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Abstract

The focus of this research is to study the uncertainties forecast by multi-resolution
ocean models and quantify how those uncertainties affect the pressure fields estimated
by coupled ocean models. The quantified uncertainty can then be used to provide
enhanced sonar performance predictions for tactical decision aides.

High fidelity robust modeling of the oceans can resolve various scale processes
from tidal shifts to mesoscale phenomena. These ocean models can be coupled with
acoustic models that account for variations in the ocean environment and complex
bathymetry to yield accurate acoustic field representations that are both range and
time independent. Utilizing the MIT Multidisciplinary Environmental Assimilation
System (MSEAS) implicit two-way nested primitive-equation ocean model and Error
Subspace Statistical Estimation scheme (ESSE), coupled with three-dimensional-in-
space (3D) parabolic equation acoustic models, we conduct a study to understand and
determine the effects of ocean state uncertainty on the acoustic transmission loss.

The region of study is focused on the ocean waters surrounding Taiwan in the East
China Sea. This region contains complex ocean dynamics and topography along the
critical shelf-break region where the ocean acoustic interaction is driven by several
uncertainties. The resulting ocean acoustic uncertainty is modeled and analyzed to
quantify sonar performance and uncertainty characteristics with respect to submarine
counter detection. Utilizing cluster based data analysis techniques, the relationship
between the resulting acoustic field and the uncertainty in the ocean model can be
characterized. Furthermore, the dynamic transitioning between the clustered acous-
tic states can be modeled as Markov processes. This analysis can be used to enhance
not only submarine counter detection aides, but it may also be used for several ap-
plications to enhance understanding of the capabilities and behavior of uncertainties
of acoustic systems operating in the complex ocean environment.
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Chapter 1

Introduction

"We are in the midst of a computational revolution that will change

science and society as dramatically as the agricultural and industrial rev-

olution did. The discipline of computational science is significantly affect-

ing the way we do hard and soft science. Supercomputers with ultrafast,

interactive visualization peripherals have come of age and provide a mode

of working that is coequal with laboratory experiments and observations

and with theory and analysis. We can now grapple with nonlinear and

complexly intercoupled phenomena in a relatively short time and provide

insight for quantitative understanding and better prediction." (Zabusky,

1987)

The implementation of advanced numerical methods to model the ocean acoustic

environment has greatly advanced with growing computational power; however, this

is not a mature field. The Multidisciplinary Simulation, Estimation, and Assimilation

Systems (MSEAS) group at MIT is researching techniques to enhance and employ

numerical methods that accurately model oceans systems at various scales. Accurate

ocean models such as the Primitive Equation ocean model employed by the MSEAS

group can be coupled with acoustic models to provide more realistic simulations of

the ocean sound propagation. Examples of such coupled ocean-physics and acoustic

modeling include (Colin et al., 2013, Duda et al., 2014a, 2011, 2014b, Lam et al., 2009,

17



Robinson and Lermusiaux, 2004, Xu et al., 2008), several of which involved coupled

uncertainties (Abbot and Dyer, 2002, Emerson et al., 2015, Goff et al., 2006, Heaney

and Cox, 2006, Lermusiaux et al., 2010, Lermusiaux and Chiu, 2002, Lermusiaux

et al., 2002, Robinson et al., 2002).

Understanding the interaction of coupled ocean and acoustic models and being

able to accurately model ocean environments, assimilate data, quantify uncertainty

and describe the effects on submarine counter-detection is the ultimate goal of this

thesis. First we will conduct a thorough investigation into the assumptions, physics

and numerical methods employed in the MSEAS ocean modeling (Haley and Ler-

musiaux, 2010, Haley et al., 2015). This investigation will highlight the sources of

uncertainty in the ocean modeling program. Second, a review of acoustic models

that have been used in conjunction with ocean models to predict sound propagation

in various ocean environments will be conducted. The acoustic model employed in

this research is the Peregrine model developed by the Ocean Acoustical Services and

Instrumentation Systems Inc., which features a 3D parabolic equation acoustic model

(Heaney and Campbell, 2013). Finally, the uncertainty and performance predictions

of the coupled MSEAS ocean model and the OASIS acoustic model will be conducted

in order to realistically predict acoustic vulnerabilities. The validity of these acoustic

vulnerabilities is determined by the quantification of the uncertainty of the model

estimates. The advanced acoustic forecasting can be utilized in tactical decision aids

for the planning of submarine operations in a variety of ocean environments.

The study requires a coupled ocean acoustic simulation in order to allow for re-

alistic uncertainty analysis. The ocean acoustic uncertainty study will employ ocean

models that have been generated during the 2008 Quantifying, Predicting and Ex-

ploiting Uncertainty study as reviewed by (Gawarkiewicz et al., 2011) and discussed

in (Lermusiaux et al., 2010, Lin et al., 2010). The ocean models were forecast through

the use of the MSEAS primitive equation model. Real-time data was collected during

the experiment and assimilated with the ocean model in order to accurately model the

ocean properties. The ocean models were perturbed several times in their initial and

boundary conditions and through stochastic forcing (Lermusiaux, 2006, Rixen et al.,
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2012). This process generates an ensemble of ocean states, which were each then

dynamically simulated over the course of several days. The ensembles of ocean states

then represent realistic dynamic ocean fields. The ocean simulation is then coupled

with the Peregrine 3D parabolic equation acoustic model. The acoustic model param-

eters are set to ensure the resulting acoustic field uncertainties will be representative

of the uncertainties due to the ocean state. An in depth 2D and 3D analysis of the

resulting acoustic states will be conducted. The region of the acoustic study will be

primarily focused along the dynamic shelf-break region in the waters surrounding the

North Mien-Hua Canyon. This region is an area that exhibits complex ocean states

and acoustic properties.

A comprehensive data analysis of the resulting acoustic fields generated from the

ensemble of ocean states will be conducted. The 2D and 3D acoustic fields will

be analyzed using a cluster based reduced order modeling technique (Kaiser et al.,

2014, Östh et al., 2015). The data will be first clustered using a k-means analysis

to reduce the number of representative states. The time series of cluster transitions

will then be modeled as a Markov process. The variation in the acoustic field due

to the uncertainties in the ocean state can be used to provide information which can

be incorporated into the probability of detection plots used for a counter-detection

tactical decision aid. The ocean acoustic uncertainty analysis employed here in the

dynamic shelf break region can be used to provide increased fidelity and understanding

for a number of applications.

1.1 Motivation

The capabilities of the undersea forces are derived from developments that originated

to counter a different adversary then they face today. The current platforms and

systems were designed for open ocean operations. The focus of operations has shifted

from deep water to the littorals. The littoral regions contain new and evolving threats

including modern quiet platforms and threats due to the proliferation of technology.

The littoral regions pose challenging problems due to complex sound propagation,
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high vessel traffic, and closer proximity to adversaries. Asymmetric threats can be

countered with the employment of increased computing power and networks to im-

prove situational awareness of the battle-space. Sensors and networks will enable

command and control of multiple platforms and vehicles (Task Force, 2004). The

ability to plan and coordinate off-ship sensors and vehicles requires a high fidelity

picture of the environmental features effecting acoustic propagation.

Anti-Submarine warfare effectiveness is determined by the ability to detect, clas-

sify, target and attack a threat and survive a counterattack. Additionally, it may

be necessary to avoid detection all together in order to prevent hostilities. Tactical

control of these situations is achieved by the integration and understanding of the

environmental features, the ship status and threats in the region. The fusion of data

from off hull support and organic sensors can be integrated effectively to provide a

more robust tactical picture for the operators to navigate through complex situa-

tions. The ability to exploit environmental features to hide from or detect threats

will impact future operations. Responsive mission planning and in situ analysis of

the acoustic environment is crucial especially as the threat environment is drastically

changing due to unmanned systems and sensors.

The shift in the dynamics of the undersea domain places a greater importance on

stealth. The radiated noise from a vessel can be detected if it exceeds the background

noise level present in the environment. The background noise level is affected by

ambient noise in the ocean, noise generated by ocean traffic, or biological noise. The

radiated noise can vary over a range of magnitudes and is therefore measured by

pressure level intensity (Crocker, 1998).

dB = 20 log

✓
p

p
ref

◆
(1.1)

The radiated noise is expressed as decibels relative to 1 micropascal at 1 yard

for spherical spreading. The radiated noise from a vessel is referred to as the ship’s

signature. The ship’s signature is dependent on platform and varies over the course

of the vessels life. The ship signature must be constantly monitored and to maintain
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stealth and understand the tactical implications of the signature. The ability to detect

a vessel acoustically is based on the signal to noise ratio of the radiated noise. The

passive sonar equation is used to describe this ratio, which is also referred to as the

detection threshold is displayed in Equation 1.2 (Kuperman and Roux, 2007). The

variables of this equation are described in Table 1.1.

Table 1.1: Passive Sonar Equation

Variable Description
SNR Signal to Noise Ratio (dB)
SL Source Level - Radiated Noise
TL Transmission Loss (Absorbtion, Scattering, Spreading)
NL Noise Level (Ambient and Self Noise)
DI Directivity Index (Sensitivity of Receiver)

SNR = SL - TL - (NL - DI) (1.2)

The acoustic signature requirements must be taken into account during the design

phase of undersea vehicles to minimize the probability of detection. Additionally,

throughout the course of the vessels life the baseline radiated noise can fluctuate and

must be monitored to understand the change in the signal to noise ratio. Various

operations and evolutions can also produce high levels of radiated noise. In order to

operate in a tactically prudent manner knowledge of the environment and the acoustic

propagation is vital to understand.

The accurate prediction of uncertainties in the ocean environment can provide

significant insight into the potential acoustic field characteristics (Lermusiaux et al.,

2006). This knowledge could display a greatly increased or decreased vulnerability

to detection, which would be useful tactical information for planning purposes. The

focus of this study along the shallow water shelf break region of the littorals is an

area of increasing significance and the dynamics of this region are complex. The

quantification and display of this ocean and acoustic uncertainty can provide the

operator useful information necessary for operating in this complex region.
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Chapter 2

Ocean Modeling Background

2.1 Ocean Modeling

The ocean is a complex medium for sound propagation. The sound speed in the ocean

is predominantly driven by the density of the seawater, which varies with pressure,

temperature and salinity. The fluctuations of these parameters with time, whether

that is a daily or seasonal change further complicates ocean modeling. Additionally,

Mesoscale effects such as currents and internal waves can also have a large impact

on the acoustical environment (Jensen et al., 2011). The range of ocean modeling

processes can be seen in Table 2.1 with the respective time scale of each process. The

major Pacific Gyres are illustrated in Figure 2-1 for reference.

Ocean acoustic model complexity is increased due to the multiple effects that

Table 2.1: Ocean Processes

Process Time Scale
Turbulence Seconds

Internal Waves Minutes
Tides Hours
Fronts Days
Eddies Weeks

Currents Seasons
Gyres Years
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take place along the boundary. At the upper boundary near the surface waves and

thermal layers develop. At the lower boundary various geographic features exhibit

vastly differing acoustic characteristics. In the ever changing ocean environment a

dynamic model is required to forecast the state of these variables.

Figure 2-1: Pacific Ocean Gyres (Byfield, 2016)

The ocean environment is defined by several nonlinear interactions driven by com-

plex bathymetry and boundary effects. To accurately model this dynamic environ-

ment a powerful numerical scheme is required to capture these effects across various

scales. The governing equations for ocean modeling are derived from the Navier-

Stokes Equations. These equations support acoustic modes and nonlinearities, which

requires simplifications to make the equations tractable for solving numerically across

longer time scales. The simplifications to these equations can be made without signif-

icantly affecting accuracy in order to reduce the computational cost when employing

these equations. The resulting equations are the primitive equations, which are the

basis for most fluid circulation models.
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2.1.1 Primitive Equations

The MSEAS Primitive Equation Ocean Model is derived from the Navier-Stokes

equation with hydrostatic and Boussinesq approximations. The Primitive Equations

combine the conservation of mass, conservation of momentum equations, equations

of state and energy equations and are displayed below. These equations govern the

velocity, density, pressure, temperature and salinity of the ocean and are summarized

in the following sections. This ocean model is capable of generating high fidelity

realizations of the ocean environment (Haley and Lermusiaux, 2010).

Conservation of Mass: r · u+

@w

@z
= 0 (2.1)

Conservation of Horizontal Momentum:
Du

Dt
+ fˆk ⇥ u = � 1

⇢0
rp+ F (2.2)

Conservation of Vertical Momentum:
@p

@z
= �⇢g (2.3)

Conservation of Heat:
DT

Dt
= F T (2.4)

Conservation of Salt:
DS

Dt
= F S (2.5)

Equation of State: ⇢ = ⇢(z, T, S) (2.6)

2.1.2 Conservation of Mass

For ocean modeling a necessary condition that must be satisfied is that mass must

be conserved. The continuity equation is the partial differential equation for the

conservation of mass.

@⇢

@t
+

@

@x
(⇢u) +

@

@y
(⇢v) +

@

@z
(⇢w) = 0 (2.7)

@⇢

@t
+r · (⇢U) = 0 (2.8)
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If an acoustic source is located within the infinitesimal volume then a source term

would be added to this equation, which is used for acoustic modeling (Ziomek, 1994).

@⇢

@t
+r · (⇢U) = ⇢Q (2.9)

2.1.3 Momentum Equations

The governing equations for fluid flows are the momentum equations in the x, y, and

z directions in the Cartesian coordinate system. Derived from Newtons equations of

motion the momentum equations with a modified acceleration term due to Earth’s

rotation represent the Navier-Stokes equations for ocean flow (Cushman-Roisin and

Beckers, 2011).

X
F = ma = ⇢Va (2.10)

⇢a =

P
F

V
(2.11)

x : ⇢
⇣du
dt

+ f⇤w � fv
⌘
= �@p

@x
+

@⌧xx

@x
+

@⌧xy

@y
+

@⌧xz

@z
(2.12)

y : ⇢
⇣dw
dt

+ fu
⌘
= �@p

@y
+

@⌧ yx

@x
+

@⌧ yy

@y
+

@⌧ yz

@z
(2.13)

z : ⇢
⇣dw
dt

� f⇤u
⌘
= �@p

@z
� ⇢g +

@⌧ zx

@x
+

@⌧ zy

@y
+

@⌧ zz

@z
(2.14)

Coriolis Parameter

The Earth is an oblate spheroid that revolves about its axis, which drives the ocean

movement. Mesoscale phenomena such as ocean currents and tides are inherently

affected by the rotation of the earth. The effects of this rotation are mathematically

accounted for in an earth fixed rotating reference frame by the Coriolis term, which

appears in Equations (2.12, 2.13, 2.14). The absolute velocity of the fluid is simply

the sum of the rotation of the reference frame and the relative velocity (Cushman-
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Roisin and Beckers, 2011). The unit vectors of the fixed and rotating reference frames

Figure 2-2: Rotating Frame of Reference (Cushman-Roisin and Beckers, 2011)

can be related with the following equations:

I = i cos⌦t� j sin⌦t (2.15)

J = i sin⌦t+ j cos⌦t (2.16)

⌦ =

2⇡

T
(2.17)

To correctly account for the relative change of the coordinates with respect to the ro-

tating frame and the rotation of the absolute frame, the relative velocity and absolute

velocity in the inertial reference frame must be determined.

x = X cos⌦t+ Y sin⌦t (2.18)

y = �X sin⌦t+ Y cos⌦t (2.19)

The relative and absolute velocities are related with the following equalities:

Relative Velocity: u =

dx

dt
i +

dy

dt
j = ui + vj (2.20)

Absolute Velocity: U =

dX

dt
I +

dY

dt
J = U i + V j (2.21)
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The relative and absolute accelerations can be reduced to the subsequent equations.

a =

d2x

dt2
i +

d2y

dt2
j =

du

dt
i +

dv

dt
j = ai + bj (2.22)

A =

d2X

dt2
I +

d2Y

dt2
J =

✓
d2X

dt2
cos⌦t+

d2Y

dt2
sin⌦t

◆
i +

✓
d2Y

dt2
cos⌦t� d2X

dt2
sin⌦t

◆
j

(2.23)

which can be simplified to the subsequent relations.

A = Ai +Bj (2.24)

A = a� 2⌦v � ⌦2x (2.25)

B = b+ 2⌦u� ⌦2y (2.26)

The absolute acceleration differs from the relative by two factors the Coriolis accel-

eration and the centrifugal acceleration respectively. The centrifugal term can be

accounted for by the gravitational acceleration, due to the oblate spheroid shape of

the earth. The resultant vector of the centrifugal acceleration and the gravitational

acceleration is normal to the surface of the oblate spheroid shaped Earth. Neglecting

the centrifugal term and substituting the Coriolis factor f = 2⌦ yields the acceleration

equation.
du

dt
� fv = 0 (2.27)

dv

dt
+ fu = 0 (2.28)

In 3D coordinates the Coriolis parameter is f = 2⌦ sin' and the reciprocal Coriolis

parameter is f⇤ = 2⌦ cos', where ' represents the latitude. The components of the

acceleration; therefore, is represented by the following equations, which are applied

in the momentum equations:

A
x

:

du

dt
+ 2⌦ cos'w � 2⌦ sin'v =

du

dt
+ f⇤w � fv (2.29)
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A
y

:

dv

dt
+ 2⌦ sin'u =

dv

dt
+ fu (2.30)

A
z

:

dw

dt
� 2⌦ cos'u =

dw

dt
� f⇤u (2.31)

2.1.4 Equations of State

Equations of state are utilized to describe the changing density used in the momentum

equations. In the ocean environment the density of seawater is affected by pressure,

temperature and salinity. The density of seawater is inversely proportional to the

local temperature and proportional to the salinity content and depth. Salinity con-

centrations can exhibit large variations near river outlets and sea ice interfaces„ which

can have substantial effects on density. The equation of state used in the primitive

equations is a function of depth, temperature and salinity.

⇢ = ⇢(z, T, S) (2.32)

If the assumption of incompressibility is used then the depth can be neglected and

the factors of temperature and salinity can describe the density.

⇢ = ⇢0[1� ↵
T

(T � T0) + �
S

(S � S0)] (2.33)

Where ↵
T

and �
S

are the coefficients of expansion and contraction respectively

(Griffies and Adcroft, 2008).

↵
T

= �
✓
@ln⇢

@T

◆

p,S

(2.34)

�
S

= �
✓
@ln⇢

@S

◆

p,T

(2.35)

Since the temperature and salinity variables have been introduced additional equa-

tions must be used. The local salinity content in the ocean is conserved and varies

based on the diffusion effects. The diffusive processes are governed by the equation
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below (Haley and Lermusiaux, 2010).

DS

Dt
= F s (2.36)

F s represents the diffusive processes that take place on the sub grid scale.

2.1.5 Energy Equations

The equation used to account for the temperature variable is the conservation of

energy. The ocean is not a closed system and energy is transferred through evaporative

and dissipative effects.

De

Dt
= C

v

DT

Dt
= Q�W =

✓
k
T

⇢
r2T

◆
�
✓
p
D 1

⇢

Dt

◆
(2.37)

This equation can be reduced under the assumption of conservation of mass to equa-

tion 2.38 (Cushman-Roisin and Beckers, 2011).

⇢C
v

DT

Dt
= k

T

r2T (2.38)

Similar to the salinity budget the energy budget is represented by sub grid scale

processes F T for the primitive equation model (Haley and Lermusiaux, 2010).

DT

Dt
= F T (2.39)

2.1.6 Boussinesq Approximation

In order to simplify the previous governing equations for ocean flow the Boussinesq

approximations are made. The Boussinesq approximations are based on the fact that

the fluid density of the ocean does not vary significantly from a mean value.

⇢0 << ⇢̄ (2.40)
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Due to the small fluctuations in density it can be assumed that the horizontal mo-

mentum equations can be simplified and reduced to the following equation.

Du
Dt

+ fˆk ⇥ u = � 1

⇢0
rp+ ⌫r2u (2.41)

2.2 Ocean Modeling Uncertainty

Due to the size and dynamics of the ocean an exact deterministic representation across

all scales is not possible. As shown in Table 2.1 there are a number of scale processes

that occur simultaneously and their interactions are nonlinear. The simplifications

necessary to enable modeling of the ocean that represent these processes introduce

uncertainty. Uncertainty can be represented by a probability density function of the

possible deviations of the estimated field from the actual field.

The sources of uncertainty in ocean modeling are a result of several factors. The

limited temporal and spatial scale dictates which processes will be modeled mathe-

matically and the unknown characteristics of these ocean processes introduce uncer-

tainties (Nihoul and Djenidi, 1998). The ocean data measurements are limited and

the initial starting ocean field is uncertain. Boundary conditions, whether that is

the sea-atmosphere interface or the bathymetry are also uncertain and can influence

the resulting field. Additionally, numerical errors inherent in mathematical models

are present (Lermusiaux et al., 2006). Finally, the exact ocean field is unknown due

to the size of the ocean and the complexity of obtaining accurate measurements.

Therefore, the real and unknown ocean field varies from the ocean field that is gener-

ated through the approximate mathematical model. The use of ocean measurements

can be assimilated with the models to reduce the degree of uncertainty (Lermusiaux,

2006). This method enables dynamical models to increase their fidelity by incorpo-

rating data measurements that are weighted inversely with respect to the relative

error of the measured data (Robinson and Lermusiaux, 2002). Data assimilation pro-

vides estimates that are more accurate than a model or measurements can produce

individually.
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Data assimilation and uncertainty quantification techniques are a growing field

that are essential for improving ocean modeling. Deterministic models that output

the same result for a given input are useful for modeling well understood processes.

However, when the input fields or model processes are not well known stochastic

models can be employed to account for this variability. Stochastic models can repre-

sent more comprehensively processes that are not captured by deterministic models.

Methods of accounting for these uncertainties include introducing variability into the

input parameters. Substantial work has been done in the field of incorporating the

effects of uncertainty in the input parameters for stochastic processes. Monte Carlo

simulations, although computationally expensive and inefficient, have been employed

to model the stochasticity of input parameters. Furthermore, advanced methods such

as the generalized Polynomial Chaos method (Ghanem and Spanos, 1991, Xiu and

Karniadakis, 2002), and Proper Orthogonal Decomposition methods have been em-

ployed (Berkooz et al., 1993, Gay and Ray, 1995). This method of representing the

variability solely within the input parameters can fail to represent the full variability

across multiple processes if those processes are changing across differing time frames.

One method that has been employed to capture the uncertainty of a system is the

Error Subspace Statistical Estimation (ESSE) scheme. The ESSE scheme is used to

determine an error subspace that evolves in time and space and tracks the dominant

error fields that can be used for nonlinear data assimilation, filtering and smoothing

based on an ensemble of Monte Carlo forecasts. The error subspace is a determined

though a singular decomposition of the error covariance matrix (Lermusiaux and

Robinson, 1999). This method was used to perform efficient real time data assimila-

tion for North Atlantic Treaty Organization (NATO) operations in the Strait of Sicily

and simulations in the Levantine intermediate waters (Lermusiaux, 1997). In order

to model the evolution of uncertainty stochastic partial differential equations can also

be employed. External stochastic forcing is modeled by modifying the governing dy-

namical equation of the system to include stochastic terms. A more recent advance

in uncertainty quantification involves the use of dynamically orthogonal stochastic

partial differential equations.
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A closed set of dynamically orthogonal field equations were derived to determine

the evolution of the dominant uncertainty fields of nonlinear systems that are de-

scribed by stochastic partial differential equations. The equations describe the evo-

lution of the mean field, the stochastic coefficients and the evolving deterministic

orthonormal stochastic fields. The Karhunen-Loeve expansion is used to represent

the time varying and dynamically evolving stochastic components (Sapsis and Ler-

musiaux, 2009, Ueckermann et al., 2011). The dynamically orthogonal field equations

have been used to describe double gyre wind driven circulation, and lid driven cavity

flow in a basin (Sapsis and Lermusiaux, 2012).

The ocean models developed using the MSEAS ocean model employ stochastic

forcing and enhanced data assimilation techniques to represent multi-scale ocean pro-

cesses. These high fidelity forecast ocean models are coupled with advanced acoustic

models to provide accurate forecasts of acoustic field simulations that incorporate and

represent the uncertainty contained within the ocean models.
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Chapter 3

Ocean Acoustic Modeling Background

3.1 Ocean Acoustic Modeling

Ocean acoustic modeling efforts began during World War II to determine sound prop-

agation in the ocean for anti-submarine warfare operations. The fundamental equa-

tion that was used then and is still used today in ocean acoustic modeling is the wave

equation. A brief description and classification of the acoustic modeling techniques

derived from the wave equation will be reviewed.

3.1.1 Wave Equation

The acoustic wave equation is a hyperbolic second order time dependent partial dif-

ferential equation used to determine the one dimensional motion of fluid particles:

r2
�� 1

c2
@2
�

@t2
= 0 (3.1)

This equation when transformed into spherical coordinates can be more easily used

to represent omni-directional sounds sources in the ocean.

@2
(r�)

@r2
� 1

c2
@2
(r�)

@t2
= 0 (3.2)
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The general solution of this differential equation yields to following equation (Crocker,

1998)

� =

1

r
f1(ct� r) +

1

r
f2(ct+ r) (3.3)

This solution can be used to characterize the simple harmonic wave motion by utilizing

the harmonic function below where � is time independent.

� = �e�i!t (3.4)

The hyperbolic wave equation shown above can be reduced to the elliptic wave equa-

tion, which is more commonly referred to as the Helmholtz Equation. Acoustic mod-

eling is defined by the various applicable solutions of the Helmholtz equation. The

classification of acoustic modeling techniques is dependent on the theoretical approach

taken to solve the Helmholtz Equation 3.5.

r2�+ k2
0n

2� = 0 (3.5)

There are five standard solutions to the wave equation: ray theory, normal mode,

multi-path expansion, fast field and parabolic equation techniques. The solutions can

be grouped together based on there range dependence. Normal mode, multi-path ex-

pansion and fast field are all range independent, meaning that these solutions assume

a homogeneous waveguide that varies only with depth. Ray theory and parabolic

equation techniques assume range dependence and are better suited for complex ocean

waveguides that vary with range from the source location. Therefore, both ray theory

and parabolic equation techniques will be described here in further detail.

3.1.2 Ray Theory

When the fluid properties are nonuniform and changing in space and time the use of

ray acoustics to quantify acoustic propagation is advantageous. When acoustic waves

propagate through a varying medium the wavefront speed is not constant, which

induces variance in the position of the wave front. The line normal to the wave front
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is know as a ray, which is bent due to these variations of the wavefront (Jensen et al.,

2011). This acoustical ray bending is analogous to the refraction of light as it travels

from air to water due to the variation in the density of the medium. The fundamental

equation describing rays is defined by the eikonal ⌧(x, y, z). The eikonal represents

the surface of a wavefront, for example a constant eikonal value would describe the

surface of a sphere. Solving the Helmholtz equation can be used to derive a ray

equation in terms of the eikonal number (Jensen et al., 2011).

r2
�+

!2

c2(x)
� = ��(x� x0) (3.6)

For ray theory it is assumed that the solution of the Helmholtz equation takes the

form of the ray series as seen in Equation 3.7.

.�(x) = ei!⌧(x)
1X

j=0

A
j

(x)

(i!)j
(3.7)

By solving the Helmholtz equation with the ray series solution and retaining only the

first term in the series the eikonal equation and transport equations are derived. The

eikonal equation results from grouping the O(!2) terms as seen in Equation 3.8.

|r⌧ |2 = 1

c2(x)
(3.8)

The transport equations result from the remainder of the equations in the series

(Jensen et al., 2011).

2r⌧ ·rA0 + (r2⌧)A0 = 0 (3.9)

The real terms contained in the eikonal equation describe the geometry of the rays as

they travel through the waveguide and the imaginary terms contained in the transport

equations describe the wave amplitudes. The ray tracing techniques are solved for

a series of initial angles to determined the possible ray paths. The eigenrays that

represent the path of the rays generally fall into four categories: direct path, refracted-

surface reflected, refracted bottom reflected and refracted-surface-bottom reflected as
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shown in Figure 3-1.

These paths can intersect and interfere constructively or destructively. To account

Figure 3-1: Eigenray Paths (Etter, 2013)

for multiple rays paths at a single point coherent and incoherent transmission loss

calculation methods are used (Etter, 2013).
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X
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(3.10)

Coherent: TL = �10 log

✓X
[(ReP

i

)1 + (ReP
i
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✓X
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i

)2 + (ImP
i

)2]

◆2�

(3.11)

The ray theory techniques are computationally expensive and difficulties arise in the

regions where caustics are formed by the focusing of acoustic rays. These effects

can be mitigated through the use of Gaussian beam tracing techniques; however,

these representations are generally utilized for only 1D and 2D models. Ray tracing

techniques were used extensively in the early days of ocean acoustic research and are

still used operationally today. However, these techniques have given way within the

research community to the range dependent parabolic equation techniques.

3.1.3 Parabolic Equation Models

The parabolic equation method originated out of the application of the parabolic

equation to radio wave propagation (Leontovich and Fock, 1946). This method was

subsequently employed in the ocean acoustic field (Hardin and Tappert, 1973). The

application of the parabolic wave equation has been used in 2D and 3D ocean acoustic

38



propagation models and its use continues to grow due to the fact that computational

power has greatly increased in the recent years.

The elliptic Helmholtz equation is derived from the hyperbolic wave equation.

From the Helmholtz equation the parabolic wave equation can be derived. Typically,

elliptic equations describe steady state systems and hyperbolic equations are used in

propagation problems varying spatially and temporally with the unknown character-

ized by a second order time variable resulting in an oscillating solution. The parabolic

equation is employed in propagation problems that vary in space and time with the

variable characterized by a first order derivative in time (Chapra and Canale, 1998).

Numerical methods employed to solve the elliptic equation must be simultaneously

solved in range and depth. Whereas, the parabolic equation can be efficiently solved

using range marching numerical techniques allowing for more efficient solvers.

The Helmholtz equation is an elliptic equation that can be reduced in cylindrical

coordinates to a parabolic equation. The following derivation is adapted from the

works of (Jensen and Krol, 1975) and (Etter, 2013) and shown to provide insight

into the assumptions of the resulting parabolic equation. The cylindrical Helmholtz

equation can be seen in equation 3.12.

@2�

@r2
+

1

r

@�

@r
+

@2�

@z2
+ k2

0n
2� = 0 (3.12)

One solution of the Helmholtz equation is represented by � below.

� =  (r, z)S(r) (3.13)

The first and second order partial derivatives of the solution are shown in the following

equations.
@( , S)

@r
= S

@ 

@r
+ 

@S

@r
(3.14)
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(3.15)

@( , S)

@z
= S

@ 

@z
(3.16)
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@z2
= S
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(3.17)

Using the separation of variables technique, plugging the partial derivatives into equa-

tion 3.12 and rearranging the following equation is obtained.
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�
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The separation constant k2
0 is used for the left hand side of equation 3.18.
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r

@S
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�
= �Sk2

0 (3.19)

@2S

@r
+

1

r

@S

@r
+ Sk2

0 = 0 (3.20)

Equation 3.20 is a zero order Bessel equation whose solution is the Hankel function

of the first kind.

S = H
(1)
0 (k0r) (3.21)

Where the Hankel function of the first kind is defined by the relation.

H
(1)
0 (k0r) = J0(k0r) + iY0(k0r) (3.22)

Using the far field assumption that k0r >> 1 then the zero order Hankel Function of

the first kind can be approximated as the following equations.
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s
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◆
(3.23)
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✓
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◆
(3.24)

The right hand side of equation 3.18 is now solved using the separation constant k2
0.
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Using the solution of S to find the partial derivative with respect to range @S

@r

can be

determined and used to simplify equation 3.25. Substituting @S

@r

into the right hand

side and using the narrow angle or paraxial approximation:

@2
 

@r2
<< 2k0

@ 

@r
(3.26)

the equation can be simplified to the narrow angle form of the parabolic wave equa-

tion.
@2
 

@z2
+ 2ik0

@ 

@r
+ k2

0(n
2 � 1) = 0 (3.27)

The primary advantage of using the parabolic form of the wave equation is that

the numerical solution can be solved for using range marching schemes. The range

marching scheme employed is a split-step Pade scheme. This method was first used

to solve the parabolic narrow angle equation method by Tappert in 1977 (Tappert,

1977). Further improvements included using a variation of the Pade coefficients to ac-

count for wide angle propagation by Thompson and Chapman in 1983 (Thomson and

Chapman, 1983). The numerical solution to this equation was advanced through the

use of higher order methods that conserved energy in the Range Dependent Acoustic

Model (RAM) that was developed by Collins (Collins and Westwood, 1991). These

methods of solving the parabolic equation are capable of outputting the deterministic

3D acoustic field. The parabolic equation is a powerful method enabling efficient

numerical methods to determine the acoustic field propagation through the complex

ocean waveguide. The ocean variability is accounted for utilizing a frozen medium

assumption. The input ocean field is assumed to change over a much larger time

interval than is required for the acoustic energy to propagate through the medium

and the small scale fluctuations in the environment are neglected. The mathematical

assumptions and frozen ocean assumption generate uncertainty in the acoustic field

solution. The study and development of accurate ocean acoustic models is an area of

study that continues to progress to this day.
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3.2 Ocean Acoustic Modeling Literature Review

The study of coupled Ocean Acoustic models has been an ongoing endeavor. Signifi-

cant progress has been made with both ocean models and acoustic models in terms of

accuracy and robustness. There has also been progress made in the effort to combine

ocean modeling with acoustic propagation models.

The first large scale effort to integrate ocean and acoustic models was during the

study of the Mid-Atlantic Bight shelfbreak region. In the 1997 Mid Atlantic Bight

study data collection for ocean and acoustic modeling was integrated (Lynch et al.,

1997). The Mid Atlantic Bight study involved the examination of the azimuthal cou-

pling of the environment on the acoustic propagation. To determine the sediment

properties for this exercise core samples were taken on the shelf and ocean environ-

mental data was provided by towing a SeaSoar sensor and was used to determine slices

of temperature and salinity data along given paths (Gawarkiewicz et al., 2001). For

this study a 3D acoustic eigenray code was employed and compared to a 2D eigenray

model. The 3D ray code used for this study was modified from the Hamiltonian Ray

Tracing Program (HARPO) (Jones et al., 1986, Smith et al., 2002). Additionally, a

3D parabolic equation model was also compared. The ocean and acoustic models in

this study; however, were not coupled.

Coupled ocean acoustic forecast experiments have since been performed on multi-

ple occasions. The first of these experiments was performed in the Tyrrhenian Sea for

the Focused Acoustic Forecasting exercise in 2005. This exercise utilized the Harvard

Ocean Prediction System (HOPS) with Error Subspace Statistical Estimation (ESSE)

for the ocean predictions. This ocean study was used to help determine optimal path

planning for autonomous underwater vehicles. The acoustic program employed was

the Range Dependent Acoustic Model (RAM), which was used to determine propa-

gation paths in the littoral regions and evaluate acoustic inversion and tomography

(Wang et al., 2009).

Subsequent studies have implemented coupled ocean and acoustic propagation

models. These coupled systems are referred to as End-to-End systems that incorpo-
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rate data assimilative models of non-linear interdisciplinary processes across multiple

scales. Systems that incorporated ocean physics, sediment physics, ocean acoustic

propagation and sonar systems in littoral environments are discussed in detail in re-

view by Robinson and Lermusiaux (Lermusiaux et al., 2004). These coupled ocean

acoustic forecasts employing data assimilation techniques have been performed in

several at sea experiments. In 2007 real time coupled ocean acoustic forecasts were

generated using data assimilative techniques for the Battlespace Preparation exercise

off the coast of the island of Elba, Italy. This experiment coupled 3D ocean forecasts

with 2D acoustic models to generate simulations of the ocean acoustic environment

(Lam et al., 2009).

With the operational focus continuing to shift toward the littoral regions, and the

expanding use of long duration autonomous vehicles the need to have accurate 3D

ocean acoustic forecasts will continue to grow. The 4D ocean fields that are used

in this thesis come from the data obtained during the 2008 Quantifying, Predicting

and Exploiting Uncertainty (QPE 2008) exercise conducted in the regions surround-

ing Taiwan. The coupled ocean acoustic program used to simulate the ensemble of

acoustic fields is the Peregrine model. The peregrine model is a C-language adapta-

tion of the Range Dependent Acoustic Model that can interface with 4D ocean fields

and generate Nx2D acoustic slices and fully 3D acoustic fields (Heaney and Campbell,

2013). The coupled 4D MSEAS ocean model assimilated with data obtained during

the QPE 2008 exercise and 3D Peregrine acoustic model will be employed to perform

an analysis of the relationship between the uncertainties in the ocean fields and the

transmission of those uncertainties to the resulting acoustic field ensembles. Through

the use of a cluster based analysis technique these variations will be used to pro-

vide higher fidelity probability of detection assessments along the dynamic shelfbreak

region.
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Chapter 4

Dynamical Cluster Analysis

Cluster-based reduced order modeling is a technique which seeks to systematically re-

solve complicated features of dynamical systems. Cluster-based reduced-order mod-

eling (CROM) was first employed in the modeling of dynamic fluid mixing layers.

Additionally, clustering analysis has been used in adaptive ocean sampling (Cococ-

cioni et al., 2015). This technique is similar to the Ulam-Galerkin method, which is

an approximation of the Perron-Frobenius operator (Kaiser et al., 2014). The Ulam-

Galerkin method employs the process of proper orthogonal decomposition, which

reduces the dimensionality of the state space through a projection method to a lower

dimensional subspace. Subsequently the proper orthogonal decomposition coefficients

can be represented through evolution equations to describe the dynamics of the sys-

tem. Similarly, the CROM method reduces the order of dimensionality in a complex

system using a clustering technique and then models the dynamic transitions between

the reduced number of states. The CROM method first reduces the dimensionality

of the problem through a k-means cluster analysis of an ensemble of system states.

Then a Markov model is developed to describe the transitions between clustered

states. Both the clustering technique and the Markov process will be explained in

further detail to describe how these techniques will be applied in the ocean acoustic

field analysis.
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4.1 Clustering

The first component of the CROM analysis is to reduce the order of the data through

clustering. Cluster analysis is a technique that has been used in data mining and

machine learning. The goal of cluster analysis is to partition data into groups of

similar characteristics in order to attempt to reveal structures within the data. Two

relevant clustering techniques that have been used for data analysis are hierarchical

clustering and k-means clustering. Hierarchical clustering algorithms group data sets

into clusters based on the distance between individual observations and clusters and

displays the results in a graphical dendrogram. The second method is k-means clus-

ters which groups observations into preallocated number of clusters based on their

euclidean distance from the cluster. Cluster analysis techniques have been used exten-

sively in business and finance applications for determining market segmentation and

pricing strategies (Shmueli et al., 2007). Comparatively k-means clustering is much

less computationally expensive than hierarchical clustering and is typically used for

large datasets. For this reason k-means clustering techniques were chosen to analyze

the large ocean acoustic data sets generated by the ensemble of ocean acoustic runs.

The method of classifying clusters is through determining a distance measure d
ij

.

The distance measure is used to classify each data point, vector or matrix with p

elements. The euclidean distance is a common measure for determining the distance

measure.

d
ij

=

q
(x

i1 � x
j1)

2
+ (x

i2 � x
j2)

2
+ · · ·+ (x

ip

� x
jp

)

2 (4.1)

The Euclidean distance technique measures the dissimilarity between data points

that determines the centroid of each cluster as the mean of the points in each cluster.

This method is highly dependent on the scale of the data and outliers can have a

large effect on the analysis. Another measure that is frequently used is the similarity

based correlation measure, which was employed in the the ocean acoustic analysis.

The correlation measure r
ij

is defined by the subsequent equation.
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The correlation measure is related to the euclidean distance by the following relation.

d
ij

= 1� r2
ij

(4.3)

The correlation coefficient represents a similarity measure between the data points.

The data points for correlation based analysis are centered, normalized to a zero

mean and unit standard deviation, which is then used to determine the centroid

as component wise mean of the data in the cluster. Once the distance measure

is determined the k-means optimization can be computed to perform the cluster

analysis.

The k-means algorithm developed originally by Lloyd in 1957 uses the designated

distance measure to maximize intra-cluster similarity and minimize inter-cluster simi-

larity (Lloyd, 1957). In order to accomplish this each dataset is placed into the group

with the closest centroid and the centroids are then re-computed. This process is

recursively performed until the optimization of the variance within each cluster is

minimized and the variance between clusters is maximized. The cluster centroid c
k

is defined by the relation (Östh et al., 2015):

c
k

=

1

n
k

X

um2ck

u
m

(4.4)

Where n
k

represents the number of realizations within the each cluster and u
m

is the data realization. The formula for the cluster variance J is described by the

relation (Östh et al., 2015):

J

✓
c1 . . . ck

◆
=

KX

k=1

X

um2ck

||u
m

� c
k

||2 (4.5)

For k-means analysis the optimal number of clusters must be determined. Typi-
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cally, the optimal number of clusters is much smaller than the number of realizations.

The clusters should also be representative of homogeneous groupings of the data set.

The elbow criterion has been used in machine learning applications to determine the

optimal number of clusters. This criteria is determined by comparing the cumulative

sum of distances for various k-valued clusters to identify a knee in the curve. The knee

in the curve would represent a point at which the optimum cluster value is most effi-

ciently representing the dataset being evaluated. This technique is formalized using

the gap statistic criterion, which is further explained in the subsequent chapter.

The vectorized 2D acoustic transmission loss data can be clustered using the

k-means algorithm. Furthermore, the 3D transmission loss data matrices can be re-

shaped in order to employ the same cluster analysis techniques. Once the acoustic

fields have been clustered appropriately the dominant effects of the ocean field un-

certainties on the resulting acoustic field can be displayed effectively and utilized in

enhanced probability of detection plots. Additionally, the second component of the

CROM analysis is to determine the analysis of nonlinear dynamical systems through

the use of modeling the system as a Markov process.

4.2 Markov Process

A stochastic process that can be classified as memoryless is referred to as a Markov

process. A Markov process exhibits the Markov property, which is satisfied if each

future state of the process is independent of all previous states. A discrete time

Markovian process can be described mathematically in the following equation:

P (X
t

= x
t

|X0 = x0, X1 = x1, ..., Xt�1 = x
t�1) = P (X

t

= x
t

|X
t�1 = x

t�1) (4.6)

Equation 4.6 shows that the conditional probability of a Markov process is dependent

only upon the current state of the system. Therefore, knowledge of the previous

states is irrelevant to the prediction of the future state of the system. The diagram

in Figure 4-1 illustrates the various potential trajectories of a Markov process. The
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process uses information only from time T
N

and can then determine probabilistic

predictions of various trajectories of the dynamical process. The predictions are based

on the probability of the transitions between states C
k

, C
k+1 and C

k+2 for each path.

Using the knowledge of the state transitions and the potential temporal trajectories

of the process a model can be developed that describes the dynamic evolution of an

ensemble of realizations. Markov processes can be used to describe numerous physical

Figure 4-1: Markov Process Diagram

applications in the fields of biology, chemistry and even speech recognition.

The dynamical analysis of the cluster based reduced order modeling technique

outlined by Kaiser in 2014 utilizes the statistics of the transitions between cluster

states (Kaiser et al., 2014). The probability of each realization being contained within

a specific cluster is determined by the weighted average of the realizations contained

within the cluster, where q
k

is the probability of a realization falling within a certain

cluster.

q
k

=

n
k

p
(4.7)

The probability of transitioning between clusters or staying within the same cluster

at each time step is then evaluated to determine the cluster transition matrix. The

cluster transition matrix defines the single step probabilities of the transition from

one cluster state to the next. The transition from one cluster to the next is tracked
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with the variable n
jk

:

n
jk

=

TX

t=1

F t

k

F t+1
j

(4.8)

Where F t

k

is a function that equals 1 if the realization is contained within the cluster

k at time t, otherwise the function equals 0. The matrix n
jk

will represent the

summation of the cluster transitions from c
j

to c
k

with relation to each time step.

With the cluster transitions temporal relationship established the cluster transition

matrix can be defined.

P
jk

=

n
jk

n
k

(4.9)

There are two properties of the cluster transition matrix. The first is that each

column of the matrix sums to 1 and second property is that all the elements are non-

negative. The cluster transition matrix represents the probability of each transition

between or within a cluster state as represented by the arrows in Figure 4-2. The

Figure 4-2: Cluster Transition Diagram

diagonal elements along the trace of the cluster transition matrix are represented

by the arrows that return to the same cluster state. The cluster transition matrix

provides a compact representation of the dynamics of the system. The knowledge of

each cluster transition probability describes the system evolution. This methodology

will be used for the analysis of the variations in the acoustic field generated from the
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ensemble of ocean states.

4.3 Ocean Acoustic Cluster Based Reduced Order

Modeling Methodology

For the ocean acoustic model runs an ensemble of realizations at each time step will be

generated. For each time interval the generated fields will be clustered to determine a

reduced state space. From this information a cluster transition matrix will be derived

to describe the dynamical evolution of the system. Applying the dynamical model an

enhanced probability of detection plot can be generated for the forecast ocean states

and resulting acoustic fields that incorporates the uncertainties within the ocean field.
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Chapter 5

2D Ocean Acoustic Uncertainty

Analysis

Sound propagation in the ocean is subject to phenomena such as attenuation, absorp-

tion and scattering due to the variability of the undersea environment. The sea bed

composition, surface variations, temperature and salinity are all contributing factors

to the uncertainty in the acoustic field determination. Uncertainties in ocean field

temperature and salinity cause variations to the speed of sound throughout the ocean

field. This uncertainty in the ocean field is then transferred to the modeled acous-

tic field. Using ocean predictions and coupled acoustic models that factor account

for uncertainty a more accurate picture of the tactical acoustic environment can be

determined for operational planning.

To develop a useful counter detection decision aid that utilizes, forecast ocean

states and corresponding acoustic field representations an understanding of the ocean

variability and transmission of these variabilities must be understood and conveyed

effectively.

The most common method of determining the uncertainty in the acoustic field has

been through the use of a Monte-Carlo approach, which analyzes a large ensemble

of data to complete a statistical analysis of the uncertainty. To determine the ocean

variability 19 ocean state perturbations were generated from varying initial conditions

and these states were dynamically evolved in time over approximately a three day
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period. The data used in this study was generated for the 2008 Quantifying, Pre-

dicting and Exploiting Uncertainty experiment. For the various ocean states acoustic

propagation along the shelf edge was deterministically calculated and modeled using

2D and 3D representations.

5.1 Quantifying, Predicting and Exploting Uncer-

tainty

The data gathered during the 2008 Quantifying, Predicting and Exploiting Uncer-

tainty (QPE 2008) experiment was used to develop the ocean models for this study.

The study area for this experiment was located in the region off the North East coast

of Taiwan in the East China Sea. The 2008 study focused on three areas, acoustics,

ocean dynamics and bathymetric effects.

The acoustics portion of the experiment was focused on the region to the Northeast

of Taiwan. This region covers the shelf break region separating the littorals from the

deep water region, which is an area of high uncertainty due to variable bathymetry

and uncertain ocean dynamics. The acoustic study for the QPE project utilized the

SACLANTCEN normal mode propagation loss model (C-SNAP) (Ferla et al., 1993).

The study evaluated several paths along and across the shelf break region to predict

the propagation loss due to the cold dome effects. In the QPE study the effects due

to the ocean waveguide were studied while the bathymetry and sediment properties

were kept constant. Acoustic sources of 300hz, 600hz and 900hz were simulated at

depths of 50m to represent upslope and downslope propagation losses.

The ocean models were generated using 4D realizations employing Error Sub-

space Statistical Estimation data assimilation techniques and uncertainty analysis

predictions utilizing dynamically orthogonal equations with the MSEAS ocean model

(Lermusiaux et al., 2010). As described earlier the MSEAS ocean model utilizes the

primitive equations with hydrostatic and Boussinesq approximations while also ac-

counting for free surface effects. The data inputs to the MSEAS ocean model included
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atmospheric forcing effects, atmospheric heat flux and high resolution bathymetry

models. During the exercise the ocean realizations were supplied as inputs to acous-

tic models. Additionally, the ocean dynamics portion of the QPE 2008 pilot study

evaluated the advection of tracers in the East China Sea surrounding Taiwan. The

bathymetry of this region is depicted in Figure 5-1. The ocean models evaluated the

effect of advection and diffusion on the location of tracer mooring sites. These results

were used to determine adequate sites for testing where currents and shelf dynamics

would exhibit strong characteristics.

Figure 5-1: Bathymetry Plot of Western Pacific

The region of this focused ocean dynamics study can be seen in Figure 5-2, which

depicts the surface velocity field in the region at 00:00Z on 06 September 2009. In this

figure the Kuroshio Current can be seen heading to the North East of the island of

Taiwan. This large scale ocean realization was used to model the ocean characteristics

in the region and the acoustic study was conducted on a nested and reduced grid scale

to the North East of Taiwan.
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Figure 5-2: Kuroshio Current: Surface Velocity

5.2 2D Ocean Acoustic Uncertainty Evaluation

In order to gain a more thorough understanding of the acoustical effects due to ocean

field uncertainty each ocean field initial condition was slightly perturbed to generate

an ensemble of ocean predictions. These ocean field realizations were generated over

the course of a three and a half day period from 21:00Z on 04 September 2009 to

12:00Z on 07 September 2009 at three hour increments. With 19 realizations for each

of the 21 time intervals over the course of several days the effects of cyclical ocean

tides, internal waves effects and daily changes in ocean state can be identified and

evaluated to determine the effect that this will have on the acoustic propagation of

sound. The statistical evaluation of the varying acoustic fields generated can be used

to better understand the sonar performance predictions along the dynamic shelf break

region.

5.2.1 Acoustic Model Inputs

Bathymetry

The topography in the waters surrounding Taiwan is complex and varying. To the

north and west of Taiwan the East China Sea continental shelf is a shallow littoral
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region that extends along the coast of China. The shelf break region extends to

the Northeast of Taiwan, which descends into the Okinawa trough. The shelf ridge

continues to drop off further to the Southeast reaching its deepest depths in the

Huatung Basin and Ryukyu Trench as seen in Figure 5-4 (Rudnick et al., 2011).

The primary region of the acoustic model runs for the N-2D slice study and the

Figure 5-3: Topographical Features Surrounding Taiwan (Rudnick et al., 2011)

3D acoustic model were centered at a longitude of 122o33’00” E and a latitude of

25o43’00” N. The acoustic propagation was analyzed for a 2D slice and a 3D region.

The 2D slice is represented by the white line at a bearing of 164o from the acoustic

source as seen in Figure 5-4. The 3D acoustic area for this study region is highlighted

by the white circle in Figure 5-4. The bathymetric data input to the acoustic model

was obtained from the National Ocean and Atmospheric Administration center for

environmental information. The data obtained for the region of acoustic study had a

resolution of 1 arc-second. The acoustic grid data was extracted and imported into

the acoustic model (Amante and Eakins, 2009). In order to assess the bathymetric

features and determine a suitable area with complex features along the shelf break

region the topographic data was plotted using MATLAB codes derived from the
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Figure 5-4: Focused Acoustic Study Region

techniques described in the text MATLAB Recipes for Earth Sciences (Trauth et al.,

2007). Additionally, a profile of the region where the 2D slice data was analyzed can

be seen in Figure 5-5

Figure 5-5: 2D Slice Bathymetric Profile

The plots of the bathymetric features of the region clearly identify the critical

shelf break. Specifically, the area that was selected for the acoustic study was cen-

tered on the North Mien-Hua Canyon. This canyon along the shelf region Northwest

of the island of Taiwan is located in an area of dynamic ocean and atmospheric con-

ditions, which make it a unique region to analyze these complex effects on acoustic

performance.
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Sediment

The acoustic properties of the ocean seabed can have a significant effect on the prop-

agation of sound through the ocean. The sediment layer can exhibit variations and

uncertainties that would complicate the study of ocean properties effect on the acous-

tic field. Therefore, for this study in order to isolate the effects of uncertain ocean

states on the resulting acoustic field the sediment was modeled as range independent.

To model the acoustic propagation in the region of study accurately while using a

range independent sediment a representative value must be used describing the sedi-

ment properties in the region. The sediment properties in the North Mien-Hua region

had previously been studied during the QPE exercise to better understand and val-

idate sound speed attenuation models of sediment. Chirp sonar responses were used

to validate the Biot model with a fluid approximation. The model in the QPE experi-

ment was able to estimate the sediment properties to include the sound speed, density

and attenuation. In order to validate the results of this experiment the calculated

properties were compared to core samples that were taken from the North Mien-Hua

canyon region (Chiu et al., 2015). The sediment grain size obtained from the core

samples can be used to determine the mean grain diameter using Equation 5.1.

� = � log2(d/do) (5.1)

In this equation d represents the grain diameter and � represents the mean grain size.

The grain size, porosity and permeability are used to determine the attenuation char-

acteristics of the sound in the sediment. The values of porosity, � and permeability,

 can be calculated using the following formulas. The first was determined through

experimentation to determine a relationship between the mean grain size and the

porosity (Bachman, 1985).

� =

0.0943�
p

0.09432 � 4(0.034)(� � 0.208)

2(0.00334)
(5.2)
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The second is a modified Kozeny-Carman equation used to determine the permeability

(Hovem and Ingram, 1979).

 =

d2�2

180(1� �)2
(5.3)

For the purpose of this study the data obtained from the core samples is used as a

representative sample of the region. The core samples indicated that the sediment

type varied from coarse sand in the north to fine silt in the south. The compressional

wave speed in the sediments varied from 1529 m/s to 1747 m/s (Chiu et al., 2015).

The region of acoustic study for this paper is located primarily in the southern end

of the region corresponding to the silty region that was studied and a � value of

5 was used. Table 5.1 provides examples of various sediment types and grain sizes

(Krumbein and Sloss, 1951).

Table 5.1: Sediment Mean Grain Size Table

� Size (metric) Wentworth Class
-8 >256 mm Boulder
-5 32 mm Coarse Gravel
-1 2 mm Fine Gravel
1 0.5 mm Coarse Sand
5 62 µm Silt
8 <3.9 µm Clay

Temperature and Salinity

The acoustic model employed is a range dependent parabolic equation model that

utilizes 4D temperature and salinity fields to accurately represent the ocean state.

The ocean states are generated using the MSEAS high-fidelity multi-resolution simu-

lations. The temperature and salinity fields are predicted from an ensemble of ocean

states and each ocean state will generate a unique acoustic field.

The temperature and salinity field forecasts were generated with the ocean model

and assimilated with the ocean data from the QPE experiment. The Error Subspace

Statistical Estimation (Lermusiaux, 2006), was employed for data assimilation and
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Figure 5-6: Surface Salinity

uncertainty analysis. Additionally, sub-grid scale ocean processes are represented

through the use of dynamically orthogonal stochastic partial differential equations.

The stochastic partial differential equations represent the deterministic ocean equa-

tions as well as the additional stochastic effects. Deterministic effects include those

incorporated into the ocean model equations described in Chapter 2.

The stochastic effects include the sub grid scale processes such as internal waves

and turbulence that are not described by the deterministic equations. Additionally,

river discharge from Taiwan can affect the salinity concentrations, which generates

additional uncertainties (Landry, 2014, Mirabito et al., 2012). The temperature and

salinity fields are perturbed several times and each perturbation is then dynamically

evolved in time to generate the time series ensemble forecast ocean states. The fields

are then reduced to the region along the north coast of Taiwan to serve as an input to

the Peregrine program. An example of the surface salinity field is displayed in Figure

5-6. Additionally a representative surface temperature field is displayed in Figure 5-7.

The 4D ocean realizations are used for the acoustic code to capture range and
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Figure 5-7: Surface Temperature

depth effects of the ocean field on the propagation. For this study the primary focus

is to isolate the acoustic effects due to the variations and uncertainty contained within

the ocean field and quantitatively represent these variations. The focused region of

the acoustic study was can be seen in the two initial ocean temperature perturbations

displayed in Figure 5-8 and the initial salinity perturbation are displayed in Figure

5-9. The perturbations shown in these figure demonstrate the extent of the variations

in the temperature and salinity fields for the focused region of the acoustic study at

the starting time.

The each perturbation of the model is dynamically evolved in time to generate

the ensembles. There are a total of 19 realizations at each time interval of the entire

temperature and salinity field. For reference the final time interval perturbations for

temperature and salinity are displayed in Figure 5-10 and Figure 5-11 respectively.

These ocean field realizations were used for the 2D and 3D acoustic field models in

order to perform uncertainty analysis.

62



(a) Temperature Perturbation 01 (b) Temperature Perturbation 19

Figure 5-8: Initial Ocean Field Temperature Pertubations

(a) Salinity Perturbation 01 (b) Salinity Perturbation 19

Figure 5-9: Initial Ocean Field Salinity Pertubations

(a) Final Temperature Perturbation 01 (b) Final Temperature Perturbation 19

Figure 5-10: Final Ocean Field Temperature Perturbations

(a) Final Salinity Perturbation 01 (b) Final Salinity Perturbation 19

Figure 5-11: Final Ocean Field Salinity Pertubations
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Speed of Sound

The speed of sound in the ocean has been determined though laboratory measure-

ments to be a function of the temperature, salinity and depth fields. The speed of

sound in ocean has been empirically determined and represented by Mackenzie’s nine

term equation (Mackenzie, 1981).

c =1448.96 + 4.591T � 5.304⇥ 10

�2T 2
+ 2.374⇥ 10

�4T 3

+ 1.340(S � 35) + 1.630⇥ 10

�2D + 1.675⇥ 10

�7D2

� 1.025⇥ 10

�2T (S � 35)� 7.139⇥ 10

�13TD3

(5.4)

Several empirical sound speed determinations have been made in addition to

Mackenzie’s equation, two examples include the equations by (Coppens, 1981), or

(Lovett, 1978). However, each equation has its limits for temperature, salinity and

depth. The Mackenzie formula is valid over the region that is used for this study.

The temperature limits for the Mackenzie formula are 0oC  T  30oC. The salin-

ity limits are 30 ppt  S  40 ppt and the depth limits are 0 m  D  8000 m

(Etter, 2013). The sound speed is generally measured experimentally with expend-

able bathythermographs that measure temperature and salinity directly. A second

method uses a velocimeter that determines the sound speed directly by calculating

the travel time of a pulse. For the acoustic model used in this study the speed of

sound is determined at each grid point utilizing the temperature and salinity field

from the MSEAS model. Subsequent ocean sound speed plots are generated using

the Mackenzie formula. These plots are used to display the cumulative effect of the

variations within both temperature and salinity fields.

Time

The time of the data collection for this experiment was during the fall of 2009. During

the fall in the East China sea near the region of study north of Taiwan there are several

factors that effect the ocean states. During the summer months the region typically

experiences a high number of tropical storms. Typically, there are 3-5 storm systems
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with possibly one per month developing into a typhoon during this period. The storm

systems develop in the southern regions surrounding the eastern Philippines and track

to the Northeast. These systems also strengthen around the region of Taiwan due

to the elevated temperature of the ocean currents that flow into the region. During

strong storms wind speeds can range from 20-40 mph. During the time interval of this

study there was no severe weather taking place (Davis, 2016). Typhoon Morakot had

passed through the region of study on 11 August 2009 approximately 1 month before

the data collection period used in this study. During the time frame of this study the

region experienced seasonable temperatures and calm weather with no precipitation.

The exact times for each interval of the ocean model runs are listed in the subsequent

table.

Date Time Group of Ocean Data Runs

1 Fri, 04 Sep 2009 21:00:00 GMT 12 Sun, 06 Sep 2009 06:00:00 GMT

2 Sat, 05 Sep 2009 00:00:00 GMT 13 Sun, 06 Sep 2009 09:00:00 GMT

3 Sat, 05 Sep 2009 03:00:00 GMT 14 Sun, 06 Sep 2009 12:00:00 GMT

4 Sat, 05 Sep 2009 06:00:00 GMT 15 Sun, 06 Sep 2009 15:00:00 GMT

5 Sat, 05 Sep 2009 09:00:00 GMT 16 Sun, 06 Sep 2009 18:00:00 GMT

6 Sat, 05 Sep 2009 12:00:00 GMT 17 Sun, 06 Sep 2009 21:00:00 GMT

7 Sat, 05 Sep 2009 15:00:00 GMT 18 Mon, 07 Sep 2009 00:00:00 GMT

8 Sat, 05 Sep 2009 18:00:00 GMT 19 Mon, 07 Sep 2009 03:00:00 GMT

9 Sat, 05 Sep 2009 21:00:00 GMT 20 Mon, 07 Sep 2009 06:00:00 GMT

10 Sun, 06 Sep 2009 00:00:00 GMT 21 Mon, 07 Sep 2009 09:00:00 GMT

11 Sun, 06 Sep 2009 03:00:00 GMT 22 Mon, 07 Sep 2009 12:00:00 GMT

5.3 2D Ocean Slice States

The following section will display the mean and standard deviation for the 2D ocean

states, for salinity, temperature and sound speed for all 22 time intervals along the

slice shown in Figure 5-4.
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5.3.1 2D Ocean Slice: Mean Salinity

(a) Time 1 (b) Time 2 (c) Time 3

(d) Time 4 (e) Time 5 (f) Time 6

(g) Time 7 (h) Time 8 (i) Time 9

(j) Time 10 (k) Time 11 (l) Time 12

Figure 5-12: 2D Slice Salinity Mean
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(m) Time 13 (n) Time 14 (o) Time 15

(p) Time 16 (q) Time 17 (r) Time 18

(s) Time 19 (t) Time 20 (u) Time 21

(v) Time 22

Figure 5-12: 2D Slice Salinity Mean
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5.3.2 2D Ocean Slice: Salinity Standard Deviation

(a) Time 1 (b) Time 2 (c) Time 3

(d) Time 4 (e) Time 5 (f) Time 6

(g) Time 7 (h) Time 8 (i) Time 9

(j) Time 10 (k) Time 11 (l) Time 12

Figure 5-13: 2D Slice Salinity Standard Deviation
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(m) Time 13 (n) Time 14 (o) Time 15

(p) Time 16 (q) Time 17 (r) Time 18

(s) Time 19 (t) Time 20 (u) Time 21

(v) Time 22

Figure 5-13: 2D Slice Salinity Standard Deviation
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5.3.3 2D Ocean Slice: Mean Temperature

(a) Time 1 (b) Time 2 (c) Time 3

(d) Time 4 (e) Time 5 (f) Time 6

(g) Time 7 (h) Time 8 (i) Time 9

(j) Time 10 (k) Time 11 (l) Time 12

Figure 5-14: 2D Slice Temperature Mean
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(m) Time 13 (n) Time 14 (o) Time 15

(p) Time 16 (q) Time 17 (r) Time 18

(s) Time 19 (t) Time 20 (u) Time 21

(v) Time 22

Figure 5-14: 2D Slice Temperature Mean
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5.3.4 2D Ocean Slice: Temperature Standard Deviation

(a) Time 1 (b) Time 2 (c) Time 3

(d) Time 4 (e) Time 5 (f) Time 6

(g) Time 7 (h) Time 8 (i) Time 9

(j) Time 10 (k) Time 11 (l) Time 12

Figure 5-15: 2D Slice Temperature Standard Deviation
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(m) Time 13 (n) Time 14 (o) Time 15

(p) Time 16 (q) Time 17 (r) Time 18

(s) Time 19 (t) Time 20 (u) Time 21

(v) Time 22

Figure 5-15: 2D Slice Temperature Standard Deviation
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5.3.5 2D Ocean Slice: Mean Sound Speed

(a) Time 1 (b) Time 2 (c) Time 3

(d) Time 4 (e) Time 5 (f) Time 6

(g) Time 7 (h) Time 8 (i) Time 9

(j) Time 10 (k) Time 11 (l) Time 12

Figure 5-16: 2D Slice Sound Speed Mean
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(m) Time 13 (n) Time 14 (o) Time 15

(p) Time 16 (q) Time 17 (r) Time 18

(s) Time 19 (t) Time 20 (u) Time 21

(v) Time 22

Figure 5-16: 2D Slice Sound Speed Mean
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5.3.6 2D Ocean Slice: Sound Speed Standard Deviation

(a) Time 1 (b) Time 2 (c) Time 3

(d) Time 4 (e) Time 5 (f) Time 6

(g) Time 7 (h) Time 8 (i) Time 9

(j) Time 10 (k) Time 11 (l) Time 12

Figure 5-17: 2D Slice Sound Speed Standard Deviation
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(m) Time 13 (n) Time 14 (o) Time 15

(p) Time 16 (q) Time 17 (r) Time 18

(s) Time 19 (t) Time 20 (u) Time 21

(v) Time 22

Figure 5-17: 2D Slice Sound Speed Standard Deviation
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5.3.7 2D Acoustic Field Downslope Propagation

The temperature, salinity and sound speed fields shown in the previous sections dis-

play the variations between the realizations of the ensemble. Variations in the salinity

fields as shown in Figure 5-13 display the effects of internal tides on the salinity field

realizations, which appear as striations in the standard deviation fields. The evolu-

tion of the ensemble of ocean states was used as the temperature and salinity input

into the 3D parabolic equation Peregrine code. For each ocean state the acoustic code

was ran to generate a representative acoustic field for the 2D propagation downslope

in the North Mein-Hua canyon. The region of these acoustic runs is shown along the

red line that is within the region of acoustic study shown by the rectangular area in

Figure 5-18.

Figure 5-18: 2D Ocean Slice: Path of Acoustic Propagation

The downslope propagation was transmitted at a depth of 75m at a frequency of

150 hz originating at position with Longitude 122o40’52”E and Latitude 25o47’41”N

for 50km. The upslope runs shown in the following section were also transmitted

along the same path in the reverse direction originating from position with Longitude

122o48’44”E and Latitude 25o22’50”N. The upslope runs were also transmitted at the
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same depth and frequency as the downslope runs. For the downslope runs each of the

19 realizations of the acoustic field plots for the final time interval are displayed in

Figure 5-19. In these figures the uncertainties in the ocean field generate variations

within the acoustic fields that will be analyzed using the CROM methodology.

(a) Environment 1 (b) Environment 2 (c) Environment 3

(d) Environment 4 (e) Environment 5 (f) Environment 6

(g) Environment 7 (h) Environment 8 (i) Environment 9

(j) Environment 10 (k) Environment 11 (l) Environment 12

(m) Environment 13 (n) Environment 14 (o) Environment 15

Figure 5-19: Downslope 2D Slice Acoustic Field
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(p) Environment 16 (q) Environment 17 (r) Environment 18

(s) Environment 19

Figure 5-19: Downslope 2D Slice Acoustic Field

5.3.8 2D Acoustic Field Upslope Propagation

The 19 realizations for the upslope propagation at the final time interval are displayed

in Figure 5-20.

(a) Environment 1 (b) Environment 2 (c) Environment 3

(d) Environment 4 (e) Environment 5 (f) Environment 6

(g) Environment 7 (h) Environment 8 (i) Environment 9
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(j) Environment 10 (k) Environment 11 (l) Environment 12

(m) Environment 13 (n) Environment 14 (o) Environment 15

(p) Environment 16 (q) Environment 17 (r) Environment 18

(s) Environment 19

Figure 5-20: Upslope 2D Slice Acoustic Field

5.4 Transmission Loss Cluster Analysis

The analysis of the transmission loss data obtained from the from the various ocean

state perturbations over the three and half day period can be seen to exhibit various

characteristics that develop with range. The variation in transmission loss is more

readily apparent for the downslope propagation than for the upslope acoustic fields.

The cumulative transmission loss fields are plotted for the downslope and upslope

ensembles in Figure 5-21. From the cumulative transmission loss plots it can be seen

that there is a variation in the dB level of approximately 20 dB due to only the

variation in the ocean fields. Depending on the state of the background environment
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this variation in transmission loss could be tactically significant for counter detection

purposes. Therefore, a better understanding of the variations caused by the ocean

uncertainty is necessary. In order to better understand and quantify the relationship

(a) Downslope Transmission Loss vs Range

(b) Upslope Transmission Loss vs Range

Figure 5-21: Cumulative Transmission Loss for Downslope Ensemble and Upslope
Ensemble

between the ocean variability and the resulting acoustic field a cluster based analysis is

performed. As discussed in Chapter 4 cluster analyses have been previously performed

on stochastic flow simulations in order to analyze the results and draw conclusions
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on the structures of the resulting data. Inferences can be made on the temporal

relationships between the various flow states and interaction between mechanisms

within the flow. For example cluster based reduced order modeling was employed in

the examination of the flow field induced by the wake of a high speed train. The

approach used in the analysis of the high speed train wake was classified as cluster

based reduced order modeling. This technique is used to group the data using a k-

means clustering analysis. Next, an analysis of the temporal relationship between the

cluster transitions is performed, which is modeled as a Markov Process (Östh et al.,

2015). This method can mine the data to extract the various flow structures from the

seemingly random data. The cluster based reduced order modeling methodology will

be employed to quantify the uncertainties within the transmission loss fields due to

the uncertainty contained withing the evolution of the ocean temperature and salinity

fields.

5.4.1 Transmission Loss Clustering

The first step in the CROM methodology is to cluster the data. Out data set contains

the ensemble of 19 perturbations over 22 three hour time intervals. The clustering

technique employed is k-means clustering. The k-means clustering employs corre-

lation distance measure and the number of clusters is determined using the elbow

method. The data is first clustered using cluster values from 1-10. The clusters for

each iteration of the downslope propagation can be seen in Figure 5-22 and in Figure

5-23 for the upslope propagation. For the low cluster values it can be seen that the

range of data is not well represented and for the higher cluster plots there are regions

where the clusters are overlapped. The elbow method is employed to determine the

optimal cluster value that best represents the division of transmission loss clusters.

The determination of the optimal number of clusters is one of the most difficult

aspects of cluster analysis. The elbow method is one approach that seeks to deter-

mine the optimal number of clusters by sequentially plotting the sum of the distance

measures for all data points of each cluster value. The ideal number of clusters will
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

(e) Cluster 5 (f) Cluster 6

(g) Cluster 7 (h) Cluster 8

(i) Cluster 9 (j) Cluster 10

Figure 5-22: Downslope Transmission Loss Clusters
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

(e) Cluster 5 (f) Cluster 6

(g) Cluster 7 (h) Cluster 8

(i) Cluster 9 (j) Cluster 10

Figure 5-23: Upslope Transmission Loss Clusters
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be the cluster where a change in cluster value causes a reduced change in the sum of

distances. The cumulative sum of distances are plotted in Figure 5-24.

Figure 5-24: Cluster Cumulative Sum of Distances Plot

The elbow of the curve can be identified at approximately 2-4 clusters by inspection of

the sum of distances plot. A more rigorous and heuristic identification of the optimal

number of clusters can be found using the gap statistic developed by (Tibshirani

et al., 2001) for DNA analysis. The gap statistic utilizes a compactness score for

the intra cluster data based on the variance of the dataset cluster J
ck

. The log(J
ck
)

is compared to generated reference distributions that are each evenly distributed

within the bounds of the original dataset. The estimate of the uniform distribution

is determined through Monte Carlo sampling of B generated uniform distributions

and is represented by the term E⇤
n

{log(J
ck
)}. The gap statistic equation is displayed

below.

Gap
n

(k) = E⇤
n

{log(J
ck
)}� log(J

ck
) (5.5)

The log(J
ck
) is determined for each cluster value and compared to the reference dis-

tribution. The tolerance of this procedure s
k

is dependent on the standard deviation

of the reference distribution sd(k).

s
k

= (

p
1 + 1/B)sd(k) (5.6)
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The cluster value with the maximum gap value accounting for the tolerance of the

reference distribution represents the elbow of the curve. From this the optimal number

of clusters can be determined using equation 5.7.

Gap(k) � Gap(k + 1)� s
k+1 (5.7)

An example cluster gap statistic obtained from the transmission loss data set can

be seen in Figure 5-25. In this example the optimal number of clusters is 3, which

Figure 5-25: Cluster Gap Statistic Plot

checks with the expected cluster value determined from the observation of the elbow

point on the sum of distances plot in Figure 5-24. The optimum number of clusters

is determined through analysis of the Gap Statistic plot. Cluster 3 represents the

smallest cluster k where the subsequent cluster 4 has a gap statistic value less than or

equal to cluster 3 and this difference is greater than the tolerance s
k

. Therefore, the

datasets were clustered using a k value of 3. The upslope and downslope transmission

loss cluster plots can be seen in Figure 5-26 The plots in Figure 5-26 incorporate all of

the perturbations across all of the time intervals. The data was additionally clusters

at each individual time step for all the perturbations. The upslope clustered data at

the final time interval can be seen in Figure 5-27. The downslope clustered data can

be seen in Figure 5-28. From analysis of these clustered plots the data can be dis-
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(a) Upslope (b) Downslope

Figure 5-26: Transmission Loss vs. Range Cluster Plots (k=3)

Figure 5-27: Upslope Clustered Data at Final Time Interval

tilled to understand the significance of the effect of the ocean field uncertainty. The

first observation is that the deviation between clusters is greater for the downslope

transmission loss as compared to the upslope losses. The reason for this is most likely

due to number of interactions with the bottom. The upslope acoustic propagation is

reflected off of the surface and bottom several more times than the downslope propa-

gation due to the geometry of the waveguide. Therefore, the downslope propagation
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Figure 5-28: Downslope Clustered Data at Final Time Interval

is influenced by the uncertainties in the ocean field for greater lengths, which en-

hanced the effects on the resulting acoustic field at further ranges. Additionally, the

acoustic field uncertainties are enhanced in the vicinity of bathymetric features. In

regions where there acoustic field encounters rising elevation around ranges of 25-27

km and 35-40 km for the downslope propagation in Figure 5-28 the uncertainty in

the transmission loss is greatest. The significance of the variations in the transmis-

sion loss is that variations of 5-15 dB between clusters exist and extend over ranges

of approximately 5 km. Incorporating these acoustic field uncertainties into counter

detection tactical decision aides can enhance the operational awareness of acoustic

vulnerabilities.
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5.5 Probability of Detection Decision Aid

5.5.1 Gaussian Probability of Detection Plots

The acoustic fields can now be employed to generate probability of detection plots with

increased fidelity by accounting for the uncertainty due to the the ocean field. The first

method will utilize the raw acoustic field ensembles and perform a Gaussian analysis

to determine the probability of detection. This process utilizes the ensemble of the

acoustic field at each range and fitted a Gaussian curve that represents the uncertainty

in the acoustic field. The Gaussian field is then compared to a background noise level

to develop the signal to noise ratio that will provided the basis for comparison to

determine the probability of detection. The upslope transmission loss probability of

detection plot can be seen in Figure 5-29.

Figure 5-29: Upslope Transmission Loss and Gaussian Probability of Detection Plot
with Constant Background Noise

The upper plot in Figure 5-29 represents the range of percentiles of the acoustic

field dataset, and the three horizontal lines at -80dB, -85dB and -90dB represent possi-

ble constant background noise profiles. The probability of detection plot is generated
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by comparing each transmission loss curve to the three noise profiles and generates a

probability based on the percentile of possible transmission loss fields that exhibit a

signal to noise ratio that would increase the chances of detection. In the upslope prop-

agation the acoustic field exhibits an approximately 5-10 dB variation growing slightly

at further ranges. The downslope probability of detection plot develops regions of

variation that range from 20-30 dB along the shelf-break region. These variations

occur at longer ranges than the upslope propagation and represent ranges where the

probability of detection varies. The downslope probability of detection curve is shown

in Figure 5-30.

Figure 5-30: Downslope Transmission Loss and Gaussian Probability of Detection
Plot with Constant Background Noise

In the downslope propagation the steepest slope of the shelf-break region occurs

at approximately 20 km. In the region from 22-30 km the transmission loss exhibits

increased uncertainty, which is reflected in the probability of detection plot with

various probabilities of detection for each of the potential background profiles. The

red, blue and yellow background profiles in the upper plots correspond with the

respective colors in the lower probability of detection plots in the lower plots. This
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enables the evaluation of the probability of detection with respect to the uncertain

background noise models. The noise profile can be easily varied to represent areas

where noise levels change due to increased ambient levels due to weather effects, or

shipping and fishing traffic.

Figure 5-31: Upslope Transmission Loss and Gaussian Probability of Detection Plot
with Variable Background Noise

An example variable noise profiles are plotted using a simple sine wave profile to

demonstrate this for the upslope propagation in Figure 5-31 and for the downslope

propagation in Figure 5-32. As seen in these figures the variation in the noise profile

can significantly alter the probability of detection ranges.

The Gaussian probability of detection plots are useful tools to enhance the oper-

ators understanding the potential zones of detection with an associated probability.

This enables an understanding of the forecast acoustic field vulnerabilities that can be

exploited operationally during the planning phase or in real time for a more thorough

situational awareness.

The Gaussian probability of detection plots require that the entire acoustic field

dataset with all perturbations be utilized to generate the detection plot. As outlined
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Figure 5-32: Downslope Transmission Loss and Gaussian Probability of Detection
Plot with Variable Background Noise

in Chapter 4 the cluster based analysis will be proven to provide comparable fidelity

to Gaussian probability of detection plots utilizing the data of the cluster centroids.

5.5.2 Clustered Probability of Detection Plots

The clustered probability of detection plots will represent the same dataset through

the use of the clustered centroids. The probability of detection will be determined

from the cumulative cluster probability determined by the percentage of transmission

loss fields contained within the cluster. Therefore, the number of clusters with values

above the noise profile represent the probability of the detection at that range. The

clustered probability of detection for the upslope and downslope propagation with a

constant noise profile is displayed in Figure 5-33 and Figure 5-34 respectively.
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Figure 5-33: Upslope Transmission Loss and Clustered Probability of Detection Plot
with Constant Background Noise

Figure 5-34: Downslope Transmission Loss and Clustered Probability of Detection
Plot with Constant Background Noise
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The clustered plots include the envelope of the dataset at the 5th and 95th per-

centile to approximately bound the dataset and the clusters are plotted and labeled

as A, B and C. By comparison of Figures 5-29 and 5-30 to Figures 5-33 and 5-34

respectively it is clear that the probability of detection plots generated from the clus-

tered data are equally representative of the variation in detection ranges as can be

seen in the Gaussian plots.

Figure 5-35: Upslope Transmission Loss and Clustered Probability of Detection Plot
with Variable Background Noise

The probability of detection plots were also generated for variable background

noise profiles using the clustered datasets. The clustered datasets with variable back-

ground noise can be seen in Figures 5-35 and 5-36 for upslope and downslope propa-

gation respectively. Again, when compared to the Gaussian probability of detection

plots in Figures 5-31 and 5-32 the results of the clustered plots are equally represen-

tative across all ranges of the probability of detection plots.

The benefit of using the clustered data sets is that these fields can be equally

representative of the detection probabilities as the Gaussian fields, while only utilizing

a fraction of the dataset to generate these representations. The clustered dataset uses
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Figure 5-36: Downslope Transmission Loss and Clustered Probability of Detection
Plot with Variable Background Noise

three arrays containing the clustered centroids, as compared to the 19 arrays of the

perturbed dataset for each of the 22 time intervals. If a larger initial ensembles dataset

was used this an even greater reduction would be possible. Additionally, the Markov

process representation can use the clustered detection plots over an expanded time

interval with the same clustered centroid groups to describe the expected fields with

their associated uncertainty.

5.6 Acoustic Field Markov Process Representation

The Markov Process representation as described in Chapter 4 can be utilized to ex-

tend the predictive capability of the uncertain acoustic fields. The Markov process is

defined by the cluster transition matrix. The cluster transition matrix is determined

by evaluating the probability of transition between clusters from one time step to

the next. The evaluation of cluster transitions can be used to determine the cluster

transition matrix. In figure the 5-37 the most common cluster of each ensemble and

96



the mean cluster for each ensemble are represented at each time interval. The cluster

Figure 5-37: Cluster Transitions vs. Time

transition matrix, P
jk

utilizes the analysis of the average cluster transitions for each

ensemble to determine the probabilities of transition. The values of the cluster tran-

sition matrix can be seen in Figure 5-38.

����������

1/6 1/2 1/3

1/3 1/3 1/3

2/9 1/9 2/3

����������

Figure 5-38: Cluster Transition Matrix

The cluster transition matrix can also be graphically represented in the Cluster

Transition Diagram format described in Figure 4-2. The Cluster Transition Diagram

for the example described by the Cluster Transition Matrix from Figure 5-38 can

be seen below in Figure 5-39. The knowledge of the expected probabilities of cluster

transition can be used to determine the likelihood of a specific clusters occurrence over
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Figure 5-39: Cluster Transition Diagram

the different time steps. This information can be employed to generate estimations of

the forecast probability of detection plots with incorporated uncertainty estimation.

5.7 2D Ocean Acoustic Field Conclusions

The 2D acoustic field uncertainty analysis is able to provide enhanced probability of

detection plots. These plots are able to highlight the range of acoustic field variation

that arises from the uncertainty in the ocean fields. Ranges where large bathymetric

variations exist generate the largest resultant variations in the acoustic field, which

have the most significant effects on the probability of detection plots. In certain re-

gions of high variability the clusters may not completely reflect the potential acoustic

states. In regions exhibiting this high variability it may be beneficial to increase the

number of clusters to better represent the acoustic modes that are developed due to

the variations in the ocean field. Potentially, the optimum number of clusters could be

recomputed in critical regions where higher variability is expected. However, the Gap

Statistic technique is computationally expensive due to the size of the datasets and

the fact that the computations must be completed for each possible cluster value.
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Therefore, it would be computationally beneficial to keep these regions where the

optimum clusters is recomputed narrow to reduce the computational cost. Next,

these same techniques will be applied to the 4D ocean models and the 3D acoustic

propagation.
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Chapter 6

3D Ocean Acoustic Uncertainty

Analysis

The same analysis techniques can be applied to fully 3D acoustic propagation utilizing

the 4D ocean field forecasts. The 3D acoustic propagation can provide a horizontal

assessment of the acoustic field to easily locate regions of reduced or enhanced prob-

ability of detection, which can be used for improved mission planning. The analysis

techniques used to evaluate the effects of the forecast ocean variability on the resulting

acoustic field will be the same methods used for the 2D slices in the previous chap-

ter. The 4D ocean fields will be analyzed and plotted to demonstrate the enhanced

variability along the critical shelf-break region. Next, the 3D acoustic propagation

results will be plotted and clustered using the same general techniques used in the

slice analysis. The clustered results will be then compared to Gaussian analysis of

the ensemble of 3D acoustic field. Finally, the results will be used to demonstrate

examples of the forecast probability of detection estimates for the ocean acoustic

ensembles.

6.1 4D Ocean Field

The forecast ocean realizations are analyzed across the entire study area to the North

East of Taiwan. The 4D ocean field variance is depth dependent and depth slices of the
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temperature, salinity and sound speed fields are plotted to display these variations.

The ocean fields representing the temperature, salinity and sound speed at various

depths for the final time interval are displayed in Figures (6-1 - 6-4).

(a) Mean Salinity (b) Mean Temperature (c) Mean Sound Speed

(d) Salinity STD (e) Temperature STD (f) Sound Speed STD

Figure 6-1: Surface Ocean Field Mean and Standard Deviation Profiles

(a) Mean Salinity (b) Mean Temperature (c) Mean Sound Speed

(d) Salinity STD (e) Temperature STD (f) Sound Speed STD

Figure 6-2: 50m Depth Ocean Field Mean and Standard Deviation Profiles

The sea floor is displayed as the blacked out region in each of the figures. As depth
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(a) Mean Salinity (b) Mean Temperature (c) Mean Sound Speed

(d) Salinity STD (e) Temperature STD (f) Sound Speed STD

Figure 6-3: 100m Depth Ocean Field Mean and Standard Deviation Profiles

(a) Mean Salinity (b) Mean Temperature (c) Mean Sound Speed

(d) Salinity STD (e) Temperature STD (f) Sound Speed STD

Figure 6-4: 500m Depth Ocean Field Mean and Standard Deviation Profiles

increases for each subsequent figure the variation in bathymetry the can be observed.

These plots clearly demonstrate the increased variation of the ocean uncertainty along

the critical shelf-break region. In Figures 6-1 and 6-2 the surface and 50m depth ocean

fields exhibit their peak variance along the shelf-break. This region is also follows the

direction of the Kuroshio current to the North West of the island of Taiwan, which
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leads the the development of eddies which can be seen in the mean salinity and

temperature fields in Figure 6-1. The dynamics of the ocean fields in this region

where steep bathymetric slopes and ocean currents interact generate the uncertainty

in the ocean field. The ensemble of 4D ocean realizations along this region are used

to generate the 3D acoustic ensemble from the forecast uncertain ocean environment.

6.2 3D Acoustic Field

The 4D ocean ensemble was input to the 3D acoustic Peregrine code to generate

the 3D acoustic field ensemble. The acoustic fields were then used to generate a

transmission loss field for the region of study. The plot of the 3D acoustic propagation

using a transceiver depth of 100m and a frequency of 150 Hz originating from the same

source location as the 2D downslope propagation is plotted on the map in Figure 6-5.

In Figure 6-5 the propagation is displayed and the range of transmission loss is shown

Figure 6-5: 3D Acoustic Propagation Along Shelf-Break Region

down to -120 dB. This plot displays the expected propagation with an extremely low
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background noise level. In the Figure 6-6 the background noise is assumed to be at

a level of -90 dB, which limits the range of the sound propagation to less than 50

km, which is computed and more accurately displays the bounds of the propagation.

From analysis of Figure 6-6 it is evident that the propagation is greatly reduced due

Figure 6-6: 3D Acoustic Propagation Along Shelf-Break Region Above -90 dB

to the interaction with the steep bathymetry along the North Mein-Hua canyon. A

full ensemble of 3D acoustic propagation plots are generated to be clustered and

evaluated to determine regions of significant variation due to the ocean uncertainty.

Additionally, a second ensemble was generated with the epicenter of the propaga-

tion originating from the same location that was used for the source of the upslope

2D propagation slice. The 3D acoustic field propagates primarily up the slope of the

North Mein-Hua canyon and is displayed in Figure 6-7. The transmission loss is again

plotted using a transceiver depth of 100 m with a limiting background level of -120

dB in Figure 6-7 and -90 dB in Figure 6-8.
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Figure 6-7: Upslope 3D Acoustic Propagation Along Shelf-Break Region

Figure 6-8: Upslope 3D Acoustic Propagation Along Shelf-Break Region Above -90
dB
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The horizontal transmission loss profile ensembles can be clustered to identify

areas of variation due to the uncertainties in the ocean field. These clustered trans-

mission loss profiles generated from the ensembles can be used to identify regions of

higher or lower transmission loss and their probability of occurrence can enhance the

understanding of the potential acoustic fields that are contained within the forecast

ocean field ensembles.

6.3 Coupled 4D Ocean Field and 3D Acoustic Field

Uncertainty Evaulation

6.3.1 3D Acoustic Clusters

The acoustic fields for the 3D downslope propagation were analyzed and clustered

using the same technique that was used to cluster the 2D acoustic slices. The k-

means algorithm was used and again a k-value of 3 was used to generate representative

clusters of the data. Each of the 3 clusters can be seen in the plots displayed in Figure

6-9. The transmission loss plots are depicted by a 3D representation in the upper

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

Figure 6-9: Transmission Loss Cluster Plots

subplot and by a contour plot in the lower subplot of Figure 6-9. The variations

between plots can be identified through close inspection of these figures. However, to

more easily highlight the variations generated between the clusters a set of difference
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plots are used.

6.3.2 Cluster Difference Plots

The clustered difference plots highlight the range in transmission loss that can be

generated by the ocean uncertainty within the ensembles. The cluster difference

plots show the range in decibels of transmission loss between clusters. Additionally,

the difference plots show the variation for the given transition from one cluster to

another and highlights the expected variations. The three cluster difference plots for

the downslope propagation can be seen in Figure 6-10.

(a) Clusters 1 and 2 (b) Clusters 1 and 3 (c) Clusters 2 and 3

Figure 6-10: Cluster Difference Plots

The difference plots show that range in transmission loss levels between two clus-

ters varies from approximately -10 dB to +15 dB. The regions of peak variability

differs from one cluster to another. Therefore, the probability of detection may be

significantly affected in those regions. The differences between clusters 1 and 2 shown

in plot (a) identify several regions of higher transmission loss levels, which would

indicate an increased probability of detection in those regions. When compared to

the differences between clusters 2 and 3 in plot (c) there are predominantly regions

of reduced transmission loss, which would indicate a reduced risk of detection for a

transition from cluster 2 to 3. To represent the variations in probability of detec-

tion the 3D acoustic fields will be used to generate both a Gaussian probability of

detection plot and a clustered probability of detection plot to highlight the regions of
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variation in the acoustic fields with increased fidelity.

6.3.3 3D Gaussian Probability of Detection Plots

The first probability of detection plots are generated using a Gaussian representation

of the entire ensemble generated from the ocean acoustic fields. Again at a transceiver

depth of 100 m and a frequency of 150 hz the transmission loss of the acoustic field

ensembles that were generated from the forecast 4D ocean fields are used to generate

a Gaussian distribution at each grid point. The background noise is assumed to be a

constant level for the entire region, although this is not necessary. Various background

noise profiles could be utilized; however, these examples are only displayed with

constant noise level of -80 dB, -90 dB and -100 dB. If the transmission loss for all

fields in the ensemble are greater than the noise level then a probability of detection

is assumed to be greater than 95%. For regions where only some of the acoustic

fields generated in the Gaussian probability distribution then they are weighted by

their percentage to determine a more accurate probability of detection in that region.

The probability of detection plots for the various background noise levels can be

seen in Figure 6-11. The benefit of using the ensemble of ocean acoustic fields is

(a) Background -80 dB (b) Background -90 dB (c) Background -100 dB

Figure 6-11: 3D Gaussian Probability of Detection Plots

easily seen in the Probability of Detection plots. For example, in subplot (a) of

Figure 6-11 there are regions ranging up to 15 km along the eastern boundary where

the probability of detection is variable based on the distribution generated from the

ensembles. For a single deterministic run this range of possible detection would not

be identified. Therefore, this example provides an increased fidelity to show regions
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where variations in the ocean field may alter the state of the acoustic field enough to

have implications on the detectability of a target. This same process was completed

using the clustered fields in lieu of the Gaussian probability distributions.

6.3.4 3D Clustered Probability of Detection Plots

The 3D acoustic fields were clustered as shown in section 6.3.1. These clusters each

have an expected probability based on the acoustic field ensembles. The future clus-

ter probabilities can also be estimated based on the cluster transition matrices. The

probabilities can be used to determine the probability of detection in the same man-

ner as the Gaussian probability distribution method. The regions where all cluster

transmission loss values are above the background noise level then the expected prob-

ability of detection is assumed to be greater than 95%. If less then the maximum

number of clusters and greater than one cluster are above the background noise level

then the probability of detection is determined based on the summation of the ex-

pected probability of occurrence of those clusters. For the example generated from

the test data, which have been divided into three clusters, the expected probability

of detection plots are displayed in Figure 6-12. The clustered probability of detection

(a) Background -80 dB (b) Background -90 dB (c) Background -100 dB

Figure 6-12: 3D Clustered Probability of Detection Plots

plots represent the same general regions where the variable detection probabilities

exist. The clusters do not provide the same level of fidelity as the Gaussian repre-

sentation; however, they do capture the major regions where the variability in the

acoustic field is changing. To increase the fidelity of the variations of the clustered

plots a greater number of clusters could be used. This method could also be employed
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in regions where greater variability is expected. For example, in regions surrounding

steep bathymetric features or, large gradients in the ocean parameters then a greater

number of clusters could be employed to better resolve those features.
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Chapter 7

Conclusion

The ocean is a complex medium for sound propagation. Accurately modeling the

nonlinear multi-scale processes of the ocean is an area of continued research and

progress. Progress in the development of coupled ocean acoustic propagation models

is also an ongoing endeavor, which has seen large advances due to the development

of supercomputer technology to facilitate large scale computing. The coupled 4D

ocean modeling with 3D acoustic propagation was performed and analyzed to better

understand the transmission of uncertainties from the ocean field to the resulting

acoustic transmission loss fields. This research has demonstrated the effects of ocean

variability in complex littoral regions and how this can generate significant effects

on the acoustic propagation in the region. This variability can alter the acoustic

transmission loss in certain dynamic regions by greater than 20 dB. An acoustic

propagation variability of this magnitude and occurring over long ranges can have

impacts on the probability of detection and knowledge of regions that exhibit this

variation may be beneficial for operational planning.

Uncertainty in the ocean fields is generated due to the nonlinearities and multi-

scale processes that cannot be fully represented by the mathematical models. Data

assimilation techniques and stochastic forcing of the models are helpful in accounting

for these uncertain processes. The generation of an ensemble of ocean fields can

be used to more adequately simulate the range of possible ocean states that may

develop in the forecast models. Employing the MIT Multidisciplinary Environmental
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Assimilation System (MSEAS) primitive equation ocean model, and generating an

ensemble of forecast ocean states using the Error Subspace Statistical Estimation

scheme (ESSE) the uncertainty in the ocean state was able to be captured and used

to generate the 3D uncertain acoustic field ensembles. The ensembles of 3D acoustic

transmission loss fields can then be represented by using the clustered reduced order

techniques.

The cluster based reduced order modeling was employed to generate reduced order

representative states that can be used to evaluate the effects of the uncertainty within

the ensembles that were generated. The optimized k-means clustering algorithm was

used to determine the representative reduced order acoustic transmission loss fields.

This analysis was performed initially for the 2D acoustic field slices and then modified

to enable clustering of 3D acoustic fields. Once the cluster centroids were identified,

temporal relationships between the cluster transitions were modeled as a Markov

process. The probability of expected cluster transitions was represented by a cluster

transition matrix to provide a representation of the forecast acoustic field. With the

model of the forecast acoustic field developed these were applied to generate enhanced

probability of detection plots in the 2D and 3D cases.

The probability of detection plots were generated using the acoustic field ensembles

that represented the uncertainty of the ocean state. The benefit gained by including

the uncertain fields is best seen in the region along the shelf-break zone. Complex

bathymetry and areas of high ocean field variation due to currents and multi-scale

process interactions generated the largest fluctuations in the acoustic field. These

regions could produce acoustic transmission loss variations of up to 20 dB that ranged

over 5-10 km. A completely deterministic model would not adequately represent the

acoustic state in these regions and the increased fidelity provided by incorporating

the uncertain fields may be useful for operational planning. The 2D slice uncertain

acoustic fields highlighted critical areas where the ranges of the acoustic field was

either above or below a critical signal to noise ratio. The 3D probability of detection

plots highlighted zones where certain clusters represent much higher peak acoustic

levels or zones of increased loss. The fidelity of these probability of detection could
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be further increased in future work.

The methods of ensemble analysis using cluster based reduced order modeling

could be improved a number of ways. First, increasing the ensemble size would pro-

vide more accurate results. The acoustic ensemble could also be generated at shorter

time intervals to further study and evaluate the temporal evolution of the uncertainty.

For instance, the effects of internal waves on the acoustic field uncertainty would re-

quire a much shorter time window, but these same techniques could be applied to

analyze possible ocean acoustic effects. Second, the clusters were optimized across

the full range, which may not provide adequate fidelity at certain ranges that exhibit

large ocean field variations and multiple acoustic modes are generated. To overcome

this challenge the heuristic approach of determining the optimal k-value to cluster the

data could be partitioned at various ranges in the 2D case or for certain zones in the

3D example. These regions could be determined based on a certain critical bathy-

metric slope or based on critical sound speed variability to trigger the heuristically

determined k-value to be recomputed in those ranges. This method would enable

regions of high variability to ensure the clustered reduced order model accurately

captures the various modes that are present.

The methods and techniques studied in this research can be used to assess the fore-

cast probabilities of the performance of systems that operate in the complex ocean

environment. Increased computing capability will facilitate more advanced studies

to be completed in the ocean acoustic field. The continued study and development

of improved ocean models will provide more accurate simulations. Additionally, ad-

vances in stochastic modeling of the ocean and acoustic propagation will also improve

capability to quantify uncertainties in these highly complex non-linear systems. The

need to continue to improve understanding and ascertain the interaction of ocean

acoustics uncertainties will continue to increase as the importance of unmanned un-

derwater systems continues to develop and the relevance of the complex littoral ocean

regions is continuing to grow. The development of advanced ocean acoustic navigation

systems, acoustic countermeasures and acoustic communications systems deployed in

complex ocean regions will greatly benefit from an enhanced understanding of the
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uncertainties in the acoustic environment. These factors will drive future advances

in coupled ocean acoustic modeling and further studies will continue to progress the

ocean acoustic field of study.
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Appendix A

Method of Runs

A.1 2D Acoustic Slice Run Commands
./peregrine lon 122d48m44s lat 25d22m50s bearing 344d

range_limits 0,55e3 depth_limits 0,-1500 tx_depth -100 fc

150 time 20090904T210000Z path_water ../envs/mseas01.oof

cat out.obb | tenlog | flipdim 0|transpose| obb2imageeps

climit -110,-50 ylimit 2,0 ytick -1 xlimit 0,50 xlabel

’Range (km)’ ylabel ’Depth (m)’ title ’Environment 1

Time 1’ show_colorbar 1 ctick 10 > env_01_time_01.eps

./peregrine lon 122d48m44s lat 25d22m50s bearing 344d

range_limits 0,55e3 rx_depth -100 depth_extent 10

tx_depth -100 fc 150 path_output single_depth.obb

path_output_range range.obb

cat single_depth.obb | tenlog | interleave range.obb

/dev/stdin | obb2lineeps xdatascale 6371 ylimit -114,-60

ytick 6 title ’TL vs Range’ xlabel ’Range (km)’ ylabel

’TL (dB)’ > tl_vs_range.eps
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A.2 3D Acoustic Run Commands
set peregrine_home="/file_location "

set peregrine_data="$peregrine_home/envs"

set peregrine_bin="$peregrine_home/peregrine"

$peregrine_bin/peregrine fc 150 time 20090904T210000Z rx_depth

-100 depth_extent 120 ppwx 2 pade_terms_horizontal 2 pixels 720

lon 122d40m52s lat 25d47m41s range 50e3 tx_depth -100

path_water ${peregrine_data}/mseas$1.oof path_seafloor

${peregrine_data}/etopo.oof sediment_phi 5 path_output out.obb

cat out.obb | trim 0 0 1 | mergedims 0 | tenlog | obb2kmz

climit -90,-30 lonlimit 122.182d,123.181d latlimit

25.3451d,26.2444d

cat out.obb | tenlog | obb2dms > output_file_name$1.txt

sed -i -e ’s/;/ /g’ output_file_name $1.txt

sed -i -e ’s/-inf/NaN/g’ output_file_name $1.txt
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