
Autonomous Underwater Vehicle (AUV) Path

Planning and Adaptive On-board Routing for

Adaptive Rapid Environmental Assessment
by

Ding Wang
B.S. in Automotive Engineering (1997) and S.M. in Physics (2000)

Tsinghua University, Beijing, China
S.M. in Electrical Engineering & Computer Science (2005) and S.M.

in Ocean Engineering (2005)
Massachusetts Institute of Technology

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mechanical Engineering
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Mechanical Engineering

June 15, 2007

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Henrik Schmidt

Professor of Mechanical and Ocean Engineering
Thesis Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pierre Lermusiaux

Associate Professor of Mechanical Engineering
and Ocean Science and Engineering

Co-advisor
Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lallit Anand
Professor of Mechanical Engineering

Chairman, Departmental Committee on Graduate Students



Autonomous Underwater Vehicle (AUV) Path Planning and

Adaptive On-board Routing for Adaptive Rapid

Environmental Assessment

by

Ding Wang

Submitted to the Department of Mechanical Engineering
on June 15, 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Mechanical Engineering

Abstract

In shallow water, a large part of underwater acoustic prediction uncertainties are in-
duced by sub-meso-to-small scale oceanographic variabilities. Conventional oceano-
graphic measurements for capturing such ocean-acoustic environmental variabilities
face the classical conflict between resolution and coverage. The Adaptive Rapid En-
vironmental Assessment (AREA) project was proposed to resolve this conflict by
optimizing the location of in-situ measurements in an adaptive manner.

In this thesis, ideas, concepts and performance limits in AREA are clarified. Both
an engineering and a mathematical model for AREA are developed. A modularized
AREA simulator was developed and implemented in C++. Philosophies in AREA
are discussed. Presumptions about the ocean are made to bridge the gap between the
viewpoint in the oceanography community, where the ocean environment is consid-
ered to be a deterministic but very complicated system, and that of the underwater
acoustic community, where the ocean environment is treated as a random system.

At present, how to optimally locate the in-situ measurements made by a single
AUV carrying a CTD (conductivity, temperature and depth) sensor is considered in
AREA. In this thesis, the AUV path planning is modeled as a Shortest Path problem.
However, due to the sound velocity correlation effect, the size of this problem can be
very large. A method is developed to simplify the graph for a fast solution. As
a significant step, a linear approximation for acoustic Transmission Loss (TL) is
investigated numerically and analytically.

In addition to following a predetermined path, an AUV can also adaptively gener-
ate its path on-board. This adaptive on-board AUV routing problem is modeled using
Dynamic Programming (DP) in this thesis. A method based on an optimized prede-
termined path is developed to reduce the size of the DP problem and approximately
yet efficiently solve it using Pattern Recognition. As a special case, a thermocline-
oriented AUV yoyo control and control parameter optimization methods for AREA
are also developed.
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Finally, some AUV control algorithms for capturing fronts are developed. A frame-
work for real-time TL forecasts is developed. This is the first time that TL forecasts
have been linked with ocean forecasts in real-time.

All of the above ideas and methods developed were tested in two experiments,
FAF05 in the northern Tyrrhenian Sea in 2005 and MB06 in Monterey Bay, CA in
2006. The latter MB06 sea exercise was a major field experiment sponsored by the
Office of Naval Research and the thesis compiles significant findings from this effort.

Thesis Supervisor: Henrik Schmidt
Title: Professor of Mechanical and Ocean Engineering

Co-advisor: Pierre Lermusiaux
Title: Associate Professor of Mechanical Engineering
and Ocean Science and Engineering
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Chapter 1

Overview

Many Oceanic variabilities exist in the ocean, especially in shallow water, where

wind driven flows, tidal currents, river outflow, internal waves, solitary waves, fronts,

eddies, thermal changes etc are some of the commonly dominant oceanographic pro-

cesses. These processes and their intercoupling and interactions with the seabed make

the shallow water ocean-acoustic environment highly variable in time and space. In

the water column, the Sound Velocity Profile (SVP) etc can vary in complex dynam-

ical ways.

Those variabilities span a wide range of spatial and temporal scales [5, 6]. Conven-

tional oceanographic measurements cannot provide the ability to synoptically observe

all those dynamically interlocking, patchy and intermittent processes in coastal ocean,

especially for sub-meso-scales short in time and space [7]. Consequently the coastal

environment will always be under-sampled at these small and fast scales. The ocean-

acoustic environment parameters of the water column and the seabed are generally

not known in sufficient detail and with enough accuracy for satisfactory prediction

of long-range acoustic propagation in shallow water, even though the shallow water

acoustics has been thoroughly investigated both theoretically and experimentally [1].

Modern ocean modeling and assimilation frameworks have a capability of rep-

resenting the smaller, sub-grid-scale variability statistically [8]. From an acoustic

viewpoint, the sub-meso scale variabilities of the order of hundred meters to kilo-

meters make the coastal ocean-acoustic environment largely unknown with many
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uncertainties in terms of imperfect sound velocity, depth of the thermocline etc. Such

uncertainties can be responsible for a large part of the acoustic prediction uncertainty

[9, 10].

To determine the environmental variability of the critical sub-meso scales and

short temporal scales, a local, high resolution, rapid deployable in-situ measurement

capability has long been recognized as a very important tactical need [9]. By assimi-

lating the in-situ measurement data with ocean modeling, resolution of the ocean filed

estimation can be dramatically improved and the acoustic prediction uncertainty can

be strongly reduced. The project Adaptive Rapid Environmental Assessment (AREA)

was proposed for this purpose.

However, the coastal environmental assessment is facing the classical conflict be-

tween resolution, needed to capture the fine scale variability and coverage, needed

for the large scale environmental phenomena. Thus, the Rapid Environmental As-

sessment (REA) resources available must focus on the environmental uncertainties

critical to the specific acoustic system. Thus optimizing the REA resources deploy-

ment pattern becomes the major problem.

In this thesis, the REA resource is a single AUV carrying a CTD (conductivity,

temperature, depth) sensor and the problem is focused on how to optimally locate the

in-situ measurements made by the AUV, i.e. the AUV path planning problem. The

path can be planned before the AUV is launched or the AUV can adaptively determine

its waypoints one by another one on-line. For the predetermined path, the path

planning problem can be solved by shortest path algorithms, but the computation

needed can be very intensive due to the sound velocity correlation effect. In this

thesis, an approximate shortest path problem is developed, which is much smaller

than the original one and can be solved in real-time.

For the adaptive path, the adaptive on-board AUV path planning problem can

be modeled using Dynamic Programming (DP). The associated DP problem can

be simplified based on an optimized predetermined path and quickly solved by a

specific Approximate Dynamic Programming (ADP) method. In shallow water, the

thermocline region is often associated with big sound velocity prediction error. The
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thermocline-oriented AUV yoyo control is developed in this thesis, which can lead

the environmental sampling focus on the thermocline region and thus capture most

critical environmental parameters. As a special case of the adaptive on-board AUV

path planning, the thermocline-oriented AUV yoyo control has two parameters need

to be optimized. In this thesis, this process is carried by exhaustive search in a small

parameter space.

It should be noticed that all the above AUV path planning problems are required

to be solved in real-time in AREA, i.e. in several hours. This is a big challenge.

In addition to capturing the environment variabilities, AUV control algorithms

for capturing fronts are also developed, including a horizontal zig-zag for surface

temperature gradient tracking etc.

This thesis is organized as follows. Chapter 2 introduces some basics in ocean-

acoustic environment, ocean field estimation and underwater acoustics. Chapter 3

introduces the motivations, and the engineering and mathematical models in AREA,

defined as a path planning problem. Chapter 4 is the overview of the optimization

algorithms used in this thesis, including Linear Programming (LP), Network Opti-

mization and DP. Chapter 5 discusses how to model the path planning problem for

the predetermined AUV path in network optimization. As a very important step, the

linear approximation for transmission loss (TL) is discussed. Chapter 6 discusses how

to model the adaptive on-board AUV path planning problem in DP. As a special case,

the thermocline-oriented AUV yoyo control is introduced. Chapter 7 discusses how to

solve those optimization problems, including the network optimization problem, the

DP problem and the AUV yoyo control parameter optimization problem. Chapter 8

introduces the AUV control algorithms developed for capturing fronts. Chapter 9

shows the results from the experiment in Monterey Bay, CA in 2006. Finally, conclu-

sions and future work suggestion are in Chapter 10. The philosophical presumptions

used in this thesis are presented in Appendix A.
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Chapter 2

Background Introduction

2.1 Overview of Ocean-Acoustic Environment

The ocean is a very complicated dynamic system, evolving on multiple temporal

and spatial scales. The ocean-acoustic environment is essentially inhomogeneous and

time-varying, which determines sound wave propagation pattern in the ocean.

2.1.1 Basics in Ocean-Acoustic Environment

In the ocean, acoustic propagation is mainly dependent on the ocean Sound Velocity

Profile (SVP). According to a simplified formula given by Medwin [11], sound velocity

(c) in meters per second can be expressed as a function of temperature (T ) in degrees

centigrade, salinity (S) in parts per thousand, and depth (z) in meters.

c = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3 + (1.34− 0.01T )(S − 35) + 0.016z (2.1)

Figure 2-1 shows typical patterns of ocean SVP. In nonpolar regions, wind and

wave activity mix the top layer water and result in a mixed layer with almost constant

temperature inside [1]. In this isothermal layer sound velocity increases with depth

due to the increasing ambient pressure and hence leads to the surface duct region. In

a warmer season or warmer part of the day, the sea surface temperature is higher and

hence the sound velocity increases toward the surface (this phenomenon is also re-

ferred to as “afternoon effect”). Below the mixed layer is the main thermocline where
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the temperature and hence the sound velocity decreases with depth. Below the main

thermocline, the temperature is constant and the sound velocity increase because of

increasing ambient pressure. The deep sound channel axis exists between those two

regions, which corresponds to the minimum sound velocity. In deep water sound ve-

locity often shows good stability; while in the upper ocean much more oceanographic

processes exist, thus sound velocity shows greatest variability. In polar regions, the

water is coldest near the surface, so the SVP varies in different patterns. In shallow

water, the depth is insufficient for the depth-pressure term to be significant. Thus

the winter profile tends to isovelocity, whereas the summer profile has a higher sound

velocity near the surface (Figure 2-2). Aside from sound velocity effects, the ocean

water is absorptive and will cause attenuation that increases with acoustic frequency.

The ocean is a waveguide bounded by air and seabed. The sea surface is a sim-
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Figure 2-1: Generic sound speed profiles

ple horizontal boundary with nearly perfect reflectivity. The seabed is a quite flat

and lossy boundary with layered structure supporting elastic waves. Its geoacoustic

properties are summarized by density, compressional and shear wave velocity, and
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Figure 2-2: Generic sound speed profiles in shallow water

attenuation profiles. The reflectivity characteristics of seabed and topography can

strongly vary in different geographical locations [1]. Moreover, both boundaries have

small-scale roughness which causes scattering and attenuation of sound.

2.1.2 Ocean-Acoustic Environmental Variabilities

Oceanographic variabilities exist in the water and the seabed, spanning over a wide

range in space and time. From an acoustic view point, those oceanographic vari-

abilities inevitably complicate the ocean-acoustic environment and affect acoustic

propagation in the ocean more or less.

Water Column

Ocean waters are constantly on the move. As shown in Figure 2-3, in the water

column, there are many physical and biological processes with scales covering from

1mm to 1000km in space and from 1sec to 10 year in time. Meteorology-related

processes such as the sea surface thermal changes, water mixing caused by wind

and wave breaking, surface wave-induced roughness etc may be dominant in the

upper layer ocean-acoustic environment. Some other oceanographic processes such

as internal waves, internal solitons, internal tides, currents, tides, eddies, fronts, fine

structure, microstructure, bubble clouds, plankton migration and distribution etc
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may strongly affect acoustic propagation too.
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Figure 2-3: Spatial and temporal scales of physical and biological parameters and
processes in the sea [3].

Internal Waves Internal waves are gravity waves that oscillate due to the density

stratification in the water column, the buoyancy force and the Coriolis force. It has

been found that in many locations in the ocean internal wave-induced SVP fluctua-

tions are usually very significant sources or even the dominant causes of sound wave

propagation variations [12, 13]. Furthermore, in polar area, internal wave-induced

water density variations may also affect the sound wave propagation [14]. The nearly

ubiquitous linear internal waves provide a continuous scattering mechanism for redis-

tributing acoustic energy in the oceans. In contrast, nonlinear internal waves, such as

internal solitons, provide strong, discrete and possibly azimuth-dependent scattering
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events due to their generally higher amplitude and shorter wavelength. Some interest-

ing phenomena such as strong coupling of acoustic normal modes and ducting effect

may occur in this case [15]. Generally, internal waves may significantly affect acoustic

amplitudes and phases and nearly horizontal ray paths thus affect travel time. Inter-

nal solitons may also affect acoustic spatial and temporal coherences [12, 13, 15, 16].

Internal waves can be generated from surface (e.g. by surface wave), bottom (e.g. by

a quasisteady current advecting a stratified ocean over bottom topography) and in-

terior of water. Disturbance induced by moving ships may trigger internal waves too

[13]. One particularly important type in shallow water is the internal waves produced

by tidal currents flowing over a sloping sea floor, which are also called internal tides

[15]. Internal waves are characterized by scales from 100m to 10km or more in the

horizontal, 1 to 100 m in the vertical, and from about 10 min to 1 day in time [12].

So far, internal waves are usually considered random. The Garrett-Munk statistical

model, an empirical model of the internal wave spectrum based on linear internal

wave theory has been widely used in deep water. In the upper ocean and in shallow

water, the GM model generally turns out to be inappropriate; in the latter situation,

the internal wave sometimes appears to have a deterministic nature, characterized by

propagation of a soliton [12]. Combination of the GM model and soliton packets was

also used in shallow water [16].

Fine- and Microstructure The SVP fluctuations on scales larger than a few

meters in the vertical direction are internal wave-related. A smaller scale, the fluctu-

ations are due to the fine- and microstructure [17, 18]. The fine- and microstructure

of the temperature/salinity/sound velocity field in the ocean have an irregular strat-

ified nature with layers (within which the water is relatively well mixed), separated

by regions of large vertical gradient. Fine- and microstructure variability in SVP

involve scales from several meters to hundreds of meters in the horizontal, 1cm to

about 10 m in the vertical and milliseconds in time. Such variability would affect

sound propagation in the frequency range from approximately 1 to tens of kHz [1]

and brings in a large difference in the log-intensity fluctuations, keeping the phase
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fluctuations unchanged [18]. So far, the fine- and microstructure variabilities have to

be considered as random processes.

Currents Currents in the ocean are caused by wind stress, buoyancy fluxes (due

to the water’s salinity, heat content and gravity), tides and affected by Coriolis force,

bottom topography etc [19, 20, 21, 22, 23]. Ocean currents flow in complex patterns,

e.g. wind stress may induce upwellings, wind driven circulations and geostrophic

currents in surface ocean; buoyancy fluxes produce thermohaline circulations in deep

ocean; with the effect of Corioslis force, ocean currents are in large patterns of rotation

called “gyres” in each major ocean. These gyres move in a clockwise direction in the

northern hemisphere, and in a counterclockwise direction in the southern hemisphere.

Major ocean currents include North & South Equatorial Current, Equatorial Counter

Current, North Atlantic Drift, Gulf Stream, Kuroshio Current, Antarctic Circumpolar

Current, East Australian Current, Cromwell current etc. These major ocean currents

are characterized by horizontal scales of variability limited only by the size of the

basin, vertical scales of a few hundred meters, and temporal scales from a few days

to seasonal [12]. While in shallow water area, tidal currents caused primarily by the

rise and fall of the tide may be more important [23].

The characteristic parameters of major ocean currents are nearly constant in space

and time. The horizontal component of the velocity of the currents is much greater

than its vertical component. Usually, vertical current profiles show fine structure

rather than being smooth, which is caused by vertical layers existing everywhere in

the ocean [24].

Velocity of ocean currents may significantly change the phase of a sound wave and

hence may cause a noticeable change in the amplitude [24]. If the range from the sound

source is sufficiently large, travel time of sound wave may be changed and the principle

of acoustic reciprocity may be broken [24, 25, 26]. Furthermore, currents may lead to a

qualitative change in sound wave equation if |∂v/∂z| > |∂c/∂z|, where v is the current

velocity, c is the sound velocity and z is the depth. Some theoretical results are shown

in [24, 27], from which the upstream transmission loss (TL) and downstream TL are
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surprisingly different. Ocean currents can be captured by modern oceanographic

observation systems and are now considered as deterministic structures.

Tides Tide is the vertical rise and fall of the surface of a body of water on earth,

caused primarily by the variation in gravitational forces resulting from the change of

position of the sun and the moon relative to points on the earth’s surface [23, 19, 28].

There are 3 major types of tides: diurnal tide, semi-diurnal tide or mixed [23]. The

horizontal scales of tides are variable and in vertical, tidal wave height can exceed

10m, but subsurface effects may extend to greater distance [12]. In deep water area

the elevation change induced by tides has only little effect on the SVP in the water

column. However, the associated tidal currents and internal tides may have a profound

effect on acoustic propagation: the tidal currents may affect acoustic travel time

[28]; acoustic amplitude fluctuations are generally noise-like and are insignificantly

dependent of tidal currents; while acoustic phase fluctuations are simply correlated

with tidal variations and are proportional to vR the horizontal velocity of tidal currents

[12, 24]. In shallow water area, the tidal effects on acoustics are much greater [12].

Generally, tidal currents become stronger as one approaches the coast, and tidal

currents play an increasingly important role in the local circulation [23]. Systematic

observations of ocean tides have been made in some locations for several centuries.

Accurate prediction of such tides by relating their height and phase to the movements

of the sun and moon was introduced by Lord Kelvin in 1870 [19]. However, tidal

currents and internal tides can’t be accurately predicted. The total effects of tides on

the ocean acoustic environment have to be modeled as partially random and partially

deterministic.

Eddies An eddy is a rotating parcel of fluid. As such, the eddy concept can be

applied to phenomena ranging from momentary vortices in the sea-surface flow to the

steady circulation of a basin-wide gyre. For underwater acoustics, however, mesoscale

eddies — large coherently rotating bodies of water, which are non-stationary objects

— are the most important. A surprising feature of mesoscale eddies is the large
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variability in size and current velocity. Diameters vary from 100 to 500 km, with

maximum current speeds ranging from less than 20 to more than 150 cm/sec [29, 20].

The effects of mesoscale eddies can reach the whole ocean depth, but primarily stay

in the upper region of the ocean. The life of mesoscale eddies varies from one to

few months. There are two distinct types of eddies: Cyclonic eddies, consisting of

a mass of cold water circulating in the counterclockwise direction (in the northern

hemisphere); anticyclonic eddies, consisting of a mass of warm water [29]. Mesoscale

eddies may distort the normally horizontal isotherms a lot. Hence substantial per-

turbations in sound speed, primarily resulting from the large temperature variations,

may show up [29]. The amplitude and phase of a sound field can be affected by the

variation of sound speed and the water motion in the eddy. The latter factor may

cause amplitude variation greater than 10 - 12 dB, and a phase change much greater

than π [24]. Moreover, mesoscale ocean features such as fronts and eddies can cause

sound to be refracted in the horizontal plane, and hence cause the source’s measured

bearing to differ from the true one [30, 31]. The mesoscale eddies can be captured

and thus can be considered as governed by deterministic processes.

Fronts An oceanic front is the interface between two water masses of different prop-

erties. Usually, fronts show strong horizontal gradients of temperature and salinity.

These will result in differences in SVP across the front, thus causing changes in acous-

tic propagation. Some fronts which have weak horizontal gradients at the surface have

strong gradients below the surface. In some cases, gradients are weak at all levels, but

variability across the front is sufficient to complicate sound transmission. There are

several types of fronts: planetary fronts, upwelling fronts, shelf break fronts, shallow

sea fronts, plume fronts, estuarine fronts, etc. Fronts’ scales can be very variable, e.g.

in the deep ocean planetary fronts can span the width of entire ocean basins; fronts

in estuaries may be only a few meters wide. However, mesoscale ocean fronts are the

most important to underwater acoustics and can induce changes in acoustic propaga-

tion path, acoustic intensity, signal travel time and signal shape etc [12]. Mesoscale

fronts can be modeled deterministically.
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Bubble Clouds Breaking waves and rainfall may produce bubble clouds, which

are a major factor in near-surface sound propagation. It has been proved that there

can be as many as 105 to 5 × 106 bubbles per cubic meter at radii between 15 and

16 microns near the ocean surface even during calm cases. The direct consequence of

bubbles at sea have been demonstrated to result in near-surface excess attenuations

as great as 60 dB/m and speeds of sound that are tens of meters per second less than

1500m/s [11]. Furthermore, bubbles may exist in sediments.

Biological Processes Marine creatures such as plankton, fish, mammals can backscat-

ter sound wave. Biological backscattering is frequency dependent, and varies with

depth, time of day, season, and area. Both resonant and nonresonant scattering ef-

fects are involved [32]. Figure 2-4 shows a marine biological pyramid that reveals the

immense size range of life at sea.

Marine Plants or Animals Equivalent Diameter

Largest Nekton:
Whales and sharks 2 to 6 m

Larger Nekton and Largest Plankton:
Rat-tails, deep sea cods, tuna, scyphostone 0.2 to 2 m

Smallest Nekton and Larger Plankton:
Myctophids stomiatoids, hatchet fishes 2 to 20 cm

Megaplankton: euphausiid, amphipod,
Chaetognath, some fish larvae 2 to 20 mm

Macroplankton: copepods 0.2 to 2 mm

Microphytoplankton: dinoflagellates and diatoms
Microzooplankton: radiolarians, foraminiferan and ciliates 20 to 200 

Nanoplankton: flagellates, coccolithophores and diatoms 2 to 20

Ultrananoplankton: bacterioplankton < 2

µ

µ

µ

Figure 2-4: Marine biological pyramid with diameter of equivalent spherical volume
of the plants or animals [4].
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Seabed and Coupling

The seabed is of paramount interest in shallow-water acoustics, particularly at low fre-

quencies and downward refracting environments. Compared with the water column,

seabed is less variable. However, the fluctuations in the water column parameters

affect not only the sound wave propagation, but also modify the properties of the

seabed [12, 33, 34]. In addition, current flow may change the bottom topography,

which in turn may affect internal waves and currents etc. Therefore the interaction

between currents and seabed make the ocean-acoustic environment more complex.

In fact, coupling widely exists among those physical, biological processes in water

and seabed. Eddies are induced by currents, while the boundary of an eddy is often a

front. Meteorology-related processes such as wind, surface thermal changes, rainfall

are causes of ocean currents. Internal waves may play an important role in mixing

processes in the ocean and affect the mean ocean circulation, the ocean temperature

and salinity structure [13]. Internal waves and upwelling currents can uplift of phyto-

plankton into the sunlit layer of the upper ocean, hence affect the biological variability.

Tides produce tidal currents, which can produce internal waves (internal tides) by

interacting with topography. So, generally speaking, the ocean-acoustic environment

is super complex with variabilities over a wide range and coupled together.

2.2 Overview of Ocean-Acoustic Environment Es-

timation

2.2.1 Ocean Field Estimation

Ocean-Acoustic Environment Estimation can be viewed as a particular case of ocean

field estimation. Ocean field estimation requires a knowledge of the distribution and

evolution in space and time of the physical, biological and chemical characteristics of

the sea [35]. The oceanic physical state variables are usually the velocity components,

the pressure, density, temperature and salinity. Examples of biological and chemical

state variables are concentration distributions of nutrients, plankton, dissolved and
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particulate matter, etc. From observations, basic conservation laws (such as conser-

vation of mass, momentum balance, thermal energy balance, conservation of salt etc)

and principles of oceanic physics, biology and chemistry, the ocean dynamical mod-

els can be formulated and model parameters can be estimated to approximate those

nonlinear, highly variable, wide-scale and interdisciplinary oceanic variabilities. If the

state of the ocean at a certain time is given, i.e. boundary and initial conditions are

given, the state of the ocean at a later time can be forecasted approximately. How-

ever, comprehensive and accurate ocean data acquisition is difficult and costly; ocean

field experiments are often uncertain and limited. The complexity of ocean dynamics

impedes the ocean models accurate too. Consequently, the ocean forecast/nowcast

may be associated with great uncertainties. Sources of the uncertainties include model

simplification errors, unresolvable ocean variabilities, boundary condition error, initial

condition errors, miscalculation errors etc [8]. To reduce uncertainties, observation

data and ocean dynamical models are combined by Data Assimilation (DA).

2.2.2 Data Assimilation

Ocean Data Assimilation refers to the quantitative estimation of marine fields of

interest by melding data and dynamics in accord with their specific uncertainties. A

data assimilation system consists of three components: the observations, a dynamical

model and a data assimilation criterion [35]. By definition, DA can be viewed as an

estimation problem. With different use or availability of data, the estimation problem

can be divided into 3 types: filtering, forecasting and smoothing. The schemes for

solving the assimilation problem have different backgrounds and can generally be

related to estimation theory or control theory etc. In this section, principles and

methods in data assimilation will not be enumerated, instead the basic ideas in data

assimilation will be illustrated through an example — the Objective Analysis (OA),

which is often used for ocean nowcast and field initialization. More detailed and

comprehensive overview of data assimilation can be found in [35, 36].
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Objective Analysis

The objective analysis is a Linear Least Square Estimator using Gauss-Markov

or minimum error variance criterion. Suppose that the approximate ocean dynamical

model is linear and discretized:

ψ̂k (−) = Ak−1ψ̂k−1 (+) (2.2)

and the measurement model is linear too:

dt
k = Dkψ

t
k + vt

k, (2.3)

where, vector ψ̂k−1 (+) is the posterior estimation of the ocean state at stage k− 1;

matrix Ak−1 is the system evolution coefficient at stage k − 1; vector ψ̂k (−) is the a

priori estimation of ocean state at stage k, i.e. if the current stage of time is stage

k − 1, ψ̂k (−) is the forecast of the ocean state at stage k based on the dynamical

model; vector dt
k is the true measurement data at stage k; vector ψt

k is the true ocean

state at stage k; matrix Dk is the coefficient linking ocean state and measurement

data; vector vt
k is the true measurement error at stage k, which can be viewed as a

realization of random vector vk.

According to the philosophical presumptions made in Appendix A, ψt
k is only partially

known, it can be viewed as a realization of random vector ψk, though essentially ψt
k

is thought as deterministic. ψk can be modeled as:

ψk = ψ̂k (−) + ωk (−) (2.4)

where ωk (−) is the random forecast error associated with the dynamical model un-

certainty. Usually, ωk (−) and vk are uncorrelated. Thereafter, dt
k can be viewed as a

realization of the random vector dk which is modeled as:

dk = Dkψk + vk. (2.5)
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If now the ocean forecast ψ̂k (−), the covariance matrix of ωk (−), the true measure-

ment data dt
k and the covariance matrix of vk are known, ψ̂k (+) the nowcast of ocean

state at stage k can be obtained via OA as follows:

ψ̂k (+) = ψ̄k + Cov(ψk, dk)Cov(dk, dk)
−1 [dt

k − d̄k]

= ψ̄k + Λk (−)DT
k [DkΛk (−)DT

k +Rk]
−1[dt

k − d̄k] (2.6)

Λk (+) = Λk (−)− Cov(ψk, dk)Cov(dk, dk)
−1Cov(dk, ψk) (2.7)

= Λk (−)− Λk (−)DT
k [DkΛk (−)DT

k +Rk]
−1DkΛk (−) (2.8)

where

Λk (−) = Cov(ωk (−) , ωk (−))

Rk = Cov(vk, vk)

ψ̄k is the background (or guess) of ψt
k, and most likely ψ̄k = ψ̂k (−); d̄k is the back-

ground (or guess) of the measurement data, usually d̄k = Dk ψ̂k (−); Λk (−) indi-

cates the uncertainty associated with ψ̂k (−); Λk (+) indicates the uncertainty asso-

ciated with ψ̂k (+). Since Cov(dk, dk) is usually positive definite, Eq. 2.7 shows that

Λk (+) < Λk (−), which means that through OA the uncertainty associated with

ocean estimation is reduced. Rk is the covariance matrix of the measurement noise.

In this project, OA is used to assimilate the CTD (conductivity, temperature,

depth) data with the SVP forecast generated by the Harvard Ocean Prediction

System via Error Subspace Statistic Estimation (HOPS/ESSE) [37, 38]. In

this case, the measurement model can be written as:

dk = Dk ck + vk (2.9)

where, ck is the random SVP at stage k. Dk is a sparse matrix with only one item
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equal to 1 and others equal to 0 in each row, like

Dk =


1 0 · · · 0

0 0 · · · 1
...

...
...

...

0 1 · · · 0

 . (2.10)

The associated OA formulas can be written as:

ĉk (+) = ĉk (−) + Λk (−)DT
k [DkΛk (−)DT

k +R]−1[dt
k −Dk ĉk (−)], (2.11)

Λk (+) = Λk (−)− Λk (−)DT
k [DkΛk (−)DT

k +R]−1DkΛk (−) . (2.12)

ĉk (−) and Λk (−) can be generated by HOPS/ESSE.

R =


σ2

n

σ2
n

. . .

σ2
n

 (2.13)

where, σn is the standard deviation of CTD noise, which is assumed to be stationary

and white.

2.2.3 Variability v.s. Uncertainty

According to the philosophical presumptions made in Appendix A and descriptions

in 2.1, in this project the ocean is thought to be a complex but deterministic sys-

tem with tremendous variabilities over wide-range scales in time and space. Among

them, meso-to-large scale variabilities can be adequately formulated by ocean dy-

namical models [12, 35]; while it is hard to model submeso-to-small scale variabilities

in classical ocean dynamical models, due to limited knowledge of oceanic processes

within these scales. Therefore, the ocean system should be viewed as a partially

known deterministic process. A stochastic mathematical model is suitable for mod-
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eling/estimating the ocean system (Appendix A). In this way, the resolvable oceanic

variabilities will contribute to the mean values in ocean estimation; the unresolvable

variabilities will be transferred into uncertainties associated with the ocean estima-

tion.

Variability and uncertainty are related but different [8]. Oceanic variability is

referred to ocean state changes along space or time. Uncertainty in ocean estimation

is referred to statistic characterizations of the stochastic ocean modeling. Oceanic

variabilities can contribute to uncertainties in ocean estimation; however ocean esti-

mation uncertainties can arise from many other sources [8]:

• To reduce computational expenses, ocean models are simplified and explicit

calculations are only performed on a restricted range of spatial and temporal

scales (referred to as the“scale window”).

• Approximate representations or parameterizations in ocean models due to lim-

ited knowledge of oceanic processes within the scale window.

• Initial conditions and model parameters are inexact.

• Interactions between the ocean and earth system are approximate and ocean

boundary conditions are inexact.

• Numerical inaccuracy and instability.

2.3 Overview of Acoustic Modeling

Acoustic wave equation is derived from mass conservation equation, Newton’s 2nd

law and the adiabatic equation of state.

Mass conservation: ∂ρ
∂t

= −∇ · ρ~v (2.14)

Newton’s 2nd law: ∂~v
∂t

+ ~v · ∇~v = −1
ρ
∇p(ρ) (2.15)

State equation: p = p0 + ρ′
[

∂p
∂ρ

]
s
+ · · · (2.16)
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The standard linear wave equation for pressure is

∇2p− 1

c2(~x)

∂2p

∂t2
= f (~x, t) . (2.17)

f (~x, t) represents sound sources. Using the frequency-time Fourier transform, the

frequency-domain wave equation, or Helmholtz equation, can be obtained:

[
∇2 + k2 (~x)

]
p (~x, ω) = f (~x, ω) (2.18)

with

k (~x) =
ω

c (~x)
.

Starting from the Helmholtz equation, different mathematical methods can be

applied to solve the wave equation. There are four types of models often used to

describe sound propagation in the sea: ray method, wave number integration method,

normal model method and parabolic equation method. In addition, direct, discrete

methods such as the Finite Difference Method (FDM), the Finite Element Method

(FEM) can also be used to solve the wave equation. However, their importance in

underwater acoustics is rather limited due to excessive computational requirements

[1].

2.3.1 Ray Methods

Eq. 2.19 is the Helmholtz equation in cartesian coordinates with a point source at ~xs.

[
∇2 + k2 (~x)

]
p = Sωδ (~x− ~xs) (2.19)

Sω is the source strength with respect to sound pressure. It is now assumed that the

solution of Eq. 2.19 can be expressed as the sum of ray series as shown in Eq. 2.20.

p(~x) = eiω τ(~x)

∞∑
j=0

Aj(~x)

(iω)j
(2.20)
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where, τ and Aj, j = 0, 1, · · · ,∞ are to be determined.

Substituting Eq. 2.20 into Eq. 2.19, an infinite sequence of equations for the func-

tions τ and Aj can be obtained.

O
(
ω2
)

: |∇τ |2 = c−2 (~x) (2.21)

O (ω) : 2∇τ · ∇A0 +
(
∇2τ

)
A0 = 0 (2.22)

O
(
ω1−j

)
: 2∇τ · ∇Aj +

(
∇2τ

)
Aj = −∇2Aj−1, j = 1, 2, · · · (2.23)

In the standard ray method, only the eikonal equation (Eq. 2.21) and the first trans-

port equation (Eq. 2.22) will be considered. Aj, j = 1, 2, · · · will be ignored by

assuming
Aj

ωj ≈ 0, which implicates a high-frequency approximation.

τ(x) can be obtained by solving the eikonal equation, which however is a nonlinear

Partial Differential Equation (PDE) and difficult to solve directly.

dx

ds
= c∇τ (2.24)

dτ

ds
=

1

c
(2.25)

If we define the ray trajectory x(s) by Eq. 2.24, and transform the cartesian coordi-

nates into the ray trajectory coordinates, the eikonal equation becomes to Eq. 2.25,

which is a very simple Ordinary Differential Equation (ODE). where the s is the arc

length along the ray. Thus,

τ (s) = τ (0) +

∫ s

0

1

c (s′)
ds′ (2.26)

In addition, x(s) can be easily determined by the initial conditions of a ray and

Eq. 2.27, which is obtained from Eq. 2.21 and 2.24.

d

ds

(
1

c

dx

ds

)
= −1

c
∇c (2.27)

According to Eq. 2.22 and 2.24, A0 can be obtained in the ray trajectory coordi-
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nates.

A0 (s) = A0 (0)

∣∣∣∣c (s) J (0)

c (0) J (s)

∣∣∣∣1/2

(2.28)

where, J is the Jacobian and reflects the spreading of a ray tube [1].

J =

∣∣∣∣ ∂x

∂ (s, θ, ϕ)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∂x
∂s

∂x
∂θ

∂x
∂ϕ

∂y
∂s

∂y
∂θ

∂y
∂ϕ

∂z
∂s

∂z
∂θ

∂z
∂ϕ

∣∣∣∣∣∣∣∣∣ (2.29)

θ and ϕ are respectively the declination and azimuthal take-off angles of the ray. In

practice, there exist simple differential equations which provides information about

how the ray paths change for infinitesimal perturbations in either the ray take-off

angle or the ray source point [1]. These equations form the basis of dynamic ray

tracing and are used to calculate the J .

After determining the formula of τ(s) and A0(s), if the initial conditions of a ray

is given, the acoustic pressure field along a ray can be obtained:

p (s) =
−Sω

4π

∣∣∣∣ c (s) cos θ

c (0) J (s)

∣∣∣∣1/2

e
iω
R s
0

1
c(s′)

ds′

. (2.30)

However, we are usually interested in the acoustic field at a fixed location in the

cartesian coordinates p (~x). To find the p (~x), all eigenrays passing through ~x need to

be found, and then p (~x) is equal to the sum of all sound pressures associated with

each eigenray. The summing could be coherent, incoherent or semicoherent [1].

The ray theory method is computationally rapid and extends to range-dependent

problems. In the operational environment where computation speed is a critical fac-

tor, the ray method is used extensively. However, the ray method is an inherent

high-frequency approximation method which leads to coarse accuracy in the results,

especially for low frequencies. For this reason, in underwater acoustics research com-

munity, the ray method is rarely used for low frequencies (below 1kHz); while for high

frequencies (a few kHz or above), ray method is the most practical method.
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2.3.2 Wavenumber Integration Method

In underwater acoustics, the ocean environment is usually assumed to be azimuthal

symmetric about the point sound source [1]. Also the ocean acoustic environment is

stratified and varies quickly along depth, slowly along range, so in many cases the

environment can be treated as range-independent. If a cylindrical coordinate system is

constructed with the point source being on the z-axis, the inhomogeneous Helmholtz

equation can be written as

[
1

r

∂

∂r

(
1

r

∂

∂r

)
+ ρ (z)

∂

∂z

(
1

ρ
(z)

∂

∂z

)
+ k2 (z)

]
p =

Sω

πr
δ (r) δ (z − zs) . (2.31)

This is a 2-D PDE and zs is the source depth. The wavenumber k and the density ρ

are functions of the depth z. The z-axis can be discretized so that in each layer k (z)

and ρ (z) can be treated as constants. Thus, by the Hankel transform pair

f (r, z) =

∫ ∞

0

f (kr, z) J0 (krr) krdkr (2.32)

f (kr, z) =

∫ ∞

0

f (r, z) J0 (krr) rdr, (2.33)

Eq. 2.31 can be transformed into the depth-separated wave equation:

[
d2

dz2
+
(
k2 (z)− k2

r

)]
p (kr, z) =

Sω

2π
δ (z − zs) , (2.34)

where the kr is the horizontal wavenumber. Eq. 2.34 is an ODE, which can be solved

for any kr by taking into account boundary conditions and radiation conditions. Once

the spectrum p (kr, z) is obtained, the p (r, z) can be obtained by the inverse Hankel

transform.

p (r, z) =

∫ ∞

0

p (kr, z) J0 (krr) krdkr (2.35)

=
1

2

∫ ∞

−∞
p (kr, z)H

(1)
0 (krr) krdkr (2.36)
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Note that for p (kr, z), poles may exist on the kr-axis, so the integration can not be ex-

actly operated along the kr-axis but along a slightly deviated path (see Appendix. B).

If Sω = −4π, then the Transmission Loss (TL) is

TL (r, z) = −20 log10 |p (r, z)| . (2.37)

The wavenumber integration method can generate accurate“near-field” and can

includes shear wave effects in elastic media. However, its speed is relatively slow and

to extend to range-dependent environments the wavenumber integration method will

require much more additional computation efforts.

2.3.3 Normal Mode Method

Let’s assume that the solution of Eq. 2.31 can be written in the following format:

p (r, z) =
∞∑

m=1

Φm (r) Ψm (z) . (2.38)

Ψm (z) is the mth eigenfunction of the Sturm-Liouville problem consisting of Eq. 2.39,

all boundary conditions and radiation conditions.

[
ρ (z)

d

∂z

(
1

ρ (z)

d

∂z

)
+
(
k2 (z)− k2

rm

)]
Ψm (z) = 0 (2.39)

Those eigenfunctions are orthogonal and can be normalized, i.e.

∫ ∞

0

Ψm (z) Ψn (z)

ρ (z)
dz = 0 for m 6= n, (2.40)∫ ∞

0

Ψ2
m (z)

ρ (z)
dz = 1. (2.41)

Eq. 2.39 is an ODE. All Ψm and krm can be obtained numerically or analytically. It

is assumed that all eigenfunctions of the Sturm-Liouville problem form a complete

set. However, this assumption is not valid in many underwater acoustic problems [1]

(see more in Appendix C).
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Substituting Eq. 2.38 into Eq. 2.39 and applying Eq. 2.40 and 2.41, it will yield

1

r

d

dr

(
r
dΦn (r)

dr

)
+ k2

rnΦn (r) =
Sω

πrρ (zs)
δ (r) Ψn (zs) . (2.42)

Combining the radiation condition at r →∞, solution of the above equation is

Φn (r) = − iSω

4ρ (zs)
Ψn (zs)H

(1)
0 (krnr) , (2.43)

(see more in Appendix D). So, finally we find that

p (r, z) = − iSω

4ρ (zs)

∞∑
m=1

Ψm (zs) Ψm (z)H
(1)
0 (krmr) . (2.44)

In the normal mode method, once all Ψm and krm are available, acoustic fields for all

source and receiver configurations are available. Moreover, the normal mode method

can be extended to range-dependent environments. In most underwater acoustic prob-

lems, the normal mode method can’t provide precise “near-field” due to negligence

of the continuous spectrum (see Appendix C).

2.3.4 Parabolic Equation Method

The original wave equation Eq. 2.17 is a hyperbolic equation, the Helmholtz equation

Eq. 2.18 is an elliptic equation. The Parabolic Equation (PE) method is to replace

the elliptic equation with an approximate parabolic equation and solve it by split-step

Fourier algorithm etc.

Think about the homogeneous Helmholtz equation in a range-dependent environ-

ment: [
1

r

∂

∂r

(
1

r

∂

∂r

)
+

∂2

∂z2
+ k2 (r, z)

]
p = 0. (2.45)

Its solution can be assumed to be:

p (r, z) = ψ (r, z)H
(1)
0 (k0r) , (2.46)
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where the k0 = ω
c0

is the reference wavenumber. Utilizing the paraxial approximation

(small-angle approximation), i.e.

∂2ψ

∂r2
≤ 2ik0

∂ψ

∂r
, (2.47)

and the Hankel function approximation

H
(1)
0 (k0r) ≈

√
2

πk0r
ei(k0r−π/4), (2.48)

substituting Eq. 2.46 into Eq. 2.45, an approximate parabolic wave equation can be

obtained

2ik0
∂ψ

∂r
+
∂2ψ

∂z2
+ k2

0

(
n2 − 1

)
ψ = 0, (2.49)

where n = c0
c(r,z)

.

The parabolic equation Eq. 2.49 can be solved by split-step marching algorithm

ψ (r + ∆r, z) = e
ik0
2 [n2(r0,z)−1]∆r F−1

{
e
− i∆r

2k0
k2

zF {ψ (r0, z)}
}

(2.50)

where the Fourier transform F is with respect to z.

So if ψ (0, z) is available, ψ (r, z) can be obtained via Eq. 2.50. There are several

numerical and analytical methods to construct the starting field ψ (0, z) [1].

The PE method is essentially a small angle approximation. The results asymptot-

ically match the truth in far-field. In practice, the ∆r and the ∆z used in the FFT

are key factors affecting computation accuracy and speed. From experience, the ∆z

has to be very small to make PE results converge, especially for environments with

steep bathymetry. The PE method is presently the most practical and fastest method

for range-dependent environments.
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Chapter 3

Adaptive Rapid Environmental

Assessment (AREA)

As described in the preceding chapters, the ocean-acoustic environment varies in time

and space over wide-range scales, and hence the ocean-acoustic environment estima-

tion is often associated with big uncertainties. In this chapter, it will be shown that

those estimation uncertainties may induce serious uncertainties in acoustic predic-

tion, especially in shallow water. To minimize the acoustic prediction uncertainties

etc., the AREA project was proposed. In this chapter, the motivations, basic ideas,

mechanisms and current problems in AREA will be detailed.

3.1 Motivations

3.1.1 Shallow Water Area

The continental masses are surrounded largely by shallow water. Shallow water area

(also referred to as “coastal ocean” or “littoral ocean”) encompasses about 5% of the

world’s oceans, roughly the region from the beach to the shelf break, where water

depths are about 200 meters [15, 12]. Shallow water is usually a noisy environment

because all commercial and military shipping must pass through shallow water when

entering or leaving port, or when transiting straits or passages. Shipping lanes ex-
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ist along coastlines. Consequently, shallow water, and in particular shallow water

acoustics, is an area of major concern to the Navy.

From an acoustic viewpoint, since the SVP in shallow water area is downward

refracting or nearly constant over depth (Fig. 2-2), the important ray paths are either

refracted bottom-reflected or surface-reflected bottom-reflected [1]. The properties of

the water column and the seabed are all important for acoustic prediction in shallow

water. As aforementioned, oceanic variabilities widely exist in the ocean, especially in

shallow water, where wind driven flows, tidal currents, river outflow, internal waves,

solitary waves, fronts, eddies, thermal changes etc are some of the commonly dominant

oceanographic processes. These processes and their intercoupling and interactions

with the seabed make the shallow water ocean-acoustic environment highly variable in

time and space [10, 39]. In the water column, the temperature profile, salinity profile,

plankton distribution profile etc can vary in complex dynamical ways, driven by the

variety of coastal oceanographic processes and their coupling. Current flows also

interacts strongly with the littoral bottom topography which can be highly variable.

In the seabed, bathymetric profiles vary in time and space too, which in turn makes

the dynamics of the water column extremely complex. The properties of the seabed

are also variable, which impacts acoustic predictions.

Those variabilities span a wide range of spatial and temporal scales [5, 6]. Conven-

tional oceanographic measurements cannot provide the ability to synoptically observe

all those dynamically interlocking, patchy and intermittent processes in coastal ocean,

especially for sub-meso-scales short in time and space [7]. Consequently the coastal

environment will be always under-sampled at these small and fast scales. Oceano-

graphic forecasting by modeling and data assimilation such as the HOPS/ESSE can

produce 4-D oceanographic field estimates and the associated uncertainties [40, 41].

However, the spatial and temporal grids used in computation are limited by the avail-

able computational resources and the initial conditions can be relatively unknown due

to the environmental under-sampling [8]. So, even using nested computational grids,

spatial scale smaller than hundred meters in the horizontal, and meters in the vertical

cannot be modeled deterministically over large coastal regions (see Fig. 3-1).
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Figure 3-1: Multi-scale environmental assessment. The typical sonar systems perfor-
mance is dependent on acoustic environment variability over a wide range of scales.
Optimal environmental assessment will therefore be a compromise between conflict-
ing requirements of coverage and resolution. By targeting areas of high sensitivity to
the sonar system through in situ measurements, the deterministic assessment range
will be shifted towards smaller scales.

Modern ocean modeling and assimilation frameworks have a capability of repre-

senting the smaller, sub-grid-scale variability statistically [8]. From an acoustic view-

point, very small scale variabilities is averaged out by the acoustic wave length; while

the sub-meso scale variabilities of the order of hundred meters to kilometers make

the coastal ocean acoustic environment largely unknown with many uncertainties in

terms of imperfect sound velocity, depth of the thermocline etc. Such uncertainties

can be responsible for a large part of the acoustic prediction uncertainty [9, 10].

In summary, due to the existence of sub-meso-to-small-scale ocean-acoustic en-

vironmental variabilities, great uncertainties may exist in shallow water ocean field

estimation, which is based on conventional oceanographic measurement systems and

current ocean prediction systems; and the environment parameters of the water col-

umn and the seabed are generally not known in sufficient detail and with enough

accuracy for satisfactory prediction of long-range acoustic propagation in shallow wa-

ter, even though the shallow water acoustics has been thoroughly investigated both

theoretically and experimentally [1]. An example is shown in next section.
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3.1.2 Acoustic Prediction Uncertainty

Strictly speaking, the ocean-acoustic environment does not only include the sound

velocity, density, attenuation coefficient in the water column and the seabed, but also

includes the bottom topography, roughness of the surface and the bottom, current

velocity, scattering sources distributions etc. Of those factors, the SVP in the water

column is usually the most variable one and plays a very important role in acoustic

computation. If big uncertainties exist in the water column SVP prediction, it often

leads to serious acoustic prediction uncertainties (see Fig 3-2).

Fig. 3-2 shows a scenario of the Georges bank in the gulf of Maine, where a ther-

mocline and internal waves exist. Fig. 3-2(a) shows the Principal Estimation (P.E.)

of the water column SVP. Standard deviations of the associated errors are shown in

Fig. 3-2(b), from where it can be found that the P.E. has biggest uncertainties at the

thermocline area. Fig. 3-2(c) and 3-2(d) illustrate two possible SVP realizations as-

sociated with Fig. 3-2(a) and 3-2(b). In this case, the seabed environment is assumed

to be deterministic. If a 100 Hz Continuous Wave (CW) sound source is located at

range = 0km, depth = 10m or at range = 0km, depth = 80m, the corresponding

TL predictions at depth = 50m and depth = 100m will have serious uncertainties as

shown in Fig. 3-2(e), due to the water column SVP prediction uncertainties.

From a viewpoint of sonar system, the acoustic prediction uncertainties will def-

initely affect sonar performance and sonar performance prediction. The uncertainty

of the acoustic predictability is critical to the dB-budget of classical sonar systems

by directly affecting the detection and false alarm probabilities [9]. It is also one of

the major obstacles to adapting new model-based sonar processing frameworks, such

as Matched Field Processing (MFP) [42], to the coastal environment.

For a non model-based sonar system, sonar performance is dependent on sound

propagation pattern in the ocean waveguide, the ocean-acoustic environment. There-

fore sonar performance can be written as

SP = f(O), (3.1)

44



0 5 10 15 20 25

0

50

100

150

200

Range (km)

D
ep

th
 (m

)

1470

1475

1480

1485

1490

1495

1500

1505

(m/s)

(a) Principal estimation of water column SVP (b) Estimation error standard deviation

0 5 10 15 20 25

0

50

100

150

200

1470

1475

1480

1485

1490

1495

1500

1505

D
ep

th
 (m

)

Range (km)
(m/s)

(c) SVP realization 1

0 5 10 15 20 25

0

50

100

150

200

1470

1475

1480

1485

1490

1495

1500

1505

D
ep

th
 (m

)

Range (km)
(m/s)

(d) SVP realization 2

0 5 10 15 20 25

20

40

0 5 10 15 20 25

20

40

0 5 10 15 20 25

20

40

0 5 10 15 20 25

20

40

TL
 (d

B
)

Range (km)

(e)

14 16 18 20 22 24

50

52

54

56

58

60

62

64

66

68

70

MFP Localizations

Target's Location

D
ep

th
 (m

)

Range (km)

(f)

Figure 3-2: In (a), for MFP, the black asteroids indicate the location of the verti-
cal sonar array; the red circle is the location of the sound source; the white rect-
angular box is the searching domain. In (e), the four TLs plots are respectively
associated with (rs = 0km, zs = 10m, zd = 50m), (rs = 0km, zs = 10m, zd = 100m),
(rs = 0km, zs = 80m, zd = 50m), (rs = 0km, zs = 80m, zd = 100m), where rs, zs, zd
are source range, source depth and receiver depth respectively; those red lines are at
35dB. 45



where SP represents a sonar performance metric and O represents the ocean-acoustic

environment. The sonar performance prediction uncertainty is connected with the

ocean-acoustic environment prediction uncertainties through the function f , which is

usually highly nonlinear. Sonar range is a typical non model-based sonar performance

metric. If, for example, the threshold of a sonar is 35dB, from Fig. 3-2(e) it can be

seen that the sonar range could be associated with great uncertainty. For a model-

based sonar system such as MFP, sonar performance is dependent on both the true

ocean-acoustic environment and the environment prediction,

SP = f(O,O′), (3.2)

where O′ is the environment prediction. If the uncertainty of O′ becomes smaller,

that means O′ is closer to O, the SP will be better. For example, if now the 100

Hz CW sound source is located at range = 19km, depth = 60m and a vertical sonar

array with 15 hydrophones is located at range = 0km and uniformly distributed

from depth = 10m to 80m (see Fig. 3-2(a)), the MFP without any measurement

noise will localize the source with mismatched displacements up to several kilometers

(see Fig. 3-2(f)). If the standard deviation of SVP prediction error becomes smaller,

the expectation of the MFP mismatched displacement will be smaller, that means

MFP localization is more accurate and the sonar performance is better.

The acoustic uncertainty associated with the spatially and temporally varying

sound speed and the random characteristics of the bottom are also of critical influence

to acoustic communication systems, which with the integration of new Autonomous

Ocean Sampling Network (AOSN) [43] concept in the operational Navy is becoming

of increasing tactical significance.

3.2 Basic Ideas

To determine the environmental variability of the critical sub-meso scales and short

temporal scales, a local, high resolution, rapid deployable in-situ measurement capa-
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bility has long been recognized as a very important tactical need [9]. By assimilating

the in-situ measurement data with ocean modeling, resolution of the ocean filed es-

timation can be dramatically improved (see Fig. 3-1). As a result, the acoustic pre-

diction uncertainty may be strongly reduced and the model-based sonar performance

may be highly improved.

However, its implementation is being constrained by limited resources. The ocean

area of interest is usually large, whereas in-situ measurement coverage is very limited

due to cost, time and performance constraints (See Fig. 3-1). The consequent lim-

ited availability of high-resolution in-situ measurement data for assimilation into the

modeling framework may severely limit the usefulness of the forecasts to the acoustic

environment prediction. Acknowledging that the size of the ocean area relevant to

an acoustic problem is usually as large as tens of kilometers, the acoustic-purposed

coastal environmental assessment is facing the classical conflict between resolution,

needed to capture the fine scale variability and coverage, needed for the large scale

environmental phenomena. Thus, the Rapid Environmental Assessment (REA) re-

sources available must focus on the environmental uncertainties critical to the specific

acoustic system. A quantitative and adaptive approach is necessary. Optimizing the

REA resources deployment pattern, namely the sampling strategy optimization, be-

comes thus the major problem. Different sampling strategies may make a significant

difference in predicting sonar performance or improving sonar performance.

Adaptive Rapid Environmental Assessment (AREA) — a new adaptive acoustical-

environmental sampling approach based on coupled oceanic-acoustic forecasts is cur-

rently being developed in connection with the emergence of the new Autonomous

Ocean Sampling Network (AOSN) technology[44]. In principle AREA is a probabilis-

tic approach to the adaptive sampling problem of littoral REA and envisioned as a

real time tactical tool for not only capturing, but also minimizing the acoustic uncer-

tainty of significance to specific sonar systems. In AREA, with ocean forecast pro-

viding large-scale coverage, identifying regions and features with strong uncertainty

such as coastal fronts, the limited high-resolution tactical resources can be deployed

in a manner which is optimal to the acoustic forecast [40, 39]. Consequently, the
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limit of deterministic characterization may be shifted significantly towards smaller

scales; a much finer resolution can be obtained in the ocean forecast without sacri-

ficing coverage and this will make the acoustic forecast uncertainty minimized (see

Fig. 3-1).

The AREA framework can also be used to minimize oceanic uncertainties, biolog-

ical uncertainties etc [39, 45], or to objectively evaluate the performance of new REA

concepts, such as Acoustically Focused Ocean Sampling (AFOS) [44] and Acoustic

Data Assimilation (ADA) [46, 6]. To investigate mechanisms and performance limits

in AREA, an engineering model and a mathematic model for AREA are developed.

Control Center

Local Sound Speed 
Sensors and Sonar 
Array

Satellite Remote Sensing

Glider

AUV

Seabed Detector

Figure 3-3: Illustration of Adaptive Rapid Environmental Assessment System

3.2.1 Engineering Model

Fig. 3-4 shows the structure of the AREA system and connections with ocean en-

vironmental models. In the oceanographic modeling, ocean database, remote sens-

ing and local in-situ measurement data etc. are assimilated with ocean model via

HOPS/ESSE; while in the seabed modeling, Geographic & Geological database, local

in-situ measurements are assimilated with Geographic & Geological modeling. After
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Figure 3-4: AREA wiring diagram. Fore- and now-casts of the local oceanography
and geology are producing spatial and temporal environmental statistics in the form
of realization ensembles. These ensembles are then used as input to environmental
acoustic models to provide associated realizations for the sonar performance, e.g. in
the form of probability of detection and false alarms. To minimize the uncertainty
of the acoustic prediction and therefore improve the probability of detection to false
alarm ratio, the realization ensemble of ocean-acoustic environment and the opera-
tional constraints are used to determine an optimal deployment strategy for the REA
resources. The REA data are then objective analyzed based on the forecast spatial
scales. The resulting reduced uncertainty now-casts are then used for the acoustic
prediction.

the data assimilation, the oceanographic modeling and the seabed modeling pro-

duce an ensemble of environmental realizations for the water column forecast and the

seabed forecast respectively. The acoustic measurement and inversion methods can be

utilized to improve both of the water column and seabed environmental predictions.

The quantitative uncertainty-maps provide guidance for locating large uncertainties,

e.g. determining the bearings associated with maximum uncertainties, and so guide

the sampling plans that are computed by AREA.

In the acoustic modeling, the Range-dependent Acoustic Model (RAM PE Code)
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— a popular wave-theory technique for solving range-dependent propagation problems

in the ocean is used [1]. By coupling the oceanographic, seabed and acoustic models,

acoustic prediction uncertainties can be generated via Monte Carlo simulations. The

weighted sum of the acoustic prediction uncertainties can thus be used as the objective

function in the AREA optimization algorithm which aims to select the sampling plan

that reduces these integrated predicted uncertainties. This optimization problem is

the most important focus of the thesis.

Under operational REA, the optimization algorithm generates an optimal plan for

allocating the REA resources, such as an optimal AUV path, in real-time. Thereafter,

REA resources are deployed according to this optimal plan and in-situ measurement

data focusing on the most critical uncertainties are collected and passed back to

the oceanographic model and seabed model in a short time. Those new local data

are rapidly assimilated in the models [40, 6], and ocean environmental and acoustic

predictions for the next day are then generated. This process is the Daily AREA

Cycle, which updates the optimal REA resources allocation pattern everyday.

The Daily AREA Cycle constitutes the first level of adaptivity in AREA. In ad-

dition to the static optimal REA deployment, the optimization problem can also be

treated as a Sequential Decision Making Problem (see Fig. 3-6) and modeled in the

Dynamic Programming (DP) framework, in which the REA resources allocation pat-

tern is not predetermined but generated on-board. An optimal adaptive sampling

strategy is then produced, as a function of the data sampled by the autonomous

data-collecting platforms, instead of a predetermined optimal sampling pattern. As

indicated by the red lines in Fig. 3-4, the dynamic optimization algorithm only out-

puts the optimal sampling pattern for the next step; after the local data in the next

step is collected and rapidly mapped by objective analysis or assimilated in real-time,

a new ocean prediction is computed to optimize the subsequent sampling pattern.

The whole optimal REA resources allocation pattern is adaptively generated step by

step on-board. This is the second level of adaptivity.

This second level of adaptivity in AREA involves dynamic programming. How-

ever, it is known that a DP problem is usually NP hard [47]. Determining an opti-
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mization approach for the adaptive sampling strategy that can be computed on-board

can thus be extremely difficult. Nevertheless in some particular cases, this difficult

problem can be avoided by in-direct methods (see Chapter 5).

From an operational viewpoint, the AREA system can be structured as Fig. 3-5.

An operational AREA system usually involves 5 components: the real ocean environ-
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Figure 3-5: AREA wiring diagram from an operational viewpoint.

ment; the sonar system; mobile sensors such as AUVs carrying CTDs; fixed platform

sensors such as local XBT, local CDT, satellite or acoustic remote sensing system

and seabed detector etc. (see Fig. 3-3); and the control center. The control center is

the heart of AREA. People or computers can directly operate and control the whole

AREA system through the control center. Basically, it consists of 3 modules: ob-

servation database, ocean predictor and control agent. Observation database module

includes a data transferring interface/pipeline and data storage, which can communi-

cate with all sensors and the sonar system, receive and save data. The ocean predictor

module includes just the oceanographic modeling and the seabed modeling, which uti-

lizes the saved data and provides environmental forecasts to the control agent. The
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control agent module works as a decision maker using some sort of Artificial Intel-

ligence Optimization methods. This module is very complicated. Depending on the

decision making algorithm, the control agent may be structured differently. For most

sophisticated algorithms, it usually possesses a virtual world - a mirror of the whole

AREA system - and “play” all possible controls in the virtual world, then select the

one with optimal virtual consequence as command. This module is the main object

of attention in the AREA project and this thesis.

In operations, the AREA system starts with initialization - updating observation

database according to the latest ocean database, latest measurements by the fixed

platform sensors and sonar configuration information etc. After initialization, the

control center will run the ocean predictor module and generate preliminary environ-

mental predictions. All initial information and analysis results will then be collected

by the control agent module where a sampling strategy program will be run and work

out commands such as predetermined sampling waypoints (in the daily adaptivity) or

adaptive sampling strategy (in the on-board adaptivity. See Fig. 3-6) for the mobile

sensors. Those commands will be sent to the mobile platforms through communica-

tion channels. Following the commands, the mobile sensors will approach sampling

points one by one and capture the local uncertainties.

Compared with sound velocity in the water column, variabilities in bathymetry

are usually less variable and less rapid. In-situ measurement platforms such as side-

scan/sub-bottom profiling AUV, water depth detection etc can capture those vari-

abilities in good resolution and coverage. Presently, AREA thus focuses more on the

water column and treats bathymetry deterministically. In this thesis, we will only

consider the water column and focus on the SVP variability. However, all

models and algorithms developed in the thesis can be extended to capture any other

variability in the water column.

3.2.2 Mathematic Model

In this section, the basic ideas in AREA will be represented in mathematical formulas.

Mechanisms, performance limits in AREA will be mathematically clarified.
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be collected, by which the Observation Database will be updated again. This loop is
call Adaptive Sampling Loop. Repeating this loop, sampling points locations will be
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Deterministic-Stochastic Model for Ocean SVP

Based on the philosophical presumptions made in Appendix A, the true ocean SVP

Ct (x, y, z, t) is in nature a deterministic but very complicated dynamic process vary-

ing on multiple scales. It can be decomposed into two parts:

Ct (x, y, z, t) = C (x, y, z, t) + C ′ (x, y, z, t) , (3.3)

where, C (x, y, z, t) is associated with the part of oceanographic processes in meso-

to-large scales, and can be modeled by ocean modeling; C ′ (x, y, z, t) is associated

with the part of oceanographic processes in submeso-to-small scales, and can not

be modeled deterministically. Tremendous observations and experiments have been

made to investigate the mechanisms and dynamics in C ′ (x, y, z, t); huge data have

been collected. Based on those observations and data, a stochastic model C̃ (x, y, z, t)

for modeling C ′ (x, y, z, t) can be created and then a deterministic-stochastic model
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C (x, y, z, t) for Ct (x, y, z, t) can be obtained,

C (x, y, z, t) = C (x, y, z, t) + C̃ (x, y, z, t) . (3.4)

Ct (x, y, z, t) can thus be viewed as a sample path of C (x, y, z, t). This deterministic-

stochastic model doesn’t have to be unique. Actually, different people may use differ-

ent observation data and different methodology, therefore get different C̃ (x, y, z, t).

For example, Regional Ocean Modeling System (ROMS) and Harvard Ocean Predic-

tion System (HOPS) may give us discrepant results [48, 37, 38]. Furthermore, even

if using the same observation data, the same ocean model, but with different com-

putational grid size, the deterministic-stochastic SVP model will be different too. It

should be noticed that the mean of C̃ (x, y, z, t) must be always zero. Since if it is

not zero, the mean part can be put into C (x, y, z, t).

In AREA project, C̃ (x, y, z, t) in a duration T is considered. T may last for from

hours to a day. From a mathematical viewpoint, the objective of this project is to

best improve the stochastic model C̃ (x, y, z, t) for duration T in regard to acoustic

purpose, by assimilating in-situ measurement data. During T , we can decompose

C̃ (x, y, z, t) into two parts and rewrite Eq. 3.4 as

C (x, y, z, t) = C (x, y, z, t) + C1 (x, y, z, t) + C2 (x, y, z, t) , (3.5)

where, C̃ (x, y, z, t) = C1 (x, y, z, t) + C2 (x, y, z, t).

C1 (x, y, z, t) is the slowly time-variant part in C̃ (x, y, z, t), which is highly auto-

correlated during T ; C2 (x, y, z, t) is the other part, which has lower auto-correlation

during T . C1 and C2 are both stochastic process with zero mean, but C1 does not

significantly change during T . Therefore, we may approximately treat C1 as time-

invariant. Furthermore, to simplify the problem, it is usually assumed that C1 and

C2 are not cross-correlated, and C2 is wide-sense stationary within T. It can be seen

that if T is shorter, more components in C̃ will be counted in C1 and less will be in

C2, and vice versa. Now C1 is treated as a time-invariant stochastic process and its

Probability Density Function (PDF) can be generated by ocean modeling, if we can
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quickly measure C1 (x, y, z, t) at some acoustic-critical locations within T and quickly

implement data assimilation, we can then dramatically improve the estimation for

C1, i.e. sharper the PDF of C1, for duration T . Consequently, the stochastic model

C̃ (x, y, z, t) can be best improved in regard to acoustic prediction uncertainties.

In-situ Measurement and Objective Analysis

In operations, the ocean is discretized in time and space. Let vector c, c1 and c2 denote

the spatially discretized C (x, y, z, t), C1 (x, y, z, t) and C2 (x, y, z, t) at a certain time

within T respectively. Because C is the deterministic part, which varies even slower

than C1, C1 is now assumed to be time-invariant in T , the in-situ observations within

T can be modeled as

d = D · (c+ c1 + c′2) + v (3.6)

where, D is the sparse measurement matrix as the one in Eq. 2.10; v is the CTD noise

vector, which is assumed to be white. Since C2 (x, y, z, t) may significantly change

during the in-situ measurement process, we thus use c′2 to denote the nominal vector

corresponding to the time-varying C2 (x, y, z, t) in T such that D · c′2 is just equal

to the measurement data. In Eq. 3.6, ocean modeling can deterministically model c

and generate the PDFs for c1 and c2. Thus Λc1 (−) the a priori covariance matrix of

c1 and Λc2 (−) the a priori covariance matrix of c2 can be known. Since we assume

that C2 is a wide-sense stationary random process in T , D · Λc′2
(−) ·DT the a priori

covariance matrix of D · c′2 can get known too by taking into account the temporal

correlation. To capture c1, we need to rewrite Eq. 3.6 as

d = D · (c+ c1) + (D · c′2 + v) , (3.7)
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i.e. we treat c′2 as a sort of measurement noise. Therefore, by the OA equations

(Eq. 2.11, 2.12) we can get

ĉ1 (+) = Λc1 (−)DT
[
D · Λc1 (−) ·DT +D · Λc′2

(−) ·DT +R
]−1

[d−D · c], (3.8)

Λc1 (+) = Λc1 (−)− Λc1 (−)DT [D · Λc1 (−) ·DT +D · Λc′2
(−) ·DT +R]−1DΛc1 (−) ,

(3.9)

where, it should be noticed that c1 has zero mean; c1, c
′
2 and v are uncorrelated. Thus

for the random vector c = c+ c1 + c2, we have

ĉ (+) = c+ Λc1 (−)DT
[
D · Λc1 (−) ·DT +D · Λc′2

(−) ·DT +R
]−1

[d−D · c], (3.10)

Λc (+) = Λc1 (−)− Λc1 (−)DT [D · Λc1 (−) ·DT +D · Λc′2
(−) ·DT +R]−1DΛc1 (−) + Λc2 (−) .

(3.11)

while,

ĉ (−) = c, (3.12)

Λc (−) = Λc1 (−) + Λc2 (−) . (3.13)

Comparing Eq. 3.13 and Eq. 3.11, it can be seen that the SVP prediction uncertainty

is reduced from Λc (−) to Λc (+) by removing some part of prediction uncertainty

associated with C1. However, for those prediction uncertainties associated with C2,

there is no way to mitigate them in AREA. So, if a longer duration T is considered,

a worse water column SVP nowcast will be produced; while if T is shorter, the water

column SVP nowcast will be more accurate. From another viewpoint, in Λc (+) the

proportion of prediction uncertainties associated with C1 is lower than that in Λc (−)

and because the variability scale of C1 is larger than the scale of C2, the average

correlation length in Λc (+) should be shorter than that in Λc (−). Thus in Fig. 3-1,

the deterministic assessment range after AREA is shifted towards smaller scale.
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Acoustic Prediction Uncertainty

The acoustic prediction uncertainty can be used as the objective function in the opti-

mization problem in AREA, which from a mathematic viewpoint is to find the opti-

mal measurement matrix D under some constraints such that the posterior acoustic

prediction uncertainty is minimized. However, as aforementioned, the acoustic-SVP

relation is often highly nonlinear. So even if in this thesis the SVP prediction error is

assumed to be a Gausssian random vector, there is no any closed mathematic form for

the acoustic prediction uncertainty, and thus in practice it is very difficult to calculate

it quickly. Actually, at present this problem is one of the major obstacles to solving

the AREA optimization problem in real-time.

3.3 The AUV Path Planning Problem

So far, the basic ideas, mechanisms, mathematic model and current problems etc. in

AREA have been introduced. In this section, the AREA scenarios considered in this

thesis and the associated optimization problem will be introduced.

As mentioned before, in this thesis we only consider the water column SVP es-

timation uncertainties, any other uncertainty in water column and seabed will be

ignored. Furthermore, due to the fast progress in AUV techniques, nowadays the

AUV has ranges that are comparable to most spatial scales of significant oceano-

graphic processes to acoustics; with also taking into account its excellent mobility,

AUV is used in ocean engineering more and more. Therefore in this thesis, AUV

carrying a CTD sensor is considered to be the only REA resource. In addition, to

simplify the problem, only one single AUV is considered so far.

In summary, in this thesis the problem to be considered is how to route

a single AUV carrying a CTD sensor to measure sound velocities in the

water column such that after assimilating those in-situ measurement data

the posterior acoustic field nowcast uncertainties will be minimized.

In this scenario, the whole procedure in AREA is illustrated in Fig. 3-7. At time

t0, a forecast for the SVP at time t1 (t1 > t0) is produced by HOPS/ESSE in the
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form of SVP realizations ensemble. Around t1, an AUV with CTD will be launched

to do in-situ measurements on a vertical plane along with a certain bearing. The

in-situ measurements will be finished quickly, and then those data will be passed

back to the control center. After data assimilation, a SVP nowcast will be generated.

From the forecast to the nowcast, the associated uncertainty is reduced. From the

SVP nowcast, the acoustic prediction uncertainty can be estimated by running Monte

Carlo simulations and acoustic model such as RAM. Finding the optimal AUV path

under the constraints so as to minimize the acoustic prediction uncertainty is the

objective. However, since the true ocean environment around t1 can not be completely
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Figure 3-7: Demonstration of the whole process in AREA.

predicted, any SVP realization in the forecast ensemble could be the true one. For

different SVP realization, the optimal AUV path may be different. So, which optimal

path is the real optimal one for AUV is a question.

One way to define the real optimal AUV path is to implement an AUV path in all

SVP realizations in the forecast ensemble and use the sample mean of the acoustic

prediction uncertainty as the objective function. The path associated with minimum
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objective function value is the real optimal one (see Fig. 3-8). So, in this case, the

real optimal AUV path is a predetermined path and only the daily adaptivity exists

in AREA.

22{ }  Unc.Pred. Acou.       min
ensembleforecast paths nedpredetermi
E

The Optimal Predetermined Path

Implement Predetermined Path

Figure 3-8: The optimal predetermined path.

Another way to resolve this problem is to create an adaptive on-board AUV rout-

ing strategy — an algorithm, in which the input is the accrual in-situ measurement

data, the output is the next AUV waypoint. So when AUV is moving, the CTD will

collect sound velocity data and the AUV can adaptively determine its next waypoint

one by one based on all collected data (see Fig. 3-9). If a routing strategy is imple-

mented in all SVP realizations in the forecast ensemble, many different AUV paths

may be generated. To find the optimal routing strategy, the sample mean of the

posterior acoustic prediction uncertainty can be used as the objective function. The

adaptive on-board AUV routing strategy associated with minimum objective function

value is then the optimal one (see Fig. 3-10). In this case, AREA can have both daily

adaptivity and on-board adaptivity.

In fact, a predetermined path can be viewed as a fixed routing strategy — no

matter what happened before, the same next waypoint will be given. Therefore,

the predetermined path space is contained by the adaptive AUV routing strategy

space and theoretically the optimal routing strategy must lead to a smaller posterior

acoustic prediction uncertainty.
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Figure 3-10: The optimal AUV routing strategy.

How to model the above AUV path planning and AUV routing strategy opti-

mization problem in mathematical form and how to solve them in real-time etc. are

discussed in chapter 5 and 7.

3.4 Previous Work

In Operational Research (OR) and Management Science (MS), intensive research has

been conducted in Vehicle Routing Problem (VRP) [49, 50, 51], which is to find
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an optimal route of one or more vehicles through a graph [47]. This is a difficult

combinatorial problem. It can be linked with the Traveling Salesman Problem (TSP)

or even scheduling.The AUV path planning problem is related to VRP. However, the

constraints and the objective function are very different.

The most related previous research is the one conducted by Yilmaz [52, 53]. In

this work, path planning for one or more AUVs on a horizontal plane such as the

sea surface is considered. The objective function is the integration of a priori SVP

prediction uncertainty along the AUV path and no SVP correlation effect is consid-

ered. In this work, two optimization methods based on Mixed Integer Programming

(MIP) are developed and multi-vehicle multi-day mission is considered. In addition,

some similar work can be founded in Unmanned Aerial Vehicle (UAV) path planning

research [54].

From the text description, Yilmaz’s work is very similar to the AUV path planning

discussed in this thesis. In fact however, they are very different in mathematical

representation including constraints, decision variables and objective function. In

this thesis, the AUV moves on a vertical plane and the AUV path planning is aiming

at the minimization of the posterior acoustic prediction uncertainty with taking into

account the SVP correlation effect. Therefore the problem addressed in this thesis is a

new problem and the practical method for solving this problem will be very different.
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Chapter 4

Optimization Algorithm Overview

In mathematics, the term optimization, or mathematical programming, refers to the

study of problems in which one seeks to minimize or maximize a real function by

systematically choosing the values of real or integer variables from an allowed set

[55]. This problem can be represented in the following way,

minimize f (x)

subject to x ∈ X, (4.1)

where, function f (x) is called an objective function, or cost function; X is some

subset of the Euclidean space Rn, often specified by a set of constraints, equalities or

inequalities that the members of X have to satisfy.

According to properties of f (x) and X, optimization problem can be categorized

into many subfields, such as linear programming, integer programming, quadratic pro-

gramming, nonlinear programming, stochastic programming, dynamic programming

etc. In this chapter, we briefly introduce the optimization algorithms used in AREA

project, including linear programming, network optimization, dynamic programming.

62



4.1 Linear Programming

4.1.1 The Representation of Linear Programming

Linear Programming (LP) is the problem of minimizing a linear cost function subject

to linear equality and inequality constraints [56]. For a LP problem, formulas 4.1 can

be written as

minimize c′x

subject to Ax ≥ b. (4.2)

This is a general form and in practice, some special nonlinear programming problem,

such as problem with a piecewise linear convex function and linear constraints, can

be converted to formulas 4.2. To solve the LP problem, formulas 4.2 is usually

transformed into a standard form as in 4.3, by eliminating free variables and inequality

constraints.

minimize c′x

subject to Ax = b

x ≥ 0 (4.3)

4.1.2 The Geometry of Linear Programming

From a geometric viewpoint, LP problems have two characteristics.

1. In the Euclidean space Rn, surfaces with equal objective function values are

parallel hyper planes.

2. If it’s nonempty, the feasible set of a LP problem constitutes a polyhedron.

Each facet of a polyhedron is plane and for the standard form, at least one

corner (i.e. extreme point) must exist.

Thus the solutions to LP problems can be summarized in the following [56].
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1. If the feasible set is nonempty and bounded, at least one optimal solution exists

and there exists one optimal solution which is an extreme point.

2. If the feasible set is unbounded, there are following possibilities:

(a) There exists an optimal solution which is an extreme point.

(b) There exists an optimal solution, but no optimal solution is an extreme

point. (This is impossible for the standard form LP.)

(c) The optimal cost is −∞

4.1.3 The Simplex Method

The simplex method applies to the standard form LP problem, in which if the optimal

cost is not −∞, there must be one extreme point being an optimal solution. In this

case, feasibility and nonnegativity of the reduced costs (formula 4.4) are the optimality

conditions for a basic solution x or a basis matrix B [56].

B−1b ≥ 0

c̄′ = c′ − c′BB−1A ≥ 0′ (4.4)

So the simplex method just simply moves from one extreme point of the feasible

set to another one along an edge of the polyhedron, each time reducing the cost, until

an optimal solution is reached. This process is implemented by performing basis

changes (i.e. change one column in matrix B) whenever the optimality conditions

are violated. Rules for choosing edge to move are called pivoting rules, which may

significantly affect the efficiency of the simplex method. If a basic feasible solution

is degenerate, cycling may happen; and furthermore if it’s an optimal solution, it

may not satisfy the nonnegativity of the reduced costs, i.e. some corresponding basis

matrices violate the optimality conditions. But anyway there must exist one basis

which satisfies the optimality conditions. Anticycling methods such as lexicography

and Bland’s rule can help simplex algorithm reach the optimal basis and prevent

cycling.
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In the details of implementation of the simplex method, different ways to organize

the required computations, e.g. different ways to calculate the left sides in formula 4.4,

will lead to different efficiency. The revised simplex method and the full tableau

implementation are usually used in practice.

Starting the simplex method requires an initial basic feasible solution and an

associated tableau. These problems can be solved in two-phase simplex method, in

which an auxiliary LP problem is solved first or big-M method, in which the two

phases are combined by introducing a positive infinite multiplier in the objective

function.

In practice, the simplex method is a rather efficient algorithm. While in the worst

case, the number of pivot can be an exponential function of the number of variables

and constraints, its average behavior is pretty good [56].

4.1.4 The Dual Simplex Method

For any LP problem, an associated dual LP problem can be established according

to some mechanical rules. Formulas 4.5 and 4.6 are a pair of primal and dual LP

problem.

minimize c′x

subject to a′ix ≥ bi, i ∈M1,

a′ix ≤ bi, i ∈M2,

a′ix = bi, i ∈M3,

xj ≥ 0, j ∈ N1,

xj ≤ 0, j ∈ N2,

xj free, j ∈ N3 (4.5)

maximize p′b

subject to pi ≥ 0, j ∈M1,

pi ≤ 0, i ∈M2,

pi free, i ∈M3

p′Aj ≤ cj, j ∈ N1,

p′Aj ≥ cj, j ∈ N2,

p′Aj = ci, j ∈ N3 (4.6)

From the duality theorem, it is known that if the primal problem has an optimal

solution, then so does the dual and the respective optimal costs are equal; if the

primal problem is infeasible, then the dual one may be infeasible too or unbounded;

if the primal is unbounded, then the dual one is infeasible [56].
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The dual simplex method is similar to the primal simplex method applied to the

dual problem. For a primal LP problem and the associated dual one, every basis

matrix determines not only a primal basic solution but also a dual basic solution. So,

in the primal simplex method, as we move from one primal basic feasible solution to

another one, we are simultaneously moving from one dual basic nonfeasible solution

to another until the optimal one, which is a basic feasible solution in both primal and

dual. In the dual simplex method, we move from one dual basic feasible solution to

another one, associated with moving from one primal basic nonfeasible solution to

another until the optimal one. The dual simplex method is usually used when the

optimal basis for a similar LP problem, in which only the right-hand side vector b is

different, is known.

In fact, the duality theorem can have more general forms and more profound

mathematical meaning. It can also be applied to non-linear programming problem

under some conditions [56].

4.1.5 The Ellipsoid Method

The simplex method is very effective in solving LP problems arising in applications.

In the worst case, however, the simplex method can take an exponential number of

iterations [56]. The ellipsoid method is known as a polynomial time algorithm, but

it didn’t lead to a practical algorithm.

The basic idea in the ellipsoid method is to solve a feasibility problem by con-

structing a series of ellipsoids, containing the polyhedron and decreasing in volume.

In each iteration, the center of the ellipsoid will be checked if it’s a feasible solution. If

yes, then the ellipsoid method is terminated; if no, a halfspace bounded at the center

and containing the polyhedron will be established. A new ellipsoid which contains

the interception of the halfspace and the old ellipsoid will be constructed in a simple

and quick way. Volume of the new ellipsoid is smaller than the old one and once

its volume is below a threshold, a conclusion that the polyhedron is empty can be

obtained.

Based on the LP problem and the corresponding dual problem such as Eq. 4.7 &
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4.8, a feasibility problem can be constructed (Eq. 4.9).

minimize c′x

subject to Ax ≥ b, (4.7)

maximize p′b

subject to pA′ = c′

p ≥ 0 (4.8)

In the space of (x,p),

if feasible: p′b = c′x,Ax ≥ b,p′A = c′,p ≥ 0. (4.9)

Thus, by implementing the ellipsoid method on Eq. 4.9, the original LP problem

(Eq. 4.7) can be solved.

4.1.6 Interior Point Methods

Interior point methods are the hottest research area in LP. They combine the ad-

vantages of the simplex method and of the ellipsoid algorithm. From a theoretical

point of view, they lead to polynomial time algorithms and in practice, they often

outperform the simplex method for large, sparse problems [56].

The affine scaling algorithm

In the ellipsoid method, we approximate the polyhedron by a series of ellipsoids which

contains the polyhedron. In the affine scaling algorithm, however, we create a series of

ellipsoids contained by the polyhedron. The basic idea of the affine scaling algorithm

is as follows.

1. Create an ellipsoid in the interior of the feasible set.
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2. The optimization problem over the ellipsoid can be easily solved. Closed forms

of the optimal solution x∗ and the duality gap can be obtained.

3. If the duality gap is smaller than the requirement or the problem is found to be

unbounded, then algorithm terminates.

4. If the duality gap is bigger than the requirement, then create a new ellipsoid

centered at x∗ in the interior and repeat from step 2.

At each iteration, the objective function value associated with x∗ is strictly decreased.

At the end, the affine scaling algorithm generates a near-optimal solution. In prac-

tice, the affine scaling algorithm, especially the long-step method, has excellent per-

formance and it can be initialized by a method similar to the big-M method [56].

The potential reduction algorithm

The biggest flaw in the affine scaling algorithm is that when the objective function

value associated with x∗ decreases, x∗ approaches the boundary of the feasible set

quickly and then the algorithm is forced to take very small steps as the approximating

ellipsoids become smaller and smaller [56].

In the potential reduction algorithm, however, a nonlinear potential function

(Eq. 4.10) is created to balance decreasing the objective function value and stay-

ing away from the boundary of the feasible set. It can be proved that if the potential

function is decreased at each step by a certain amount, an ε-optimal solution can be

obtained after a small number of iterations.

G (x, s) = q log s′x−
n∑

j=1

logxj −
n∑

j=1

logsj (4.10)

In practice, at each iteration, the update potential reduction direction can be

quickly calculated through a LP problem over an ellipsoid, in which the nonlinear

function G (x, s) is approximated by a linear function. Thus a closed form exists for

the potential reduction direction, which is similar to that in the step 2 in the affine
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scaling algorithm. The primal step or the dual step will then be operated to make

sure the potential function is decreased at each step by a certain amount.

The primal path following algorithm

So far, we can see that in the affine scaling algorithm and the potential reduction

algorithm, we don’t work on the original LP problem directly, but work on an ap-

proximate simpler problem. This approximate problem can be solved easily and when

we continuously tune the approximate problem or say reset some parameters in it,

the associated optimal solution will converge to the original optimal solution.

The primal path following algorithm utilizes the same methodology, in which a

barrier function (Eq. 4.11) is created to force any variable away from the boundary.

Bµ (x) = c′x− µ
n∑

j=1

logxj (4.11)

Solve the barrier problem (Eq. 4.12) and let µ → 0, the optimal barrier problem

solution x (µ) will converge to the original optimal solution x∗.

minimize Bµ (x)

subject to Ax = b. (4.12)

However, the barrier problem is a nonlinear programming problem, which is hard

to solve. Langrange multiplier can be used to solve the quadratic approximation

of the barrier problem and a sub-optimal solution x′ (µ) (or say the primal Newton

direction) can be obtained. When µ→ 0, x′ (µ) also converges to x∗.

The primal-dual path following algorithm

The primal-dual path following algorithm is similar to the primal path following algo-

rithm. Both of them use the idea of approximating the central path by taking Newton

steps. While in the primal path following algorithm, we only uses the primal New-

ton direction; in the primal-dual path following algorithm it finds Newton directions
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not only in the primal but also the dual space. Thus, this algorithm has excellent

performance in large-scale applications and it is the method of choice in commercial

implementations of interior point methods. More details can be found in [56].

4.2 Network Optimization

4.2.1 Introduction

Network flow problems are one of the most important and most frequently encoun-

tered class of optimization problems. The network optimization problem is usually

modeled by a directed graph G = (N ,A): the supply, demand and transshipment

points are modeled by the nodes of the graph N ; the routes are modeled by the arcs

of the graph A [57]. Several major classes of network optimization problems arised

in practice are introduced in the following.

The Minimum Cost Flow Problem

This problem is to find a set of arc flows that minimize a linear cost function, subject

to some constraints; that is,

minimize
∑

(i,j)∈A

aijxij (4.13)

subject to
∑

{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = si, ∀i ∈ N , (4.14)

bij ≤ xij ≤ cij, ∀ (i, j) ∈ A, (4.15)

where, xij is the arc flow of arc (i, j); aij is the cost coefficient of (i, j); si is the

supply of node i; bij and cij are the flow bounds of (i, j). Eq. 4.14 is the conservation

constraints and Eq. 4.15 is the capacity constraints. From the above equations, it can

be seen that the minimum cost flow problem is a special case of linear programming

problem.
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The minimum cost flow problem has many applications, for example, the shortest

path problem, the assignment problem, the max-flow problem and the transportation

problem [57].

The Shortest Path Problem This is a problem of finding a shortest path from

node s to node t in a graph. It can be cast as follows.

minimize
∑

(i,j)∈A

aijxij (4.16)

subject to
∑

{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji =


1 if i = s,

−1 if i = t,

0 otherwise,

(4.17)

0 ≤ xij, ∀ (i, j) ∈ A. (4.18)

Moreover, another constraint should be satisfied:

xij =

 1 if (i, j) belongs to P,

0 otherwise,
(4.19)

where P is a forward path. However, due to the property of the linear programming

problem that the optimal solution is usually at an extreme point, it can be shown

that Eq. 4.19 is nonnecessary and can be satisfied implicitly.

In AREA project, the original AUV path planning problem can be transformed

into a shortest path problem in the first stage. The shortest path problem will be

discussed in more details later.

The Assignment Problem Suppose that there are n persons and n objects that

we have to match on a one-to-one basis. There is a benefit aij for matching person i

with object j, and we want to assign persons to objects so as to maximize the total

benefit. This is a typical assignment problem, in which there are two groups of nodes:

node i corresponds to person i; node j corresponds to object j. Such kind of problem
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can be formulated as follows.

maximize
∑

(i,j)∈A

aijxij (4.20)

subject to
∑

{j|(i,j)∈A}

xij = 1, ∀i = 1, · · · , n, (4.21)

∑
{i|(i,j)∈A}

xij = 1, ∀j = 1, · · · , n, (4.22)

0 ≤ xij ≤ 1, ∀ (i, j) ∈ A, (4.23)

Actually we should further restrict xij to be either 0 or 1. However, similar to the

shortest path problem, this constraint can be satisfied implicitly [57].

The Max-Flow Problem In this problem, we have a graph with two special nodes:

the source s and the sink t. The objective is to find a flow vector that makes the di-

vergence of all nodes other than s and t equal to 0 while maximizing the divergence of

s. To formulate this problem, an artificial arc (t, s) is introduced and mathematically

this problem is casted as:

maximize xts (4.24)

subject to
∑

{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = 0, ∀i ∈ N with i 6= s and i 6= t(4.25)

∑
{j|(s,j)∈A}

xsj =
∑

{i|(i,t)∈A}

xit = xts, (4.26)

bij ≤ xij ≤ cij, ∀ (i, j) ∈ A with (i, j) 6= (t, s) . (4.27)
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Network Flow Problems with Convex Cost

As aforementioned, the minimum cost flow problem is a special case of linear pro-

gramming problem. In practice, however, the cost function may not be linear. An

important special case is that the cost function is convex and the feasible set is also

convex, i.e.

minimize f (x)

subject to x ∈ F, (4.28)

where F is a convex subset of flow vectors in a graph and f is a convex function over F .

The cost function f (x) and the constraints F can be separable (Eq. 4.29, 4.30, 4.31)or

nonseparable.

f (x) =
∑

(i,j)∈A

fij (xij) , (4.29)

F =

x ∈ X
∣∣∣∣∣∣
∑

{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = si, ∀i ∈ N

 , (4.30)

X = {x |xij ∈ Xij, (i, j) ∈ A} (4.31)

It is known that separability is the most important structural characteristic

of convex network problems. For nonseparable network optimization problems,

the solutions are much more difficult since some algorithms and nice properties do

not apply in the absence of a separable structure [57].

Discrete Network Optimization Problems

In many linear or convex network flow problems, there may be integer constraints on

the arc flows. The most famous example is the traveling salesman problem. For such

kind of problems, the solutions are extremely difficult and strict optimal solution is

often not available in practice [57].
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4.2.2 Network Flow Algorithms Overview

Linear and convex network optimization problems are special cases of linear and

nonlinear optimization problems respectively. General purpose linear and nonlinear

algorithms can thus be applied. However, the network structure can be exploited to

speed up the solution. In practice, network optimization problems can often be solved

hundreds and even thousands of times faster than the general optimization programs

of comparable dimension [57].

The algorithms for linear and convex (separable) network problems can be grouped

in three main categories:

1. Primal cost improvement. Here a sequence of feasible flows is constructed to

improve the primal cost iteratively. The simplex method is an example.

2. Dual cost improvement. Here a dual problem is constructed and a sequence of

prices is developed to improve the dual cost iteratively. In this category, the

optimality condition is the complementary slackness. The dual simplex method

is an example.

3. Auction. The auction algorithm is like an approximate dual cost improvement

process. However, there is no primal or dual cost improvement. The auction

algorithm is very much similar to the real-life auction process. For example,

in the assignment problem, aij can be viewed as the internal value of object j

to person i. The price pj of object j in the corresponding dual problem can

be viewed as the current bidding price of object j. Our target is to make the

complementary slackness (Eq. 4.32) satisfied for all i.

aiji
− pji

= max
j∈A(i)

{aij − pj} (4.32)

The bidding process in the naive auction algorithm is roughly like that:

• let person i choose the most valuable object ji, which satisfies the comple-

mentary slackness.
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• increase pji
such that person i is indifferent between ji and the second best

object.

• repeat the above processes until all persons are assigned and thus the

complementary slackness is satisfied.

In practical auction algorithm, the price increase at each time is required to be

bigger than a small number ε and at the end, the ε-complementary slackness

(Eq. 4.33) is satisfied.

aiji
− pji

≥ max
j∈A(i)

{aij − pj} − ε (4.33)

For the network optimization problems with integer constraints, the popular meth-

ods include branch-and-bound method, local search methods and rollout algorithms

etc. The local search methods include genetic algorithms, tabu search, simulated

annealing etc. More details about those methods can be found in [57].

4.2.3 Shortest Path Problem

The shortest path problem appears in a large variety of contexts. In the AREA

project, it plays an important role. In this subsection, some often-used shortest path

algorithms are briefly introduced.

Complementary Slackness

For the shortest path problem, the complementary slackness (CS) conditions is as

follows.

dj ≤ di + aij, ∀ (i, j) ∈ A, (4.34)

let P be a path starting at a node i1 and ending at a node ik,

dj = di + aij, ∀ (i, j) in P. (4.35)
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di is the label for node i, which actually indicates the shortest distance from node i1

to i.

Generic Algorithm

To find the shortest distance from i1 to all other nodes, we can start with some vector

of labels (d1, d2, · · · , dN), and then successively select arc (i, j) that violates the CS

condition, i.e., dj > di + aij, and set dj := di + aij. This process can be repeated

many times until the CS condition is satisfied for all arcs. With i1 = 1, the generic

algorithm can be formulated as follows.

Initialization: V = {1} , di = 0, di = ∞, ∀i 6= 1.

Remove a node i from V.

∀ (i, j) ∈ A, if dj > di + aij, set dj := di + aij and add j to V if j /∈ V.

In practice, more advanced initialization could be used. The most important thing

in the generic algorithm is how to select node i to be removed from V . Different

selecting rules may lead to very different computation speed.

Label Setting (Dijkstra) Methods

The Dijkstra method is the special case of the generic algorithm where the node i

removed from the candidate list V at each iteration has minimum label, i.e.,

di = min
j∈V

dj. (4.36)

If all arc lengths are nonnegative, any node can be removed from V for at most

once, so the number of iterations required by the Dijkstra method is equal or less

than N . On the other hand, however, the overhead for finding the minimum di may

require O (N2) operations. The binary heap method and Dial’s algorithm can be used

to minimize the overhead.
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Label Correcting Methods

In label correcting methods, the selection of the node to be removed from the candi-

date list V is simpler and requires less overhead than in label setting methods, at the

expense of multiple entrances of nodes in V [57].

The Bellman-Ford Method is the simplest label correcting method, in which a

first-in first-out (FIFO) rule is adopted and the candidate list V is maintained in a

queue. The Bellman-Ford method is actually very close to the deterministic dynamic

programming method.

The D’Esopo-Pape Algorithm In this method, a node is always removed from

the top of the queue of V . A node, upon entrance, is placed at the bottom of the

queue if it has never been in the queue before; otherwise it is placed at the top [57].

The SLF and LLL Algorithms In the Small Label First (SLF) method, a node

is always removed from the top of a double ended queue Q. Whenever a node j enters

Q, its label dj is compared with the label di of the top node i of Q. If dj ≤ di, node

j is entered at the top of Q; otherwise j is entered at the bottom of Q. In the Large

Label Last (LLL) method, at each iteration, when the node i at the top of Q has a

larger label than the average node label in Q, i.e. di >
P

j∈Q dj

|Q| , then node i is not

removed from Q but moved to the bottom of Q. The SLF and LLL methods can be

combined together and thereby obtaining a method referred to as SLF/LLL.

The Threshold Algorithm In this method, the candidate list V is partitioned into

2 queues Q′ and Q′′ using a threshold s, i.e. dj ≤ s, ∀j ∈ Q′ and dj > s, ∀j ∈ Q′′.

At each iteration, a node is removed from Q′, and any node j to be added is inserted

at the bottom of Q′ or Q′′ depending on whether dj ≤ s or dj > s. When the queue

Q′ is exhausted, Q′′ will be repartitioned. So, the threshold algorithm can be viewed

as a block version of Dijkstra’s method. Furthermore, the threshold method can be

combined with SLF/LLL methods. In practice, the combination performs extremely

well.
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The auction algorithm can also be applied to the shortest path problem. More

details can found in [57, 47].

4.3 Dynamic Programming

Before we get into the topic of Dynamic Programming (DP), let’s first introduce the

stochastic programming problem.

4.3.1 Stochastic Programming

In most optimization problems, the objective function f (x) only depends on the

decision variable x, i.e. once x is determined then f (x) is determined completely.

However, in some problems, stochastic disturbances exist in f (x), e.g. if x1 and

x2 are the moneys that we invested into two different stocks one month ago and

f (x1,x2) is the value of asset that we possess in next month, then f (x1,x2) does

not only depends on the money we invested but also depends on the stock prices in

next month, which are not completely known right now but statistical models usually

exist. If now we require that x1 + x2 ≤ 100, then how to invest the $100 into those

two stocks so as to maximize f (x1,x2) is a typical stochastic programming problem.

Since f (x1,x2) is random, thus E [f (x1,x2)] is usually used as the objective function

instead of f (x1,x2) itself.

maximize E [f (x1,x2)]

subject to x1 + x2 ≤ 100,

x1 ≥ 0,

x2 ≥ 0, (4.37)

where the expectation is based on the statistical model. More accurate is this model,

more benefit return comes in reality.

Methods to solve such kind of optimization problem is essentially the same as

methods to solve ordinary optimization problems. The only difference may be that
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the expectation will lead to much intensive computation.

4.3.2 Sequential Decision Making Under Stochastic Distur-

bance

The preceding problem is actually a decision making problem under stochastic dis-

turbance. The decision is made in just one step, i.e. x1 and x2 are determined at the

same time. If now x1 is needed to be determined one month ago, while x2 should be

determined by today, then the problem becomes as a decision making problem under

stochastic disturbance over a finite number of stages.

x2 can be determined as early as x1 is determined, then the result will be the

same as that in the previous problem. However, if we delay the determination of x2

until today, more information about the price of the second stock will be available and

better statistical model will be available. Consequently, E [f (x1,x2)] will be better

optimized.

The decision making problem under stochastic disturbance over a finite (or infi-

nite) number of stages is usually formulated in the frame of dynamic programming[47].

The basic problem is described as follows.

A discrete-time dynamic system is given

xk+1 = fk (xk, uk, ωk) , k = 0, 1, · · · , N − 1, (4.38)

where the state xk is an element of a space Sk, the control uk is an element of a space

Uk (xk), and ωk is the random disturbance, whose PDF is Pk (ωk|xk, uk). N is the

total number of stages.

The cost function associated with each stage is gk (xk, uk, ωk) and at the stage N ,

the termination cost is gN (xN). So the objective function is

E

{
gN (xN) +

N−1∑
k=0

gk (xk, uk, ωk)

}
, (4.39)

where the expectation is over all possible xk and ωk.
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Figure 4-1: Time table of a DP problem.

We consider the class of policies that consist of a sequence of functions

π = {µ0, µ1, · · · , µN−1} , (4.40)

where µk maps states xk into controls uk = µk (xk) and is such that µk (xk) ∈ Uk (xk)

for all xk ∈ Sk. For a given initial state x0 and policy π, the associated objective

function is

Jπ (x0) = E
∀xk,ωk,

k=0,1,2,··· ,N

{
gN (xN) +

N−1∑
k=0

gk (xk, µk(xk), ωk)

}
. (4.41)

The goal in the DP problem is to find the optimal policy π∗ such that

Jπ∗(x0) = min
π∈Π

Jπ(x0), (4.42)

where Π is the set of all admissible policies.

4.3.3 Dynamic Programming Algorithm

Based on the principle of optimality, the DP problem can be solved by the DP algo-

rithm, which is described in the following [47].

For every initial state x0, the optimal cost J∗(x0) of the basic problem is equal to

J0(x0), given by the last step of the following algorithm, which proceeds backward in
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time from period N − 1 to period 0:

JN(xN) = gN(xN) (4.43)

Jk(xk) = min
uk∈Uk(xk)

Eωk
{gk(xk, uk, ωk) + Jk+1 (fk (xk, uk, ωk))} , k = 0, 1, · · · , N − 1,

(4.44)

where the expectation is taken with respect to the probability distribution of ωk,

which depends on xk and uk. Furthermore, if u∗k = µ∗k(xk) minimize the right side of

Eq. 4.44 for each xk and k, the policy π∗ =
{
µ∗0, · · · , µ∗N−1

}
is optimal.

4.3.4 Deterministic Dynamic Programming Problem

Deterministic DP problems are problems where each disturbance ωk can take only one

value. An important property of deterministic DP problems is that, in contrast with

stochastic problems, using feedback results in no advantage in terms of cost reduc-

tion. In other words, minimizing the cost over admissible policies {µ0, µ1, · · · , µN−1}

results in the same optimal cost as minimizing over sequences of control vectors

{u0, u1, · · · , uN−1}, since once the initial state x0 is determined, the state sequence

and control sequence corresponding to an admissible policy can be known prior [47].

For deterministic DP problems, the expectation operator in the DP algorithm can be

removed, and thus the deterministic DP algorithm is much faster than ordinary DP

algorithm.

An deterministic finite-state DP problem can be posed as an equivalent shortest

path problem and solved by shortest path algorithms, which are often faster than the

deterministic DP algorithm [47]. On the other hand, a shortest path problem can be

transformed into an equivalent deterministic finite-state DP problem and solved by

the deterministic DP algorithm.
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4.3.5 Approximate Dynamic Programming Methods

It is well known that for many important DP problems in engineering, the computa-

tional requirements of DP algorithm are overwhelming, because the number of states,

controls and disturbances is very large. This is called the Bellman’s ”curse of dimen-

sionality”, which motivates the pursuit of sub-optimal solution and the appearance

of approximate DP methods [58].

Generally speaking, all approximate DP methods are based on the approxima-

tion of the cost-to-go function Jk(xk) in Eq. 4.44. If the approximate cost-to-go

J̃k(xk), ∀k = 0, 1, · · · , N is available, a sub-optimal policy can be obtained by

µ̃k(xk) = arg min
uk∈Uk(xk)

E
ωk

{
gk(xk, uk, ωk) + J̃k+1 (fk (xk, uk, ωk))

}
, k = 0, 1, · · · , N − 1.

(4.45)

J̃k(xk) is often much less computationally intensive, so µ̃k(xk) can be computed very

quickly. J̃k(xk) can be constructed based on artificial neural networks, then it is

called neuro-dynamic programming method. Moreover, for a certain problem, some

heuristic methods may exist for constructing the approximation J̃k(xk). On this basis,

the rollout algorithm can be applied and it often leads to a good sub-optimal policy

[47, 58]. The rollout algorithm based on greedy algorithm is pretty popular for on-line

policy optimization.

In engineering problems, the Q-factor is often used to replace the Jk(xk) in the

policy optimization. The optimal Q-factor is defined as follows,

Q∗
k (xk, uk) = E

{
gk(xk, uk, ωk) + J∗k+1 (fk (xk, uk, ωk))

}
. (4.46)

Once the Q∗
k (xk, uk) is available, the optimal policy at stage k is

µ∗k(xk) = arg min
uk∈Uk(xk)

Q∗
k (xk, uk) , (4.47)
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and the optimal cost-to-go at stage k is

J∗k (xk) = min
uk∈Uk(xk)

Q∗
k (xk, uk) . (4.48)

Q-factor can also be approximated through heuristics. In some dynamic systems,

there is no explicit model of the system and the cost structure. For such kind of

system, the cost-to-go function and the Q-factor can be estimated by some simulation-

based methods such as temporal difference method and Q-learning method etc [58].

Combine the Eq. 4.46 and Eq. 4.48, we can obtain the Bellman’s equation in terms

of Q-factor,

Q∗
k(xk, uk) = E

ωk

{
gk(xk, uk, ωk) + min

uk+1

Q∗
k+1 (fk (xk, uk, ωk) , uk+1)

}
,

k = 0, 1, · · · , N − 1. (4.49)

Using the value iteration method [58] and replacing the expectation with a single

sample, the Q-learning equation can be obtained as follows,

Qk(xk, uk) := (1− γ)Qk(xk, uk) + γ

(
gk(xk, uk, ωk) + min

uk+1

Qk+1 (xk+1, uk+1)
)

,

k = 0, 1, · · · , N − 1. (4.50)

γ is between 0 and 1. It can be proved that under some conditions, after infinite

iterations of Eq. 4.50, the Qk(xk, uk) produced by Q-learning method will converge

to Q∗ for all states and controls at all stages [58].

The approximate dynamic programming is actually a very general concept, which

includes many other methods not mentioned in this section. For more details, please

refer to [58, 47]. Moreover, the approximate dynamic programming can be viewed as

a branch in Machine Learning (ML) field. It is often called Reinforcement Learning

(RL) [59]. If we compare the approximation methods and the decision making in

the approximate dynamic programming with how the human being thinks and makes

decision, some surprising similarity can be found. However, human being’s brain is

a low-speed but highly parallel computing system, very different from the current
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computers. It may be just this reason that makes human being able to make much

smarter decisions than current Artificial Intelligence (AI) techniques in very large-

scale and very complicated problems. I believe that on someday, by combining the

newest neuro-biological achievement and AI techniques, the approximate dynamic

programming methods will perform better than human being in most problems.
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Chapter 5

Modeling The AUV Path Planning

Problem

In the AREA project, the AUV path planning problem can be formulated as an

optimization problem as follows.

min f (x)

s.t. x ∈ X,
(5.1)

where, three items — f , x ,X — are needed to be modeled or determined.

x is the decision variable; f is the objective function; X is the feasible set of x.

In the AUV path planning problem, x represents the AUV path, f may represent

the posterior acoustic prediction uncertainty, posterior sonar performance prediction

uncertainty or posterior SVP prediction uncertainty etc, and X is the set of all feasible

AUV paths, which are constrained by AUV performance limits etc.

In this chapter, we will firstly discuss the constraints and requirements on the

AUV path and then talk about how to represent the AUV path in a mathematical

form — the decision variable x. After that, how to select the objective function f ,

how to model it and how to approximate it will be discussed.
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5.1 Constraints and Requirements on The AUV

Path

So far, in the underwater acoustic community, most people ate still using 2-D acoustic

models. This is because in most scenarios, 2-D acoustic models can provide good

enough acoustic field estimation with much less intensive computation, while 3-D

acoustic models can provide higher precise but the computation is very intensive [60].

Therefore, at present only 2-D acoustic models are considered in the AREA project.

This suggests that the in-situ measurements can be constrained on a vertical plane

and the corresponding AUV path is a 2-D curve.

For the AUVs considered in AREA, the speed is about 3 knots (about 1.54 m/s)

and the battery can last for 8 hours. In the AREA project, the AUV moves on

a vertical plane along with a selected bearing and once it reaches the maximum

horizontal range (about 10 to 15 km), the AUV will stop moving and float up and

stay on the surface or make a “U” turn to come back. In this scenario, there’s no

any implicit constraint on the total distance of the AUV path but there is a limit

on the horizontal distance — the maximum range. This requirement is consistent

with the reality. Since if AUV goes too far in the horizontal, the telecommunication

and control may get lost. Also, in shallow water, the geometry of ocean is like a

paper sheet, thin and wide. The maximum pitch angle of AUV is about 10 to 20

degree; the upper bound and the lower bound of AUV path are around 5m and few

hundred meters respectively (see Fig. 5-1). Therefore, the AUV’s path is always like

a horizontal line with some deviations. Moreover, the biggest advantage of the fixed

maximum range is that it will make decision variable selection easier and dramatically

decrease the search space dimensionality in the optimization problem.

In addition, it is assumed that an AUV always starts to move from a location

close to the surface.
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Figure 5-1: Illustration of constraints on the AUV path.

5.2 Select The Decision Variable

For such kind of 2-D curve with maximum horizontal distance fixed, several meth-

ods can be used to mathematically model the AUV path. The most intuitive one

is to discretize and represent the path using a sequence of equal-distant waypoints

{(r1, z1) , (r2, z2) , · · · , (rn, zn)}, where r is the range and z is the depth (see Fig. 5-

2(a)). In this way, it’s easy to implement waypionts in the AUV lower level control,

but unfortunately the number of waypoints n is not fixed and the search space dimen-

sionality is 2n. Therefore, the corresponding optimization problem is hard to model

and hard to solve. Moreover, for such kind of path representation, it will be hard to

discretize the ocean so that the waypoints are all located at grid points. Another way

to model the path is to discretize and represent it with a sequence of equal-horizontal-

distant waypoints {(0, z1) , (∆r, z2) , · · · , (n∆r, zn)}, where ∆r is predetermined and

n∆r is equal to the maximum horizontal distance (see Fig. 5-2(b)). It can be seen

that for this method the number n is fixed and the search space is n-dimensional —

the space of {z1, z2, · · · , zn}. The corresponding optimization problem is much easier

to construct and solve.
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Figure 5-2: Illustration of two ways to represent the AUV path.

5.2.1 Ocean Discretization for AUV Path

Once we determined the way to represent the AUV path, another essential problem

comes — how to discretize the ocean. Our mission is to find the optimal path, so it

may be a good try to put the original optimization problem (Eq. 5.1) in the network

optimization framework. Therefore, we need to discretize the ocean vertical plane

horizontally and vertically, and construct a graph for all feasible AUV paths [57].

Fig. 5-3 shows the way to discretize the ocean and construct a directed graph. The

resolution of the discretization is very essential in the optimization problem, since the

horizontal and vertical resolutions determine the size of the graph, which judges the

real-time feasibility of the whole AREA system.

Let’s use G = (N ,A) to represent a directed graph, where N is the set of nodes

and A is the set of arcs. The number of nodes and arcs are denoted by N and A

respectively. If it is assumed that for the AUV path the maximum range is 10km, the

upper bound is 5m, the lower bound is 300m, the maximum pitch angel is 3.5o and

furthermore if the horizontal resolution is 1.667km, the vertical resolution is about

49.167m, then the directed graph is just like the one shown in white lines and arrows

in Fig. 5-3, and N = 39, A = 124. If now the horizontal resolution is 0.833km, the

88



Figure 5-3: Illustration of ocean discretization for AUV path.

vertical resolution is about 24.58m, N and A will increase to about 300 and 1500

respectively. The complexity of the graph is

N = O

(
LB − UB

V R
· MR

HR

)
(5.2)

A = O

(
2 · tan (MP ) ·HR

V R
· LB − UB

V R
· MR

HR

)
= O

(
tan (MP ) · (LB − UB) ·MR

VR2

)
, (5.3)

where LB and UB are the lower bound and upper bound respectively, V R and HR

are the vertical and horizontal resolution respectively, MR is the maximum range and

MP is the maximum pitch angle in radius. From Eq. 5.2, it is seen that the number

of nodes is related to both HR and V R, while from Eq. 5.3 it can be seen that the

number of arcs is related to V R only.

Although Eq. 5.2 and 5.3 indicate that the complexity of the graph is polynomial

with respect to 1
HR

and 1
V R

, it will be shown later that this is not true in practice due

to the correlation effect of SVP.For this reason, HR and V R must be selected very

carefully. However, it should be noticed that if the resolutions are too coarse, AUV

performance such as the maximum pitch angle will have to be sacrificed a lot.
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5.3 Objective Function

As discussed in chapter 3, AREA framework can be a multi-purpose system by choos-

ing different objective functions. In this section, we will discuss some possible objec-

tive functions and some other very essential issues.

5.3.1 SVP Prediction Uncertainty

The AREA framework can serve for oceanographic purpose, e.g. SVP prediction. In

this case, the objective function is the summation of the posterior SVP prediction

error in the ocean area concerned. Fig. 5-4 shows an a priori SVP prediction error

map and the posterior error map associated with an AUV path. Both of the standard

deviation and the variance can indicate the error. The objective function can be

either the summation of posterior standard deviation or the summation of posterior

variance. In practice, however, only the latter one is adopted due to its additivity.

More details is discussed in 7.
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Figure 5-4: A priori and posterior SVP prediction error variance map. The white
curve corresponds to an AUV path.

The error map in Fig 5-4(a) is associated with the diagonal items of Λc1 (−) —

the a priori covariance matrix — in Eq. 3.9. Through this OA Equation, the posterior
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covariance matrix — Λc1 (+) can be obtained by detracting the uncertainty reduction

part UR:

UR = Λc1 (−)DT [D · Λc1 (−) ·DT +D · Λc′2
(−) ·DT +R]−1DΛc1 (−) . (5.4)

The uncertainty reduction part is only dependent on the AUV path via the measure-

ment matrix D. Thus the AREA problem can be casted as a minimization problem

with respect to the trace of the posterior covariance matrix tr (Λc1 (+)) or an equiva-

lent maximization problem with respect to tr (UR). From Eq. 5.4, it can be seen that

tr (UR) can be highly nonlinear with respect to D and thus highly nonlinear with

respect to {z1, z2, · · · , zn} the representation of the AUV path. Furthermore, tr (UR)

should generally be neither convex nor concave. Therefore, in this case the opti-

mization problem is a nonlinear programming problem with non-convex

and non-concave objective function.

The Operational OA and The Operational Measurement Model

Here, it should be noticed that in real operations the measurement equation (Eq. 3.6),

d = D · (c+ c1 + c′2) + v, is not so practical. This is because that the 2-D SVP has to

be discretized and due to the concern about computation intensity the grid of SVP

discretization is somewhat sparse in horizontal and vertical [8]. In-situ measurement

made by AUV carrying CTD is usually much denser than that grid. The sound

velocity measurements d can’t thus be represented as in Eq. 3.6. Moreover, d is

usually a very big vector so that it can’t be directly used in OA and some pre-

processing is necessary, otherwise inverse of a very large matrix will be encountered.

So far, this problem is solved by using another discretization grid — the OA grid, as

shown in Fig. 5-5.

The OA grid is independent on and usually denser than the SVP grid. In Fig. 5-5,

each in-situ measurement point is projected to the nearest OA grid point and thus

only those red OA grid points are treated as measured points. For each of them, the

measured sound velocity is the average value of all associated in-situ measurements
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Figure 5-5: Illustration of the OA grid.

and the corresponding measurement error variance is accordingly decreased.

As shown in Eq. 3.7, in AREA we treat c′2 as some sort of measurement noise and

combine it with the CTD noise v. We also assume that at one point the value of c′2 is

independent of that at another point. Although this assumption is not very accurate,

it is reasonable to some extent, since c′2 is weakly auto-correlated in time and space.

Thus the real measurement model used in practice is

di = C (pi, ti) + C1 (pi, ti) + ωi, (5.5)

where, di is the ith measurement datum, pi and ti are the location and time of the ith

measurement, ωi stands for the gross measurement noise, which includes the CTD

noise and C2. It is assumed that for any two points i and j, ωi and ωj are independent

and identical random variables. Moreover, ωi is independent of C (pi, ti)and C1 (pi, ti).

After the pre-processing, the measurement model for the ith measured OA grid
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point is

d′i =

∑
j∈Si

dj

Ni

(5.6)

=

∑
j∈Si

(
C (pj, tj) + C1 (pj, tj)

)
Ni

+

∑
j∈Si

ωj

Ni

, (5.7)

where the Si is the set of in-situ measurement points associated with the ith measured

OA grid point, Ni is the number of elements in Si.

So for the example in Fig. 5-5, the grid point (15, 400) is associated with 6 in-situ

measurement points, located in the white box. The measurement datum at point

(15, 400) is the average of the 6 in-situ measurement data and the measurement error

variance is var(ωi)
6

. In this example, the size of d′ is dramatically reduced from about

40 to 9.

In AREA, the operational OA equations are

ĉ (+) = c+ Cov (c1, d
′)Cov (d′, d′)

−1
[d′ − cd′ ] , (5.8)

Λc (+) = Λc1 (−)− Cov (c1, d
′)Cov (d′, d′)

−1
Cov (c1, d

′)
T

+ Λc2 (−) . (5.9)

Here, the cd′ is the interpolation values of c at those measured OA grid points. To

implement Eq. 5.8 and 5.9, we need to know Cov (c1, d
′) and Cov (d′, d′). Let’s denote

d′ = d1 + d2, (5.10)

and for the vector d1 and d2, we have

d1
i =

∑
j∈Si

(
C (pj, tj) + C1 (pj, tj)

)
Ni

(5.11)

≈ C
(
pOA

i , t
)

+ C1

(
pOA

i , t
)

(5.12)

d2
i =

∑
j∈Si

ωj

Ni

. (5.13)
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In Eq. 5.12, pOA
i is the location of the ith measured OA grid point, t is an arbitrary

time, since C and C1 are time-invariant in the duration concerned. From Eq. 5.11 to

5.12 is because that we assume in the neighbor of an OA grid point, C and C1 don’t

change much since they are highly auto-correlated in space. c1 is uncorrelated with

d2, then Cov (c1, d
2) = 0. Furthermore, since d1 and d2 are independent, we have

Cov (c1, d
′) = Cov

(
c1, d

1
)

(5.14)

Cov (d′, d′) = Cov
(
d1, d1

)
+ Cov

(
d2, d2

)
= Cov

(
d1, d1

)
+Rω. (5.15)

In AREA, Rω = Cov (d2, d2) is set semi-empirically. The only problem now is how to

construct Cov (c1, d
1) and Cov (d1, d1).

Normal Distribution Assumption

In the real ocean, the random vector C1 follows a very complicated stochastic model,

which is not feasible in AREA due to the very intensive computation for Λc1 . The

2-D normal distribution assumption is made to simplify the computation.

We assume that the correlation coefficient function with respect to C1 at points

p1 = (r1, z1) and p2 = (r2, z2) is

ρp1,p2 = exp

(
−

( r1−r2

Lr
)2 + ( z1−z2

Lz
)2

2

)
, (5.16)

Where r1, r2 are ranges of p1 and p2 respectively; z1, z2 are depths; Lr and Lz are

correlation length of C1 in horizontal and vertical respectively. Based on Eq. 5.12,

the i, jth item of Cov (c1, d
1) is

σ(pc1
i )σ(pd1

j )ρ
p

c1
i ,pd1

j

where pc1
i is the location of the ith point in c1, p

d1

j is the location of the jth point in
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d′, σ is the standard deviation of C1. Similarly, the i, jth item of Cov (d1, d1) is

σ(pd1

i )σ(pd1

j )ρ
pd1

i ,pd1
j
.

Let’s use the following notations:

σ (pc1): a column vector of the standard deviation associated with all points in c1.

σ
(
pd′
)
: a column vector of the standard deviation associated with all points in d′.

ρpc1 ,pd′ : the correlation coefficient matrix associated with all points in c1 and d′.

ρpd′ ,pd′ : the correlation coefficient matrix associated with all points in d′.

�: elementwise matrix multiplication (the same as the .* in Matlab).

Then we have

Cov
(
c1, d

1
)

=

[
σ (pc1) · σ

(
pd′
)T
]
� ρpc1 ,pd′ (5.17)

Cov
(
d1, d1

)
=

[
σ
(
pd′
)
· σ
(
pd′
)T
]
� ρpd′ ,pd′ . (5.18)

Optimization Problem Summary

In the scenario of the objective function being the SVP prediction uncertainty, the

optimization problem can be expressed as:

max tr

{[
σ (pc1) · σ

(
pd′
)T
]
� ρpc1 ,pd′

[[
σ
(
pd′
)
· σ
(
pd′
)T
]
� ρpd′ ,pd′ + Rω

]−1 [[
σ (pc1) · σ

(
pd′
)T
]
� ρpc1 ,pd′

]T
}

(5.19)

s.t. {z1, z2, · · · , zn} constitutes a feasible path. (5.20)

Please note that in Eq. 5.19, pd′ is the only variable, which is implicitly but com-

pletely determined by the decision variable {z1, z2, · · · , zn} via the OA grid. There-

fore, this problem is a non-linear deterministic optimization problem.
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5.3.2 Acoustic Prediction Uncertainty

In this section, we discuss the scenario in which the objective function is the posterior

acoustic prediction uncertainty. Above all, we need to clarify the representation of

the acoustic prediction uncertainty.

Representation of The Acoustic Prediction Uncertainty

Based on the philosophical presumptions made in this thesis, in AREA P — the

sound pressure in the water column at a certain time and a certain location is a de-

terministic but partially known variable. Mathematically, the acoustic intensity |P |2

and the phase φ can be modeled using random variables. In underwater acoustics, φ

is often much more random and unpredictable than |P |2 and hence in many imple-

mentations only the acoustic intensity is useful. In AREA only the |P |2 is considered

currently. In this thesis, uncertainty of a random variable is defined as some

statistic characterization, such as variance, of the random variable. For the

uncertainty of |P |2, we can use either −10log
(
var

(
|P |2

))
or var (TL) to represent

it. Note that TL is actually the |P |2 in dB. Facing these two choices, one may ask

which representation is more physically meaningful in implementation?

It is well known that human auditory perception to the sound intensity stimulus

is logarithmic response [61]. That is to say if the acoustic intensity is doubled, the

loudness will not be doubled, and the relation between loudness and acoustic intensity

is in a logarithmic format. In the AREA project, the dB-budget of classical sonar

systems is a very important concern [9]. From these two perspectives, var (TL)

reflects more about the underwater acoustic prediction uncertainty. Therefore, in

this thesis var (TL) is defined as the acoustic prediction uncertainty.

var (TL) = E [TL2]−E [TL]2. Someone may argue that E [TL] is actually related

to the geometric average of |P |2 not the arithmetic average, thus it is not physically

meaningful. While in this thesis, we think TL is more like a measure of the acoustic

loudness to the sonar system not just the |P |2 in dB. So TL should be treated as an

independent physically meaningful variable and var (TL) can be the indicator of how
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accurate is the acoustic prediction with respect to the sonar system.

TL curves for underwater sound are usually calculated for harmonic sources. In

contrast, most sonar systems operate over a spread of frequencies rather than one

single frequency [62]. To take into account the frequency bandwidth, TL curves

are usually smoothed through the method introduced in [62]. If f0 is the central

frequency of the sonar and α is the fractional bandwidth [62], Eq. 5.21 stands for

the frequency-average intensity, where I (f, r0) is the acoustic intensity for a single

frequency.

If =

∫
I (f, r0) exp

[
− (f − f0)

2 / (αf0)
2] df∫

exp
[
− (f − f0)

2 / (αf0)
2] df (5.21)

Compared with I (f0, r), If means more to sonar operations. However calculation for

If will definitely take much longer time, since for each frequency the corresponding

I (f, r) must be computed. The idea to solve this problem is that a frequency average

can often be approximated closely by a variable width running range average in which

the width or window size is proportional to range.

Ir =

∫
I (f0, r) exp

[
− (r − r0)

2 / (αr0)
2] dr∫

exp
[
− (r − r0)

2 / (αr0)
2] dr (5.22)

In this thesis, we use range-average transmission loss TLr = −10log (Ir) to replace

the original TL and let var (TLr) be the representation of the acoustic prediction

uncertainty.

A priori TLr Prediction Uncertainty

As mentioned before, the underwater acoustic field is usually highly nonlinearly re-

lated to SVP in the water. It implies that even if we assume c1 is a Gaussian random

vector, it is still very hard to calculate var (TLr) analytically. For such a problem, the

most popular and perhaps the most efficient way is to do Monte Carlo simulations.

So once the a priori SVP prediction, which contains not only the P.E. of SVP but

also many possible SVP realizations, is generated, the corresponding TLr realizations

can be simply computed for each SVP realization via RAM PE code. Thereafter,
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the associated sample variance map can be obtained by statistics. Fig. 5-6 shows an

example of the a priori TLr prediction error variance map. The red point corresponds

to the sound source location.
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Figure 5-6: Illustration of an a priori TLr prediction error variance. The red point
corresponds to the sound source location. Frequency is 100Hz.

From the viewpoint of a sonar system, one objective of AREA is to minimize the

TLr prediction uncertainty at the location of the hydrophone for all possible sound

source locations in the ocean area concerned. In Fig. 5-6, any point in the water

from 0km to 12km in range and from 0m to 900m in depth could be the sound source

location. So in this case we have to repeat running RAM PE code for each possible

source location. However, the acoustic reciprocity theorem states that an acoustic

response remains the same when the source and receiver are interchanged [1]. We

can thus put the sound source at the location of the hydrophone and calculate TLr

for all depths in the water. In this way, the RAM PE code is needed to be run only

once.

Here it should be pointed out that not all the locations in the water are equivalently

significant to the sonar and some of them may not even need to be concerned. For

example, those locations above 5m in depth or within 2km in range from the sonar
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are less interesting to us. While for those depths below 400m, there may be no any

submarine can reach.

So far, one may think that for the scenario in which the objective function is the

acoustic prediction uncertainty, once we construct a connection between the AUV

path and the posterior var (TLr), an objective function similar to Eq. 5.19 can be

obtained and hence the optimization problem should be of the same type as Eq. 5.19

and 5.20. However, very unfortunately, this is not true.

For the case of SVP prediction uncertainty being the objective function, we em-

phasized that the objective function Eq. 5.19 only depends on the AUV path and not

depends on the in-situ measurement values at all. This is because in this case only

the OA equation Eq. 5.9 is needed, which has nothing to do with the real value of d′.

While in the case of acoustic prediction uncertainty being the objective function, the

process to calculate the posterior TLr prediction uncertainty includes:

1. Do in-situ measurements.

2. Pre-process the in-situ measurements data. Generate d′.

3. Input d′ and compute the posterior SVP estimation ĉ (+) via Eq. 5.8.

4. Input pd′ and compute the posterior SVP estimation error covariance Λc (+) via

Eq. 5.9.

5. Use ĉ (+), Λc (+), Lr, Lz and the Gaussian distribution assumption to bootstrap

many SVP realizations.

6. For each SVP realization, run RAM PE code. Generate many TLr realizations.

7. Calculate the posterior sample var (TLr).

In step 3, d′ is used to generate ĉ (+) and in step 5, ĉ (+) is used to generate posterior

SVP realizations. So finally the posterior var (TLr) is dependent on d′ and therefore

a paradox exists: the posterior var (TLr) can not be calculated prior to the in-

situ measurements even if the AUV path is determined, but the posterior var (TLr)

associated with a certain AUV path is necessary for solving the optimization problem,
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which however should be prior to the in-situ measurements. The way to solve this

paradox is by introducing the stochastic optimization concept, which is discussed

in Chapter 4.3.

Now suppose that an AUV path is selected, then based on the a priori SVP pre-

diction, the semi-empirical Rω, the AUV speed and the CTD sampling frequency,

the in-situ measurement data can be predicted. In implementations, the in-situ mea-

surement data prediction is an ensemble including many realizations. For each real-

ization, the associated posterior var (TLr) is obtainable. Therefore by doing sample

average, E [var (TLr)] can be obtained. The tr {E [var (TLr)]} can thus be the ob-

jective function in the stochastic optimization problem. In one word, in the scenario

of minimizing the posterior acoustic prediction uncertainty, the objective function

is tr {E [var (TLr)]} rather than tr {var (TLr)}, where the expectation is over all

possible a priori SVP realizations and all possible measurement errors. Using the

expectation value in the objective function implies that the optimized AUV path is

only optimal in regard to the averaged result and it is usually not the real best one

for the real situation.

A very similar case is the stock trading strategy. The optimized stock trading

strategy can only lead to the highest return ratio on average. That is to say if you

implement it in the stock market for infinite many times (and if the stock market is

modeled accurately), the gross return ratio will be the highest; while if you implement

it for only once, you may actually lose a lot of money.

So the stochastic optimization method can not guarantee the best result for ev-

ery implementation in the scenario of minimizing the posterior acoustic prediction

uncertainty, but anyway it is already the best we can do in the framework of static

optimization.
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Optimization Problem Summary

In the case of the acoustic prediction uncertainty being the objective function, the

optimization problem can be expressed as:

min tr {E [var (TLr)]�W} (5.23)

s.t. {z1, z2, · · · , zn} constitutes a feasible path. (5.24)

Where var (TLr) is the posterior TLr prediction error covariance matrix, E is over

all possible a priori SVP realizations and all possible measurement errors, W is the

diagonal weight matrix 
w1

w2

. . .

wn

 .

wi is the weight for the ith TLr point.

var (TLr) implicitly depends on {z1, z2, · · · , zn} and d′; while E [var (TLr)] only

depends on {z1, z2, · · · , zn}. The objective function is highly non-linear with respect

to {z1, z2, · · · , zn} and strictly speaking, it can only be calculated via Monte Carlo

simulations. This optimization problem is a non-linear stochastic optimization

problem.

5.3.3 Sonar Performance Prediction Uncertainty and Sonar

Performance

The long term goal of AREA is to best improve the sonar performance prediction for

the non model-based sonar or best improve the sonar performance for the model-based

sonar. However, objective function with respect to sonar performance prediction

uncertainty (e.g. the uncertainty of sonar range) or sonar performance metric (e.g.

the displacement of MFP localization) is generally based on the objective function

in Eq. 5.23, and usually much more complicated and non-linear. On current PCs,
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even the computation for Eq. 5.23 is rather time-consuming due to the Monte Carlo

simulations and thus the real-time feasibility of AREA can only be reached barely.

Therefore, in this thesis the objective function with respect to sonar performance

prediction uncertainty or sonar performance metric is not considered at present.

However the posterior TLr prediction uncertainty is a very fundamental and very

important measure for the sonar performance prediction uncertainty and sonar per-

formance metric. Loosely speaking, if tr {E [var (TLr)]�W} is less, then the sonar

performance prediction uncertainty is often less and the sonar performance is often

better. To some extent, TLr can be viewed as a substitute.

5.4 The Approximate Objective Function

For acoustic prediction uncertainty, computing var (TLr) needs to run Monte Carlo

simulation many times, which is fairly slow and is one of the bottlenecks of the

real-time feasibility of AREA. Thus, any good approximate and quick way is highly

desirable. If such a kind of method can be found, the optimization process can be

accelerated a lot and a good sub-optimal solution may be obtained in real time.

5.4.1 Linear Approximation for Transmission Loss

It is well known that the relation between TL and water column sound velocities is

highly nonlinear (Eq. 5.25). However, based on the Taylor series expansion, when ∆c

is small enough, Eq. 5.25 can be linearly approximated by Eq. 5.28.

TL = f (c) , (5.25)

c = c0 + ∆c, (5.26)

TL = TL0 + ∆TL, (5.27)

≈ f (c0) + A ·∆c, (5.28)

where TL0 = f (c0) and TL, c are all vectors, A is a matrix. In the real ocean,

∆c/c0 is usually not higher than 1/100, so a conjecture can be made that in most
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scenarios in AREA, Eq. 5.28 could be a good approximation. If this conjecture is

true, then with the assumption that the SVP prediction error is a Gaussian random

vector, var (TL) can be calculated very quickly by Eq. 5.29,

var (TL) ≈ A · var (∆c) · AT . (5.29)

If Eq. 5.29 can substitute for Monte Carlo simulations in AREA, the bottleneck is

resolved. In next sections, we are going to investigate the conjecture numerically and

analytically.

5.4.2 Examples

In this section, two typical examples in AREA are presented and the associated linear

TL models are investigated numerically. Both the two examples are located at the

shelf break at the Monterey bay, CA.

Example 1: Cross the Shelf Break

Fig. 5-7(a) shows part of the topography of the Monterey bay, CA. The green point

is supposed to be the sound source location and in this example the bearing 5 is

considered, which crosses the shelf break and is often associated with big uncertainties

in SVP prediction. Fig. 5-7(b), 5-7(c), 5-7(d) are respectively the SVP, density profile,

attenuation coefficient profile in the seabed. Fig. 5-7(e) is an example of the a priori

SVP principal estimation generated by HOPS. The corresponding error standard

deviation map is shown in Fig. 5-7(f) and the correlation lengths are Lr = 2500 m

and Lz = 3 m.

TL0 — the TL field associated with Fig. 5-7(e) is shown in Fig. 5-8(a), where the

100Hz single frequency sound source is located at (0 km, 15m) and only the depths

above 300 m are considered. In this thesis, the coefficient matrix A is calculated by

finite difference method:

Ai,j =
fi (c0 + ∆cj)− fi (c0 −∆cj)

2σj

, (5.30)

103



where Ai,j is the i, j th item in A; σj is the sound velocity prediction error standard

deviation at the j th SVP grid point; ∆cjk = δj,k · σj, which is equal to 0 except

at the j th SVP grid point (k = j); fi is the i th TL points. To compute A by

Eq. 5.30, the RAM PE code should be run twice for each SVP grid point. In practice,

this process usually takes about 30 minutes. Another popular way to compute A is

the Linear Least Square Fitting method. But in practice in AREA, the overfitting

problem always happens, since we don’t have enough time to generate enough training

data.

Once the TL0 and A are known, Eq. 5.28 can be used to approximate the TL.

Fig. 5-8(b) shows TLs associated with 200 independent SVP realizations which are

generated on the basis of Fig. 5-7(e) and 5-7(f). The receiver depth is 165 m. Those

black curves in the upper plot are from RAM PE code, while the blue curves in

the lower plot are from linear approximation. The red curve is the corresponding

TL0 at this depth. By comparing these two plots, it can be seen that the linear

approximation has pretty good accuracy at most ranges except at those TL nodes,

where the linear approximate TLs may be really bad and far away from the true ones

or even be negative numbers. The sample variances of the black and blue curves at all

ranges are shown in Fig. 5-8(d), from where the same phenomenon can be observed

that the sample variance difference is pretty small at most ranges but at those nodes

it can be really huge. At all receiver depths, the same thing happens, while the depth

of 165 m corresponds to the worst situation.

In this example the linearity conjecture is partially proved and also partially de-

nied. In fact, in this case the linear approximate tr (var (TL)) is equal to 16321.8 (dB2),

while 200 Monte Carlo simulations give tr (var (TL)) equal to 7240.1 (dB2). The rel-

ative error is about 125%. The convergence test of Monte Carlo simulations is shown

in Fig. 5-8(c), which shows that in this example 200 Monte Carlo simulations are

enough. From the above results, we can see that although the linearity is maintained

at most ranges, the high non-linearity at nodes will definitely deteriorate the accuracy

of Eq. 5.29. The first way to solve this problem is to remove those nodes from con-

sideration. This is very reasonable, since TLs at nodes don’t mean much in practice.
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However, it may not be so practical, since locations of those nodes must be deter-

mined prior. The second way is to replace TL with the range-averaged transmission

loss TLr, by which the TL is smoothed and nodes are mitigated. The test is shown

in Fig. 5-11.

The relation between linearity and the magnitude of the SVP prediction uncer-

tainty is investigated and the result is shown in Fig. 5-9. Instead of using the original

SVP prediction uncertainty, we increase or decrease the SVP errors in Fig. 5-7(f) by

multiplying it with different multipliers but keep the Lr and Lz unchanged. The

results from 200 Monte Carlo simulations are compared with the corresponding lin-

ear approximation results in Fig. 5-9(a). The blue line is associated with the linear

approximation. The black line is associated with Monte Carlo simulations. The red

line indicates the relative error. These two plots clearly shows that as increase the

SVP prediction uncertainty, the linearity between ∆TL and ∆c gets worse. This is

consistent with the characteristics of the Taylor series expansion. The changes in

linearity can also be observed from Fig. 5-9(b), 5-9(c), 5-9(d), where it can be seen

that the linearity around the TL nodes is deteriorated very quickly as the multiplier

increases.

Although in this example, Eq. 5.29 can’t provide good accuracy, it is found that

the linear approximation result is strongly positively correlated with the Monte Carlo

simulation result, i.e. if the tr (var (TL)) from Monte Carlo simulations is decreased

or increased, the corresponding linear approximation value is very possibly decreased

or increased too. Fig. 5-9(e) shows a preliminary test, in which the SVP prediction

error was randomly adjusted for 23 times, the corresponding Monte Carlo simulations’

results and linear approximation results were generated. A positive correlation can

be seen. This implies that if in the objective function, tr (var (TL)) is replaced by

Eq. 5.29, the optimal solution of the new optimization problem will be a good sub-

optimal solution to the original one. Here, one thing should be noticed that on

a 3.80GHz Intel Pentium 4 CPU, the 200 Monte Carlo simulations take

almost 10 minutes, while Eq. 5.29 only takes about 2 seconds. Therefore, it

implies that in AREA, it is possible to solve the approximate optimization problem
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in real time to get a good sub-optimal solution for the AUV path planning problem.

The effects of correlation lengths on the TL linearity are investigated in Fig 5-

10. In Fig. 5-10(a), L means the tr (var (TL)) value from linear approximation; MC

means the value from 200 Monte Carlo simulations; err is the error between L and

MC, and Re is the relative error. From this table, it can be seen that Lr and Lz do

affect the relative error, but in a complicated and coupled way.

Example 1 continue: using TLr

Now let’s replace the original TL with the range-averaged transmission loss TLr and

set α = 0.1. The results are shown in Fig. 5-11. Fig. 5-11(a) and Fig. 5-11(b) clearly

show that nodes of TL are smoothed a lot and hence the linear approximation around

those points gets much better. In this case, the receiver depth of 75 m corresponds

to the worst situation. Compared with Fig. 5-8(d), the sample variance difference

in Fig. 5-11(d) is dramatically decreased. In this case we can say that the linear-

ity conjecture is proved. In fact, the linear approximate gives tr(var(TL)) equal to

780.437 (dB2), while 300 Monte Carlo simulations give it equal to 784.2822 (dB2).

The relative error is about only 0.49%. The convergence test of Monte Carlo sim-

ulations is shown in Fig. 5-11(c), which shows that in this case the convergence is

slower and 300 Monte Carlo simulations are needed. The correlation test is shown in

Fig. 5-11(e). The Lr, Lz effects on the linearity are shown in Fig. 5-12(a). In this

case, when the Lz is very large, the linearity gets much worse and the correlation

between the linear approximation result and the Monte Carlo simulation result is less

strong.

Example 2: Parallel to the Shelf Break

In the second example, the bearing 4 is considered, which is parallel to the shelf

break as shown in Fig. 5-13(a). In this case, let’s first suppose the frequency of the

sound source is 100Hz and it’s located at (0 km, 80 m). The correlation lengths are

Lr = 2000 m and Lz = 3.5 m.

From Fig. 5-16(a) and 5-14(b), it can be seen that in this example, due to the
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environment and the sound source depth, more normal modes exist. Therefore, the

spatial interference is more complicated and more TL nodes exist. Fig. 5-14(b) and

Fig. 5-14(d) show that the linear approximation is not good in this case, but from

Fig. 5-14(c) the strong positive correlation between the linear approximation result

and the Monte Carlos simulation result is still held. Furthermore, in this example,

the number of Monte Carlo simulations is 300, which is enough to converge.

Fig. 5-15 shows the range-averaged transmission loss scenario. Again, the linearity

at those TL nodes gets better and the strong positive correlation is still held. In this

case, tr (var (TL)) from the linear approximation is equal to 116.959 (dB2). 300

Monte Carlo simulations give tr (var (TL)) equal to 135.464 (dB2). The relative

error is about 13.66%.

So far, we only considered 100Hz sound source and a preliminary conclusion was

made that the linear approximation can be used to accelerate the objective function

calculation. Now, let’s suppose the sound source frequency is 400Hz and check the

TL linearity again. The sound source location is still (0 km, 80 m). Fig. 5-16(a) and

5-16(b) show that there are much more normal modes and the spatial interference is

messed up much more. As a results, the TL linearity is much worse as the frequency

is higher but Fig. 5-16(c) still shows the strong positive correlation.

With α = 0.1, the TLr case is shown in Fig. 5-17. By smoothing TL, the linearity

is better. But comparing with the 100Hz cases, it can be seen that increasing sound

frequency deteriorates the TLr linearity. At those TLr nodes, linear approximation

leads to over-estimated result. However once again, the strong positive correlation

between the linear approximation result and the Monte Carlo simulation result is still

held.

5.4.3 Ideal Waveguide

In this section, the ideal waveguide scenario is considered and the analytical formula

of TL will be discussed. Although the ideal waveguide doesn’t exist in the real ocean,

many properties from the ideal waveguide will carry through to more general ocean

waveguide [1].
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In the ideal waveguide, the acoustic intensity is given by the following equation:

I (r, z) =
8π

rD2

[∑
m

A2
m +

∑
m

∑
n>m

2AmAncos (kmnr)

]
(5.31)

where,

kmn = krm − krn (5.32)

Am =
sin (kzmzs) sin (kzmz)√

krm

(5.33)

kzm =
(m− 1/2)π

D
, m = 1, 2, · · · (5.34)

krm =

√(
2πf

c

)2

− [(m− 1/2)π]2. (5.35)

If there exists small sound velocity variations ∆c (r, z), based on the adiabatic theorem

[63] Eq. 5.32 can be rewritten as

I (r, z) =
8π

rD2

[∑
m

A2
m +

∑
m

∑
n>m

2AmAncos (kmnr + ∆krm(r)−∆krn(r))

]
(5.36)

∆kri(r) = − 1
kri

r∫
0

D∫
0

sin2 (kziz)
(

2πf
c

)2

c
∆c (r, z) dz dr. (5.37)

In far field, we only consider those modes with real krm value. If the water depth D

and sound velocity c are given, and if now the sound frequency f is so low that only

1 normal mode exists, then in far field we have

I (r, z) =
8π

rD2
A2

1. (5.38)

This equation implies that ∆c (r, z) doesn’t change the acoustic intensity and TL

field.

If now the sound frequency is increased so that 2 normal modes exist, then Eq. 5.32

is like

I (r, z) =
8π

rD2

[
A2

1 + A2
2 + 2A1A2 cos (k12r + ∆kr1(r)−∆kr2(r))

]
. (5.39)
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Let’s write

A =
8π

rD2

[
A2

1 + A2
2 + 2A1A2 cos (k12r)

]
, (5.40)

∆B =
8π

rD2
[2A1A2cos (k12r + ∆kr1(r)−∆kr2(r))]−

8π

rD2
[2A1A2 cos (k12r)] ,

(5.41)

then TL = −10log10(A+ ∆B). (5.42)

By Taylor series expansion, we have

TL ≈ −10log10A− 10
∆B

A
+ 10

∆B2

A2
+ o(∆B2). (5.43)

If A >> ∆B, then linearity of TL with respect to ∆B will be very good. However,

because of the modes interference, the minimum value of A could be very close to 0.

Those points just correspond to TL nodes, where TL is very non-linear with respect

to ∆B. In the 2-mode case, ∆B is connected to ∆kri(r) through a cosine function,

which is not linear. While from Eq. 5.37, ∆kri(r) is a linear function of ∆c(r, z). In

practice it is found that most non-linearity of TL with respect to ∆c(r, z) is still from

the logarithm function. Therefore, the TL uncertainty estimation from the linear

approximation method is always far away from the truth around those TL nodes.

In multi-mode scenarios, the same thing happens but the modes interference is more

complicated and TL has more nodes. This explains why for higher frequency, the

linear approximation method gives worse estimation.

For TLr at a point, the associated A is averaged in the neighborhood and since A is

always nonnegative, thus Ar — the range-averaged A is less close to 0. At TLr nodes

the linearity is better than that at TL nodes. This explains why the TLr uncertainty

estimation from the linear approximation method is always better than that of TL.

In addition, Eq. 5.40 shows that if A1 >> A2, at TL nodes A won’t be very close to

0, so linear approximation can give better estimation. While the values of A1 and A2

are dependent on modes’ shapes and source depth, receiver depth. Eq. 5.37 shows

that the correlation lengths Lr and Lz will influence ∆kri(r), but the effect is coupled
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with mode’s shape and receiver depth. If r is now very large, it could be expected

that some ∆kri(r) − ∆krj(r) will be saturated, i.e. bigger than 2π. In such kind of

situation, linear approximation method will not be valid, however in this thesis r is

not so large and is usually about 10 ∼ 15 km.

5.4.4 Linear Approximation Summary

From the above analysis and preceding numerical examples, it seems that

the linear approximation method can provide a good and quick estimation

for the TLr uncertainty in low frequency scenarios in AREA. While it is

also found that TL and TLr uncertainty estimation from the linear approximation

method is strongly correlated with the Monte Carlo simulation result. So generally

speaking, in AREA linear approximation method is a very good and practical way

to estimate the acoustic prediction uncertainty. It could be hundreds times faster

than Monte Carlo simulation method. In fact, when the Error Subspace Statistical

Estimation (ESSE) method is used to estimate the acoustic field uncertainty directly

from the ocean environment prediction uncertainty, the above linear approximation

method is implicitly adopted [6, 64].

Once the var (TLr) can be quickly estimated, the next problem in Eq. 5.23 is

how to quickly estimate the expectation, which is taken over all possible a priori SVP

realizations and all possible measurement errors. For each SVP realization and each

measurement error, the posterior SVP estimation is usually different and hence the

associated coefficient matrix A in Eq. 5.28 is different. In practice, it’s not feasible to

run A for several different SVP realizations and measurement errors and then run the

sample mean, since running A once will take about 30 minutes. The most practical

way here is to use the A associated with the SVP principal estimation

and zero measurement error to replace the expectation. Again, this is an

approximation but this is the best we can do so far.
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5.4.5 Approximate Optimization Problem Summary

Using the linear approximation of TLr and replacing the expectation operator with
the SVP P.E. scenario, the optimization problem for acoustic purpose can be ex-
pressed as:

max tr

(
A ·

�
σ (pc1 ) · σ

�
pd′�T

�
� ρ

pc1 ,pd′

��
σ
�
pd′�

· σ
�
pd′�T

�
� ρ

pd′
,pd′ + Rω

�−1 ��
σ (pc1 ) · σ

�
pd′�T

�
� ρ

pc1 ,pd′

�T

·AT

)

(5.44)

s.t. {z1, z2, · · · , zn} constitutes a feasible path. (5.45)

Please note that Eq. 5.44 is very similar to Eq. 5.19 except the multiplication of

the matrix A, which is now more like individual significance weights for SVP grid

points. Eq. 5.44 means that in linear approximation, we only consider the individual

significance of each sound velocity in the water column but ignore the coupling effect

among them.
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Figure 5-7: Profile of the bearing 5: cross the shelf break. Lr = 2500 m and Lz = 3 m.
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Figure 5-8: The 100Hz sound source is located at (0 km, 15m). tr (var (TL)) from
the linear approximation is equal to 16321.8 (dB2). 200 Monte Carlo simulations give
tr (var (TL)) equal to 7240.1 (dB2). The relative error is about 125%.
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(e) Correlation test

Figure 5-9: (a) is to test the approximation error v.s. the magnitude of SVP prediction
uncertainty. (b), (c), (d) are associated with different SVP prediction uncertainty
magnitudes. (e) shows the correlation between the linear approximation result and
the Monte Carlo simulation result.
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(a) Lr, Lz effects on the TL linearity. L: the linear approximation result; MC: the result from 200
Monte Carlo simulations; err: error; Re: relative error.
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(b) Lr = 25m, Lz = 0.1m, Receiver Depth=165m
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(c) Lr = 25000m, Lz = 0.1m, Receiver Depth=165m
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7 8 9 10 11 12 13 14

60

80

100

120

7 8 9 10 11 12 13 14

60

80

100

120

(d
B

)

(km)

(e) Lr = 25000m, Lz = 1000m, Receiver Depth=165m

Figure 5-10: The 100Hz sound source is located at (0 km, 15m).
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Figure 5-11: Using TLr, α = 0.1. The linear approximate gives tr (var (TL)) equal
to 780.437 (dB2), while 300 Monte Carlo simulations give it equal to 784.2822 (dB2).
The relative error is only about 0.49%.

116



L: 677.795
MC: 340.807
err=336.988
Re=98.88%

L:  660.372
MC: 381.869

err=278.5
Re=72.93%

L: 287.321
MC: 174.679
err=112.64
Re=64.49%

Lz=1000m

L: 809.883
MC: 797.39

err=12.5
Re=1.57%

L: 780.437
MC: 784.2822

err=3.8452
Re=0.49%

L: 451.88
MC: 452.532

err=0.652
Re=0.14%

Lz=3m

L: 724.819
MC: 622.707
err=102.11
Re=16.4%

L: 697.617
MC: 684.989

err=12.6
Re=1.84%

L: 405.8
MC: 393.8

err=12
Re=3.05%

Lz=0.1m

Lr=25000mLr=2500mLr=25m

(a) Lr, Lz effects on the TL linearity. L: the linear approximation result; MC: the result from 300
Monte Carlo simulations; err: error; Re: relative error.
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(c) Lr = 25 km, Lz = 1 km. Correlation test

Figure 5-12: The 100Hz sound source is located at (0 km, 15m). TLr is used in this
case and α = 0.1.
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Figure 5-13: Profile of the bearing 4: parallel to the shelf break. Lr = 2000 m and
Lz = 3.5 m.
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(c) Correlation test
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(d) TL sample variance comparison at the depth of 75m

Figure 5-14: The 100Hz sound source is located at (0 km, 80m). tr (var (TL)) from
the linear approximation is equal to 13889.3 (dB2). 300 Monte Carlo simulations give
tr (var (TL)) equal to 6813.9 (dB2). The relative error is about 103.8%.
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(c) Correlation test
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(d) TL sample variance comparison at the depth of 75m

Figure 5-15: Using TLr, α = 0.05. tr (var (TL)) from the linear approximation is
equal to 116.959 (dB2). 300 Monte Carlo simulations give tr (var (TL)) equal to
135.464 (dB2). The relative error is about 13.66%.
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(c) Correlation test
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(d) TL sample variance comparison at the depth of 75m

Figure 5-16: The 400Hz sound source is located at (0 km, 80m). tr (var (TL)) from
the linear approximation is equal to 86030.2 (dB2). 300 Monte Carlo simulations give
tr (var (TL)) equal to 14572.7 (dB2). The relative error is about 490.35%.
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(c) 400Hz, α = 0.1
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Figure 5-17: Using TLr, α = 0.1. tr (var (TL)) from the linear approximation is equal
to 381.031 (dB2). 300 Monte Carlo simulations give tr (var (TL)) equal to 171 (dB2).
The relative error is about 122.8%.
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Chapter 6

Modeling the Adaptive On-board

AUV Routing Problem

As mentioned before, the AUV path planning problem in regard to minimizing the

posterior acoustic prediction uncertainty is a non-linear stochastic optimization prob-

lem, which can be solved by some non-linear programming methods, Genetic Algo-

rithms (GA) etc. The optimized AUV path is a predetermined path. However in

AREA, it is not necessary to fix the path before the AUV is launched, instead AUV

can adaptively determine its waypoints on-board. For example, the i+ 1th waypoint

can be determined in real-time when the AUV reaches the ith waypoint and all in-situ

measurement data collected from the beginning to the ith waypoint can be used for

the decision making. This adaptive on-board AUV routing problem can be viewed

as a sequential decision making problem under stochastic disturbances. As discussed

in Chapter 4.3, such kind of process can be formulated using Dynamic Programming

(DP), in which what is to be optimized is not an AUV path (or say AUV route) but

an AUV routing strategy. On the other hand, any AUV path can be viewed as a static

routing strategy, which always makes the same decision no matter of changes in the

in-situ measurement data collected. Therefore, the optimized AUV routing strategy

is theoretically guaranteed to produce a better result than the optimized AUV path.

However, the space of the admissible AUV routing strategy is much bigger than the

space of the feasible AUV path. Solving a DP problem is usually much harder than
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solving an ordinary optimization problem. So in the time limits in AREA, only a

sub-optimal AUV routing strategy can be obtained in practice and the associated

result may not be better than that of a sub-optimal predetermined AUV path.

It should be noticed that for the AREA problem in regard to minimizing the

posterior SVP prediction uncertainty, the objective function is only dependent on the

waypoints. For this problem, all AUV routing strategies are static and the associated

DP problem is a deterministic DP problem [47]. Therefore, the optimized AUV

routing strategy is actually identical to the optimized predetermined AUV path.

6.1 Modeling the AUV Routing Strategy Optimiza-

tion using DP

Now let’s think about how to model the adaptive on-board AUV routing problem in

the DP frame. The first thing is to determine the state variable xk (see Chapter 4.3

for more details). In principle, xk must contain all informations required to determine

the control uk. In the adaptive on-board AUV routing problem, those informations

include all the waypoints’ locations and all in-situ measurement data collected so far.

We have

xk = {z0, z1, · · · , zk; ω1, · · · , ωk} , (6.1)

where zi is the vertical coordinates of the ith waypoint and ωi is all the in-situ

measurement data collected between the i− 1th waypoint and the ith waypoint.

ωi =


r1
i r2

i · · · rni
i

z1
i z2

i · · · zni
i

c1i c2i · · · cni
i

 (6.2)

where rj
i and zj

i are the coordinates of the jth in-situ measurement between waypoint

i− 1 and waypoint i; cji is the jth in-situ measurement datum; ni is total number of
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in-situ measurements between waypoints i− 1 and waypoint i.

After the waypoints i − 1 and waypoint i are determined, rj
i , z

j
i and cji are not

yet completely determined and many factors can disturb them. Because ωk is part

of xk, ωk+1 will influence xk+1 — the state at the next stage. Thus ωk+1 is actually

the stochastic disturbance at stage k. After the state variable and disturbance are

determined, it is easy to see that at stage k, the control should be the next waypoint,

i.e. uk = zk+1. The system dynamics is

xk+1 = xk ⊕ uk ⊕ ωk+1, (6.3)

where ⊕ means the variable augmentation, like {x1, x2} ⊕ x3 = {x1, x2, x3}.

The purpose in our problem is to minimize the posterior TLr prediction uncer-

tainty, so the cost only shows up at the termination stage and the cost per stage is

zero.

gN (xN) = tr {var (TLr)�W} , (6.4)

gk (xk, uk, ωk) = 0. (6.5)

Eq. 6.4 and 6.5 show a non-separable cost function structure, which destroys the

advantage of this DP algorithm and makes the DP problem much much more difficult

to solve. How to resolve this difficulty, how to solve the DP problem quickly is one

of the major contributions of this thesis and the discussions are in Chapter 7.

6.2 Summary

Based on the definition in Chapter 4.3, the adaptive on-board AUV routing problem

can be written as follows.

min E [tr {var (TLr)�W}] (6.6)

s.t. {µ0, µ1, · · · , µN−1} is admissible, (6.7)
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where the expectation is over all possible a priori SVP realizations and measurement

noises. {µ0, µ1, · · · , µN−1} is the routing strategy, namely the adaptive sampling

strategy, which is the decision variable in the DP problem.

6.3 Thermocline-oriented AUV Yoyo Control Op-

timization

One way to simplify the AUV routing strategy optimization is to restrict the routing

strategies in a strategy pattern, in which the basis functions are carefully selected,

while only some parameters are left to be optimized.

The AREA project focus more on shallow water region, where the variation of the

thermocline depth often leads to the main SVP prediction uncertainties. Therefore,

the adaptive sampling strategy that aims to capture the vertical variability of the

thermocline due to fronts, eddies, internal waves, etc. can often capture the dominant

SVP feature and its uncertainties and so also minimize the TL prediction uncertainty.

To track the vertical variability of the thermocline, a thermocline-oriented AUV path

control was researched, by which an AUV can be given guidance about the depths of

the thermocline and move around these depths. Since the thermocline is the region

where the sound speed changes rapidly with depth, a simple criterion determining the

relative position between the AUV and the thermocline is to compare the absolute

value of local vertical gradient of sound speed
∣∣ ∂c
∂z

∣∣ with a threshold. By doing so, the

AUV can estimate whether it is above, inside of or below the thermocline.

It is assumed that at the beginning of the mission, the AUV stays on the surface.

While it is diving, its CTD sensor collects data every second. The
∣∣ ∂c
∂z

∣∣ is estimated

via Linear Least Squares Fitting method based on every p CTD data. If at the

beginning,
∣∣ ∂c
∂z

∣∣ ≤ γ, where γ is the threshold, and then
∣∣ ∂c
∂z

∣∣ becomes greater than γ,

and after that
∣∣ ∂c
∂z

∣∣ becomes lower than γ again, then the criterion will indicate that

the AUV is now below the thermocline and it will turn around upwards. Thereafter

while the AUV is going up, if
∣∣ ∂c
∂z

∣∣ becomes greater than and then lower than γ again,
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Figure 6-1: Illustration of the thermocline-oriented AUV yoyo track. The two green
lines are the upper bound and lower bound respectively.

the criterion indicates that the AUV is now above the thermocline and it will turn

around downwards. An upper bound and a lower bound on the depth range of the

AUV were also set up. Should the AUV have crossed the thermocline or not, once

the lower bound or upper bound is reached, the AUV has to turn around to avoid

reaching too deep depths or getting off the surface. This path control will lead the

AUV to carry an up-and-down yoyo track (Fig. 6-1).

The lower bound can be set even lower than seabed at some ranges and it is

assumed that AUV will be forced to turn around at few meters above the seabed

by collision avoidance device. There are several possible patterns for thermocline-

oriented AUV path control (see Fig. 6-2). So far, the triangular wave pattern (pattern

2) is selected because of the following 2 reasons:

1. AUV prefers to go up or down at the maximum pitch angle and it is hard for

AUV to follow a level line.

2. Following a level line doesn’t help much to track the vertical variabilities of

thermocline.

In this case, it is not necessary to discretize the ocean for AUV path and no waypoints
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Figure 6-2: Illustration of 3 yoyo patterns.

will be determined by the AUV yoyo control. While in the control there are two

parameters to be optimized: p and γ. p is the number of sampling points used to

compute
∣∣ ∂c
∂z

∣∣; γ is the threshold used to compare with
∣∣ ∂c
∂z

∣∣. The γ defines how rapidly

the sound speed changes with depth can be linked to the thermocline. The control

parameters optimization problem can be formulated as:

min f (p, γ) (6.8)

s.t. γ ≥ 0, p is a positive integer, (6.9)

where the objective function is

f (p, γ) = E [tr {var (TLr)} �W ] , (6.10)

which can be approximated using TLr linear approximation. Again, here the var

is taken with respect to all possible posterior SVP realizations and the E is taken

with respect to all possible a priori SVP realizations and measurement noises. The

objective functions in Eq. 5.23, Eq 6.6 and Eq 6.10 are actually identical. They are

implicitly dependent on AUV path, AUV routing strategy and yoyo control parame-
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ters respectively.

This optimization problem is essentially a mixed-integer non-linear stochastic pro-

gramming problem. The objective function is only defined on integer-valued p, so it

can’t be solved by relaxation method. The advantage of the AUV yoyo control is

that: the optimization result is not a predetermined AUV path but a yoyo sampling

strategy; while compared with the associated adaptive on-board AUV routing prob-

lem, the search space is now just the space of the two control parameters and hence

much smaller.
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Chapter 7

Solving the Optimization Problems

In Chapter 5 and 6, the AUV path planning problem and the adaptive on-board

AUV routing problem have been modeled in optimization problems. In this regard,

the AREA project is an implementation of operational Research (OR) in ocean en-

gineering. In this chapter, we will discuss how to quickly solve those optimization

problems in detail.

7.1 Adaptive Rapid Environmental Assessment Sim-

ulation Framework

As shown in the precedence, the optimization models associated with AREA are all

very complicated: the search spaces can be very huge and the objective functions

don’t have any helpful feature but require very intensive computations. Thus, none

of them can be solved analytically or solved by numerical methods easily. To solve

those optimization problems, find the optimal or sub-optimal AUV path or adaptive

routing strategy and also test the optimization effects before doing very costly on-site

experiments, an Adaptive Rapid Environmental Assessment Simulation Framework

(AREASF) is really desired, by which we can also observe how AREA system will

work and test if real-time feasibility. The AREASF can provide us a training and

learning tool [39, 65].
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An AREA simulator has been developed in C++ — an object-oriented language.

Due to the object-oriented feature, every real object can have a corresponding sim-

ulated object in the computer, which can simulate all functions that the real one

has. So referring to Fig. 3-5 and Fig. 7-1, basically speaking each component in the

real AREA system has a corresponding module in the AREA simulation framework.

However, the sonar system is divided into 2 modules: sonar array simulator and sonar

signal processing center. The Control center is directly replaced with the observation

database module, ocean predictor module and control agent module. For the control

agent, several different sampling strategy algorithms have been embedded. In the end,

a surveillance module and an output module were built to monitor the whole system

and output results. In this way, the AREA simulation framework is upgradeable and

flexible; and its structure is simpler and close to a real AREA system.

AREA.cpp : Main Board

Sonar
Array

Simulator

Mobile
Sensors

Simulator

Fixed 
Platform
Sensors

Simulator

Ocean Environment Simulator

Water Column
Simulator

Seabed
Simulator

Acoustic Field Simulator

Adaptive 
Sampling 

Loop

Sonar Signal
Processing

Center

Observation
Database

Ocean
Predictor

Control
Agent

Ocean
Database
Simulator

Matched-Field
Processing

Surveillance Module

Output Module

Data Flow Adaptive Control

Figure 7-1: AREA simulation framework wiring diagram

As shown in Figure 7-1, the structure of AREA simulation framework is like an
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integrated circuit board. AREA.cpp is the C++ main file containing the “main”

function. It works like a human-computer interface where we can input almost all

parameters for each module, select options and start running program (see Figure 7-

2). AREA.cpp provides a working environment to all the other modules like the main

board in PC to peripherals.

Star

Include files

Declare global variables

Initialize global variables

Set global_initialization=0 :
sound speed will be generated 

from PRIME database

Declare and initialize
all objects not in control center

Set global_initialization=1 :
from now on, sound speed could be 

randomly generated.

Declare and initialize
all objects in control center

Activate Observation Database

Whole simulation framework is running

Output results

End

Figure 7-2: Flow chart of AREA.cpp

The Ocean Environment Simulator module is supposed to provide sensors and

sonar arrays with oceanographic information, bathymetric information and acoustic

signals. It includes 3 sub-modules: Water Column Simulator, Seabed Simulator,

Acoustic Field Simulator (see Figure 7-1). Water Column Simulator and Seabed

Simulator simulate the ocean environment in water column and seabed respectively.

The Acoustic Field Simulator can generate the acoustic field according to water and

seabed environment and sound source parameters input from AREA.cpp. The current

acoustic model is RAM.

The Mobile Sensors Simulator module can be called and input controlling pa-

rameters by the Control Agent module. The Mobile Sensors Simulator can simulate

how real mobile sensors move in the ocean and measure in situ by calling the Ocean

Environment Simulator to output information at those measurement locations. By
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Class ObjectiveAnalysis

Class SoundSpeedGenerator

Class RAM

Figure 7-3: Ocean Environment Simulator wiring diagram

configuring the sensors and platforms differently, this module can simulate many sort

of mobile sensors such as XBT carried on ship, CTD carried on AUV, hydrophones

carried on AUV, or both of them carried on AUV.

The Fixed Platform Sensors Simulator module can retrieve oceanographic infor-

mation and/or bathymetric information from the Ocean Environment Simulator as

conventional oceanographic sensors do in ocean. The Fixed Platform Sensors Simula-

tor may include several different objects, each of them corresponding to one particular

sensor, which could be local CDT, satellite or acoustic remote sensing and a seabed

mapping device. Because of the flexibility, this module can be quickly adapted ac-

cording to requirement.

The Sonar Array Simulator module simulates a hydrophone array, which can call

the Ocean Environment Simulator and retrieve data from the Acoustic Field Simula-

tor. Acoustic signals received by the Sonar Array Simulator and signals received by

the Mobile Sensors Simulator will be processed in the Sonar Signal Processing Cen-

ter. The Sonar Signal Processing Center is a software package containing different

sonar models and acoustic models; however, currently only Matched-Field Processing

(MFP) method and RAM are included.

The Observation Database is the first module in the control center. Its function is
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Figure 7-4: Wiring diagram of Mobile Sensors Simulator, Fixed Platform Sensors
Simulator, Sonar Array Simulator and Sonar Signal Processing Center

to sequentially call and receive data output from the Ocean Database Simulator, Sonar

Signal Processing Center, Sonar Array Simulator, Fixed Platform Sensors Simulator,

Mobile Sensors Simulator and store the data. In fact, the whole simulation framework

starts from the Observation Database calling and collecting initial information from

those modules.

After the Observation Database finishes collecting all necessary initial information,

it will call and activate module Ocean Predictor. This module uses some estimation

algorithms such as an objective analysis technique to predict the ocean acoustic en-

vironment and simultaneously provide the error field.

At the end, the Control Agent will be called and passed those initial information

and analysis results. Based on all information and according to adaptive sampling

algorithm, the Control Agent may create a virtual world for trial purpose and deter-

mine optimal or sub-optimal commands through a complicated procedure. Details

about the decision making procedure are out of the range of this thesis, but a major

AREA research issue.
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Figure 7-5: Wiring diagram of modules in control center

Once commands are determined, Mobile Sensors Simulator will be called and

execute those commands to obtain the newest data. After that, Observation Database

will be called and updated. Then, the adaptive sampling loop will be repeated again

until the Mobile Sensors Simulator finishes all in situ measurements.

When all the above modules are running, a very special module - the Surveillance

Module keeps watching all processes and records all interesting intermediate results.

In the end, the Surveillance Module will send all records to Output Module through

which results will be output into a file.

Note:

1. Since we don’t have any ocean database for Ocean Predictor, currently there’s

no Ocean Database Simulator in the simulation framework. But it is easy to be

added in this module later.

2. In this chapter, we simply introduced the structure and functions of the simu-

lation framework. For more details, please refer to [39].
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Ocean Environment Simulator
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Realize sonar TL_receiver
many times

Realize sum of sound speed 
error in water column many times

Calculate sum of sound speed 
error in water column

output End

Figure 7-6: Simplified flow chart of the Surveillance Module

7.2 Solving the Thermocline-oriented AUV Yoyo

Control Optimization Problem

In this section, we are going to discuss how to solve the AUV yoyo control param-

eters optimization problem. From Eq. 6.8, 6.9 and Eq. 6.10, it can be seen that

the AUV yoyo control parameters optimization problem is a mixed-integer non-linear

stochastic programming problem. It is very difficult to solve such kind of problem

and many researches have been done in integer programming and non-linear program-

ming. However, in our case, the objective function is only defined at those p with

integer values, many major integer programming methods such as relaxation method

can not be applied. Moreover, the objective function is neither convex nor concave,

so no helpful features exist.

From the experience, in such kind of problem the random search methods such

as genetic algorithm, simulated annealing etc. may work well and the corresponding

formulas may be easily implemented. So let’s check the feasibility of the random
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search methods. First, let’s rewrite the objective function Eq. 6.10 in the below,

f (p, γ) = E [tr {var (TLr)} �W ] .

The var is taken with respect to the posterior SVP realizations and the E is taken

with respect to the a priori SVP realizations and measurement noises. If Eq. 6.10

is calculated by Monte Carlo simulations, based on our experiences it at least takes

more than 10 minutes to obtain a convergent result. While in the AREA project,

the real-time feasibility is always very crucial, which means that the optimization

computation has to be finished in few hours. In fact, it’s usually no more than 4

hours. Therefore, the objective function can not be computed for more than 24 times

and convergence is hard to be guaranteed. This difficulty can not be solved so far and

even if the PC could be several times faster in future, it would still be a big difficulty.

To avoid this difficulty, exhaustive search in a small search space with respect to (p, γ)

is adopted in current AREA. In practice, about 4 promising p values and about 4

promising γ values are empirically selected. In this 16-element space the exhaustive

search can be finished within the time limit.

Another way to avoid the computation difficulty is to estimate the var (TLr) by

Eq. 5.29, which usually takes only few seconds. The expectation with respect to a

priori SVP realizations and measurement noises can be approximately obtained by

Monte Carlo simulations. In this way, computing the objective function once takes

about 2 minutes and thus the search space with respect to (p, γ) can be enlarged.

There are two things that should be noticed here:

1. Approximating the expectation with the SVP P.E. and zero measurement error

is NOT proper in this case, since if doing so, the adaptivity of AUV yoyo control

will be eliminated and the corresponding result will reflect nothing about the

AUV routing strategy optimization but the AUV path optimization in the SVP

P.E. scenario.

2. To reduce the number of Monte Carlo simulations and make the sub-optimal

result better, for any two parameter pairs, (pi1, γi2) and (pj1, γj2), all random
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variables used in Monte Carlo simulations for (pi1, γi2) should be accordingly

highly correlated with those of (pj1, γj2). Therefore f̃ (pi1, γi2) will be highly

correlated to f̃ (pj1, γj2), i.e. if f̃ (pi1, γi2) is above its true value f (pi1, γi2) then

f̃ (pj1, γj2) is very possible above its true value f (pj1, γj2) too, and vice versa.

This phenomenon is similar to that in estimating var (TLr) via linear approx-

imation method. The accurate values can’t be obtained, while the same de-

scending / ascending order may be kept in the approximated results (as shown

in Fig. 7-7). The true optimal solution is also very possibly the optimal one in

the approximation. This method is popular in simulation based optimization

problem [47].
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Figure 7-7: Illustration of the descending / ascending order in the true values f (p, γ)

and in the approximate values f̃ (p, γ).

7.3 Solving the AUV Path Planning Problem

In this section, we will discuss how to solve the optimization problem defined in

Eq. 5.44 and 5.45, which is to minimize the approximate posterior acoustic prediction

uncertainty. When A = I, this optimization problem is the same as the one defined in

Eq. 5.19 and 5.20, which is to minimize the posterior SVP prediction uncertainty. In

practice, the Eq. 5.19 is often replaced with Eq. 5.44 and the matrix A is a diagonal

weight matrix, in which each diagonal element is equal to the area associated with a
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SVP grid point in the vertical plane.

This optimization problem is a non-linear programming problem. Some non-linear

programming methods can be applied. It will be discussed later that in this problem

the search space (i.e. all feasible AUV paths) can be very huge and exponentially

grows as the resolution of the ocean discretization grows (see Chapter 5.2.1). So,

those non-linear programming methods may not be efficient in this case.

Looking at the constraint in Eq. 5.45, the feasible solutions are vehicle paths and

have network structure, therefore the problem may be solved by network optimization

methods. In fact, the AUV path planning problem is easy to be represented as a

shortest path problem introduced in Chapter 4.2.1. The graph will be like the one

shown in Fig. 5-3. The starting point is usually at the origin and each node has one or

more children except the nodes at the maximum range. An artificial ending node can

be made as the child of all the nodes at the maximum range. This is an acyclic graph

and for each node at a certain range, its children/child must be located at the next

range. The total distance from the starting node to the ending node is the value of the

objective function in Eq. 5.44, which is actually a non-separable function. While in

a normal shortest path problem, the total distance is the summation of the length of

arcs in a path from the starting node to the ending node, thus the objective function is

additive. Without the additivity in the objective function, the optimization problem

defined in Eq. 5.44 and 5.45 can not take any advantage from network optimization

methods, which will actually degrade to normal non-linear programming methods in

this case. The non-separability in the objective function is rooted at the correlation

of SVP — the SVP prediction uncertainty is reduced at a single point, the SVP

prediction uncertainty in the neighborhood will be reduced too. As a result, the

objective analysis can only be carried for the whole AUV path. For a segment in the

path, its contribution to the SVP prediction uncertainty reduction is affected by the

prior and posterior segments. So to make the objective function in Eq. 5.44 more

additive, we need to investigate the effects of the SVP correlation on the prediction

uncertainty reduction.

139



7.3.1 Significance of SVP Correlation Lengths

In AREA, the SVP correlation lengths indicate the associated dominant oceano-

graphic process scale. Fig. 7-8 shows the influence of horizontal and vertical cor-

relation length on the acoustic prediction uncertainty. The scenario is the same as

the 2nd example shown in Chapter 5.4.2. A single 100Hz sound source is located at

(0km, 80m). The acoustic prediction uncertainty is the a priori tr (var (TLr)) and

α = 0.05. 300 Monte Carlo simulations were run to compute tr (var (TLr)) for each

Lr, Lz pair. Here, it is supposed that for all Lr, Lz pairs, the a priori SVP prediction

uncertainty is the same as the one shown in Fig. 5-13(f).

8.986487.3539714.792714.876814.165113.8058Lz=1km

8.005638.2427614.765615.086714.6715.6137Lz=100m

191.569104.79291.206993.516586.075998.1158Lz=10m

102.87456.776235.947537.122937.888337.0001Lz=1m

87.339955.885235.620233.671436.22335.523Lz=0.1m

Lr=10kmLr=1kmLr=100mLr=10mLr=1mLr=0.1m

Figure 7-8: The 100Hz sound source is located at (0km, 80m). The numbers are the
values of tr (var (TLr)) estimated from 300 Monte Carlos simulations. The unit is
dB2.

In Fig. 7-8, it can seen that when Lz is very large, the tr (var (TLr)) becomes

very small; while when Lz is about few meters, the tr (var (TLr)) gets the biggest. In

shallow water, Lz is always about few meters. In this scenario, as Lr becomes larger,

the tr (var (TLr)) will very possibly become larger too. In fact, when the dominant

oceanographic process scale is as big as few kilometers, it will be easily captured

by remote sensing techniques such as satellite sensing. So the real significance for

different oceanographic process scales will be like the one shown in Fig. 3-1. The
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scales in few hundred meters will impact the acoustic prediction most strongly.

Now let’s investigate how Lr will affect the prediction uncertainty reduction, if an

in-situ measurement is made.
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(b) Lr = 1000m, Lz = 3.5m.
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(c) Lr = 10km, Lz = 3.5m.
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(d) Lr = 10km, Lz = 3.5m.

Figure 7-9: The posterior SVP prediction error standard deviation. In (a), (b) and
(c), an in-situ measurement is made at (7km, 3m). In (d), 30 in-situ measurements
are made at the range of 7km.

Fig. 7-9(a), 7-9(b) and 7-9(c) show the posterior SVP prediction uncertainty after

an in-situ measurement is made at (7km, 3m). The corresponding SVP prediction

error variance reductions are 2.4 × 107 (m/s)2 · m2, 6.26 × 107 (m/s)2 · m2 and
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5.1 × 108 (m/s)2 · m2 ; the corresponding TLr prediction error variance reductions

are about 1.0 × 10−3 (dB)2, 3.9 × 10−3 (dB)2 and 0.23 (dB)2. This means that

when Lr is bigger, more SVP information around the in-situ measurement will be

obtained. In Fig. 7-9(c) the in-situ measurement at (7km, 3m) almost reduces all the

SVP prediction uncertainty from the depth of 0m to about 7m. So, when the Lr is

really big, AREA system is not necessary. Dropping a CTD or XBT at the middle

range will capture most uncertainties ( see Fig. 7-9(d)). Where, the SVP prediction

uncertainty reduction is 1.0 × 1010 (m/s)2 · m2 and the TLr prediction uncertainty

reduction is about 114.4 (dB)2; while the total a priori SVP prediction uncertainty

is 1.86× 1010 (m/s)2 ·m2 and the total a priori TLr prediction uncertainty is about

182.1 (dB)2.

In Fig. 7-9(c), it can be seen that once the in-situ measurement is made at

the depth of 3m, any other in-situ measurements around that depth will be redun-

dant. This implies that the individual significance of an in-situ measurement to the

SVP/acoustic prediction uncertainty reduction is coupled with locations of other in-

situ measurements. To represent the original optimization problem as a shortest path

problem with additive objective function, the representation of the “Individual Signif-

icance” of an in-situ measurement at a certain location is needed to be investigated.

7.3.2 Individual Significance and n-step Look-back Method

The individual significance can be represented with respect to the sound velocity at a

certain location in the water column, the Empirical Orthogonal Functions (EOFs) or

the System Orthogonal Functions (SOFs). Some researches have been done in [66, 63],

where the objective is to find an uncoupled individual significance format, e.g. if the

individual significance of an EOF is independent of the individual significances of

other EOFs, the individual significance representation with respect to EOFs is an

uncoupled format. Uncoupled individual significance format is very helpful to find

the optimal AUV path. Unfortunately, due to the coupling in acoustic modeling and

the SVP correlation, no uncoupled individual significance format has been found so

far.
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Decision Variable Augmentation

In the original optimization problem the decision variable is {z1, z2, · · · , zN}, now let’s

augment it as {s1, s2, · · · , sN}, where s1 = {z1}, s2 = {z1, z2}, sN = {z1, · · · , zN}, i.e.

all the past history is included in the current state. Fig. 7-10 illustrates an AUV path

and the network graph associated with the original problem. The number of nodes

is 17 and the number of arcs is 46. After the variable augmentation, the augmented

graph will be like the one shown in Fig. 7-11. The size of the graph gets much bigger.

Let Ri,i+1,··· ,i+k denote the SVP/acoustic prediction uncertainty reduction, when

the AUV moves from waypoint i to waypoint i+k through waypoints i+1, · · · , i+k−1.

So for the AUV path in Fig. 7-10, R0,1 is the SVP/acoustic prediction uncertainty

reduction associated with the AUV moving from the start point to waypoint 1 and

R2,3,4 is the SVP/acoustic prediction uncertainty reduction associated with the AUV

moving from waypoint 2 and to waypoint 4 via waypoint 3. The SVP/acoustic predic-

tion uncertainty reduction associated with the whole path is R0,1,2,3,4. In R0,1,2,3,4, let

R′
i,i+1,··· ,i+k denote the part contributed by the path segment (waypoint i, waypoint

i + 1, · · · , waypoint i + k). Thus, we have R′
0,1 = R0,1, R

′
1,2 = R0,1,2 − R0,1, R

′
2,3 =

R0,1,2,3 − R0,1,2 and R′
3,4 = R0,1,2,3,4 − R0,1,2,3. Those R′

i,i+1 reflect the SVP/acoustic

prediction uncertainty reduction induced by each step on the AUV path, so they are

actually the arc lengths in the augmented graph. After going through all possible

AUV paths, lengths of all arcs in the augmented graph can be assigned. The total

distance of a path in the augmented graph is equal to the SVP/acoustic prediction

uncertainty reduction associated with the corresponding AUV path in the original

graph. It seems that the original objective function is now converted to be additive

and the original problem can be solved by some very efficient shortest path algorithms.

This method is very much like the n-step look-ahead method used in chess playing

algorithms [47] such as the one in Deep Blue; while in our case it’s not look ahead but

look back. So, let’s call it n-step look-back method. However, now the n is equal

to N and this method is actually trivial. In the current n-step look-back method,

the SVP/acoustic prediction uncertainty reduction will have to be computed about
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Figure 7-10: Illustration of a network graph and an AUV path. The AUV path is in
red.
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Figure 7-11: The graph associated with augmented decision variables.

200 times. This number is even bigger than the total number of possible paths in the

original graph, which is equal to 139. So solving the AUV path planning problem by

exhaustively searching all possible AUV paths is more efficient.

As discussed before, very large horizontal correlation lengths are not considered
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in the AREA project. In fact, in shallow water area, due to the existence of many

submeso-to-small-scale oceanographic processes such as internal waves, the Lr is often

about 1 kilometer or less[14]. This fact implies that the individual significance of an in-

situ measurement in the water column is only affected by other in-situ measurements

nearby located within few kilometers. Out of the range, the influence will be weak (see

Fig 7-12). Therefore, in decision variable augmentation, not all the preceding history

z1, · · · , zi−1 need to be included in si. For example, for the path segment (waypoint

i, waypoint i+ 1) if we only take into account the influence from the preceding path

segment (waypoint i− 1, waypoint i) , i.e. only look back for 1 step, the augmented

decision variable will be {s1, s2, · · · , sN}, where s1 = {z1}, s2 = {z1, z2}, s3 = {z2, z3}

and sN = {zN−1, zN}. Also for the AUV path in Fig. 7-10, we have R′
2,3 ≈ R1,2,3−R1,2

and R′
3,4 ≈ R2,3,4−R2,3. The associated graph is shown in Fig. 7-13. The size of this

graph is much smaller than that of the previous augmented graph. In fact, for a graph

like Fig. 7-10, the number of total possible paths is O
(
lN
)
; while the number of total

nodes in Fig. 7-13 is O (M ·N · ln) and the number of total arcs is O (M ·N · ln+1),

where the M is the average number of nodes at a range, the N is the number of total

stages, l is the average number of outgoing arcs from one node and n is the number

of steps looked back. To construct the partially augmented graph, the SVP/acoustic

prediction uncertainty needs to be calculated for O (N · ln+1) times. If n < N , then

it can be M · N · ln+1 << lN , which means that solving the shortest path problem

defined in the partially augmented graph can be much faster than the exhaustive

search.

The n-step look-back method gives us a way to convert the optimization problem

defined in Eq. 5.44 and 5.45 into a shortest path problem with an approximate but

additive objective function. This shortest path problem can be solved by some efficient

algorithms such as the deterministic DP algorithm. It should be noticed that our

problem is not a typical network optimization problem, in which the graph is given

and the cost coefficients of all arcs are given too. While in our problem, the cost

coefficients (i.e. lengths of arcs) are not given prior but must be calculated in a

short time. So this problem is more like an engineering problem and in practice ,
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we found that the bottleneck is just from the cost coefficients calculation in real-

time. Compared with this, the time needed to solve the shortest path problem using

deterministic DP algorithm can be ignored at all. So, N , l and n should be selected

very carefully. The bigger the n, the approximation will be more accurate but the

computation will be slower.

The above discussions are focused on the one way trip scenario, i.e. the AUV

moves from the start point to the end point and then stops there. In practice, round

trip scenario may be more realistic, in which the AUV moves from the start point

to the end point and then makes a “U” turn to come back. In this scenario, both

of the forward and backward AUV path should be optimized. The forward AUV

path can be optimized using the n-step look-back method described above and the

associated posterior SVP prediction uncertainty can be computed accordingly. Using

this posterior SVP prediction uncertainty as the a prior SVP prediction uncertainty,

the backward path can be optimized in the same way. Then the forward path can

be refined again with taking into account the backward path. This process can be

iterated for several times until it converges. A good sub-optimal result should be

obtained then.

7.4 Solving the Adaptive On-board AUV Routing

Problem

In this section, we are going to discuss how to solve the adaptive on-board AUV

routing problem modeled in Chapter 6.1. For a graph such as Fig. 5-3 or a more

complicated one, it is impossible to solve the AUV routing strategy optimization

problem quickly and accurately on current PCs. In this DP problem, computation

for the non-separable objective function is very intensive and the search space is now

the AUV routing strategy space, which is huge. From another viewpoint, when the

ocean and the sound velocity value are discretized in reasonably small resolutions, as

defined in Chapter 6.1, the state space, the control space and the disturbance space
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in the DP problem can be very big. The curse of dimensionality will be encountered.

Therefore, we wish some Approximate Dynamic Programming (ADP) methods

could be helpful in this problem. Based on our experiences, however, neither of the

temporal difference method and the Q-learning method etc. can solve this AREA DP

problem in a way quick enough. In the adaptive on-board AUV routing problem, no

closed mathematical form exists for the system dynamics and the objective function,

hence only simulation-based methods [58] can be used. As mentioned before, Monte

Carlo simulation-based estimation for the posterior var (TLr) usually takes more

than 5 minutes for running once. Within about 4 hours, no more than 50 Monte

Carlo simulations can be finished. This is often far away from convergence and

thus simulation-based methods such as the temporal difference method and the Q-

learning method are not practical in this problem. Some new faster methods have to

be created.

The idea presented in this section is not to conquer the NP-hard AREA DP

problem by improving or speeding up any ADP algorithm. While, based on a static

optimization method, a sub-optimal AUV path can usually be obtained prior for the

SVP P.E. scenario. Since the sound velocity variation is usually no bigger than 1/100

of the mean value, it can thus be conjectured that the optimal AUV routing strategy

may just lead the AUV to follow that sub-optimal AUV path in most scenarios but

deviate a little bit in some specific cases. Therefore, all candidates of AUV path

segment can be restricted in the neighborhood of the sub-optimal AUV path (see

Fig. 7-15). The AREA DP problem can thus be much simplified and the dimension-

ality can be dramatically reduced so that a quick solution is possible. According to

this idea, the result will be an sub-optimal AUV routing strategy that is theoretically

guaranteed to be better than the preceding sub-optimal AUV path. In practice, how-

ever, due to the computation noise, the sub-optimal AUV routing strategy may not

work as well as the expectation.

To explain the details in the idea, let’s first investigate a very simple example to

get some intuitions. In Fig. 7-14(a), the black line is an AUV path. Now let’s suppose

that the CTD only takes two in-situ measurements at (0 km, 0 m) and (7 km, 100 m).
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When AUV finishes the second in-situ measurement, there are two possible paths to

choose, the red curve and the blue curve. The decision should be made based on

the two CTD data. We can simulate this process for many in the AREASF with a

SVP prediction model generated by HOPS/ESSE and generate a lot of training data.

Now, it is supposed that the simulation result is like the one shown in Fig. 7-14(b),

in which when the 1st in-situ measurement value is bigger than the 2nd one, the red

curve will most likely lead to a better result than the blue curve; while when the 2nd

in-situ measurement value is bigger than the 1st one, then the blue curve will most

likely be the better one. Therefore, in the real AREA operations, the AUV can take

the red curve when the 1st in-situ measurement gives bigger value and take the blue

curve in the other situation. Consequently, the final result will be better than sticking

with either the red curve or the blue curve no matter of the in-situ measurement data.

If the black line + the red curve is an optimized AUV path, then the above method

provides a way to improve it.

Now let’s analyze the above method using Q-factor approximation [47]. There are

totally 2 stages in the problem. The stage 0 is at the origin, the stage 1 is at the

range of 7 km and the stage 2 is at the range of 10 km. At stage 2, the g2 (x2) is

equal to the posterior tr (var(TLr)). From Eq. 4.46, we have

Q∗
1(x1, u1) = Eω2 {g2 (x2)} , (7.1)

where x1 is a 2-dimension vector containing the two in-situ measurement data, u1 is

the selection between the red curve and the blue curve, the cost per stage is equal

to 0. x1 has a continuous space. In Fig. 7-14(b), it can be seen that for a certain

value of x1, there may not be enough training data in its neighborhood and thus the

expectation in Eq. 7.1 is hard to be achieved. If the dimension of x1 is higher, this

problem will be more severe. In fact, we can replace the expectation with a single

sample as used in the Q-learning method [58],

Q∗
1(x1, u1) ≈ g2 (x2) . (7.2)
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From Eq. 4.47, the optimal AUV path selection is

µ∗1(x1) = arg min
u1

Q∗
1(x1, u1) (7.3)

= arg min
u1

g2 (x2) . (7.4)

However for a certain value of x1, there may be no any associated training data. In

AREA operations, once a x1 value is given, we can look around this value and check

the k nearest points in its neighborhood in Fig. 7-14(b) and then make decision, i.e. if

the red curve is a better choice for most points in the k-nearest-neighbor, then select

the red curve, and vice versa. Doing so, the AUV will take the red curve in most

scenarios when the 1st in-situ measurement value is bigger and take the blue curve

in the opposite situations. This 2-stage DP problem can be viewed as an example of

pattern recognition. In the first segment of AUV path, environment information is

collected, then the environment pattern is recognized. For different pattern, different

selection will be taken. The preceding method by comparing the values of the 1st

and the 2nd in-situ measurement is a linear classification method and the k-nearest-

neighbor method is a non-linear classification method [67].

Due to the non-linearity in the k-nearest-neighbor method, we can replace it with

the following method,

µ∗1(x1) = arg min
u1

∑
i=1,2,··· ,N

f
(
D(x1, x

i
1)
)
·Q∗

1(x
i
1, u1), (7.5)

where, N is the number of training data; xi
1 is the realization of x1 in the ith training

datum; D(x1, x
i
1) = ‖x1 − xi

1‖
2
is the distance between x1 and xi

1; f (d) = exp(−d2/L)

is the weight function, which is exponentially decreasing as d is increasing. By in-

creasing (decreasing) L, we can increase (decrease) the influence from the nearest

points in the neighbor. This method can be implemented easily and quickly, and it

is somehow like the kernel method in Data Mining (DM) [67]. Moreover, from some

perspective, the summation in Eq. 7.5 can be viewed as doing expectation around the

x1.
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In the real AREA operations, a sub-optimal AUV path can be firstly obtained

via the n-step look-back method. Based on this path, some “branches” can be made

empirically, as shown in Fig. 7-15. Those branches are usually better than the original

path in some scenarios. The above method can then be used to construct a sub-

optimal AUV routing strategy. It should be noticed that in the real situation the

CTD will collect data every seconds. If all of those data collected in a path segment

is put into xi, the dimensionality of the state space will be extremely large. The

practical way to reduce the dimensionality is to replace those original data with

features, e.g. those original CTD data can be divided into n groups and then do

average in each group, the n averaged values can be used as the features and put into

xi.

Furthermore, for N-stage AREA DP problem, we have

Q∗
N−1(xN−1, uN−1) ≈ gN (xN) , (7.6)

Q∗
k(xk, uk) ≈ min

uk+1

Q∗
k+1(xk+1, uk+1), (7.7)

where the cost per stage gk(xk, uk, ωk) is equal to 0. In practice, the Eq. 7.5 can be

adapted as

µ∗k(xk) = arg min
uk

( ∑
i=1,2,··· ,N

f
(
D(xk, x

i
k)
)
·Q∗

k(x
i
k, uk) + h (uk)

)
. (7.8)

Here, if uk is to take the original sub-optimal path, then h (uk) = 0; otherwise

h (uk) > 0. By this we mean that we want to improve the original sub-optimal

path conservatively. If a new path can not excess the original one over a certain

threshold, the original sub-optimal path will still be selected. Doing so, we can avoid

to select a really bad path segment, which however happens to look like very good

due to the noises in the computation noise.

In AREA operations, those training data will be prepared off-line, i.e. generated

before the AUV is launched. Then, the training data will be uploaded to the AUV.

When it is running, the AUV will only do sound velocity sampling via the CTD
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sensor, extracting features (the n averaged values) and solving the Eq. 7.8. This is a

very fast on-line process.
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(c) SVP pred. unc. red. Path segment 1,2,3.
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Figure 7-12: (a) is the SVP prediction error variance reduction associated with path
segment 1,2,3,4. (b) is the one associated with path segment 2,3,4. (c) is the one
associated with path segment 1,2,3. (d) is the one associated with path segment 2,3.
(e) is equal to (a)-(c). (f) is equal to (b)-(d). It can be seen that (e) is almost the
same as (f), since the segment 1 is far away from the segment 4.
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Figure 7-13: The graph associated with 1-step look-back method.
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Figure 7-14: Illustration of a 2-stage adaptive on-board AUV routing problem.
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Chapter 8

Capturing Fronts

As introduced in Chapter 2.1.2, an oceanic front is the interface between two water

masses of different properties. Usually, fronts show strong horizontal gradients of tem-

perature, salinity and sound velocity, thus causing changes in acoustic propagation.

Fronts can be predicted by HOPS/ESSE, but only in a coarse resolution. Capturing

fronts locally is very meaningful for oceanographic research and underwater acoustic

research. It can be viewed as an extension of the AREA project.

Fig. 8-1 shows a front prediction from HOPS/ESSE. To get more local information

about the front on the surface, an AUV carrying a CTD sensor can go back and forth

across the front with doing in-situ measurements. Those data can then be assimilated

by HOPS/ESSE to get a better front estimation. Based on the front prediction, a

predetermined AUV path can be made empirically such as the one shown in Fig. 8-1.

This path may not be very efficient for capturing fronts. In next sections, several ways

to develop more efficient adaptive AUV path crossing the front will be introduced.

8.1 Tracking the 2-D Temperature Gradient at A

Constant Depth

One interesting way to track the front is to follow the azimuth of the temperature

horizontal gradient at a constant depth. The AUV can stay on the surface and
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Figure 8-1: Illustration of a front prediction from HOPS/ESSE and a predetermined
AUV path for capturing the front.

start moving in an initial azimuth, which could be the direction of the horizontal

gradient of the surface temperature predicted by HOPS/ESSE. The CTD will collect

temperature data every second. We can use every p data and the associated location

information to estimate the horizontal gradient of temperature through the Linear

Least Square Fitting method. This process can be done in real-time and once the

new gradient azimuth is obtained, the AUV will turn to that direction. However, it

should be noticed that the p points could happen to locate in a line, which is parallel

to the front by accident. In this situation, the gradient estimation error will be very

big. To avoid this, the AUV will actually move zigzag or sinusoidally in each small

path segment but with the gross direction being the current gradient azimuth. In this

way, the AUV will almost always move in the direction perpendicular to the front

(see Fig. 8-2(a)). Thus, it is a more efficient way to go across the front.
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8.2 Capturing Fronts by Horizontal Zig-zag Con-

trol

Similar to the adaptive AUV yoyo control in AREA, an adaptive horizontal AUV

yoyo control with respect to temperature at a constant depth can be developed. This

horizontal zig-zag control can make AUV move focusing on the front region. For

example, in Fig. 8-2(b) the AUV starts from the red point, the two red lines are

two boundaries and the AUV can only move in the region between them. Starting

from the red point, the AUV will move in an predetermined azimuth. Once the

temperature difference between the current location and the starting location is over

a threshold (Eq. 8.1), the AUV will make a turn to another predetermined azimuth.

∆T = |Ts − Tc| > h, (8.1)

where Ts is the temperature at the starting point, Tc is the temperature at the current

point, h is a threshold. The turning point will then be updated as the new starting

point. If the AUV hit any boundary, it will have to make a turn there. By repeating

this process for a while, the AUV will move in a way keeping crossing the front.

8.3 Capturing Fronts by Horizontal Zig-zag and

Vertical Yoyo Control

The preceding adaptive horizontal AUV zig-zag control is only for AUV moving at a

constant depth. In fact, this horizontal zig-zag control can be easily combined with

the adaptive vertical yoyo control introduced in Chapter 6.3. The AUV’s motion will

then be a 3-D yoyo track. Looking from up to down, the AUV’s horizontal motion

will be a horizontal zig-zag; while looking from side, the vertical motion will be a

up-and-down yoyo. In this case, the temperature at many depths will be measured

and thus in Eq. 8.1, ∆T can be the temperature difference at many depths.
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(a) Tracking the 2-D temperature gradient. (b) Adaptive horizontal zig-zag control.

Figure 8-2: Two adaptive AUV paths for capturing fronts.

8.4 Other Applications of AUV Yoyo Control

In this chapter and Chapter 6.3, several different AUV yoyo controls are discussed. Be-

sides those applications, the vertical AUV yoyo control can be used in a non-adaptive

mode by setting the threshold infinite, which will make the AUV just bounce between

the upper and lower bound while moving forward. If the non-adaptive vertical yoyo

control is combined with a circular horizontal motion, the AUV carrying CTD can

then be used to capture internal waves.

Moreover, the non-adaptive yoyo mode can collaborate with the adaptive yoyo

mode. For example, the AUV can firstly make several dives from the upper bound

to the lower bound, during which the local vertical gradient of sound velocity can be

measured and estimated. This result can be used to tune the control parameters in

the adaptive yoyo mode. After those parameters get tuned, the AUV can work under

the adaptive yoyo control. This mixed mode provides a completely automatic AUV

control, which can be very useful in the scenario that the a priori ocean prediction is

unavailable.
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Chapter 9

Monterey Bay 2006 (MB06)

Experiment

In this chapter, we are going to introduce the MB06 experiment. To test all methods,

controls and ideas developed in this thesis and to integrate the whole AREA system,

two entire at-sea experiments were carried out. The first one is the FAF05 experiment

in the northern Tyrrhenian Sea in 2005 and the latest one is the MB06 experiment

from Aug. 15 to Aug. 25, 2006, in the Monterey Bay, CA. This was a major field

experiment sponsored by the Office of Naval Research. In next sections, the major

achievements made in MB06 will be introduced in the order of precedence and the

FAF05 real-time AREA simulations will be briefly introduced at the end.

9.1 Daily TLr Forecasts

The topography of the experiment area is shown in Fig. 9-1. The center point of

the experiment is located at latitude 36.9414o, longitude −122.2232o. The 3-D ocean

environment was divided into 8 bearings. During MB06, on each day a SVP forecast

ensemble for each bearing was generated by HOPS/ESSE for the next 36 hours and

the associated seabed models were provided by Mike Porter. The example of Aug.

25, 2006 is shown in Fig. 9-2 to Fig. 9-9.

A SVP forecast ensemble includes not only a SVP principal estimation but also
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Figure 9-1: Topography of Monterey bay, CA.

around 20 SVP realizations for each bearing. On the basis of the SVP forecast

ensembles, the TLr forecasts were generated every day for the 8 bearings, 2 frequencies

(100 Hz and 400 Hz), 3 sound source depths (5m, 40m, 80m) and 3 receiver depths

(15m, 45m, 75m). The acoustic model was the RAM PE and the computations were

finished in about 2 hours. To assure the real-time feasibility, the parameters in the

RAM PE code must be selected very carefully. In our experiences, the parameter

dz in RAM is the keyest one and it should be set small enough. Some examples of

TLr forecast on Aug. 25, 2006 are shown in Fig. 9-10 and Fig. 9-11, in which the

frequency bandwidth coefficient α = 0.1. It should be pointed out that MB06 is

the first time that the acoustic field forecasts have been linked with the

ocean environment forecasts in real-time.

Once the TLr forecasts are obtained for all bearings, the one associated with

the biggest TLr prediction uncertainty can be known. In MB06, it was usually the

bearing 5 or bearing 6. Both of them cross the shelf break.
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Figure 9-2: Bearing 1, Aug. 25, 2006.

9.2 Estimate the Lr and Lz

Lr and Lz are respectively the horizontal and vertical correlation length of the SVP.

As aforementioned, Lr is very crucial to determine the way to capture the environ-

ment uncertainties. In MB06, Lr and Lz were determined semi-empirically in the

following way. Firstly, a depth range, e.g. from 0m to 20m was taken and a non-

linear optimization code was run to optimize the Lr and Lz for that depth range.

The objective function is the summation of differences between the Λc1 estimated by

HOPS/ESSE and the one given by Eq. 5.16. Then, some other depth ranges were
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Figure 9-3: Bearing 2, Aug. 25, 2006.

taken and the corresponding optimized Lr and Lz could be obtained. Among them,

the smallest Lr and Lz would be the one used in operations, since they were associ-

ated with the smallest scale oceanographic process. Also, if taking into account the

internal waves, the operational Lr used in MB06 might be even smaller. Generally,

in shallow water area, internal waves can make the horizontal correlation length no

longer than 1km.
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Figure 9-4: Bearing 3, Aug. 25, 2006.

9.3 AUV Path Planning and Adaptive On-board

AUV Routing

Sub-optimal AUV paths for capturing SVP/acoustic prediction uncertainty were gen-

erated almost everyday during MB06. The results of AUV path planning for capturing

SVP prediction uncertainty on Aug. 21, 2006 are shown in Fig. 9-12 and Fig. 9-13.

Fig. 9-12(a) is the principal estimation of SVP, Fig. 9-12(b) shows the associated

error standard deviation field. Fig. 9-12(c) shows the ocean discretization grid for

AUV path and the associated path graph. In this case, the maximum range for AUV
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Figure 9-5: Bearing 4, Aug. 25, 2006.

is 10km, the upper bound is 5m, the lower bound is 80m. The horizontal interval

between two waypoints is 1km, the vertical interval is about 9m. Fig. 9-12(c) shows

the sub-optimal AUV path produced by 1-step look-back method, which took about

30 seconds. Fig 9-12(e) shows the sub-optimal AUV path produced by 2-step and

3-step look-back methods. Both of them gave the same result. The 2-step look-back

method took about 7 minutes, while the 3-step look-back method took about 2 hours.

In this case the sub-optimal paths from n-step look-back method is very close to the

non-adaptive up-and-down yoyo (Fig. 9-12(f)) constrained by the ocean discretization

grid for AUV path. In this grid, the maximum pitch angle for AUV is about 4.3o.
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Figure 9-6: Bearing 5, Aug. 25, 2006.

While in MB06, the AUV pitch angle can be as large as 10o, i.e. due to the compu-

tation capability, the horizontal interval between two AUV waypoints can not be set

very small, as a result the maximum AUV pitch angle has to be sacrificed for several

degrees. Fig. 9-13(a) shows a predetermined path which is set empirically. Since in

Fig. 9-12(b) the biggest error is around the depth of 25m, the predetermined path

was set to stay in this region and was expected to capture a lot of SVP prediction

uncertainty. The SVP prediction uncertainty reductions associated with all paths

mentioned before are shown in Fig. 9-13(b). In MB06, the SVP in the bearing 5 is

discretized in the way shown in Fig. 9-14(a) and there are totally 352 points. From
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Figure 9-7: Bearing 6, Aug. 25, 2006.

the results comparison, it can be seen that uncertainty reduction associated with the

empirically predetermined path is the least. While the other three produce almost

the same results.

The results of AUV path planning for capturing TLr prediction uncertainty on

Aug. 21, 2006 are shown in Fig. 9-15. Fig. 9-15(a) and Fig. 9-15(b) are the re-

sult of 1-step and 2-step look-back method respectively. Fig. 9-15(c) shows all the

6 path candidates for AUV routing strategy optimization. Those path candidates

were constructed based on the path in Fig. 9-15(b). The TLr prediction uncertainty

reduction comparison is shown in Fig. 9-15(c), in which the green bars indicate the
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Figure 9-8: Bearing 7, Aug. 25, 2006.

results generated by the method based on TLr linear approximation and the blue

bars indicate the results generated by 200 Monte Carlo simulations. The ocean dis-

cretization grid for TLr and OA are shown in Fig 9-14(b) and 9-14(c). In this case,

the results from the n-step look-back method are also very close to the non-adaptive

yoyo. In Fig. 9-15(d), it can be seen that the 1-step and 2-step look-back methods

and the non-adaptive yoyo lead to very close results in both green bars and blue bars,

but the 2-step look-back method is a little bit better than the other two. While, the

predetermined path is the worst one again. The AUV routing strategy can only be

tested by Monte Carlo simulation-based method and its result is even better than the
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Figure 9-9: Bearing 8, Aug. 25, 2006.

2-step look-back method’s result. This is consistent to the preceding analysis. How-

ever in practice, it was found that in most Monte Carlo simulations the AUV routing

strategy selected the same path as in Fig. 9-15(b). Only in a few cases, the AUV

routing strategy selected different paths, which were better than the 2-step look-back

result in those cases.

From the results comparison, there’s another phenomenon can be observed: if the

green bar is taller, the associated blue bar is taller too. This is consistent to the

conclusion made about the TL linear approximation method — the TL uncertainty

computed via the linear approximation method is highly positively correlated to the
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Figure 9-10: TLr forecasts v.s. range on Aug. 25, 2006. B5 means the bearing 5;
f, sz, rz are frequency, source depth and receiver depth respectively. D1 means that
this forecast is for the first 12 hours.

one computed via Monte Carlo simulations.

For the bearing 5 on Aug. 21, 2006, if more internal waves existed, the horizontal

correlation length could be as short as few hundred meters. Now, let’s suppose

Lr = 400m and see what kind of results will be obtained. Fig. 9-16 shows the sub-

optimal paths for capturing SVP prediction uncertainty and the results comparison.

In this case, the optimized path is not like the non-adaptive yoyo any more, but focus

more on the top layer, where the SVP prediction error is bigger. When Lr is very

large, one in-situ measurement will reduce uncertainty in a large neighborhood. The

shape of this area is like a very flat ellipse, long in range and short in depth. If we

can move this ellipse up and down, then a lot of SVP prediction uncertainty will be

reduced. Therefore, the optimal AUV path will be very possibly like a non-adpative

yoyo. When Lr is shorter, the ellipse will be slimmer and then the optimal AUV
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Figure 9-11: TLr forecasts v.s. range on Aug. 25, 2006. B5 means the bearing 5;
f, sz, rz are frequency, source depth and receiver depth respectively. D3 means that
this forecast is for the third 12 hours.

path will be less like a non-adaptive yoyo. The results for capturing TLr prediction

uncertainty whit Lr = 400m are shown in Fig. 9-17.

9.4 Thermocline-oriented AUV Yoyo Control Op-

timization

The results of the thermocline-oriented AUV yoyo control parameter optimization

on Aug. 21 are shown in Fig. 9-18. Based on the Monte Carlo simulation method,

the sub-optimal AUV yoyo control parameters are p = 40, γ = 0.5; while based on

the TL linear approximation method, the sub-optimal AUV yoyo control parameters

are p = 20, γ = 0.9. A predetermined parameters pair p = 20, γ = 0.5 was made
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(e) 2-step and 3-step look-back result
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(f) Non-adaptive yoyo

Figure 9-12: Aug. 21, 2006, bearing 5, AUV path planning for capturing SVP pre-
diction uncertainty. The background in (c) is the a priori SVP prediction error std.;
the backgrounds in (d), (e) and (f) are all the posterior SVP prediction error std.
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(a) An empirically predetermined AUV path
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(b) Results comparison

Figure 9-13: Aug. 21, 2006, bearing 5, AUV path planning for capturing SVP predic-
tion uncertainty. Lr = 1000m,Lz = 5m. 1-step look-back: 2.30776e+10, 2-step look-
back: 2.32952e+10, non-adaptive yoyo: 2.32836e+10, predetermined: 1.43376e+10.
The unit is (m/s)2 ·m2.

empirically. The results comparison is shown in Fig. 9-20(a). The Monte Carlo

simulation-based optimization takes about 7 hours, the TL linear approximation-

based optimization takes about 5 hours. Note that in this case the maximum AUV

pitch angle is 10o.

If Lr = 400m, the results of AUV yoyo control parameter optimization are shown

in Fig. 9-19. The results comparison is shown in Fig. 9-20(b). The results comparison

is shown in Fig. 9-20(b).

9.5 Capturing Fronts

On Aug. 22 and 23, we planned AUV paths for capturing fronts on Aug. 24. They

include predetermined path, horizontal AUV yoyo control and surface temperature

gradient tracking etc. Some examples are shown in Fig. 9-21.

172



0 5 10 15

0

100

200

300

400

500

600

700

800

900

(km)

(m
)

(a) SVP discretization grid

0 2 4 6 8 10 12

0

100

200

300

400

500

600

700

800

900

(m
)

(km)

(b) Ocean discretization grid for TLr

(c) Ocean discretization grid for OA

Figure 9-14: Ocean discretization grids for the bearing 5. In (b) the horizontal interval
is 192m and the vertical interval is 15m. In (c) the horizontal interval is 125m and
the vertical interval is about 2.34m.

9.6 FAF05

From 7/17/2005 to 7/26/2005, the Focused Acoustic Forecasting-05 (FAF05) experi-

ment was held off Pianosa, Italy, within the northern Tyrrhenian sea, on the eastern

side of the Corsican channel. The AREA concept was tested for two weeks within the

AREASF, including connections to ocean and seabed models. AOSN techniques were

tested at sea but the complete AREA framework was only carried out in simulations,

based on real ocean data collected at sea within the AOSN exercises. Details about

the FAF05 can be found in [68].
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(a) 1-step look-back result
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(b) 2-step look-back result
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(c) Path candidates for AUV routing strategy optimiza-
tion
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(d) Results comparison

Figure 9-15: Aug. 21, 2006, bearing 5, AUV path planning for capturing TLr pre-
diction uncertainty. Lr = 1000m,Lz = 5m. 1-step look-back: green — 350.93, blue
— 291.836; 2-step look-back: green — 359.475; blue — 294.9515; non-adaptive yoyo:
green — 359.336, blue — 292.576; predetermined: green — 161.393, blue — 8.426;
sub-optimal AUV routing strategy: blue — 295.286. The unit is dB2.
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(a) 1-step and 2-step look-back results
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(b) Non-adaptive yoyo
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(c) An empirically predetermined AUV path
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Figure 9-16: Aug. 21, 2006, bearing 5, AUV path planning for capturing SVP predic-
tion uncertainty. Lr = 400m,Lz = 5m. 1-step look-back: 1.37786e+10, non-adaptive
yoyo: 1.23973e+10, predetermined: 1.04063e+10. The unit is (m/s)2 ·m2.
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(a) 1-step look-back
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(b) Path candidates for AUV routing strategy optimiza-
tion

0

50

100

150

200

250

1-step
lkbk

NA
Yoyo

Predet. Routing

TLr var Red.
L.A.
TLr var Red.
M.C.

(c) Results comparison

Figure 9-17: Aug. 21, 2006, bearing 5, AUV path planning for capturing TLr predic-
tion uncertainty. Lr = 400m,Lz = 5m. 1-step look-back: green — 175.676, blue —
195.751; non-adaptive yoyo: green — 156.352, blue — 158.181; predetermined: green
— 98.0583, blue — 121.132; sub-optimal AUV routing strategy: blue — 196.828. The
unit is dB2.
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(a) p = 40, γ = 0.5, posterior SVP prediction
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(b) p = 40, γ = 0.5, posterior SVP prediction error std.
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(c) p = 20, γ = 0.9, posterior SVP prediction
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(d) p = 20, γ = 0.9, posterior SVP prediction error std.
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(e) p = 20, γ = 0.5, posterior SVP prediction
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(f) p = 20, γ = 0.5, posterior SVP prediction error std.

Figure 9-18: Aug. 21, 2006, bearing 5, Lr = 1000m,Lz = 5m, AUV yoyo control
parameter optimization. Monte Carlo simulation-based: p = 40, γ = 0.5; TL linear
approximation-based: p = 20, γ = 0.9; empirically predetermined: p = 20, γ = 0.5.
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(a) p = 10, γ = 0.5, posterior SVP prediction
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(b) p = 10, γ = 0.5, posterior SVP prediction error std.
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(c) p = 40, γ = 0.5, posterior SVP prediction
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(d) p = 40, γ = 0.5, posterior SVP prediction error std.
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(e) p = 20, γ = 0.5, posterior SVP prediction
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(f) p = 20, γ = 0.5, posterior SVP prediction error std.

Figure 9-19: Aug. 21, 2006, bearing 5, Lr = 400m,Lz = 5m, AUV yoyo control
parameter optimization. Monte Carlo simulation-based: p = 10, γ = 0.5; TL linear
approximation-based: p = 40, γ = 0.5; empirically predetermined: p = 20, γ = 0.5.
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Figure 9-20: AUV yoyo control parameter optimization results comparison.
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Figure 9-21: Capturing fronts.
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Chapter 10

Conclusions

10.1 General Findings and Major Contributions

From the analysis and results described in this thesis, it can be concluded that to

capture the SVP/acoustic prediction uncertainty in an ocean domain with size about

10∼15km, it is proper to drop a CTD or XBT at the middle range instead of deploying

AREA when the SVP horizontal correlation length Lr is very long, such as 5km or

longer; when Lr is about 1km to 5km, it is proper to run a non-adaptive up-and-down

yoyo; while when Lr is about few hundred meters, it is proper to run n-step look-

back method to optimize the AUV path and then construct a sub-optimal adaptive

on-board AUV routing strategy based on the result of n-step look-back method.

From the MB06 experiment results, it can be concluded that all ideas, methods

developed in this thesis work well, at least for 100Hz or lower frequency scenario.

The real-time feasibility of AREA in low frequency scenario is verified. By replacing

RAM PE with ray methods, AREA can work in high frequency scenarios.

The major contributions made in this thesis include:

1. Some fundamental philosophies, ideas, concepts in AREA are analyzed and

clarified. The principle and performance limit of AREA is very clear now.

2. An engineering model and a mathematical model are developed for AREA.

3. A modularized AREA simulator is developed in C++, which can test the real-
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time feasibility of AREA and help solve the AUV path planning problem and

the adaptive on-board AUV routing problem etc.

4. Linear approximation for TL is investigated and it is found that the value of

tr (var (TL)) calculated via TL linear approximation is highly positively corre-

lated to that of Monte Carlo simulations.

5. A fast AUV path planning method for AREA — the n-step look-back method

is developed.

6. A fast adaptive on-board AUV routing method for AREA is developed.

7. A thermocline-oriented AUV yoyo control and control parameter optimization

methods for AREA are developed.

8. Some AUV control algorithms for capturing fronts are developed, which includes

horizontal AUV yoyo, 2-D temperature gradient tracking etc.

9. A framework for real-time TL forecasts is developed. This is the first time that

TL forecasts have been linked with ocean forecasts in real-time.

10. All of the above ideas and methods were tested in the FAF05 and MB06 exper-

iment.

10.2 Future Work Suggestion

1. For acoustic frequency equal to 1kHz or higher, the ray theory is the most

proper one to compute acoustic field. In the future, the RAM PE code can be

replaced by ray method and AREA can thus work for high frequency scenarios.

2. Currently, Λc1(−) — the a priori covariance matrix of c1 is estimated by an

approximate function and the Lr, Lz are currently set semi-empirically. In the

future, some new and more accurate methods can be developed for estimating

Λc1(−), Lr and Lz.
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3. Now, the path candidates for adaptive on-board AUV routing are based on

the sub-optimal AUV path generated by the n-step look-back method. In the

future, that sub-optimal AUV path can be refined by some local search methods

such as Genetic Algorithm (GA), Simulated Annealing (SA) etc. foremost and

then the adaptive on-board AUV routing strategy can be developed based on

the refined result.

4. In this thesis, we only discussed the path planning problem for a single AUV

moving on a vertical plane. In the future, multi-vehicle moving in the 3-D

space can be considered. The ideas, methods developed in this thesis may be

combined with the methods developed by Namik [52].
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Appendix A

Philosophy: Deterministic,

Stochastic, Variability, Uncertainty

It’s hard to argue that this world is essentially deterministic or stochastic. Based

on the understanding of quantum theory, the world seems to be essentially stochas-

tic, at least on microscale. While for those macroscale systems such as the ocean,

some people (such as underwater acousticians) think it is essentially stochastic; some

others (such as oceanographers) think it is essentially deterministic but extremely

complex. Since in this project knowledge from underwater acoustics and knowledge

from oceanography have to be combined together, how to view the nature of the

ocean, how to bridge the gap between the deterministic hypothesis and the stochastic

hypothesis inevitably becomes important.

In this project, the following self-justified hypothesises are presumed. The mere

purpose is to build up a philosophical methodology to interpret the connection be-

tween variabilities in the ocean and uncertainties in ocean estimation. Otherwise,

those hypothesises may be untenable or incomplete.

1. The macroscale world is essentially deterministic but very complicated.

2. In the macroscale world, any variable is essentially a deterministic variable, but
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it could be completely known, partially known or completely unknown

based on how much information about it is available.

3. Random variable is only a mathematical model used to approximate and repre-

sent a partially known deterministic variable. The true value of the deterministic

variable can be viewed as a realization of the random variable.

4. In the macroscale world, any dynamic process is essentially a deterministic pro-

cess. Variability is referred to changes of a deterministic process with respect

to its arguments. If the variability is too complex and only partially known,

the deterministic process can be modeled as a stochastic process. Uncertainty

is referred to statistic characterizations, such as covariance function, of the

stochastic process. The true deterministic process can be viewed as a sample

path of the stochastic process.

Some supplemental explanations:

1. For a deterministic variable, if we know it exactly, then it is certain; if we

completely know nothing about it, then it can only be viewed as deterministic

but unknown; if we know something about it but not completely, then random

variable is a very good mathematical model to represent it. However, if the

PDF of the random variable is sharp enough, i.e. we know the deterministic

variable more enough, then it can be approximately viewed as certain.

2. There exist several rather different concepts of probability, all covering a spec-

trum from subjective belief to objective frequencies [69]. In the philosophy used

in this project, PDF of a random variable reflects people’s beliefs or credibilities,

or relative frequencies, or propensities, of some values being the true value of the

deterministic variable. The PDF is constructed based on people’s knowledge

about the deterministic variable, logic reasoning, analysis and common sense

etc. The PDF reflects people’s knowledge about the deterministic variable and

also people’s ignorance. So the PDF sounds like a subjective term, but it is

usually obtained based on objective data and objective methods.
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3. For a partially known variable, different people may possess different informa-

tion or use different analytical method and hence may construct random vari-

ables with different PDFs. For example, different ocean prediction systems may

generate different PDFs for c (~r0, t0), the sound velocity at a certain location

and a certain time in the ocean.

4. If the ocean system is essentially stochastic, then c (~r0, t0) is an essentially

random variable. Different ocean prediction systems may generate different

PDFs for c (~r0, t0), so one may ask what is the true PDF. However, it is well

known that ocean is nonstationary and strictly speaking, c (~r0, t0) can be mea-

sured only once. Therefore, the true PDF of c (~r0, t0) can’t be known and its

existence can’t be proved. Considering c (~r0, t0) to be an essentially random

variable is not so proper in this scenario.

5. The partially known deterministic variable may reflect an event that will happen

in the future, or an event that happened in the past but we only partially

observed.

6. Data assimilation can be viewed as melding new information with old informa-

tion and updating the PDF of a random variable.
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Appendix B

Discussion About The Integration

Path in The Fourier Transform in

Acoustic Propagation Problem

Think about the simplest one-dimensional acoustic propagation problem. A unit

source is located at x0, the frequency is f0 and sound velocity is c0. The Helmholtz

equation is:
d2G

dx2
+ k2

0 G = δ (x− x0) (B.1)

where k0 = 2πf0

c0
and G (x) is the wave field.

xx0

Figure B-1: One-dimensional acoustic propagation with a unit source at x0

By Fourier transforms,

g (k) =

∫ ∞

−∞
G (x) e−ikxdx (B.2)

G (x) =
1

2π

∫ ∞

−∞
g (k) eikxdk (B.3)
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Eq. B.1 can be transformed to be

−k2 g + k2
0 g = e−ikx0 (B.4)

so,

g =
e−ikx0

k2
0 − k2

(B.5)

Base on Eq. B.3,

G (x) =
1

2π

∫ ∞

−∞

e−ikx0

k2
0 − k2

eikxdk (B.6)

For the integrand in Eq. B.6, 1
2π

e−ikx0

k2
0−k2 e

ikx has two poles at k = ±k0.

Res (k0) =
−eik0(x−x0)

4πk0

(B.7)

Res (−k0) =
e−ik0(x−x0)

4πk0

(B.8)

According to the strict definition, the integration in Eq. B.6 doesn’t exist [70]. The

Principal Value [70] of the integration can be obtained by path integration as shown

in Fig. B-2 and the Cauchy theorem [70], thus

if x > x0

G (x) = πi

(
1

2π

−eik0(x−x0)

2k0

+
1

2π

e−ik0(x−x0)

2k0

)
=

sin [k0 (x− x0)]

2k0

(B.9)

if x < x0

G (x) = −sin [k0 (x− x0)]

2k0

(B.10)

Note that the integration along the arc with ∞ radius is equal to 0.

However G (x) in Eq. B.9, B.10 doesn’t satisfy the radiation condition,

dG

d |x|
− ikG = 0 for x = ±∞ (B.11)
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Figure B-2: Integration path for the Principal Value

So it seems that in the above Fourier transforms, if poles exists on the real axis, the

principal value of the integration is not proper. If now the integration path is deviated

a little bit as shown in Fig. B-3, we can see that

if x > x0

G (x) = 2πi

(
1

2π

−eik0(x−x0)

2k0

)
=

eik0(x−x0)

2ik0

(B.12)

if x < x0

G (x) =
e−ik0(x−x0)

2ik0

(B.13)

It can be shown that Eq. B.12, B.13 satisfy the radiation condition and the Helmholtz

equation.

So, from the one dimensional case, it is clear that
∫∞
−∞, the integration in the

inverse Fourier transform is not really operated on the real axis, but on

k+i0+, when k < 0 and k+i0−, when k > 0. The basic reason of this phenomenon

is related to the radiation condition. A strict explanation can be found on page 193-

196 in [71]. In this book, Sommerfeld used the same 1-D example and let the radiation
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Figure B-3: Deviated integration path

condition to be firstly
dG

d |x|
− ikG = 0 for |x| = l (B.14)

and then let l → ∞. When Eq. B.14 is used, G (x) can be obtained in format of

summing a infinite sequence of eigenfunctions (eq. 27.5 in [71]). In this case, no

Fourier transform is used. Those eigenvalues of k (marked by x in Fig. B-4) are

located at the origin and the 4th quadrant. Path W1 is a curve passing through all

eigenvalues. If now let l → ∞, those eigenvalues will be everywhere dense on W1,

which is closing to the positive axis of k from below as l → ∞. At the same time,

the summation of eigenfunctions will become to an integration on k + i0− for k > 0.

Utilizing the symmetry of the integrand, the integration can be extended to k + i0+

for k < 0.

G (x) =
1

π

∫
W1

cos k (x− x0)

k2
0 − k2

dk

=
1

2π

∫
W1+W2

eik(x−x0)

k2
0 − k2

dk (B.15)

where, W1 and W2 are symmetric with respect to the origin.

Now, we can see that Eq. B.15 just gives us the same expression in Eq. B.6, the

inverse Fourier transform, with the integration path slightly deviated from the real

axis. This implicates that in solving acoustic propagation problems, the integration
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Figure B-4:

in the inverse Fourier transform is not exact on the real axis, but slightly deviated

into the 2nd quadrant and the 4th quadrant. This result is also valid for the Hankel

transform.
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Appendix C

The Relation Between The

Wavenumber Integration Method

And The Normal Mode Method

The normal mode method can be derived from the wavenumber integration method.

Let’s first consider the idea waveguide problem. By the wavenumber integration

method, the pressure field is

p (r, z) = 1
2

∫ ∞

−∞
p (kr, z)H

(1)
0 (krr) krdkr (C.1)

p (kr, z) = −Sω

4π


sin kzz sin kz(D−zs)

kz sin kzD
, z < zs

sin kzzs sin kz(D−z)
kz sin kzD

, z > zs

(C.2)

where D is water depth.

p (kr, z) has poles for

kzD = mπ, m = 1, 2, · · · (C.3)

or, in terms of the horizontal wavenumber kr =
√
k2 − k2

z ,

krm =

√
k2 −

(mπ
D

)2

, m = 1, 2, · · · (C.4)
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The integration path C and poles are shown in Fig. C-1. From Appendix. B, the
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Figure C-1: Idea waveguide

integral path C is slightly deviated into the 2nd and 4th quadrant. Since no branch

cut exists, the integral path can be closed by the semicircle with r →∞ in the upper

half space. Due to the property of the Hankel function, the integration along the

semicircle is equal to zero. So according to the Cauchy theorem,

p (r, z) =
1

2

∞∑
m=1

Res (krm)H
(1)
0 (krmr) krm (C.5)

Eq. C.5 is actually the implementation of Eq. 2.44 in the idea waveguide scenario.

It can be found that the total pressure field is equal to the summation of all modes,

which include not only normal modes such as mode 1,2,3,4,5, but also all virtual

modes such as mode 6,7,8,9. From this example, we can see that the wavenumber

integration method and the normal mode method generate identical results. However,

this conclusion is not always right.

Now, let’s consider the Pekeris wave guide. Fig. C-2 shows poles, EJP branch cut

and integral contour on the complex kr-plane, where k1 and k2 are the wavenumber
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Figure C-2: Pekeris waveguide

in water column and seabed respectively. Normal modes such as mode 1,2,3 can only

exist on the real axis between k1 and k2. Mode 4,5,6 are virtual modes. k2 and −k2

are two branch points. If the EJP branch cut (the red curves) is adopted, all virtual

modes will exist on an unphysical Riemann sheet. However, all normal modes and

the integral contour will be on another physical Riemann sheet, so it can be obtained

that

p (r, z) =
1

2

nmax∑
m=1

Res (krm)H
(1)
0 (krmr) krm −

∫
CEJP

(C.6)

where, nmax is the max index of normal modes. From the above equation, we can see

that in Pekeris waveguide scenario, p (r, z) can’t be completely expressed as the sum-

mation of all modes, but the summation of all normal modes plus contribution from

a continuous spectrum. The reason of this phenomenon is that all mode functions

don’t form a complete set.

However, it can be found that the
∫

CEJP

(along the blue curve) corresponds to

some decay waves, which only exist in the ”near-field” and can be asymptotically

decomposed in terms of virtual modes. So, in this case the acoustic field generated
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by the normal mode method has increasing accuracy as the range increases.

It should be noticed that if another branch cut is used such as the Pekeris cut, the

value of nmax may be changed and the summation may become to be the summation

of all modes. Accordingly, the integration around the branch cut will change too [1].
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Appendix D

Some Discussions For The Normal

Mode Method Derivation In [1]

And [2]

In cylindrical coordinates, the Dirac delta function is

δ (~x− ~x0) =
1

πr
δ (r − r0) δ (ϕ− ϕ0) δ (z − z0) (D.1)

except when r0 = 0 when the function becomes

δ (~x) =
1

πr
δ (r) δ (z − z0) . (D.2)

The Helmholtz equation for the Green’s function (as Eq. (2.58) in [1]) is

[
∇2 + k2

]
Gω (~x, ~x0) = −δ (~x− ~x0) . (D.3)

In cylindrical coordinates, Eq. D.3 is written as

[
1

r

∂

∂r

(
r
∂

∂r

)
+ ρ (z)

∂

∂z

(
1

ρ
(z)

∂

∂z

)
+ k2 (z)

]
Gω = − 1

πr
δ (r) δ (z − zs) . (D.4)

So, the right side of Eq.(5.1) in [1] should be the same as that in Eq. D.5, i.e. the

195



Eq.(5.1) in [1] should be

1

r

∂

∂r

(
r
∂p

∂r

)
+ ρ (z)

∂

∂z

(
1

ρ
(z)

∂p

∂z

)
+ k2 (z) p = − 1

πr
δ (r) δ (z − zs) . (D.5)

Thus, the Eq.(5.11) in [1] should be

1

r

d

dr

[
r
dΦn (r)

dr

]
+ k2

rnΦn (r) = −δ (r) Ψn (zs)

πrρ (zs)
. (D.6)

However, the Eq.(5.12) in [1] is actually the solution of Eq. D.6.

Similarly, the Eq.(5.27) in [1] should be

1

r

∂

∂r

(
r
∂p0 (r)

∂r

)
+

ω2

c2 (z)
p0 = −δ (r)

rπ
, (D.7)

and the Eq.(5.28) in [1] is actually the solution of Eq. D.7.

In [2], the Eq. (5.5) can be directly obtained from Eq. D.3 and D.2 and its right

side should be

−4
δ (r) δ (z − z0)

r
.

Thus the Eq. (5.18) in [2] should be

1

r

d

dr

[
r
dRn (r)

dr

]
+ k2

nRn (r) = −4
δ (r)

r
. (D.8)

The Eq. (5.19) in [2] is actually the solution of the above equation.

Eq. D.8 can be transformed as

r2d
2Rn

dr2
+ r

dRn

dr
+ r2k2

nRn = −4δ (r) r. (D.9)

set x = knr, the above equation will be
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x2d
2Rn

dx2
+ x

dRn

dx
+ x2Rn = −4δ

(
x

kn

)
x

kn

= −4δ (x)x. (D.10)

The solution of the above equation is

Rn = iπH
(1)
0 (x) = iπH

(1)
0 (knr) (D.11)
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