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Introduction
• Hubble Ultra Deep Field

• It is an Image of a small region 
of space composited from 
Hubble Space Telescope. 

• It is the deepest image of the 
universe ever taken in visible 
light, looking back in time 
more than 13 billion years. 

• It is contains an estimated 
10,000 galaxies.  



Introduction  (continued) 

“… it remains a fact that human beings crossed a quarter million 
miles of space to visit our nearest celestial neighbor before 
penetrating just two miles deep into the earth's own waters to 
explore the Midocean Ridge.”

The Eternal Darkness: A Personal History of Deep-Sea Exploration, Robert D. Ballard

• We know quite a lot  about out space, but how much 
we know about our ocean?

• Why do we need a space-based observatory rather 
than a ground-based telescopes? 

“We know a lot more about moon surface than our  deep ocean.”



Introduction  (continued) 

• The angular resolution of the ground-based telescope is 
limited by the turbulence in the atmosphere, which causes 
stars to twinkle.

• Acoustic waves are today the only practical way to carry 
information underwater, and it is has analogical limitations 
imposed by the “random fluctuating medium” in the ocean as 
electromagnetic wave put by the turbulence in the 
atmosphere.

• Motivation and Application
– Quantitatively understand the limits that randomness imposes on 

the practical uses of wave propagation

– Global underwater navigation and communication
– Global Ocean temperature monitoring 



Review

• 1970’s and 1980’s, ocean acoustic WPRM focused on high acoustic frequency 
and short-range experiments. There were successful finding based on weak 
fluctuations theory and internal wave models, but it is limited in the short-range, 
high acoustic frequency, narrowband. [Munk et al., 1976].

• From late 1980’s to present, low-frequency basin scale experiments were 
motivated to measure ocean climate change, which requests the low frequency, 
broadband and long range acoustic transmission. Some puzzles were found 
that, such as :

– Acoustic fluctuations were much stronger than previously predicted, especially for acoustic energy 
which traveled within a few hundred meters vertically from the sound-channel axis in SLICE89 [Duda et al, 
1992]

– In ATOC AET94, It showed surprising vertical and temporal coherence for the early ray-like arrivals
which were far in excess of the currently predicted values pulse time spreading to be far lower than 
predictions; intensity fluctuations were slightly larger tan predicted. 

– Shadow zone arrivals recorded in the NAVY SOSUS extended significantly in depth and in time. [Colosi
1996,1999; Dushaw,1999]

• It is a twofold problem, which includes two interrelated topics: Sound 
Propagation and Random Media.

– “It is fair to say that essentially no progress has been made by anyone attempting a direct attack on the 
general theory without a deep physical understanding of a particular medium”.- Stanley M. Flatte, 1983



Objectives

• First is quantification of ocean sound speed space-time scales 
due to internal waves continuum, near inertial waves, internal 
tides and sub-inertial motions from the North Pacific Acoustic 
Laboratory(NPAL)98 -99 environmental data.

• To understand how low frequency sound wave propagates 
through the random deep water environment, considering that 
internal-wave-induced sound-speed fluctuations are the 
dominant source of high-frequency variability of the acoustic 
wave field in the ocean.



Random fluctuating medium in the Deep Ocean

− ADCP

− MicroTemp

− MicroCAT 

NPAL Environmental Mooring − East

   −516 m
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   −125 m  (Buoy)

   −696 m

   −5003 m  (Anchor)

Quantification of ocean sound speed space-time scales due to 
internal waves, mesoscale eddies, internal tides

Quantification of ocean sound speed space-time scales due to 
internal waves, mesoscale eddies, internal tides



Time series of Temperature and salinity at different depths
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Frequency Spectrum of the sound speed at depth 490m 
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Garrett-Munk universal internal wave spectrum

• In the lower and main thermocline of ocean, the GM spectrum 
provides a zeroth order description of internal waves.  

• The introduction of the GM model was a critical breakthrough in 
the 1970s to predicting observed acoustic fluctuations.

• There is a standard method to connect the sound speed 
fluctuation with displacement of internal waves. 

– Internal-wave-induced sound-speed perturbations are proportional 
to the product internal-wave-induced vertical displacements and 
potential sound-speed gradient. 



Frequency Spectrum of the Sound Speed Fluctuation
in Super-inertial band at different depths / GM Spectrum
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XBT measurements of Temperature in space scale.



Vertical/Horizontal Wavenumber Spectrum of the Temperature 
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• The frequency spectra in the internal wave band are very GM-
like.

• Similar observations show GM-like characteristics in the 
vertical/horizontal wavenumber Spectrum

• Internal wave induced sound-speed fluctuations are the 
dominant source of high-frequency variability of acoustic 
wave field in the deep ocean. 

• In general, the comparison result shows GM internal wave 
model is a well set-up model under certain conditions (like in 
the North Pacific)

What We Found



Space-time scales of Acoustic fluctuations for 75-Hz, broadband 
transmissions to 87-km range in the eastern North Pacific Ocean
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•Over 6 day period

•Broadband 75 Hz@ 650 m depth, 

•20-element, 700-m long VLA @87Km 
distant, spanning the depth 900- 1600m

•70 transmission, 40 pulses  20 minute  



Examples of Observed Wavefronts
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Procedure of Processing Data
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Rytov theory - Acoustic Filer and its cutoff frequency 
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Comparison Between AET experiment and Rytov theory of Frequency spectrum
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Comparison Between AET experiment and Rytov theory 
of Vertical Wavenumber spectrum
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Monte Carlo Simulation

• Monte Carlo simulations are carried out by propagating the sound
through the time evolved Internal wave field, which follows the 
internal wave dispersion relationship.

•
• Two Types of Monte Carlo simulation are implemented: Narrow 

Band and Broad Band.
•

– Narrow band simulation is implemented by sending out two narrow 
beams with different beam tilt to simulate the multipath effect of AET 
experiment.

– Broad band simulation is implemented by Fourier synthesis of CW 
results, which is composed of 60 different frequencies (from 45 to 
105Hz) .  
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Comparison Between MZ theory and Monte Carlo Simulation
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Summary and future direction

• Ocean Environmental Observations show the GM internal wave model is a well set-
up model under certain conditions. 

• The Rytov theory model and numerical model based on GM internal wave ocean 
model successfully describe the statistical variability of the acoustic fluctuations after 
87 km range transmission in the deep ocean. 

• Importantly the comparisons show that a resonance condition exists between the 
local acoustic ray and the internal wave field such that only the internal waves whose 
crests are parallel to the local ray path will contribute to acoustic scattering. 

• This effect leads to an important filtering of the acoustic spectra relative to the internal 
wave spectra, such that rays with high grazing angles do not acquire scattering 
contribution due to low frequency internal waves. 

• We believe that this is the first observational evidence for the acoustic ray and 
internal wave resonance. 

• We have solved the acoustic scattering case after a one and two upper turning points. 
For long range acoustic propagation of order 1000-km involves order 10 or 20 
scattering events, so can we push this theory prediction to further range?

• Improve ocean sound speed fluctuation model. GM internal wave model is still 
dominant, but we know there are some other processes other than internal waves.

• Broadband modeling of acoustic wave propagation. 




