway, the relations are the same, but with V=-0. Now, let X be the

total downstream displacement of the vehicle, i.e. in the x direction. We have, from

trigonometry:

X = y tan 1 + dtan3+ y 2 tan02  (6.7)

Finally, the total travel time T can be written as the sum of travel times in each

individual region. Hence, the time optimization problem we wish to solve is:

min T = Y + d Y2 (6.8)
F1cosO 1 F cosa F2 cos 02
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s.t. X = y1 tan1 + d tan a + - sec a) + y2 tan 02  (6.9)
Fd

and

01, 2, a > 0

Now, on top of this time-optimality, we want to determine the energy optimal

path, for each arrival time. Hence, assuming for now a general energy cost over dt as,

dE = p(t)dt = F(t)ndt, wheren >= 1 (6.10)

we obtain the energy required from this crossing of the steady front, from the start

point to the end point, as:

cos 1  dosY 2  (6.11)

For a fixed time-to-reach the target, the optimal energy problem is formulated as,

min E = Fl-' Y + F"~1 d + Y2 (6.12)
F,F,F2  Cos 91 cos a COs 02

s.t. (6.13)

X = yitan + d tana + -sec a) + y2 tan02  (6.14)
( Fd

T = min + dy2(615eeFCos 01 + Fdcos + Y2(6.15)
01,C02 d 1 FCos F2 cos 02

01 , 02 , a > 0 (6.16)

Fmin 5 Fl, Fd, F 2  Fmm (6.17)

n > 1 (6.18)

where X, T, Fmjn, and Fma. are supplied to the optimization problem. This completes

the derivation of a double minimization problem whose solution gives the energy-

optimal in the sense defined in Section 3.5, but again only for a single arrival time

at a time. For yi = 0.2167, d = 0.2 , y2 = 0.2167, V = 3, Fmin = 2, Fmax = 3, X =

0.6334,and importantly fixing a single target T to be T = 0.26 we obtain the numerical

solution of our double-optimization problem as presented in Table [6.11. This solution,
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Table 6.1: Optimal Parameters for the energy optimal path arriving to the end point
in optimal time T=0.26.

Parameter Using Non- Using new stochastic DO
Linear Opti- level-set optimization
mization

01 23.190 26.800

02 23.740 19.530

#8 65.810 68.430
F1  2.86 2.79
Fd 2.62 2.44
F2 2.93 3.00

column 1 of Table 6.1, was computed using the iterative non-linear optimization

toolbox of MATLAB.

Now, we compare this "semi-analytical" solution to the solution obtained by our

new stochastic DO level-set optimization scheme. To do so, we need to select an

adequate stochastic set of F(t; w) histories. First, we remark that all vehicles will

reach faster than a vehicle which travels throughout the distance at Fm.in. Hence, the

total time required will at most be the time required by this slowest vehicle. Let this

be Tm,. The number of F(t; w) samples, i.e. FDO(t; r) (see equation (4.41)), required

grows with the resolution in time axis exponentially, i.e., even if only two possible

engine speed choices are possible, and if the time axis from 0 to Tma. is divided

into n intervals, a total of 2' FDO(t; r) samples are required to obtain an exhaustive

search (in the bang-bang control sense). With the available computing resources and

reasonable runtime, we choose to resolve the time axis into n=26 intervals. The

energy optimal path planning is then performed using our new stochastic DO level

set equations with this FDO(t; r) class of speed histories, i.e. an exhaustive sample

space but only for that 2 speed and 26 time-intervals (25 speed switches). The result

of this stochastic DO level-set optimization with the same parameters as above is

presented in Table [6.11
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Table 6.2: Numerical parameters in energy optimal path planning to cross a simulated
steady front

Description Parameter Value

Size of domain in x direction a 100
Size of domain in y direction b 100
Number of grids in x direc- Nx 100
tion

Number of grids in y direc- Ny 100
tion
Spatial discretization in x dx 1
direction

Spatial discretization in y dy 1
direction
Total time of simulation T 1
Time step dt 0.2
Number of DO modes s 20

Number of DO samples m 10000

6.2.2 Illustration of the algorithm

In this section, we use another steady flow as an example to illustrate the algorithm

that was developed in this thesis. A 100 km x 100 km domain is discretized with

a 1 km spatial grid. A jet flow is used to simulate a steady front that travels from

left to right of the domain between y = 40 km and y = 60 km with a strength

of 83 cm/s. The numerical parameters used are provided in Table [6.21. With the

stochastic DO level-set approach, a key to finding the true optima is to use an efficient

and representative sample of F(t; w) used in the stochastic DO simulation, FDO(t; r)

given in equation (4.41).

In this section, we are going to compare 3 sampling strategies. The first one is

a uniform distribution for FDo(t; T). This is used simply for comparison with the

other two since it is not trying to be energy optimal since FDO(t; r)=constant in time.

Hence, it should give results that will use at least as much energy than energy-optimal

paths.

For the second sampling strategy, we employ a bounded gaussian random walk.

For the third sampling strategy, we are inspired from the analytical solution given

in 6.2.1 and we employ a randomized switching sampling strategy. The vehicle is
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assumed to be able to operate at any instantaneous nominal engine speed F(t; w)

such that 5 cm/s < F(t; w) < 25 cm/s. For discretizing this F(t; w) representation

efficiently in time, we allow switching to happen randomly in time, and at each instant

the nominal engine speed is uniformly distributed between 5 cm/s and 25 cm/s. With

sufficiently high number of samples, we are able to obtain a good representation of

F(t; w). FDO(t; r) samples for the three sampling strategies are plotted in Fig. 6-3.

Undoam Samping for F(Q Random Wa SmopIn OIM F(I)

0-11 1
0 1 150 0 50 100 1

I
.ROPMS-nsW80-

0.7
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0.5-

0.3

0.2

I I
50 I.10 50 10D 15

RepeeenlaOnve

0.0

0.7-

0.4

0.3
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0 0 100 150 0 so 100 1W0 0 50 100 M5

Figure 6-3: FDo(t; r) samples using different strategies. In the first row, we show all

10,000 samples of FDO(t; r) used for optimal Steady Front Crossing Path Planning.

In the second row, we show representative FDO (t; r) samples for clarity.

Fig. 6-4 shows the zero level set evolution for samples with slowest (Fmin), fastest

(Fmax), and an intermediate nominal engine speed. Zero level set of all samples will

be located spatially within the zero level sets of slowest and fastest samples. The

new stochastic DO-Level Set Equations evolve the zero level set of a large number

of samples by evolving the mean, modes and coefficients of level set fields. In this

illustration we use 30,000 samples; 10,000 of them sampled from a uniform distribution
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between Fmin and Fm., another 10,000 sampled from a Bounded Gaussian Random

Walk bounded between Fmin and Fm., and another 10,000 from a switch sampling

strategy. After the simulation, all 30,000 samples reach the end point and we get

30,000 times to reach. From the F(t) samples and corresponding time to reach, we

can obtain schematics such as that of Fig. 6-5 which compares the results of the

stochastic optimization for different energy cost function, which depend on various

powers of F in the energy expenditure dE = F(t)'dt (3.3).

T = 0.0

50

T =100.0

50

50

50

T = 40.0

. $

50

T =120.0

50

50

50

T = 80.0

50

T= 150.0

e*

50

Figure 6-4: Figure shows the evolution of zero level set contours for vehicles (samples)
with slowest (Fmin), fastest (Fmax), and an intermediate nominal engine speeds. We
see that the slowest vehicle travelling at 5cm/s is not able to cross the steady front
within 150 hrs. Zero level set of all samples will be located spatially within the zero
level sets of slowest and fastest samples.

In Fig. 6-6 we used a power function that depends on square of nominal engine

speed, which we will adopt in this thesis hereafter. We note that, all the methodology
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we developed in this thesis is directly applicable to any form of cost function, the

choice of power function only enters during the optimization phase of the algorithm.

For a time to reach of T = 104.6 we show the optimal engine speed obtained in the

three classes of sampling, and that obtained by non-linear optimization in Fig. 6-7.

The paths for vehicles which follow the within class energy optimal nominal engine

speed is shown in Fig. 6-8. Comparison with double minimization will be completed

in future work.
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Figure 6-6: Figure shows Energy Cost Function vs Time for 30,000 (10,000 x3) sam-
ples. The figure shows the optimal energy envelop obtained by each sampling strategy.
We note that vehicles (samples) which vary the engine speed on their steady front
crossing mission have energy requirements lower than those vehicles which use single

engine speed for the mission. The algorithm is able to identify such nominal engine

speed design which results in optimal energy for the mission paths in the class of F(t)
sampling.
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6.3 Steady Circular Flow

In this section, we evaluate how the algorithm performs on a simulated vortex flow.

On a rectangular domain with dimensions a x b, we use a circular flow given by,

U = -U cos(iry/b) sin(7rx/a)

U = U sin(iry/b) cos(7rx/a)

(6.19)

(6.20)

where the subscripts refer to the component in that direction, and U controls the

strength of the flow. The circular flow is a mathematically well behaved canonical

flow that can be used to test and develop algorithms. It simulates an idealized eddy

in the ocean.

Vorticity Colored and Streamlines

5C

s0

Figure 6-9: The flow field for steady circular flow

6.3.1 Energy optimal Path Planning

The new stochastic DO-level set optimization methodology is applied to the canonical

circular flow and the energy utilization is explored in Fig. 6-10. The paths obtained

for a selected time to reach of T=90 are shown in Fig. 6-11.
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6.4 Validation of stochastic DO-level set optimiza-

tion

We validate the results from our stochastic DO level-set simulation by comparing them

with the results of a direct Monte Carlo Simulation. For this purpose we choose a

few realizations from the stochastic DO level-set simulation results and compare them

with the numerical level-set evolution computed using a deterministic run. The aim of

using the new DO level set equations is to be able to perform stochastic simulation in a

computationally efficient fashion. However, we employ the deterministic Monte Carlo

simulation as the ground truth for level set evolution, and hence provide a benchmark

to test the level sets obtained from solving the new DO level set equations. Fig. 6-

12 (Uniform Sampling), Fig. 6-13 (Random Walk Sampling), and Fig. 6-14 (Switch

Sampling) shows the comparison of level set evolution for arbitrary realizations by

Monte Carlo Simulation and by DO simulation. We see that the zero level sets are

almost identical. We measure the discrete Frechet distance (Alt and Godau, 1995)

which takes into account the location and ordering of points (Danziger, 2011), as

a fraction of the grid spacing. This quantifies the measure of closeness of the zero

level set contour obtained from the stochastic DO level set simulation and Monte

Carlo simulation. We see that the zero level sets are different by a Frechet Distance

of only of the order of grid spacing, which means that the numerical stochastic DO

level-set solution introduces an error of about 1% of the domain size chosen for this

illustration.

6.4.1 Comparison of DO-MC Gamma, DO-KL Gamma, and

DO-Taylor Gamma with Monte Carlo

The three different methods for stochastic simulation for exploring energy utilization

by vehicles are compared in this section. The circular flow is chosen for comparison.

The difference in zero level set contours of fastest realization for DO-MC Gamma

with Monte Carlo is shown in Fig. 6-15, for DO-KL Gamma is shown in Fig. 6-16 and
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DO-Taylor Gamma is shown in Fig. 6-17. The methods perform well for the circular

flow.

6.5 Conclusion

In this chapter we presented energy optimal path planning results for simple yet il-

lustrative and important canonical flows that simulate a steady front and a steady

eddy. We also demonstrated the algorithm through an illustrative example and es-

tablished an analytical solution for the simulated front. In the next chapter we apply

our methodology to path planning in an idealized and real ocean example.
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Figure 6-12: Comparing the level set evolution by the stochastic DO level set equa-

tions and by the deterministic Monte Carlo level set equation for a sample with

uniform F(t) sampling strategy
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Figure 6-13: Comparing the level set evolution by the stochastic DO level set equa-
tions and by the deterministic Monte Carlo level set equation for a sample with
random walk F(t) sampling strategy
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Figure 6-14: Comparing the level set evolution by the stochastic DO level set equa-

tions and by the deterministic Monte Carlo level set equation for a sample with switch
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Figure 6-15: The zero level set contours obtained from DO-MC Gamma and deter-
ministic Monte Carlo simulation are compared using Frechet Distance as a fraction
of grid spacing. The contour in red is from Monte Carlo simulation and contour in
black is from DO-MC simulation
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Figure 6-16: The zero level set contours obtained from DO-MC Gamma and deter-
ministic Monte Carlo simulation are compared using Frechet Distance as a fraction
of grid spacing. The contour in red is from Monte Carlo simulation and contour in
black is from DO-KL Gamma simulation
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Chapter 7

Applications: Idealized and Realistic

Ocean Simulation

7.1 Introduction

In the previous chapter we applied our methodology to canonical steady flows. In

the present chapter, first we apply our methodology to an idealized ocean simulation

using a Double Gyre flow and study results for energy optimal path planning for

different arrival times. Next we apply our methodology to a data-driven realistic

ocean simulation using flow data from the MSEAS Primitive Equation model and

present results for energy optimal path planning for a glider mission.

7.2 Idealized Ocean Simulation

In this section we present results from applying our stochastic DO level-set opti-

mization methodology to a double gyre flow. A dynamic double gyre is an idealized

simulation of a wind driven flow corresponding to the Jet Stream in the Atlantic and

the Kuroshio in the Pacific. First we briefly outline the double gyre model, next

we present the results from energy optimal path planning using new stochastic DO

level-set equations.
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7.2.1 Double Gyre

The wind-driven double-gyre flow is modeled using a barotropic single layer-model in

a square basin of size L = 1 described in detail in (Dijkstra and Katsman, 1997; Sim-

monet et al., 2009) (see also (Pedlosky, 1998),(Cushman-Roisin and Beckers, 2010)).

The intent is to simulate the idealized near-surface double-gyre ocean circulation at

mid-latitudes. The mid-latitude easterlies and trade winds in the northern hemi-

sphere drive a cyclonic gyre and an anticyclonic gyre, and the corresponding zonal jet

in between. This eastward jet would correspond to the Gulf Stream in the Atlantic

and to the Kuroshio and its extension in the Pacific. This idealized flow is modeled

by the non-dimensional equations of motion

Ou Op 1 a (u2 ) O9 (uv)
-- + A- +fv+ar, (7.la)

t x Re Ox ay
0v Op 1 a (vu) 0 (v2)
- =-- + ROAV - - fu + a,, (7.1b)

at ay Re 9X 09y

0- =9 + ,(7.1c)

where Re is the flow Reynolds number taking values from 10 to 10', f = I + 3y the

non-dimensional Coriolis coefficient, and a = 103 the strength of the wind stress. In

non-dimensional terms, we use f = 0, /3 10'. The flow in the basin is forced by an

idealized steady zonal wind stress, Tr = - cos 27ry and -r, = 0. Such dynamics was

also employed for evaluating time-optimal paths by Lolla et al. (2014d).

Free slip boundary conditions are imposed on the northern and southern walls

(y = 0, 1) and no-slip boundary conditions on the eastern and western walls (x = 0, 1).

A 64 x 64 grid and a non-dimensional time step of 10-4 are used to solve both

(7.1) (generation of flow-field) and stochastic DO level-set equations (4.1). The non-

dimensional parameters are listed in Table [7.11 and dimensional parameters in Table

[7.21. In what follows, we present results for Re = 1000. The double gyre flow field is

plotted for different times during the simulation on Fig. 7-1.
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Table 7.1: Non-Dimensional Parameter list for Double Gyre simulation
Non-Dimensional Parameter Value

Re = __ Re = 1000

pDU=TU a = 1000

= 1000

f =__ _ +__y _ f = 0.1

Table 7.2: Dimensional Parameter list for Double Gyre simulation
Dimensional Parameter Value

L 10
D 1000
U 0.0198

AH 19.77
#3o 1.977e-11
T 1.6 yrs

T - 0.0000

T - 03000

T -0A000
50D

0

-500

0Mii
500

0

i-5M

T - 0.300

0

.500

1500

-500

00

-.500

T - 0.1000 i500
0

.500

500

0

-500

10

-M0

T - 0A000

Figure 7-1: Double Gyre Flow field used in the simulation for Energy Optimal Path
Planning. The figure shows snapshots at various times during the simulation.
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Figure 7-3: Exploring the energy utilized by a vehicle in traveling from start point
(0.2,0.2) to reach a target at (0.6,0.6). The time to reach the target is obtained from
our new stochastic DO level-set equations.
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Figure 7-5: Two paths that reach between 0.06 and 0.09. The path on
which uses a variable speed, is able to save energy
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Figure 7-6: Two paths that use constant engine speeds. The path on the right, even

though it uses the lower engine speed, takes much more time to reach and thus uses

more energy.
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7.2.2 Energy Path Planning in a Double Gyre Flow Field

FDo(t; r) is sampled from a uniform distribution, a random walk distribution and a

switch sampling distribution, as shown in Fig. 7-2. The vehicle starts from the point

(0.2,0.2) and the target is the point (0.6,0.6). The output of the stochastic DO level

set simulation is used to explore the energy usage for different times to reach and

illustrated in Fig. 7-3. Some of the paths obtained are shown in Fig. 7-4 to Fig. 7-6.

7.3 Realistic Data-driven Ocean Simulation

In this section we explore the application of our method and algorithms to a real-

istic ocean simulation. The mission is to start from Buzzards Bay near the Woods

Hole Oceanographic Institution (WHOI) and reach a target in the Autonomous Wide

Aperture Cluster for Surveillance (AWACS) region. The flow data is obtained from

the data-assimilative MSEAS Primitive Equation Model. The domain is shown in

Fig. 7-7. Vehicles (gliders) that travel at velocities between 10 cm/s and 30 cm/s are

released from Buzzard's bay offshore from WHOI on Aug 28, 00 UTC.

7.3.1 Data-assimilative primitive-equation ocean simulations

The new stochastic DO level set equation contains a term for the advection by ocean

currents. Hence, an estimate of the evolution of these currents encountered at the

vehicle position is needed. The currents are here obtained from a MSEAS multiresolu-

tion two-way nested tidally-driven primitive-equation simulation (Haley and Lermusi-

aux, 2010). Specifically, they are produced from a reanalysis of the real-time AWACS

and SW06 exercises (Aug.-Sep. 2006) in the New Jersey Shelf/Hudson Canyon region

(WHOI, 2006; Lermusiaux et al., 2006; Chapman and Lynch, 2010; Lin et al., 2010).

This reanalysis is a free surface simulation employing two-way implicit nesting with

tidal (Egbert and Erofeeva, 2002; Logutov and Lermusiaux, 2008) and atmospheric

(WRF/NOGAPS) forcing, covering the period 14 Aug - 24 Sep 2006. Details of the

discretization and model numerics are given in Haley and Lermusiaux (2010). In situ
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observations from Rutgers SeaGliders, NMFS cruises, CTD casts collected aboard the

research vessels Knorr, Quest and Tioga, as well as Scanfish data are used to create

the initial conditions and for assimilation. SST is also assimilated on Aug 14, 17,

19, 21, 23, 25. Additional synoptic data (WODB, GTSPP) and pseudo profiles were

incorporated to bolster the shelf-break front. A temperature/salinity based feature

model representation of the Gulf Stream was included off shore.

For the present application, we assume that all gliders follow the same yo-yo

pattern in the vertical and that the ocean vertical velocities are small and accounted

for in the forward motions of vehicles. With these assumptions, what differentiates

the vehicles is then simply their nominal forward horizontal speeds in these yo-yo

vertical-horizontal motions. We consider yo-yo patterns from the near surface to

either the local near bottom or 400 m depth, whichever is shallower (for the mission

considered, a large portion of the path occurs on the shelf, within 0 to 100m or less).

We assume that the time scales of the horizontal currents variability are not much

shorter than the time to complete a single vertical excursion (which is acceptable in

shallower water, even in the presence of tidal currents). Within our assumptions, the

horizontal currents that a vehicle would actually encounter during its yo-yo motion

would be the horizontal currents integrated along its path, from the near surface

to either the local near bottom or 400 m depth. Of course, it is the path of the

vehicle that determines which currents are actually encountered, hence the need for

our energy-optimal path planning.

7.3.2 Energy Optimal Path Planning for Mission

The new stochastic DO level-set based energy optimal path planning optimization

is applied to the problem. Level sets and paths for fastest and slowest vehicles are

shown in Fig. 7-8. All other vehicles will take an intermediate time between these the

corresponding two times, with different level set evolutions and paths. The energy

utilized by different engine speed time history is explored in Fig. 7-9. The optimization

is then performed to identify samples of engine speed time-history which are optimal

for the given class of FDo(t; r) samples. The energy-optimal paths are then obtained
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Figure 7-8: The red path is the path for a vehicle with Fmax and the green path is
for the vehicle with Fmi. The level set contours for the both vehicles at the time
at which the faster vehicle reaches the target is shown in black, overlaid on ocean
currents at that time

by back tracking and shown in Fig. 7-10 and Fig. 7-11

7.4 Conclusion

In this chapter we showed the application of our methodology to an idealized ocean

simulation using a Double Gyre flow and in a realistic data-assimilative ocean simu-

lation for a mission performed from WHOI to the New Jersey shelf/Hudson Canyon

region.
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Figure 7-9: The stochastic DO level-set simulations are used to explore different
energy utilizations for Glider mission durations of 19 days and under, aiming to find
sets of optimal energy paths within that a pre-selected stochastic class of vehicle speed
time-history.
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Figure 7-10: (a) is a path that reaches in the shortest time, 12.96 days, but consuming
highest energy and (b) shows a path that takes 6 days more to complete the mission
(18.78 days in total), but utilizes 40% lower energy. The vehicle speed along the path
is plotted in color
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Chapter 8

Conclusion and Future Work

In this thesis we developed new stochastic Dynamically Orthogonal Level Set Equa-

tions for computing energy optimal paths among all time optimal paths. A rigorous

theory was presented to obtain optimal paths within chosen stochastic classes of

nominal speeds F(t, w). The method developed here is valid for any flows (strong,

time-dependent or not). The computational advantage arises from the utilization of

the nonlinearities of the environment for efficient DO reduction of the large time-

increasing dimensionality of the stochastic optimization. As the DO coefficients are

presently integrated by a Monte-Carlo (MC) approach, it allows fast selection/sort of

minimum energy paths during the optimization phase of the algorithm.

The schemes and implementation was verified by extensive studies. For treating

the non-polynomial non-linearity, a diagnostic update scheme was proposed and three

methods for evaluating the non-polynomial non-linearity were developed and evalu-

ated. Results on varied test cases of increasing complexities indicate that the scheme

is usable to guide real vehicles in realistic ocean applications. There are interesting

possibilities for the approach and software developed, from national labs and industry,
in part because of the wide range of applications and needs (ocean, air, land).

In the future, energy-optimal path planning can be extended to apply in cases

with multiple end-points, for coordinated vehicles, and in uncertain flow predictions.

For example, DO level set methods can be extended to handle multi-modal distribu-

tions of level sets. In addition, realistic Bayesian Nonlinear Assimilation and Path
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Planning can be combined to develop and apply schemes and computational sys-

tems for rigorous Bayesian assimilation of Eulerian and Lagrangian coastal flow data,

exploiting the nonlinearities of the governing equations and the mutual information

structures inherent to 4D coastal ocean dynamics. These schemes can then be applied

for coordinated energy-time-optimal path planning in realistic coastal applications.
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