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ABSTRACT 
 
In this thesis, we explore the use of stochastic Navier-Stokes equations through the 
Dynamically Orthogonal (DO) methodology developed at MIT in the Multidisciplinary 
Simulation, Estimation, and Assimilation Systems Group. Specifically, we examine the 
effects of the Reynolds number on stochastic fluid flows behind a square cylinder and 
evaluate computational schemes to do so. We review existing literature, examine our 
simulation results and validate the numerical solution. The thesis uses a novel open 
boundary condition formulation for DO stochastic Navier-Stokes equations, which allows 
the modeling of a wide range of random inlet boundary conditions with a single DO 
simulation of low stochastic dimensions, reducing computational costs by orders of 
magnitude. We first test the numerical convergence and validating the numerics.  We then 
study the sensitivity of the results to several parameters, focusing for the dynamics on the 
sensitivity to the Reynolds number. For the method, we focus on the sensitivity to the: 
resolution of in the stochastic subspace, resolution in the physical space and number of 
open boundary conditions DO modes. Finally, we evaluate and study how key dynamical 
characteristics of the flow such as the recirculation length and the vortex shedding period 
vary with the Reynolds number.   
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1. Introduction 

1.1 Background and Motivation 
In recent times, modeling stochastic fluid systems has become increasingly popular 

as the need and applications for these models has grown while uncertainties in the model 
parameters, parameterizations and inputs still often remain significant. Stochastic models 
are applied to varied engineering and scientific disciplines including Mathematical 
simulations, Mechanical Engineering models, and Aeronautics and Astronautics system 
designs. With the wide array of cross disciplinary applications, modeling methods such as 
the Monte-Carlo (MC), Polynomial Chaos Expansion (PCE) and Proper Orthogonal 
Decomposition (POD) were developed to solve these problems. Unfortunately, these 
original methods are prohibitively expensive and have since received much attention to 
improve their efficiency.  More specifically, the stochastic simulation of the Navier-Stokes 
equations through different computational methodologies is an active area of research. 
Although many improvements have been made to PCE and POD methods, many stochastic 
fluid flow problems remain computationally intractable.  Thus, the most recently developed 
Dynamic Orthogonality (DO) method, developed by Sapsis and Lermusiaux (2009) from the 
MIT MSEAS group, is of great interest, since it promises to cut down computational costs by 
an order of magnitude or more for the same accuracy. The more efficient the fluid flow 
representations are with the same level of accuracy, the more engineers can utilize these 
simulation and design better fluid dynamical systems under a range of uncertain 
conditions. 

This thesis is focused on examining the effects of the Reynolds Number on stochastic 
fluid flows behind a square cylinder and evaluating the DO methodology and computational 
schemes to do so. This involves reviewing existing literature, examining our simulation 
results, and validating that our numerical solution is correct. The thesis uses a novel 
boundary condition formulation for stochastic Navier-Stokes equations (Ueckermann et al., 
2012) which allows the modeling of a wide range of random inlet boundary conditions 
with a single DO simulation of low space-time dimensions. For this thesis, the range of inlet 
boundary conditions considered corresponds to variations of the Reynolds number, 
defined by𝑅𝑒 = 𝜌𝑣𝐷

𝜇
, from approximately 20 to 100. This range contains two distinct 

laminar flow regimes: the lower-Reynolds number regime is steady and is characterized by 
a recirculation zone behind the cylinder, while the unsteady regime is characterized by 
vortices shedding at a frequency correlated to the Reynolds number.  

Since the stochastic DO simulation is discrete, we evaluate the effect of different 
discretization parameters on the stochastic results. Specifically, to evaluate the approach, 
we first evaluate its accuracy, understand its constraints. Next, we can extend the approach 
or apply it to other problems. The numerical discretization of the continuous DO equations 
leads to discrete equations with matrices.  One of the ways to evaluate the adequacy of the 
numerical code is to evaluate the convergence of the discretized simulations. In this thesis, 
we show that the new open-boundary stochastic modeling approach allows one to 
complete a large number of deterministic simulations with varied Reynolds numbers with 
a much cheaper single DO simulation with stochastic open boundary conditions. We also 
describe the dynamic global properties of the flow. We evaluate our dynamics result by 
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comparisons with existing knowledge about flows behind a cylinder at varied Reynolds 
number values. The key aspect of our application is that we can compute all of the solutions 
with a large ensemble of Reynolds number values with a single stochastic simulation.   

Next we adjust the parameters to better understand their role in creating the 
realizations and how certain values will impact the convergence of the numerics. 
Convergence is important since we are modeling continuous equations with discrete time 
steps. At sufficient resolution, we should reach very close approximations of the governing 
fluid equations with parameter (Re) values described only by a probability density 
function.  

Lastly, we calculate key characteristics of flows behind a square cylinder for mean 
Reynolds numbers within the interval 20-100. For that range of Re numbers, we find the 
recirculation zone length and vortex shedding frequency. The validation of this new 
method and calculation of key characteristics, like recirculation zone length and vortex 
shedding period, illustrates the possibilities of the new stochastic boundary condition 
approach we utilize. In the future, we can then transfer this knowledge to applications in 
different fluid test cases and in cross-disciplinary scenarios. 

1.2  Background Literature 
There is a large body of established literature on the topic of simulations and 

models of fluid flow around a cylinder. Within this literature, we found benchmarks which 
establish qualitative trends in the behavior of such flows. These trends are used to verify 
our unique approach to model uncertainty using our finite volume Navier-Stokes solver 
which uses the Dynamically Orthogonal method to predict probability densities of the flow. 
The fluid dynamics considered is that of flows around a square or circular cylinder in a 
channel with a specified inlet velocity profile and boundary conditions. It has been 
observed that with increasing Reynolds number, the flow separates first at the trailing 
edges of the cylinder, leading to a closed steady recirculation region consisting of two 
symmetric vortices is observed behind the body. The size of the recirculation region 
increases with an increase in Reynolds number. When a critical Reynolds number is 
exceeded, the well-known von Karman vortex street with periodic vortex shedding from 
the cylinder can be observed from the wake. Based on experiments, Okajima (1982) found 
periodic vortex shedding at Reynolds number of approximately 70. Another value of 54 
was found by Klekar and Patankar (1992) based on a stability analysis of the fluid flow. 
Separation at the leading edges has been found to occur between the bounds of Re = 100 to 
150 by Okajima (1982) and Franke (1991). For a circular cylinder, this number is 
approximately 180.  

Bruer et al. (1999) model laminar flow past a square cylinder using two numerical 
methods: lattice-Boltzmann and finite volume methods. For flows in the creeping steady 
flow regime, Re < 1, the flow past the cylinder persists without separation (Bruer 1999). 
For flows in the earlier parts of the laminar regime, Re > 1, for example Re ~20, we see a 
recirculation region (Figure 1) consisting of two symmetric, vertically-stacked vortices in 
the wake. It is observed and proven that the length of this recirculation zone increases as 
the Reynolds number grows (Bruer 1999).  
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Bruer also found that the correlation between the recirculation zone length and the 
Reynolds number for the region between Re = 4.4 and Re = 60 is:  

𝐿𝑟
𝐷� =  −0.065 + 0.0554 ∗ 𝑅𝑒                             4.4 < 𝑅𝑒 < 60 

(eq. 1) 
Figure 1: Recirculation Zone 

 

At the higher Reynolds numbers, Re >100, there is the formation of eddies from the 
rollup of the free shear layers described as the von Karman vortex street as shown in the 
figure below (Figure 2).  

Figure 2: von Karman Vortex Street 
Vortex shedding is longer and broader for the square cylinder than for the circular cylinder. This 

figure only shows the circular cylinder case. (Van Dyke 2002) 

  

This pattern also has a frequency and it is observed that the period increases with 
rising Reynolds number (Davis et al., 1984). In Venturi (2008), they used an extension to 
the proper orthogonal decomposition (POD) method to analyze a random laminar wake 
past a circular cylinder. Using stochastic eigen-decomposition and modal analysis, they 
suggests the shedding period for a circular cylinder to be roughly 6 convective time units 
(Venturi 2008). This was used as a benchmark for our calculations and experiments. The 
authors also found that stochastic modes required to reproduce the correct simulation are 
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not directly dependent on the dimensionality of the flow, so they hypothesize that their 
approach can be used to analyze varied fluid flows. 

Franke (1990) completes numerical calculations of laminar vortex-shedding flows 
past square and circle cylinders in the laminar regime. He observed that for Reynolds 
numbers below 150, separation occurs at the rear corners of the cylinder and the size of 
the vortices decrease as the Reynolds number increases to this threshold. However, at 
Reynolds numbers greater than 150, the opposite behavior is observed. The separation 
occurs at the front corners and the size of the vortices increase with increasing Reynolds 
number (Franke 1990). 

Galletti (2003) employ the proper orthogonal decomposition to simulate multiple 
Reynolds numbers. The low dimensional modeling sets up the square cylinder 
symmetrically between two semi-infinite parallel walls. The inlet flow has a preset 
parabolic velocity profile and a set of boundary conditions to render the initial conditions 
consistent with the Navier-Stokes equations. They found that the numerical POD models 
are valid for certain Reynolds numbers and blockage ratio beyond the original 
investigations which includes Reynold number ranges from 60 to 255 and blockage ratio 
ranges from 0.125 to 0.375.  

For a circular cylinder, shedding frequency can be found from modeling the lift force 
(Lin 2007). In that manuscript, the author modeled stochastic simulations of compressible 
and incompressible flows using the Polynomial Chaos method. Incorporating the 
randomness of the stochastic inlet velocity, he found an empirical relation between the 
Reynolds number and vortex-shedding frequency. He found that for the range of Re, [90, 
100], the shedding frequency, fs, varies linearly between [0.1592, 0.1697]. The author 
concluded that that the analytical solutions found verify the numerical methods developed 
in the paper. We can use all of these results as benchmarks for our square cylinder case 
study.   

Lastly, Sharma described the previous findings on the Recrit values for flows and 
their blockage ratio (Table 1). This is used to benchmark our results since there hasn’t been 
a definite answer to the value of the Recrit. The answer is heavily influenced by the initial 
dynamic conditions of the flow like Reynolds number, and also by the Prandtl number and 
Strouhal number. 
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Table 1: Previous Recrit findings in existing literature 

Author Recrit Blockage ratio 

Leading or 
Trailing edge at 

high Re (Re 
<150) 

Leading or 
Trailing edge at 

very high Re 
(Re >150) 

     

Kelkar et. al. 54 14.3 % . . 
Norberg 47 ~0 % . . 
Sohankar et. al.  51.2 5 % Trailing edge Leading edge 
Franke . 8.3 % . Leading edge 
Robichaux . 5.56 % Trailing edge Leading edge 
 

1.3 Dynamically Orthogonal (DO) representation of Stochastic Navier-
Stokes Simulations 
 Fundamentally, the Dynamically Orthogonal representation is a decomposition of 
the Stochastic differential equations, in our case the Navier-Stokes equations. To fully 
represent the randomness of a discretized field, each point on the grid would require its 
own random variable. However, DO takes advantage of the assumption that if the flow is 
sufficiently continuous, then we may be able to obtain accurate estimates on the velocity 
and energy states at a point on the grid deduced from what we know about the nearby grid 
points. To put it simply, the velocities are correlated to each other. This intuitively makes 
sense because in fluid flows, for the liquid to move from one position to the next one, it 
must affect the nearby liquid, just by local conservation of mass and momentum. 

 DO uses the following discrete decomposition: 

𝑢(𝑥, 𝑡;𝜔) = 𝑢�(𝑥, 𝑡) + �𝑢𝑖(𝑥, 𝑡)𝑦𝑖(𝑡;𝜔)
𝑠

𝑖=0

 

(eq. 2) 
 The variable 𝑢 is the stochastic velocity. It can be decomposed into two parts, the 
mean and sum of the stochastic modes times the coefficients. The variable 𝑢�  is the average 
velocity. The variable 𝑢𝑖  represents the velocity-field for a single random variable on the 
grid based on how the local velocities are affected by that random variable, and 𝑦𝑖 is the 
stochastic coefficient, which is a realization of that random variable. The ∑ 𝑢𝑖𝑦𝑖𝑠

𝑖=0  term is 
the sum of all the stochastic aspects of the flow. Depending on the magnitude of𝑠, the 
number of “DO helper modes”, we can realistically model stochastic fluid systems.  

 To further understand, we can take a close look at the last term incorporating the 
randomness. This sum of products is broken down in two factors:  𝑢𝑖  and 𝑦𝑖. The  𝑢𝑖  
represents the orthonormal basis of the portion of the velocity field that is random; it is a 
field that can range in values over the spatial domain. The values for this variable depend 
on the dynamics of the flow, time and spatial constraints, and the boundary and inlet 
conditions of the system. The 𝑦𝑖’s are the stochastic coefficient for each mode. Depending 
on the value of these stochastic coefficients, 𝑦𝑖, which is described by a probability density 
function, we can obtain diverse results for the direction and magnitude of the velocity. For 
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example, Figure 3 plots the 1D projected (along the diagonal) and 2D projected scatter 
plots of realizations for the base case examined, and this shows the complexity of this 10-
dimensional probability space (Ueckermann and Lermusiaux, personal communication).  

 

Figure 3: Graphical Representation of Stochastic Coefficients. 
The 1D projected (along the diagonal) and 2D projected scatter plots of the realizations of the 

stochastic coefficients, 𝑦𝑖 ’s. The coefficient realizations are colored by the corresponding Reynolds 
number (Ueckermann and Lermusiaux, personal communication). 

 

 
 
 As illustrated on Figure 4, the magnitude of the modes in the DO decomposition 
encompassing the stochastic coefficients decrease as the mode number increases (see 
Figure 4). This allows one to limit the number of DO modes needed to represent the 
uncertainty in the flow or its probability density function.  
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Figure 4: Magnitudes of Mean and Modes 
The dotted line is the magnitude of the mean, and the next five lines show the amplitude of the first 

5 modes. 

 
If, at a particular point in time, we take a single, 10-dimensional point from Figure 1, 

multiply each dimension by its corresponding mode, sum up all of these (so, essentially a 
dot-product), and add the mean velocity, we can construct a deterministic realization of the 
field. However, in the above results we only showed the DO decomposition, that is the 
mean and the first five modes, as the final output for each time step. To illustrate 
realizations proper, Figure 6 shows the DO decomposition on the left, and 5 deterministic 
realizations at different Reynolds numbers for the base simulation.   

The number of DO modes necessary, that is, the value of s, to accurately model a 
range of different dynamics depends on the complexity of the flow (Sapsis and Lermusiaux, 
2011). Based on the expected flow behavior at the Reynolds and Strouhal numbers for the 
flow we are studying, we can make a good approximation for how many DO modes are 
necessary to reach convergence for our numerical simulation. For larger Reynolds 
numbers, it is expected that more DO modes will be needed. While we can make a good 
approximation of the number of DO modes needed, this thesis dives deeper in testing the 
boundaries of DO and understanding its effectiveness. 
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2.  Model set up and Validation  
 

The deterministic version of the Navier-Stokes code used has been extensively 
verified with standard CFD test-cases. The Stochastic version, in turn, was validated against 
this deterministic version (Ueckermann et. al. 2012). However the new stochastic 
boundary conditions (Ueckermann  and Lermusiaux, pers. com.) have not been previously 
validated and this is one of the goals of this thesis. To validate this, we examine a particular 
flow setup, described next. To ensure that this setup was accurately modeled, we varied 
several numerical discretization parameters, but each time only one at a time. By both 
increasing and decreasing the resolution of the discretization, we could examine whether 
the results converged. Since many of these test runs were the same as those used in the 
results presented in the next section, excepted that their objective was to validate the 
numerical model and open boundary condition methodology, we present all the results in 
the next section. In addition to those tests, we also ensured that the base simulation was 
repeatable given different realizations of the stochastic coefficients.  

We also wanted to study the effect of different flow and dynamical model 
parameters. In this thesis, we will focus on the flows behind a square cylinder. Our 
objective was to create a similar test case setup to those we found in the literature. For 
example, we set a uniform inlet boundary condition for the velocity. We also used a no-slip 
condition for the fluid around the cylinder, while using a slip condition at the top and 
bottom boundaries. We had the choice between a square or circular cylinder, but chose the 
latter because we could accurately represent a square cylinder using a structured grid. 
Lastly, we chose to study two-dimensional flows (see Figure 5 for a summary).  

Figure 5: Square Cylinder Model of the test scenario 
 

 

To define the flow characteristics for the stochastic simulation, we had to set the 
Reynolds number and Reynolds number range. Specifically, it is the uncertain inlet 
boundary condition that leads to a variable Reynolds number. Since the behavior of the 
flow drastically changes depending on the Reynolds number, it was important to capture 
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all of this variation within a single DO simulation. This was possible because the random 
realizations of the inlet boundary velocity are mapped uniquely to the stochastic subspace, 
in the form of stochastic coefficients that are defined in that subspace. This is a key of the 
new boundary condition approach. It allows representing simulations over a wide range of 
Re numbers with a single DO simulation. Numerically, the randomness is modeled by 
taking a large number of Monte-Carlo samples from MATLAB’s pseudo-random number 
generator for uniform distributions. Of course, the realization in the subspace can also be 
re-mapped to the physical space, as illustrated in Figure 6 for five different Re number 
values. 

Figure 6: Mean and first 5 modes of DO Decomposition (left) and reconstruction of 5 deterministic 
realizations (right). 

 

 

During our study of stochastic fluid flows past a square cylinder, we wanted to 
evaluate how well our new method could capture multiple dynamical regimes in a single 
simulation. For this, we needed to better understand how the numerical discretization of 
the stochastic fluid flow equations affects the behavior of the solution. Understanding how 
discretization errors behave is important for any application, not just the flow we studied.  

3. Understanding the Parameters of DO 

3.1 Experiment Setup and isolation of parameters 
After we verified the model, we are able to set up cases. Each simulation is ran to a 

non-dimensional time of 65, which would allow the fluid to travel approximately 4 times 
the size of our domain. We save snapshots of the solution at every half-unit of non-
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dimensional time, for a total of 130 snapshots for analysis. For the initial case, also referred 
to as the base case or original case, we chose the optimal numerical parameters, i.e. 
parameters that led to what we deemed “good” results by comparisons with the literature 
but also by numerical convergence analysis for the stochastic DO simulation. From the 
latter results, we concluded that the simulation had converged, or in other words it 
provided  a reasonably accurate numerical solution of the Navier-Stokes Equations and had 
acceptable errors at the boundaries. These results are presented next. 

We implemented numerous test cases to understand how the simulation will 
behave if we change the key input parameters to the stochastic simulations. The  main 
inputs that determine the flow characteristics and accuracy of the simulation consist of 
Reynolds number (Re), number of Monte Carlo samples (MC) in the subspace, number of 
spatial points (N), and number of “helper” DO modes(s). The Reynolds number determined 
the flow characteristics of the test and we expected to see significant changes in flow 
behavior as we adjusted its value. The number of Monte Carlo samples helped us represent 
the probability density function of the randomness we wanted to capture for our problem. 
Therefore, we expected changing the Monte Carlo samples to affect the shape of the 
probability density functions. The number of spatial points determined the spatial 
resolution of the simulation. The size of the domain for our test is three units high by 
sixteen long in non-dimensional spatial distance, but the number of finite volumes per 
these unit blocks is controlled and determines the numerical resolution. We expected the 
higher the resolution, the “cleaner,” or more accurate the results in terms of paths for 
streamlines, eddies, vortices and recirculation zone. Lastly, the “helper” DO modes are 
instrumental in capturing the variation due to the uncertain inlet boundary condition, or 
uncertain Reynolds number. We expected that changing the number of DO modes would 
change how well we capture the dynamics at different Reynolds numbers. 

The original case that converged was optimized manually to achieve the most 
accurate result in the shortest computational time by using heuristic methods. The original 
case we arrive at has the parameters listed in Table 2, and the result is illustrated seen in 
Figure 7. Importantly, we note that the base case corresponds to a single DO simulation but 
actually represents 105 deterministic simulations.  

Table 2: Original Parameters for the Base Case 
 

 Mean 
Reynolds 

Range of 
Reynolds 
Numbers 

Monte 
Carlo 
Samples 

No. of 
Spatial 
points 

Observation 
Time step 

No. of DO 
helper 
modes 

       

Base Case 
(Case 2) 

Re = 40 Re_span = 
0.3 

MC = 105 N=15 T=65 S = 9 
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Figure 7: Mean and first 5 DO Modes and marginal pdf’s of the Base Case. The top right plot shows 
the 2D projected scatter plot of Y1 (x-axis) and Y2 (y-axis). 

 
 

Using this initial case as the control, we adjusted one of these parameters in each of 
the following cases. The simulation results differ depending on the parameter change. The 
parameters that are varied between runs can be seen in Table 3 and Table 4, along with a 
qualitative description of the effects compared to the base case. In Table 3, the changes in 
Reynolds number mean and range, and the number of Monte Carlo is examined. In Table 4, 
the changes in spatial resolution and number of DO modes is examined.  
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Table 3: Test Cases Observation Table:   Reynolds number and Monte Carlo Samples. 
 

 Base 
Case 
(Case 2) 

Low Reynolds 
No. (Case 3) 

High Reynolds 
No. (Case 4) 

Low MC 
Samples (Case 
5) 

High MC 
Samples (Case 
6) 

      

Variable of 
interest 

. Re & Re_span Re &  Re_span MC MC 

Parameter of 
interest 

. Reynolds 
number and 
range of 
Reynolds 
Numbers 

Reynolds 
number and 
range of 
Reynolds 
Numbers 

Monte Carlo 
Samples 

Monte Carlo 
Samples 

Value of 
parameter 

. Re = 20 
Re_span = 

0.60 

Re = 60 
Re_span = 

0.67 

MC = 104 MC = 106 

Observations 
of simulation 

. Larger eddies 
and less 
uniformity, 
lack of 
symmetry 

4th and 5th 
mode have 
much finer 
structures 

Modes reverse 
eddies 
direction, and 
chaotic 
streamlines. 

Same. 

Observations 
of pdfs 

. Straight 
curves. Odd 
profiles 
asymmetric. 

Larger 
Amplitude. 
Very 
symmetric. 

Profiles have 
less resolution 

Mode 1 has 
slightly 
smoother curve 
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Table 4: Test Cases Observation Table:   Spatial points and DO helper modes. 
 

 Base 
Case 
(Case 2) 

Low Spatial 
Points (Case 
7) 

High Spatial 
Points (Case 
8) 

Low DO Helper 
Modes (Case 9) 

High DO Helper 
Modes (Case 
10) 

      

Variable of 
interest 

. N N S S 

Parameter of 
interest 

. No. of Spatial 
points  

No. of Spatial 
points  

No. of DO 
Helper modes 

No. of DO 
Helper modes 

Value of 
parameter 

. N = 10 N = 20 S = 5 S = 13 

Observations 
of simulation 

. Same. Except 
for divergence 
in modes 2 
and 3. Mode 5 
is incorrect. 

Simulation is 
more refined 
with the same 
curves and 
streamlines. 

Mean and 
modes vary 
significantly 
from base case. 
Eddies occur in 
different 
positions and 
the streamlines 
are incorrect in 
later modes. 

Models have 
different 
pressure 
densities and 
streamline 
patterns. 
Eddies differ in 
size but the 
shape stays 
constant. 

Observations 
of pdfs 

. Same Same Probability 
density 
function are 
much more 
coarse and 
choppy 

Same but differ 
in higher 
modes 

 

3.2 The test cases and their results 
Sensitivity of the stochastic DO simulation to the Reynolds number: In the first 

parameter changing pair of test cases, we look at adjusting the Reynolds number. Because 
the inlet velocity conditions are set, we are able with this model to adjust the mean 
Reynolds number of the flow thus changing the dynamics. The first case, we adjust the 
mean Reynolds number to twenty (Figure 8) and the latter case, we adjust the Reynolds 
number to sixty (Figure 9). Along with this adjustment of the mean, we have to change the 
Reynolds number range (Re_span). The span of the Reynolds number is equal to plus or 
minus twenty for the base case, but changes need to be made for the new mean Reynolds 
numbers.  We desire the upper bound Reynolds number for the low Reynolds number case 
to equal the base case (Re = 40) and the lower bound for the high Reynolds number case to 
also equal the base case (Re = 40) so we have a continuous spectrum. A range of twenty for 
the low Reynolds number case would have equated to zero on the low end, meaning there 
is no flow which is not helpful for our study. For the lower boundary, we fix the lower span 
to be 8 so the Re_span became 0.6 rather than 0.3. For the high Reynolds number case, we 
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could succeed in making the lower bound of 40 to be included so we changed the span to 
two thirds.  

 After running the simulation, we see the low Reynolds number case shows very 
different flow patterns in comparison to the base case. The mean has a smaller 
recirculation zone length, and the first five modes are significantly different. The fifth mode 
for the low Re case resembles the third mode for the base case (but with a dominant 
signature at the outlet boundary), while the first four modes are more similar to the fourth 
mode in the base case. This is as expected, since the low Re case does not contain 
realizations with vortex shedding. For this case, the pdfs are also vastly different, with 
curves seeming smoother, without the single sharp peaks as in the base case. 

 We see that the high Reynolds number case exhibits the same flow direction, but 
with denser streamlines, irregular eddies, and possibly more vortex shedding. In particular, 
modes four and five are significantly different from the base case, showing much finer, 
vortex-shedding structures. This is expected since every realization from this case exhibits 
the recirculation-zone dynamics. In addition to the actual means and modal portions of the 
simulation, we can also comment on the mode-by-mode marginal probability density 
profiles. The two higher Reynolds number cases show significant differences in the shape 
of the marginal profiles for the modes, especially due to oscillations. They indicate the 
nonlinear (non-Gaussian) behavior in the stochastic subspace, where the non-marginalized 
probability densities are not uniformly distributed. In other words, the different Re 
numbers lead to a single curve in that space, but that curve is organized in the space (it 
does not randomly cover the whole space). Of course, if we recombine all of the modes 
together, we recover the original uniform probability density, up to numerical errors.  
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Figure 8: Low Reynolds Number (Cases 3) 
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Figure 9: High Reynolds Number (Case 4) 

 

 Both the low and high Reynolds number cases vary from the control case in their 
streamline structure and how the stochastic profiles impacts the flows. The Reynolds 
number, by definition, should impact the dynamics of the flow and how it will react to the 
square cylinder obstacle. 

 Sensitivity to the Stochastic Resolution: The next parameter for analysis is the impact 
of the number of Monte Carlo (MC) Samples in the stochastic subspace. For this stochastic 
simulation, the number of samples dictates the randomization and repeatability of the 
results so it is important to inspect how this quantity impacts the resulting realizations. In 
similar fashion to the Reynolds number trial cases, we increased and decreased the number 
of Monte Carlo samples on the simulation and probability profiles. The results are shown in 
Figure 10 and Figure 11, respectively. To do this, we changed the Monte Carlo input value. 

 The results are very interesting. In addition, the realization in mode four shows a 
different set of streamlines, in thickness, proximity, and direction. The higher Monte Carlo 
samples displays results almost identical to the base case, confirming convergence. 
However, the streamlines in two and five have noticeably more streamlines. There are also 
slightly different pressure gradients. The higher MC case also has higher pressure peaks 
than the base case. In addition, it is important to note that these plots do not necessarily 
show a clearer or higher resolution.  
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 Of course, if we vary the number of sample, we can mainly expect variations in the 
profile of the density function. Interestingly, the profiles for the higher MC case are very 
similar to those of the base case, again showing convergence. The profile for mode 1 is 
closer to a uniform one, as expected. The other marginal for higher modes remain very 
similar, still showing the same peaks, indicative of the very organized (and non-uniformly 
distributed) sample curve in the stochastic subspace. For the former lower-resolution case, 
the marginal profiles have noticeably less resolution, but have overall similar shapes.. 

 

Figure 10: Low Monte Carlo Samples (Case 5) 
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Figure 11: High Monte Carlo Samples (Case 6) 

 

 Sensitivity to the Spatial Resolution: The next parameter we studied is the number of 
spatial points. We set up our finite-volume grid in a similar fashion to that of simulations 
employed in the literature. In our  3 by 16 non-dimensional unit spatial blocks, we have to 
divide each block in a number of discrete finite-volumes. This drastically affects our 
computational cost and simulation run time. The goal is to see how an increase or decrease 
in this mesh size resolution affects the result of our simulations.  

 For the two test cases dealing with spatial points, we change the number from of 
finite volumes per unit distance from fifteen to ten for the lower bound (Figure 12) and 
twenty for the upper bound (Figure 13). This implies that we vary the total number of finite 
volumes from (15x3 by 15x16, i.e. 45 by 240) to (10x3 by 10x16, i.e. 30x160) for the 
coarser simulation and to (20x3 by 20x16, i.e. 60x320) for the higher resolution. In the 
lower resolution case, we observe the pressure gradient becomes opposite in mode two but 
then corrects itself in later modes. This is not relevant because if the pressure or velocity in 
the DO modes is flipped, then the probability density function will also be flipped. Mode 
three shows small deviations from the base case in terms of streamline path. Mode four 
shows a possible re-convergence to the base case model and in the last mode of the figure, 
mode five, the graphic displays a clear streamline divergence. That is, the result of mode 5 
diverges from the base case, which seems to indicate the spatial resolution is insufficient. 
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For the latter higher-resolution case, the modes looked more refined with the same curves 
and streamlines. However, they are similar to that of the base case.  

 When observing the marginal probability density profiles, we see that they nearly 
look exactly equal to these of the control test run. The lower spatial resolution case exhibits 
an exact copy of the profiles for the first four modes; however, in mode five, there is a sharp 
contrast. For the higher spatial resolution, the profiles are in line with the original test case, 
indicating convergence of the marginal densities with respect to the spatial resolution in 
the physical domain. 

 

Figure 12: Low Number of Spatial Points (Case 7) 
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Figure 13: High Number of Spatial Points (Case 8) 

 From these spatial resolution studies, we can conclude that the spatial resolution 
does not alter significantly the dynamics of the simulation but change its details. The lower 
resolution causes the simulation to diverge in the fifth mode so the accuracy of the 
stochastic simulation is not sufficient for the five modes. For the larger number of spatial 
points, we obtain a higher similarity with our base case simulation;  there is not much 
added information from this increase in mesh size. Thus we conclude that using 15 spatial 
points gives a sufficiently accurate solution. 

 Sensitivity to the number of open boundary condition DO modes: In the last parameter 
investigation, we examine how the number of Dynamically Orthogonal (DO) helper modes 
affects the simulation. The DO helper modes are the stochastic summations needed to 
represent uncertain open boundary conditions. Each mode represents a stochastic velocity 
basis. A realization consists of a combination of the mean velocity, velocity modes and 
sample realizations of the stochastic coefficients which is defined by the probability density 
function (pdf). There are nine DO helper modes in the initial test case to encompass all of 
the randomness. We examine two deviations in similar fashion to the previous parameters. 
The low number of DO helper modes is five (Figure 14) and the high number of DO helper 
modes is thirteen (Figure 15). 

 The results of the simulation for the low number of DO helper modes show the 
mean and modes varying significantly from the base case. Eddies occurred in different 
positions across modes. For example, the modal streamlines and eddies differ in size and 
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direction in modes two, three and five. In particular, due to the orthogonally constraint and 
some variations in the mode shapes, it seems as though the order of modes two and three 
are switched, and mode five has finer-scales than observed in the base-case. The reason for 
this change in vortices size is that with only five modes, each helper mode needs to 
encompass more of the dynamics, but they can only do so approximately. If we consider the 
marginal probabilities, we find that the marginal probability density functions are affected 
by the decrease in the number of DO helper modes.  We note that since we used a 
consistent set of randomly generated numbers, the differences in marginals are only due to 
the lack of sufficient modes. 

 The case with a higher number of DO helper modes has marginal profiles that are 
more similar to that of the base case. The higher DO helper modes are similar to the base 
case, but begin to differ from the base case at mode five. Mode five has much more 
symmetry and it is evident that there are more modes describing more complex dynamics, 
like vortex shedding that is not shown here. The base case seems to have finer-scale 
structures than the higher mode case, and the higher-mode case is also more symmetric.  
Since there are many more modes in this case, we are not seeing the whole decomposition 
but we can infer that the more modes available, the more accurate the decomposition of the 
stochastic simulation can be. Each mode takes on less of the dynamics in the case with a 
higher number of DO modes. 

Figure 14: Low number of DO helper modes (Case 9) 
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Figure 15: High number of DO helper modes (Case 10) 

 

What do the above results mean? Since the DO helper modes create the 
decomposition of the actual simulation, the order and patterns play a large role. The level 
of complexity of the system determines the amount of DO helper modes needed. For 
example, for low Reynolds numbers, the mean velocity is very small so the higher DO 
helper modes will have limited effects of the final realizations since the slow flow isn’t as 
dynamic. We also realize that the number of DO modes affects how much of the dynamics 
can be described with each mode. In some sense, the higher the number of DO modes there 
are, the more the dynamics can be broken down in each mode. The coefficients are also 
linked to the number of modes so this number affects the stochastic dynamics in the 
subspace as well. However, since we plotted coefficients that are scaled (normalized) by 
the magnitude of the total perturbation of the ui velocity term, the smaller the ui or slower 
and less complex flows, the less the stochastic coefficients actually plays role. All in all, we 
can deduce that the more complex the flow, the more DO helper modes are needed for a 
proper stochastic representation. It seems as though the higher DO mode case better 
separates the different dynamics of the flow in mode 5, and it would suggest that we could 
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obtain better results using more DO modes. However, for our purposes, these are similar 
enough to the base-case (since the contribution from the 5th mode is 4 orders of magnitude 
smaller than that of the mean).  

3.3 Summary 
In summary, we obtained optimal parameter values for our flow of interest by 

bracketing of values, adjusting of each value until the control case was similar to the case 
with higher resolution in the physical space, stochastic space or stochastic dimension. Out 
studies focused on mean Reynolds numbers between twenty and sixty because this allows 
for some dynamics develop, requiring several DO helper modes. The number of Monte 
Carlo samples is optimized at one hundred thousand samples (105) because this shows all 
the detail of the simulation without becoming too computationally expensive. Additional 
increase in Monte Carlo members did not add much more information. The number of 
spatial finite-volumes is optimized in this setup with fifteen volumes per unit distances in 
non-dimensional terms. Additional increase in mesh size does not add much more 
information. We also understood through heuristic methods that the less spatial points we 
used, the less accurate our simulation became. For number of DO helper modes, nine was 
chosen for our dynamics since additional modes did not alter the modes 1-to-5. Such 
comments are qualitative versions of the quantitative criterion employed in Lermusiaux 
(1999) for evaluating convergence of the stochastic subspace. 

4. Determining and Calculating New Dynamical Characteristics 

4.1 Recirculation Length 
After understanding the inputs, limiting factors, and capabilities of our single DO 

stochastic simulation, we used it to calculate key characteristics or properties of the fluid 
flow: the recirculation length and vortex-shedding frequency. As described in past 
literature, the recirculation length is characterized by the initial separation of the flow at 
the trailing edges of the cylinder and the formation of two closed and steady symmetric 
vortices.  

To calculate the characteristic recirculation length for a specific mean Reynolds 
number, we can monitor the horizontal velocities along the center line at a single point in 
time. Assuming the recirculation zone occurs directly behind the cylinder and that the 
Reynolds number is in the appropriate regime, the horizontal velocities should be toward 
the cylinder (opposite to the inlet velocity direction) when inside the recirculation zone. 
However, after reaching the end of the recirculation zone along the center line, the 
direction of the horizontal component of the velocity should change. If we track the 
position on the grid where this change of sign or direction of the horizontal velocity 
component occurs, we can estimate the recirculation length.  

Below we have four cases where we calculate the recirculation zone length. These 
cases vary the Reynolds Numbers: Re = 20 (Case 3), 40 (Case 2), 60 (Case 4), and 110 (Case 
11). We refer to these cases as low Reynolds number, Mid Reynolds number, High Reynolds 
number, and very High Reynolds number. 
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For the low Reynolds number case, we see an upward trend in the recirculation 
zone length (Figure 16). It increases linearly from slightly less than one non-dimensional 
unit distance to slightly over 1.6 non-dimensional spatial units. Also, the slope is 0.0537 
with a covariance of 1.24x10-6 and standard deviation of 0.0011. The covariance and 
standard deviation is from possible error since the slope is calculated by averaging the 
slope between numerous points on the line. This positive slope agrees with previous 
literature, e.g. Bruer also found that the recirculation zone length increases with the 
increase in Reynolds number, after Re = 5, passing the creep zone.  

Figure 16: Low Reynolds Number, Non-dimensional Recirculation Zone Length (Case 3) 
 

 

 

For the mid Reynolds number case (Figure 17), we see an upward trend, a peak, and 
then a decline in the recirculation zone length. It increases from slightly more than one 1.8 
non-dimensional unit at Re = 30, peaks a little after Re = 40, then declines. The curve is no 
longer linear (there are changes in slope and curvature). In the subplot below showing the 
decline, the curve loses its definitive linearity. This makes intuitive sense because at this 
Reynolds number regime, we begin to see the onset of the vortex shedding and it no longer 
makes sense to find the edge of a steady recirculation zone because of the periodic 
separation. The slope of the line from Re = 28 to Re = 42 is 0.0553 with a covariance of 
7.65x10-5 and with standard deviation 0.0087. However, it is the same slope as in the low 
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Reynolds number case which we expected to hold true, further validating the DO 
simulations with our new open boundary condition formulation. 

Figure 17: Mid Reynolds Number, Non-dimensional Recirculation Zone Length (Case 2). 
 

 

 Next we can analyze the recirculation zone length in the high and very high 
Reynolds number cases (Figure 18 and Figure 19). Here, we continually see a decline; 
however, the slope is very far from being linear. The reason for this, as discussed in the mid 
Reynolds number case, is the vortex shedding, which is very apparent. In the very high 
Reynolds number case (Figure 19), this is especially clear. The slope for the high and very 
high Reynolds number cases respectively were, -0.0408 and -0.0139. However, the 
covariance and standard deviation were two and one orders of magnitude larger than the 
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low Reynolds number case. This once again makes sense because the recirculation zone 
length does not hold for high Reynolds numbers. This makes the slopes irrelevant because 
this behavior is not exhibited. Therefore, these slopes, covariance, and standard deviation 
values are not included in Table 5. 

 
Figure 18: High Reynolds Number, Non-dimensional Recirculation Zone Length (Case 4) 
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Figure 19: Very High Reynolds Number,  
Non-dimensional Recirculation Zone Length (Case 11) 

 

 

 

4.2 Vortex Shedding 
In addition to estimating the recirculation length and its dependence on the 

Reynolds number, we can measure the vortex-shedding period for the different stochastic 
cases that we simulated. As mentioned in the introduction, at larger Reynolds numbers 
(Re> Recrit) flow separation occurs. When we pass the critical Reynolds number, Recrit, we 
observe a well-known phenomenon: the von Karman vortex street with periodic vortex 
motion.  

The vortices however, move with time so calculating this frequency is not trivial. 
Once again, we look to the velocity components on the grid. To measure this oscillatory 
motion, we can track one spatial point over several time steps instead of many spatial 
points at one time step as was done for the recirculation zone length calculation. We 
monitored the vertical velocity component at a single point at the bottom of the cylinder, 
and a fixed number of units points in to the wake at location (𝑥,𝑦) = (10,0) to allow for 
sufficient space for eddies to completely mature into full vortices. Next, we observe when 
the vertical velocity component changes sign from up to down. This gives us the entire 
period and therefore, allows us to track the shedding frequency.  
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We also compare these properties for different mean Reynolds numbers. Based on 
the existing literature, the threshold for the appearance of dynamical characteristics such 
as the vortex shedding frequency or the recirculation zone length varies with the Reynolds 
number of the fluid flow. In our simulations, we estimate such characteristic for stochastic 
flows with mean Reynolds numbers of 20, 40, 60, and 110. For each of these cases, we 
calculated the shedding period and recirculation length of every the Reynolds number 
range captured in the DO simulation, and compared results among each other and to those 
in the literature. In our case, the shedding period is related to the Strouhal number as St = 
L/UT, where L is the length of the side of the cube, U is our non-dimensional velocity, and T 
is the shedding period.  

For the low Reynolds number case (Figure 20), there was no evidence at all of a 
vortex shedding period. This shows that our method is correct in this case because within 
this range, the flow will exclusively exhibit the recirculation zone length behavior. This is 
consistent with previous literature which expresses Recrit to be a number less than 70. The 
lowest value found by Klekar and Patankar (1992) also found a Recrit = 54, suggesting that 
no vortex shedding should occur for the low Re range examined by our first case.  

 
Figure 20: Low Reynolds Number, Non-dimensional Vortex Shedding Period (Case 3) 
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 It is for the Mid Reynolds number case (Figure 21) that we first see evidence of 
Vortex shedding. Figure 21 illustrates the Vortex shedding period for the different 
Reynolds number values. There is a clear correlation: the higher the Reynolds number, the 
smaller the period (or higher the frequency). The estimated slope if we assume it is linear, 
is -0.01156, with a covariance of 0.0015 and standard deviation of 0.0383. The covariance 
and standard deviation values are derived from the average error produced by calculating 
the slopes over many of the data points used in the fit to a line. 

Figure 21: Mid Reynolds Number, Non-dimensional Vortex Shedding Period (Case 2)\ 
 

 

 

 For the high Reynolds number cases (Figure 22), the vortex shedding phenomenon 
becomes much more apparent.  Once again, there is a clear correlation: the higher the 
Reynolds number, the smaller the period (or higher the frequency). The estimated slope, if 
we assume a linear relation, is -0.0748, with a covariance of 0.0066 and standard deviation 
of 0.0256. In this model, it is clear that the higher DO modes show there is vortex shedding 
as discussed in the previous section. With the downward trend, these results are consistent 
with the researched findings as well as the governing fluid dynamic equations. 
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Figure 22: High Reynolds Number, Non-dimensional Vortex Shedding Period (Case 4) 

 

 

Figure 23: Very High Reynolds Number, Non-dimensional Vortex Shedding Period (Case 11) 
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 For the very high Reynolds number case (Figure 23), the results are similar to the 
previous high Reynolds number case. The slope is still negative, which points to the 
negative correlation between the Reynolds number and vortex shedding period. However, 
there is an apparent largest curvature around Re = 90. The relation is clearly not linear for 
all Re regimes. This is also mentioned in previous literature. For example, Lin et al. (2007) 
found for the circular cylinder case that the shedding frequency from (0.1592, 0.1697) for 
the Reynolds number range (90, 110). This is equivalent to (6.28, 5.89) in non-dimensional 
time units or periods. If we non-dimensionalize their results the same way we non-
dimensionalized our, we obtain a shedding period of (2.51, 2.36), which is close to our 
result if we keep in mind that Lin et al. (2007) used a circular cylinder and a wider domain.  

 

Vortex Shedding Summary: In the previous literature, Frank (1990) pioneered the 
comparative study of vortex shedding frequency to lift coefficients and to the size of eddies. 
As mentioned in section 1.2, there have been many different estimates for when the onset 
of vortex shedding occurs for the square cylinder case. Kelkar et. al. reported 53, Norgberg 
estimated 47 with a deviation of 2, Sohankar et al. reported its value to be 51.2 standard 
deviation of 1.0. Although the hasn’t been one solution deem correct since the result 
depends on fluid characteristics like Prandtl and Strouhal numbers, our DO simulation 
results fall within this range by displaying characteristics of periodic vortex shedding when 
the Reynolds number reaches 43. 

Table 5: Mean Slopes of Recirculation Zone Length and Vortex Shedding Plots 
*This slope comes from only the upward trend in the left sub graph in the Figure with the 
Recirculation zone length for the base case (Figure 17). 

 

5. Conclusion  
Franke (1990) states in the introduction that “A trustworthy numerical method 

should be able to predict the occurrence of periodic vortex shedding by itself.” In this 
thesis, we used the stochastic Navier-Stokes equations to predict the recirculation zone 
length and vortex shedding period for a large range of Reynolds numbers in a single 
simulation. Specifically, we evaluated a new computational scheme that uses a novel open 
boundary condition formulation for Dynamically Orthogonal (DO) stochastic Navier-Stokes 

  Recirculation Zone Length Vortex Shedding Period 

Reynolds 
Number Cases Average 

Slope Covariance Standard 
Deviation 

Average 
Slope Covariance Standard 

Deviation 
        

20 3 0.0537 1.24x10-6 0.0011 N/A N/A N/A 
40 2 0.0553* 7.62x10-5 0.0087 -0.1156 0.0015 0.0383 
60 4 . . . -0.112 0.0009 0.057 

100 11 . . . -0.108 0.0006 0.099 
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equations. This approach allowed us to model a wide range of random inlet boundary 
conditions with a single DO simulation of low stochastic dimension, reducing 
computational costs by orders of magnitude.  

In this thesis, we reviewed existing literature, examined our simulation results and 
validated the numerical solution. The convergence was tested and we validated the 
numerical solution.  We then studied the sensitivity of the results to: the resolution of in the 
stochastic subspace; the resolution in the physical space; and the number of DO modes. 
Finally, we evaluated and studied how the recirculation length and the vortex shedding 
period varied with the Reynolds number.   

With the ability to model a range of Reynolds number in a single simulation, the DO 
method also enables us to determine how different flow characteristics are correlated to 
the different Reynolds numbers.  We found that the recirculation zone length increased 
linearly with Reynolds number, and the slope of this increase was approximately 0.55. This 
correlation was only valid up until the Reynolds number where the dynamics changed to 
periodic shedding, or for Re < 40. The literature agrees with our findings, suggesting that 
this curve should follow a linear slope of 0.0553 (Bruer 1999). Additionally, for Re > 42 we 
found that the vortex shedding period decreased nearly linearly with increased Re, and this 
also agreed with existing literature. We obtained shedding periods of [1.8, 1.6] for Reynolds 
numbers [90, 100]. While we could not find results for the same problem setup, our results 
compare well with the results of Lin et. al. (2007) who found shedding periods of [2.51, 
2.36], for the same Reynolds numbers but using a circular cylinder and a wider domain. 
Our results fall below this range but it is expected that the vortex shedding period is larger 
and broader for the square cylinder case. 

 When the DO method is combined with the new open boundary condition 
formulation, it is a very efficient alternative to the current stochastic modeling methods 
available because of its unique approach to decomposing the Navier-Stokers equation with 
uncertain parameters. This new approach can be used to quantify uncertainty in large fluid 
dynamic systems, such as weather or ocean predictions. Coupled with new data-
assimilation methods that take advantage of the non-Gaussian statistics, the accuracy of 
numerical ocean and weather prediction can be improved. Additionally, we have shown 
that this method can be used to determine correlations between flow characteristics and 
uncertain parameters for a simple case. In the future, this method could be used for more 
complex problems to determine engineering design parameters. This thesis brings the DO 
methodology one step closer to practical applications.    
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