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Preface

Since Helman and Hesselink’s landmark paper on vector topology in 1989, topolog-
ical analysis has formed an increasingly important part of scientific visualization.
This is not only because it opens up novel forms of understanding but also because
as our data has increased past terascale, machine analysis necessarily substitutes
for laborious human inspection of visualizations. More and more, one can argue
that data analysis precedes rather than succeeds visualization and that topological
analysis is one of the key approaches given its strong mathematical underpinnings,
precise answers and verifiable outcomes.

From its early starts in vector field topology, topological visualization has
expanded to embrace analysis of scalar fields in the form of contour trees,
Reeb graphs and Morse-Smale complexes, analysis of abstract graphs and high-
dimensional data and, most recently, analysis of multivariate fields through Jacobi
sets, Reeb spaces and the joint contour net, linking with the mathematical field of
fibre topology in the process.

Topological visualization is, however, not concerned only with the topological
computation per se. One of the strongest features of the community is its focus on
the full range of theoretical understanding, algorithmic advances and application
work, all of which are represented in this volume.

Starting in 2005, biennial workshops have been held on topological visualization
in Budmerice (2005), Grimma (2007), Snowbird (2009), Zürich (2011), Davis
(2013) and Annweiler (2015), where informal discussions supplement formal
presentations and knit the community together. Notably, these workshops have
consistently resulted in quality publications under the Springer imprint which form
a significant part of the working knowledge in the area.

In the most recent workshop (2015), at Kurhaus Trifels in Annweiler, Germany,
bivariate analysis, Reeb spaces and fibre topology increased in importance, anchored
by keynotes from Professor Osamu Saeki (Kyushu), one of the leaders in fibre topol-
ogy, and Professor Kathrin Padberg-Gehle (Lüneburg), who works on computational
methods for nonlinear dynamical systems.

Of the 23 papers presented at TopoInVis 2015, 20 passed a second-round review
process for this volume. In addition, Professor Saeki contributed a survey of the

v



vi Preface

relevant fibre topology to this volume for the benefit of the community, which we
expect to shape approaches to data visualization in future years, and a further paper
was contributed directly to this volume.

We have grouped this paper in Part I with the two most closely related papers.
Of these, one deals with multi-modal analysis in a particular application domain
(atmospheric impacts of volcanic eruptions). The other deals with joint contour nets
(a quantized approximation of fibre topology) and their relation to analysis based on
Pareto set analysis.

We have then collected papers relating to high-dimensional data in Part II. Here,
the first paper applies scalar field topology to optimization problems, based on the
common description of optimization as a search landscape. In contrast, the second
paper discusses algorithms for computing and visualizing merge trees (one of the
principal forms of scalar analysis) in high-dimensional data. These are grouped with
a paper that considers the relative quality of different measures applied to reduce the
dimensionality of the data.

Part III then collects papers that use scalar topology in relatively low-dimensional
spaces (i.e. three-dimensional space). Here, the first paper compares similarity
between scalar fields, using histograms as summaries of geometric information
to supplement the underlying topological analysis. The second paper is more
applied in nature, as it addresses a practical domain problem—how to track
diffusion of ions into a battery material, using Morse-Smale analysis, to identify the
potential diffusion channels. Lastly, the third paper addresses the inverse problem
of (re-)constructing a scalar field from a known Morse-Smale complex.

Where Part III deals with scalar fields, Part IV considers vector and tensor
fields. Here, while the broad strokes of the analysis are well-understood, actual
computation of topological invariants has a number of practical problems. At the
heart of these is the tension between formal mathematical expression of continuous
models and practical numerical computation. The papers in this part therefore
primarily address issues of discontinuity and degeneracy in the analysis process.

Of these, the first paper deals with issues at the boundary of flow fields through
computation of escape maps, while the second computes similarity measures
between nearby integral curves to detect regions of shared behaviour. A third paper
extends existing ideas for decomposition of vector fields, in order to underpin
a future generation of algorithmic approaches, while a fourth paper extends
existing mathematical analysis of tensor fields as a preliminary to developing new
techniques.

Part V then considers a theme common to many of the newest approaches—
indirect detection of topological features to avoid the numerical problems of early
methods. Here, the goal is to detect coherent structures in a variety of contexts and
use them as the basis of the visualization. The best known techniques for this use
finite time Lyapunov exponents (FTLEs), and three of these papers extend these
techniques, while the fourth considers related computations.

In the first paper on FTLEs, they are used to detect regions of topological change
as a scalar field, which is then subjected to a second round of topological analysis
to detect ridge features. The second paper builds on the observation that not all
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topological boundaries are equally important and maps secondary evaluations to
these boundaries to aid in interpretation. The third paper considers an orthogonal
but crucial issue—the effect of approximation on this form of analysis. Lastly, the
remaining paper considers alternate measures of topological importance, replacing
FTLEs with stochastic computations based on transfer operators.

The last part, Part VI, is devoted to papers that are more explicitly about
algorithms or software engineering. Here, the first paper is about the selection
of thresholds for topological analysis, while the second considers the software
instruction necessary for practical deployment of topological techniques. A third
paper looks at improving the computation of merge trees in a distributed setting,
while the last paper considers knotted graphs, an area of topology not previously
represented in the TopoInVis community.

We note that these areas have followed a common pattern in development—
initially, there were only one or two papers published on flow topology, but over
time, they expanded and triggered the development of the TopoInVis workshop.
Later, new techniques were introduced, in particular the detection of coherent
structures using finite-time Lyapunov exponents, and we now see this separating
as a related but different topic.

Equally, the first TopoInVis workshop did not involve a significant amount of
scalar topology, but this area has increased over time and is represented primarily
in Parts I and II, since Reeb and Morse analyses are sufficiently well-developed to
justify two distinct areas. This growth then triggered developments in analysis of
high-dimensional data: hence Part V.

It is therefore encouraging to see the development of fibre topology and
multivariate analysis as an emerging theme in topological visualization, as it shows
that the pattern continues. Equally, we have started to see work submitted on the
peculiar software engineering challenges of topology, and we expect this theme to
develop further in future.

As with any workshop, however, the measure of quality is not the breadth of
the papers, nor the number of people attending, but whether new ground is being
broken. Here, the pattern of development is clear, and we confidently look forward
to additional themes emerging in future TopoInVis workshops.

We would like to thank all of the participants in TopoInVis 2015, as well as
Springer, for their continued support and look forward to further developments in
all of these areas.

Leeds, UK Hamish Carr
Kaiserslautern, Germany Christoph Garth
Stockholm, Sweden Tino Weinkauf
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Theory of Singular Fibers and Reeb Spaces
for Visualization

Osamu Saeki

Abstract This is a survey article on singularity theory of differentiable maps with
applications to visualization of scientific data in mind. Special emphasis is put on
Morse theory on manifolds with boundary, singular fibers of multi-fields, their Reeb
spaces, and their topological transitions.

2000 Mathematics Subject Classification (MSC): Primary 57R45; Secondary
57R35, 58K15, 68U05, 65D18

1 Introduction

This is a survey article on singularity theory of differentiable maps, which focuses
on their singular fibers and Reeb spaces. The author will try to explain those
materials which may help researchers in the visualization community to use them
for their own purposes. Therefore, for many of the statements, theorems, etc.,
their rigorous proofs are not given in this article, and instead the author will try
to give appropriate references. Furthermore, some of the results might have little
importance from a mathematical point of view, basically because they are classical
and/or well known to mathematicians in general. However, the author will try to
include them as long as they can play important roles in visualization of scientific
data. Surprisingly, many of the important results that will be explored in this article
are quite new in singularity theory. Some of the problems treated in this article are
being investigated in singularity theory as central issues. This means that problems
in the visualization community may lead to interesting problems or sometimes
essential solutions in singularity theory.

The contents of the article are as follows. In Sect. 2, we review the theory of
generic scalar fields, namely, Morse functions. As this is widely known to the

O. Saeki (�)
Institute of Mathematics for Industry, Kyushu University, Motooka 744, Nishi-ku,
Fukuoka 819-0395, Japan
e-mail: saeki@imi.kyushu-u.ac.jp
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H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization IV,
Mathematics and Visualization, DOI 10.1007/978-3-319-44684-4_1
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4 O. Saeki

visualization community in general, we will try to cover issues which might not be
so popular. Special attention is paid to Morse functions on manifolds with boundary,
since in many situations, data sets are given on a bounded domain in Euclidean
spaces which have boundary. We also describe the deformation of Morse functions,
from the view point of the simplification of the Reeb graph.

In Sect. 3, we review the singularity theory for generic multi-fields, which are
called stable maps in singularity theory. We will see that Morse theory can be
extended naturally to some dimension pairs, but not to all cases, at least theoretically.

In Sect. 4, the theory of singular fibers of differentiable maps is explained.
Mathematically, a fiber is a map around a given pre-image and it contains the
information of nearby pre-images. This is why it is important for grasping the
topological transitions of pre-images, which is essential in visualization.

In Sect. 5, we explain the concept of Reeb space of a given multi-field. This is
the straightforward generalization of Reeb graph for a scalar field. We will see that
several structure theorems are already known in singularity theory. In fact, once
you have a classification of singular fibers, a structure theorem then follows. Some
topological transitions of Reeb spaces are also presented with the simplification of
Reeb spaces in mind.

In Sect. 6, we will give several open problems related to singularity theory
and visualization of singular fibers. We will also explain how the visualization
techniques can be useful in singularity theory itself. We will give several examples
of ongoing projects in this direction as well. We end this paper by summarizing
the impact of such singularity theoretical results and techniques on computational
topology and visualization.

Throughout this paper, all manifolds and maps between them are differentiable
of class C1 unless otherwise indicated. A manifold is closed if it is compact and
has no boundary. The symbol Dk denotes the unit disk in R

k.

2 Morse Functions

2.1 Functions on Manifolds Without Boundary

Let us first consider scalar functions on manifolds without boundary. Let N be a
closed manifold of dimension n, n � 1, and consider a smooth scalar function
f W N ! R. For a point p, let dfp W TpN ! R denote the differential of f at p, where
TpN denotes the tangent space of N at p. This is a linear map defined as follows. For
a tangent vector v 2 TpN, the value dfp.v/ is the derivative of f in the direction of v
at p. We say that p is a critical point of f if dfp is the zero map. This is equivalent to
the following: for local coordinates .x1; x2; : : : ; xn/ of N around p, we have

@f

@x1
. p/ D @f

@x2
. p/ D � � � D @f

@xn
. p/ D 0:
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For example, if p attains a local minimum or maximum of f , then it is a critical
point, since the partial derivatives of f at such a point necessarily vanish.

Definition 2.1 For a critical point p 2 N of f , let us take local coordinates
.x1; x2; : : : ; xn/ around p. Then the n � n symmetric matrix

Hf . p/ D
�
@2f

@xi@xj
. p/

�
1�i;j�n

is called the Hessian of f at p. We say that the critical point p is non-degenerate if
detHf .p/ ¤ 0. It is not difficult to see that this is independent of a choice of local
coordinates.

The following lemma is fundamental (for example, see [24, 25]).

Theorem 2.2 (Morse Lemma) If p 2 N is a non-degenerate critical point of f ,
then there exist local coordinates .x1; x2; : : : ; xn/ of N around p such that f is locally
expressed as

f .x1; x2; : : : ; xn/ D ˙x21 ˙ x22 ˙ � � � ˙ x2n C c; (1)

where c D f .p/ is a constant.

In the above theorem, the number of negative signs appearing in (1) is called
the index of the critical point p. The Morse Lemma implies that the differential
topological behavior of f around a non-degenerate critical point is completely
determined by its index.

Definition 2.3 A smooth function f W N ! R is a Morse function if its critical
points are all non-degenerate, and their f -values are all distinct.

As a corollary to the Morse Lemma, we see that a non-degenerate critical point
is isolated in the set of all critical points. In particular, if N is closed, then a Morse
function has only finitely many critical points.

Theorem 2.4 Any smooth function f W N ! R can be approximated arbitrarily
well, including partial derivatives, by a Morse function.

Thus, in many situations, we may assume, at least theoretically, that a given
function is a Morse function. Even if it is not, we can approximate it by a Morse
function by perturbing it arbitrarily slightly. For a computational technique for
perturbation which is very useful in practical situations, called the simulation of
simplicity, the reader is referred to [10].

Definition 2.5 Let f W N ! R be a smooth function. For a real number r 2 R, we
say that it is a critical value of f if there exists a critical point p 2 N of f such that
r D f .p/; otherwise, a regular value.
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f

N R

Fig. 1 Example of level sets: one can observe a topological change of level sets as the value in R

passes through a critical value

By the implicit function theorem, we see easily that for a regular value r, the
pre-image f�1.r/ is a smooth submanifold of dimension n � 1 of N, as long as it
is non-empty (for example, see [26]). Based on this observation, we introduce the
following notion.

Definition 2.6 For a real number r 2 R, the set

f�1.r/ D fp 2 N j f .p/ D rg

is called a level set of f .

An example of level sets is depicted in Fig. 1.
The following theorem implies that a topological transition of level sets never

occurs around a regular value.

Theorem 2.7 Let f W N ! R be a smooth function on a closed manifold N. Suppose
that the closed interval Œa; b� � f .N/ � R contains no critical value of f . Then, there
exists a diffeomorphism h W f�1.Œa; b�/! f�1.a/� Œa; b� such that h.x/ D .x; a/ for
all x 2 f�1.a/, and that the following diagram is commutative:

f�1.Œa; b�/ h������! f�1.a/ � Œa; b�
f & .p2

Œa; b�;

where p2 is the projection to the second factor.

Furthermore, the topological transitions of level sets of a Morse function can be
described by using the Morse Lemma. If p is a non-degenerate critical point of index
�, then the transition of level sets is locally described around p by

�x21 � x22 � � � � � x2� C x2�C1 C x2�C2 C � � � C x2n D "
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Fig. 2 Example of local level set changes for dimension 3: the top half corresponds to the case of
a critical point of index 1 or 2, while the bottom half corresponds to the case of index 0 or 3

for " 2 R with j"j sufficiently small. The other parts which sit outside of a
neighborhood of p do not change topologically in a sense similar to that in
Theorem 2.7. Examples for the case n D 3 are depicted in Fig. 2.

Definition 2.8 For a real number r 2 R, we call the set

Nr D fp 2 N j f .p/ � rg

a sub-level set of f .

Note that if r is a regular value, then the corresponding sub-level set is a smooth
manifold whose boundary is the level set.

Suppose that a Morse function f is given. Starting from a real number r0 strictly
less than the minimum of f , let us consider the topological transition of the sub-
level sets Nr . Then, according to Theorem 2.7, its topological transition occurs near
a real number r only if r is a critical value of f . Furthermore, if p is a critical point
with value r, then by using the Morse Lemma, we can show that NrC", with " >
0 sufficiently small, is obtained by attaching a �-handle to Nr�", where � is the
index of the critical point p. A �-handle is an n-dimensional disk of the form D� �
Dn�� attached to @Nr�" along @D� � Dn��. In this way, we get a so-called handle
decomposition of the manifold N [24].

On the other hand, if we look at the transitions of the homotopy types of the
sub-level sets, then we get a decomposition of N as a CW complex [25].

For more details about handles, the reader is referred also to [12, Chap. 6]. An
application of handle decompositions for morphing 3D shapes has been explored in
[35].

Let us now define the Reeb graph of a Morse function.

Definition 2.9 Let f W N ! R be a Morse function on a closed manifold. Then,
each level set of f has finitely many connected components. Contracting each such
component to a point, we get a space Rf . More precisely, two points x; x0 2 N are
equivalent if they lie in the same component of a level set. This is an equivalence
relation, and the quotient space of N with respect to this equivalence relation is
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f

N R

R f

f̄q f

Fig. 3 Reeb graph of the height function f on the torus: the original function is decomposed into
the composition of the quotient map qf and the function Nf defined on the Reeb graph. The vertices
of Rf are the qf -images of the critical points of f

denoted by Rf , which is endowed with the quotient topology of N. Let qf W N ! Rf

denote the quotient map. By definition, we have a natural map Nf W Rf ! R such that
f D Nf ı qf . Such a decomposition of f is sometimes called a Stein factorization [20].

Please note that, by definition, the quotient space Rf is a topological space.
In fact, it is not difficult to show, with the help of Theorem 2.7, that Rf is a 1-
dimensional cell complex, or a graph: for each critical point p, its image qf .p/ is a
vertex of Rf . For this reason, the space Rf is very often called the Reeb graph [28].
An example of a Reeb graph is depicted in Fig. 3. We warn the reader that a vertex of
Rf may have degree two if the manifold is non-orientable or has dimension greater
than or equal to three.

2.2 Functions on Manifolds with Boundary

So far, we have considered Morse functions on manifolds without boundary.
However, in many practical situations, scalar functions are defined on a manifold
with non-empty boundary, such as a region in R

n with smooth boundary. In this
subsection, we review the theory of Morse functions on manifolds with boundary.
For details, the reader is referred to [14, Sect. 3] or [2].

Let N be a compact manifold with boundary and f W N ! R a smooth function.
There are two types of critical points. One is a usual critical point, i.e., a point p 2 N
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such that the differential dfp W TpN ! R vanishes. We call such a point p a (usual)
critical point of f . Note that such a point p may lie in the interior as well as the
boundary of N in general. The other is a critical point of the restricted function
f@ D f j@N W @N ! R. Such a point is called a boundary critical point of f . Note that
a critical point of the second type necessarily lies on the boundary @N. Note also
that a usual critical point on @N is a boundary critical point, while the converse is
not true in general.

The following lemma is well-known.

Theorem 2.10 (Morse Lemma along Boundary) Let f W N ! R be a smooth
function defined on a manifold with boundary. If p 2 @N is not a usual critical point
of f , but is a non-degenerate critical point of f@, then there exist local coordinates
.x1; x2; : : : ; xn/ of N around p such that

(1) fxn � 0g corresponds to N, and fxn D 0g corresponds to @N,
(2) f is locally expressed as

f .x1; x2; : : : ; xn/ D ˙x21 ˙ x22 ˙ � � � ˙ x2n�1 ˙ xn C c; (2)

where c D f .p/ is a constant.

Examples for the case n D 2 are depicted in Fig. 4.

Fig. 4 Boundary critical points of functions defined on surfaces with boundary: the top half
represents x21 C x2 , while the bottom half represents �x21 C x2
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Definition 2.11 A smooth function f W N ! R defined on a manifold with
boundary is a Morse function if

(1) it does not have a usual critical point on the boundary,
(2) every critical point of f in IntN is non-degenerate,
(3) every critical point of f@ D f j@N is non-degenerate, and
(4) the critical values of f and f@ are all distinct.

It is easy to verify that the critical points and the boundary critical points of a
Morse function f are all isolated. As we are assuming that N is compact, f has only
finitely many critical and boundary critical points.

Then, the same approximation theorem as Theorem 2.4 holds also for functions
on compact manifolds with boundary.

A real number r is a critical value of f if there exists a critical point or a boundary
critical point p of f such that r D f .p/. Otherwise, it is called a regular value. Note
that if r is a regular value, then the level set f�1.r/ is a smooth submanifold of N
of dimension n � 1 with boundary [26]. In this case, we can also show that f�1.r/
intersects @N transversely along the boundary and that @. f�1.r// D f�1.r/ \ @N.

Then, the same product theorem as Theorem 2.7 for functions on compact
manifolds with boundary also holds.

Such a theorem implies that a topological transition of level sets or sub-level
sets occurs only around critical values. Note that these values may be the critical
values of the function f@ D f j@N . Therefore, in practical applications, one needs to
look for boundary critical points, or sometimes one may need to distinguish usual
critical values from boundary critical values. This should be carefully treated, since
a topological transition merely implies that the relevant value is either a critical
value or a boundary critical value, and in some cases, a boundary critical value may
have no importance.

Remark 2.12 As in the case where N has no boundary, if we pass through a usual
critical value of a Morse function, then the topology of the sub-level set necessarily
changes. On the other hand, if we pass through the value of a boundary critical point,
then the topology of the sub-level set changes if and only if the gradient vector of f
at the boundary critical point points “inward” [14]. See Fig. 5.

With the help of the product theorem (cf. Theorem 2.7), we can show that the
space Rf of a Morse function f defined on a compact manifold with boundary is
again a 1-dimensional cell complex, or a graph, which is called the Reeb graph of
f . The vertices are the qf -images of critical points and boundary critical points. The
structure of such Reeb graphs for scalar functions defined on compact surfaces with
boundary is studied in [5, 33].
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Fig. 5 Topological transition
of sub-level sets may not
occur even if we pass through
a boundary critical value. In
this example, f�1..�1; a�/
is diffeomorphic to
f�1..�1; b�/, while
f�1..�1; b�/ is not
diffeomorphic to
f�1..�1; c�/

N
R

f

a

b

c

inward

outward

2.3 Deformations of Morse Functions

The following deformations of Morse functions are well known: birth-death of a
pair of (usual) critical points, and birth-death of a pair of boundary critical points.
We also have a birth-death of a usual critical point near the boundary.

The first one refers to a 1-parameter family ft W N ! R, t 2 I, of smooth
functions, where I D .�"; "/ and " > 0 is very small, with the following
properties:

1. ft is a Morse function for t ¤ 0,
2. there exists a coordinate neighborhood U in N such that ft does not depend on t

on a neighborhood of N nU,
3. on a smaller open set V with V � U, ft is given by

ft.x1; x2; : : : ; xn/ D x31 ˙ tx1 ˙ x22 ˙ � � � ˙ x2n

with respect to some local coordinates .x1; x2; : : : ; xn/.

Mathematically, this can be regarded as a path in the space of functions C1.N;R/
which crosses a “codimension 1 non-Morse stratum” transversely at one point. Note
that this transition creates a pair of critical points of adjacent indices, or eliminates
such a pair.

A birth-death of a pair of boundary critical points is described in a similar
fashion. This is locally described by

ft.x1; x2; : : : ; xn/ D x31 ˙ tx1 ˙ x22 ˙ � � � ˙ x2n�1 ˙ xn;

where fxn � 0g corresponds to N and fxn D 0g corresponds to @N.
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Fig. 6 Birth-death of a usual critical point near the boundary: in the middle figures, the encircled
dots are usual critical points and are, at the same time, boundary critical points. The two functions
on the left have only a boundary critical point, while the two on the right have both a boundary
critical point and a usual critical point in the interior

A birth-death of a usual critical point near the boundary is locally described by

ft.x1; x2; : : : ; xn/ D ˙x21 ˙ x22 ˙ � � � ˙ x2n�1 C txn ˙ x2n:

For n D 2, this deformation is locally depicted in Fig. 6.
We have other types of generic transitions: crossings of critical values. These

deformations do not create nor eliminate critical points, but they interchange the
values of two (usual or boundary) critical points.

In the course of the above deformations, a topological transition of Reeb graphs
may occur as follows if the manifold has no boundary (see also [7]).

Theorem 2.13 If a topological transition of the Reeb graphs for a generic defor-
mation of Morse functions on a closed manifold of dimension n � 2 occurs, then it
is one of the transitions locally described in Fig.7 (or their upside down versions).

Note that in Fig. 7, (1) and (2) correspond to birth-death of a pair of critical
points, where in (1), one of the critical points is a local minimum or a local
maximum. The other three correspond to crossings of critical values. Note also that
the indices of the relevant critical points have certain restrictions. For example, for
(1) and (2), their indices are adjacent, while for (4), they must be 1 and n � 1.

The reader should be careful, since not all transitions are realizable. For example,
the transition (2) from the right to left is always possible if n � 3. More precisely,
given a Morse function whose Reeb graph has a subgraph as in the right hand side of
(2), then one can construct a generic 1-parameter deformation of the given function
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(1) (2)

(3) (4)

(5)

Fig. 7 Possible transitions of Reeb graphs for generic 1-parameter deformations of Morse
functions on closed manifolds near a given parameter: these are local descriptions, and the part
lying outside of these graphs does not change during the deformation

to another Morse function whose Reeb graph is locally of the form as in the left hand
side of (2). However, for the resulting graph, the transition (4) from the right to left
cannot be applied. This is because after the birth of a pair of critical points, they
are so involved with each other that their values cannot be interchanged to make a
crossing of critical values.

We can also prove that the transition of Fig. 7 (1) is always possible. More
precisely, if the Reeb graph of a Morse function contains one of the two graphs
in the figure as a subgraph, then we can deform the given Morse function by passing
through a birth-death exactly once so that the resulting Morse function has the Reeb
graph obtained from the original one by replacing the subgraph with the other graph
in the figure. This gives a theoretical justification for simplification of a Reeb graph
for visualization purposes that uses the topological transition described in Fig. 7 (1).

The above theorem can be proved by using a result on local structures of Reeb
spaces of generic maps into the plane [19]. (For the definition of a Reeb space, refer
to Sect. 5.1.)
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3 Stable Maps

3.1 Notion of Stable Maps

Let N be a smooth manifold and f W N ! R
m a multi-field: in other words, we have

a set of m scalar functions fi W N ! R, i D 1; 2; : : : ;m, such that f D .f1; f2; : : : ; fm/.
In this section, we survey the singularity theory which studies such a set of m smooth
functions at the same time, and not individually.

For a straightforward generalization of the theory of Morse functions to the
case of smooth maps into R

m, we need a theorem similar to the Morse Lemma.
However, in singularity theory of differentiable maps, it is known to be very difficult
in general. Therefore, we adopt the following definition.

Definition 3.1 Denote by C1.N;Rm/ the set of C1 maps N ! R
m equipped with

the Whitney C1 topology (for details, see [13]). A smooth map f W N ! R
m is

called a C1 stable map, or a stable map for short, if there exists a neighborhood
U.f / � C1.N;Rm/ of f such that every map g 2 U.f / is C1 equivalent to f
[13], where two maps f and g 2 C1.N;Rm/ are C1 equivalent if there exist
diffeomorphisms � W N ! N and  W Rm ! R

m such that f ı � D  ı g.
This means that even if one perturbs a stable map slightly, we end up with a map
which behaves exactly the same as the original map up to diffeomorphisms of the
domain and the range. This is the origin of the terminology “stable”.

We can also define the notion of a C0 stable map by replacing diffeomorphisms
by homeomorphisms in the above definition.

Let S1.N;Rm/ (or S0.N;Rm/) be the subspace of C1.N;Rm/ that consists of
all C1 (resp. C0) stable maps. By definition, both of them form open subsets of
C1.N;Rm/. Mather [22] showed that if N is compact, then S1.N;Rm/ is dense in
C1.N;Rm/ if and only if the dimension pair .n;m/ lies in the so-called nice range.
In other words, if .n;m/ is in the nice range, then every smooth map N ! R

m can
be approximated arbitrarily well by a C1 stable map. On the other hand, Mather
[23] showed that if N is compact, S0.N;Rm/ is always dense in C1.N;Rm/. Hence,
every map can always be approximated by a C0 stable map.

For example, for .n;m/ D .8; 6/, S1.N;Rm/ is never dense in C1.N;Rm/.
Remarkably, for the 4-dimensional complex projective space CP4 viewed as a real
8-dimensional manifold, there exists no C1 stable map CP4 ! R

6 [1]. In fact,
there are uncountably many equivalence classes of “generic” singularities for these
dimensions, and a theorem like the Morse Lemma cannot be expected.

On the other hand, it is known that every dimension pair .n;m/ with m � 5 or
m � 2n � 1 is in the nice range (see [13, 22]).
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In the following, for a smooth map f W N ! R
m, we denote by S.f / the set of

points p 2 N such that the differential dfp W TpN ! Tf .p/Rm has rank strictly less
than minfn;mg, where the differential is the linear map associated with the m � n
Jacobian matrix of f at p with respect to some local coordinates around p and f .p/.
The set S.f / is called the singular point set or the Jacobi set of f , and a point in
S.f / is called a singular point of f . The singular point set S.f / is often denoted by
J.f / in the visualization community (see [6]). Note that when n � m, the notation
J.f / encodes the behavior of multiple Morse functions in the sense that it collects
the points where the gradient of the m Morse functions are linearly dependent.

3.2 Characterization of Stable Maps for Specific Cases

Although theorems like the Morse Lemma do not exist in general for multi-
fields, for some specific dimension pairs .n;m/, we do have such theorems. In the
following, if we say that a map is stable, then it means that it is C1 stable.

In the function case, the following is known.

Theorem 3.2 Let N be a closed n-dimensional manifold, n � 1. Then a smooth
function f W N ! R is stable if and only if it is a Morse function. In particular, the
dimension pair .n; 1/ is always in the nice range.

The above theorem means that the notion of a stable map generalizes the notion
of a Morse function in a reasonable sense.

Let us introduce the following notion.

Definition 3.3 Let fi W Ni ! R
m, i D 0; 1, be smooth maps with dimN0 D

dimN1 D n. For singular points pi 2 Ni of fi, i D 0; 1, we define that they have
the same singularity type if for some open neighborhoods Ui of pi and Vi of fi.pi/
and diffeomorphisms � W U0 ! U1 and  W V0 ! V1 with �.p0/ D p1 and
 .f0.p0// D f1.p1/ such that the following diagram is commutative:

Note that the Morse Lemma claims that a non-degenerate critical point of a
function has the same singularity type as the critical point of a quadratic function
˙x21 ˙ x22 ˙ � � � ˙ x2n.

Let us now consider the case m D 2. Let f W N ! R
2 be a smooth map of a

closed n-dimensional manifold, n � 2.



16 O. Saeki

Definition 3.4 A point p 2 S.f / is a fold point if f can be expressed by

f .x1; x2; : : : ; xn/ D .x1;˙x22 ˙ x23 ˙ � � � ˙ x2n/

with respect to appropriate local coordinates around p and f .p/. In other words, p has
the same singularity type as the above polynomial map. Similarly, a point p 2 S.f /
is a cusp point if it has the same singularity type as the map

.x1; x2; : : : ; xn/ 7! .x1;˙x32 C x1x2 ˙ x23 ˙ � � � ˙ x2n/:

We denote by F.f / the set of fold points of f , and by C.f / the set of cusp points. It
is easy to verify that F.f / is a smooth 1-dimensional submanifold of N, while C.f /
is a discrete set of points.

For the case of n D 2, see Fig. 8. See also [9].
Then the following characterization of stable maps is known.

Theorem 3.5 (Whitney [38]) A smooth map f W N ! R
2 is stable if and only if

the following conditions are satisfied.

(1) Every singular point is either a fold point or a cusp point.
(2) The restriction f jF.f / W F.f / ! R

2 is an immersion (i.e. a non-singular curve)
with normal crossings: i.e. for every point q 2 R

2, the pre-image .f jF.f //�1.q/
consists of at most two points, and if it consists of two points, then the images
of the differentials at the two points are linearly independent in TqR2.

(3) f .F.f // \ f .C.f // D ;.
(4) The restriction f jC.f / is injective.

fold cusp

S( f )

Fig. 8 Fold and cusp points for the case n D 2: these are the singularities that can appear for
stable maps of surfaces into R

2
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Let us now consider the case m D 3. Let f W N ! R
3 be a smooth map of a

closed n-dimensional manifold, n � 3.

Definition 3.6 A point p 2 S.f / is a fold point if it has the same singularity type as
the map

.x1; x2; : : : ; xn/ 7! .x1; x2;˙x23 ˙ x24 ˙ � � � ˙ x2n/:

A point p 2 S.f / is a cusp point if it has the same singularity type as

.x1; x2; : : : ; xn/ 7! .x1; x2;˙x33 C x2x3 ˙ x24 ˙ � � � ˙ x2n/:

A point p 2 S.f / is a swallowtail point if it has the same singularity type as

.x1; x2; : : : ; xn/ 7! .x1; x2;˙x43 C x1x
2
3 C x2x3 ˙ x24 ˙ � � � ˙ x2n/:

We denote by F.f / the set of fold points of f , by C.f / the set of cusp points, and by
ST.f / the set of swallowtail points. It is easy to verify that F.f / and C.f / are smooth
2- and 1-dimensional submanifolds of N, respectively, while ST.f / is a discrete set
of points.

Theorem 3.7 A smooth map f W N ! R
3 of a closed n-dimensional manifold N,

n � 3, is stable if and only if the following conditions are satisfied.
(i) Every singular point is either a fold point, a cusp point, or a swallowtail point.

(ii) The singular point set S.f / is a smooth 2-dimensional submanifold of N under
the above condition. Then, for every r 2 f .S.f //, f�1.r/ \ S.f / consists of
at most three points and the map f jS.f / around f�1.r/ \ S.f / is equivalent to
one of the six maps whose images are as described in Fig. 9: .1/, .2/ and .4/
correspond to 1, 2 or 3 fold sheets, respectively, .3/ corresponds to a cusp
point, .5/ represents a transverse crossing of a cuspidal edge as in .3/ and a
fold sheet, and .6/ corresponds to a swallowtail point.

4 Singular Fibers

4.1 Concept

Let f W N ! R
m be a smooth map of a closed n-dimensional manifold, n � m � 1.

In this section, we mainly consider the case with m � 2, i.e. the case of a multi-field.

Definition 4.1 For a point r 2 R
m, the set f�1.r/ D fp 2 N j f .p/ D rg is called

the fiber of f over r. In particular, when m D 1, this notion coincides with that of a
level set.
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(1) (2) (3)

(4) (5) (6)

Fig. 9 Possible local configurations of the image of f jS.f / in R
3 for a stable map f W N ! R

3 of a
closed n-dimensional manifold N, n � 3

In fact, in singularity theory, we use the terminology “fiber” in such a way that it
contains more information than just the pre-image as follows [29].

Definition 4.2 Let fi W Ni ! R
m be smooth maps of n-dimensional manifolds,

i D 0; 1. For ri 2 R
m, we say that the fibers over r0 and r1 of f0 and f1,

respectively, are equivalent if for some open neighborhoods Ui of ri in R
m, there

exist diffeomorphisms ˚ W .f0/�1.U0/ ! .f1/�1.U1/ and ' W U0 ! U1 with
'.r0/ D r1 which make the following diagram commutative:

When r 2 R
m is a regular value of f , we call f�1.r/ a regular fiber; otherwise, a

singular fiber.

For example, the following is well known [29].

Theorem 4.3 Let f W N ! R be a Morse function on a closed surface N. Then the
fiber over each critical value in R is equivalent to one of the three types of fibers as
depicted in Fig. 10.
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(1)

(2)

(3)

Fig. 10 List of equivalence classes of singular fibers for Morse functions on closed surfaces. For
each horizontal arrow, the left hand side depicts the neighborhood of the pre-image of a critical
value, and the arrow represents the map as a height function. Thus, for example, the function
in (1) has exactly one local extremal point as a critical point, but the corresponding pre-image
may not be connected and may have several circle components consisting of regular points whose
neighborhoods are diffeomorphic to a cylinder. The component of the neighborhood containing a
critical point is diffeomorphic to a disk for (1), a 2-sphere with three disks removed for (2), and a
Möbius band with a disk removed for (3). In particular, singular fibers of type (3) never occur if
the domain surface is orientable

4.2 Ehresmann Fibration Theorem

In the following, a map is proper if the pre-image of a compact set is always
compact.

Theorem 4.4 (Ehresmann Fibration Theorem [11]) Let f W N ! IntDm be a
proper submersion of an n-dimensional manifold N (possibly with boundary) into
the interior of the m-dimensional disk with n � m such that f j@N W @N ! IntDm is
also a submersion if @N ¤ ;. Then for the center 0 of IntDm, the pre-image f�1.0/
is a compact .n � m/-dimensional manifold with boundary, and for an arbitrary
diffeomorphism h W f�1.0/ ! F onto a manifold F, there exists a diffeomorphism
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Qh W N ! F � IntDm such that the diagram

N
Qh������! F � IntDm

f& .p2

IntDm

is commutative and that Qhjf�1.0/ D h W f�1.0/! F � f0g, where p2 W F � IntDm !
IntDm is the projection to the second factor.

Note that Theorem 2.7 can be regarded as a corollary to the above theorem.
The above Ehresmann Fibration Theorem implies that the equivalence class of a

regular fiber is completely determined by the diffeomorphism type of the pre-image
submanifold.

Example 4.5 Let us consider the case with n D 3 and m D 2. If f is a submersion,
then its central fiber f�1.0/ is a compact 1-dimensional manifold possibly with
boundary. Thus, in general, it is a disjoint union of circles and arcs. Suppose f�1.0/
is an arc. Then, the Ehresmann Fibration Theorem implies that all fibers of f are
arcs. Moreover, the map f is equivalent to the projection Œ0; 1� � IntD2 ! IntD2.
See Fig. 11.

=

∼=

f p2

N

Fig. 11 Example of a submersion of a compact 3-dimensional manifold into Int D2 with an arc
central fiber. All the fibers are arcs, and they are situated in N as a “trivial family” parameterized
by IntD2
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Definition 4.6 A smooth map as in Theorem 4.4, or in other words, a map which is
equivalent to the projection p2 W F � IntDm ! IntDm is called a trivial bundle or a
trivial F-bundle. For example, a map as in Example 4.5 is a trivial arc bundle.

Remark 4.7 Here is a very important remark for the visualization purpose. Let
f W N ! R

m be a smooth map of a compact n-dimensional manifold, n � m � 1.
Then, ˙.f / D f .S.f // [ f .S.f j@N// divides the range R

m into some regions.
The Ehresmann Fibration Theorem implies that over each of these regions, the
behavior of f is constant. This is a very important observation from the visualization
viewpoint:

Topological transitions of fibers occur only along the Jacobi set image ˙.f /.
Over each point of ˙.f / lies a singular fiber of f. That is why singular fibers are
important in grasping the topological features of a given multi-field.

4.3 Classification Results

In this section, let us review some known classification results for singular fibers of
stable maps.

Definition 4.8 Let f W N ! R
m be a proper smooth map of a manifold of dimension

n with n � m � 1. For a positive integer `, we call the map

f � idR` W N �R
` ! R

m � R
`

the `-th suspension of f , where idR` is the identity map of R`. When ` D 1, we
sometimes call it the suspension of f . Furthermore, to the fiber of f over a point
r 2 R

m, we can associate the fiber of f � idR` over r � f0g. We say that the latter
fiber is obtained from the original fiber by the `-th suspension.

The following list of singular fibers is obtained in [29].

Theorem 4.9 Let f W N ! R
2 be a stable map of a closed 3-dimensional manifold

N. Then, every singular fiber of f is equivalent to the suspension of a fiber as
appearing in Fig. 10, or a disjoint union of one of the fibers as in Fig. 12 and a
finite number of copies of a fiber of the trivial circle bundle.

In Fig. 12, “II” means that they have codimension 2, which refers to the
codimension of the set of points in R

2 whose corresponding fibers are equivalent
to the relevant one. The tilde symbol means that non-orientable domain is also
considered. Each digit 0–7 corresponds to a connected fiber and if a superscript
consists of two digits, then it means that it has two components corresponding to
the two digits.

Note that a part of the above list is mentioned in the introduction of [20].
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ĨI00 ĨI01
ĨI02

ĨI11
ĨI12

ĨI22

ĨI3 ĨI4
ĨI5

ĨI6 ĨI7 ĨIa

Fig. 12 List of singular fibers of stable maps of closed 3-dimensional manifolds into R
2. Each

figure symbolically depicts the relevant pre-image in the domain 3-manifold: however, it also
represents the map into R

2 defined on a neighborhood of the pre-image. For example, the domain X

of the map corresponding to QII00 is the disjoint union .D21�Œ�1; 1�/[.D22�Œ�1; 1�/, and the relevant
map X! Œ�1; 1�� Œ�1; 1� � R

2 is given by .x; y; z/ 7! .�x2� y2; z/ for .x; y; z/ 2 D21� Œ�1; 1�,
and by .x; y; z/ 7! .z;�x2 � y2/ for .x; y; z/ 2 D22 � Œ�1; 1�

Example 4.10 (1) Let us consider the singular fiber QII4. First recall that by Theo-
rem 3.5, the singular value set f .S.f // is a curve possibly with double points and

cuspidal points. A fiber of type QII4 corresponds to a double point, say r 2 R
2. Thus,

f�1.r/ contains two fold points. Furthermore, they belong to the same component.
If one of them is a definite fold point, then it forms a whole connected component
of f�1.r/, which is a contradiction. Therefore, both of them must be indefinite
fold points. Therefore, near each of them, f is locally given by .x1; x2; x3/ 7!
.x1; x22 � x23/. Hence, the pre-image f�1.r/ is locally given by the equation x1 D 0

and .x2 C x3/.x2 � x3/ D 0, which consists of two line segments intersecting at the
singular point. Since two fold points lie on the same connected component, these

two sets of “crossings” must be connected by curves. In our case of QII4-type fiber,
the result is as depicted in Fig. 12.

Let us consider the connected component K of f�1.U/ containing the singular
fiber, where U is a small disk neighborhood of r. Fig. 13 depicts the behavior of the
map f jK W K ! U. It depicts U together with the singular value set f .S.f // in red,
which locally divides the range U into four quadrants. Over the crossing of f .S.f //,

which is nothing but the point r, we have a fiber of type QII4. Furthermore, over each
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Fig. 13 Fiber over each part of f .S.f // and R
2 n f .S.f //: the central fiber is of type QII4

Fig. 14 Fiber over each part of f .S.f // and R
2 n f .S.f //: the central fiber is of type QIIa

point of f .S.f // n frg, we have the “figure eight fiber”, which is the suspension of
the fiber as in Fig. 10 (2). Finally, over each point of the four neighboring quadrants,
we have the regular fiber consisting of one or two circles.

This means that if we know that a given map has a singular fiber of type QII4, then
we also know its neighboring fibers as well. In other words, topological transitions
of fibers are encoded in each member of the classification list.

(2) The neighboring fibers around a fiber of type QIIa are as depicted in Fig. 14.

As to maps of manifolds of dimension 4 to R
3, we have the following [29].

Theorem 4.11 Let f W N ! R
3 be a stable map of a closed orientable 4-

dimensional manifold N. Then, every singular fiber of f is equivalent to the disjoint
union of one of the fibers as in Fig. 15 and a finite number of copies of a fiber of the
trivial circle bundle.
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Fig. 15 List of singular fibers of stable maps of closed orientable 4-dimensional manifolds into
R
3

Fig. 16 Example of neighboring fibers of a specific singular fiber of codimension three for a stable
map f W N! R

3 of a closed 4-dimensional manifold N

In Fig. 15, � denotes the codimension of the set of points in R
3 whose

corresponding fibers are equivalent to the relevant one.
An example of the neighboring fibers of a singular fiber of codimension three is

depicted in Fig. 16.
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Fig. 17 List of fibers for stable maps of compact 3-dimensional manifolds with boundary into R
2

(1): squares correspond to boundary; dotted ones represent transverse intersections with boundary,
while thick open ones represent tangencies. Black solid square represents the suspension of the
first fiber depicted in Fig. 4

For maps of 3-dimensional manifolds with boundary into R
2, we have the

following [32].

Theorem 4.12 Let f W N ! R
2 be a stable map of a compact 3-dimensional

manifold N with boundary. Then, every fiber of f is C1 equivalent to the disjoint
union of one of the fibers in the following list and a finite number of copies of a fiber
of the trivial circle or arc bundle:

(1) fibers as depicted in Fig. 17, i.e. eb00, eb01, and ebI� with 2 � � � 10,
(2) fibersfbII�;� with 2 � � � � � 10, wherefbII�;� means the disjoint union of ebI�

and ebI� ,
(3) fibers as depicted in Fig. 18, i.e. fbII� with 11 � � � 39, fbIIa, fbIIb, fbIIc, fbIId,fbIIe andfbIIf .

Our convention for the symbols follows that for Fig. 12, except that we put “b”
for indicating manifolds with boundary for the domains.

An example of the neighboring fibers of a singular fiber of type fbII24 is depicted
in Fig. 19.
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Fig. 18 List of fibers for stable maps of compact 3-dimensional manifolds with boundary into R
2

(3): the singular fiber ebIId corresponds to the deformation as described in the top half of Fig. 6 in
the sense of Sect. 5.1, while ebIIe and ebIIf correspond to the bottom half of Fig. 6.

Translating these concepts to computational representations and associated
algorithms is an area of ongoing research. In particular, recent work on the joint
contour net [3, 4, 31, 34] approximates Reeb spaces (see Sect. 5.1) based on a
quantization of the function.
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Fig. 19 Neighboring fibers of the singular fiber of type ebII24. The points on the vertical red line
correspond to a singular fiber tangent to the boundary. By crossing that line, the fiber breaks at the
part marked by the thick square or two of the components are connected

5 Reeb Space

5.1 Notion of Reeb Space

Let f W N ! R
m be a smooth map of a compact n-dimensional manifold, n � m.

By contracting each connected component of a fiber to a point, we get the space Rf ,
which is called the Reeb space of f (see also [8]). As in Definition 2.9, we can also
define the quotient map qf W N ! Rf and the Reeb map Nf W Rf ! R

m so that f is
decomposed as f D Nf ı qf , which is called the Stein factorization of f .

By Hiratuka and Saeki [16], it is known that if f is a stable map, then its Reeb
space is triangulable. Furthermore, for some specific dimension pairs .n;m/, the
local structures of Reeb spaces have been determined (see, for example, [15, 19,
32]). In fact, once you have a classification of singular fibers, the local structures of
Reeb spaces can easily be obtained by examining the connected components of the
nearby fibers for each singular fiber in the classification list.

Let ft W N ! R
m, t 2 I, be a 1-parameter deformation of smooth maps. Then, it

gives rise to the new map F W N � I ! R
m � I, defined by F.x; t/ D .ft.x/; t/. It

is known that fftg is a generic 1-parameter family if and only if F is a stable map.
Therefore, if we can describe the local structures of the Reeb space of F, then we
can describe the transitions of Reeb spaces of ft, as t varies. Theorem 2.13 is such
an example.
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Let f W N ! R
m be a stable map of a compact n-dimensional manifold and

qf W N ! Rf the quotient map onto the Reeb space. The following is well known.

Proposition 5.1 The homomorphism qf� W �1.N/ ! �1.Rf / induced by the
quotient map on the fundamental groups is surjective. In particular, if N is simply
connected, then so is the Reeb space Rf . Furthermore, the homomorphism qf� W
H1.NIZ/! H1.Rf IZ/ induced on the 1st homology groups is also surjective.

However, qf� W H2.NIZ/ ! H2.Rf IZ/ may not be surjective. In fact, we can
construct a stable map f W D3 ! R

2 such that H2.Rf IZ/ ¤ 0, where D3 is the
3-dimensional disk.

5.2 Deformation of Reeb Spaces

Suppose that a 1-parameter deformation of smooth maps ft W N ! R
m, t 2 I, of

a compact manifold N is given, where I is an interval. If the family fftg is generic
enough, then we have a discrete set B � I of parameters such that every ft for t 62 B
is stable. In fact, if t0 and t1 lie in the same component of I n B, then we can show
that ft0 and ft1 are C1 equivalent in the sense of Definition 3.1. The values in B are
called bifurcation parameters. The behaviors of ft near bifurcation parameters for
the scalar function case has been treated in Sect. 2.3.

Mata-Lorenzo [21] studied generic 1-parameter families of smooth maps of a
closed 3-dimensional manifold intoR2, and gave a list of possible (local) topological
transitions of the Reeb spaces near the bifurcation parameters. There are, in fact, 22
types of local topological transitions of Reeb spaces. Four of them are depicted in
Fig. 20.

Here, we need to note that not every transition in the list is always realizable by
a generic 1-parameter deformation of maps into R

2 [27] as in the remarks given
just after Theorem 2.13. Takao [36, 37] has studied which of the Mata-Lorenzo
transitions can always be realized by such a 1-parameter deformation of maps into
R
2, and has shown that the lip move and the swallowtail moves as depicted in Fig. 20

can always be realized.
In fact, Takao [36] shows a stronger result as follows. If the map from the Reeb

space into R
2 satisfies certain reasonable conditions, then the relevant Mata-Lorenzo

transitions can be realized by isotopies of the two component Morse functions.
Here, an isotopy is a 1-parameter family of Morse functions that are generated
by 1-parameter families of diffeomorphisms of the domain and the range. Thus,
without changing the topological behaviors of the individual Morse functions, one
can perform certain Mata-Lorenzo transitions.

This result guarantees, for example, that Reeb space simplifications based on
Fig. 20 is realized by slightly changing the component functions. This is a good
result from a practical viewpoint when one considers visualization of scientific data
and its simplifications.



Theory of Singular Fibers and Reeb Spaces for Visualization 29

Fig. 20 Several transitions of Reeb spaces for a generic 1-parameter family of smooth maps of a
closed 3-dimensional manifold into R

2. The top one is called a lip move and each of the other three
is called a swallowtail move

6 Future Problems

Our technique based on the theory of singular fibers of stable maps of compact
3-dimensional manifolds into R

2 works very well for visualizing analytic multi-
fields, as has been seen in [30, 31]. This is very promising from a mathematician’s
viewpoint, because many important analytic maps are waiting for us to analyze their
structures visually.

On the other hand, our technique should be improved for visualizing general
scientific data. It works relatively well for simulation data, but sometimes we have
serious problems with noise or sparsity of real data.
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6.1 Impact on Mathematics

The visualization techniques as mentioned above have substantial applications to
Mathematics as has been explored in [34].

A supporting example has been exhibited in [31, Fig. 17]. It supports a theoretical
result on the number of cusps that appear in a stable perturbation of a non-generic
map. The original map is degenerate: however, after a perturbation, two or more
cusps appear. This had been predicted by a theorem [17] in singularity theory, and
it was visually verified.

We have another challenging problem for which our techniques might help a lot.
Let RC denote the set of strictly positive real numbers. For a; b 2 RC, set

fa;b.z;w/ D z3 C w2 C aNzC b Nw; .z;w/ 2 C
2:

How does the family ffa;bg bifurcate if .a; b/ 2 R
2C varies? The following is known

[18]. The parameter space R
2C is divided into two regions A and B. The left two

figures in Fig. 21 show the Jacobi set images of fa;b W C2 D R
4 ! R

2 D C for
.a; b/ 2 A and .a; b/ 2 B, respectively.

The author would be very happy if we can visualize the singular fibers for fa;b.

6.2 Impact on Computational Topology and Visualization

As has been pointed out, understanding fiber topology and Reeb spaces is essential
for visualizing a given set of multi-field data. Like the Morse theory and the associ-
ated Reeb graphs for visualization of scalar functions, the theory of singular fibers
of differentiable maps and the associated Reeb spaces furnishes theoretical back
grounds for visualization of multi-fields. In particular, it gives classification results

Fig. 21 Jacobi set images for fa;b with .a; b/ 2 A and B
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of local singularities and singular fibers, which are expected to help the recognition
problem of singularities and singular fibers from algorithmic viewpoints. This
would lead to potentially new solutions of problems in computational topology and
visualization.
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Topology-Based Analysis for Multimodal
Atmospheric Data of Volcano Eruptions

Alexander Kuhn, Wito Engelke, Markus Flatken, Hans-Christian Hege,
and Ingrid Hotz

Abstract Many scientific applications deal with data from a multitude of different
sources, e.g., measurements, imaging and simulations. Each source provides an
additional perspective on the phenomenon of interest, but also comes with specific
limitations, e.g. regarding accuracy, spatial and temporal availability. Effectively
combining and analyzing such multimodal and partially incomplete data of limited
accuracy in an integrated way is challenging. In this work, we outline an approach
for an integrated analysis and visualization of the atmospheric impact of volcano
eruptions. The data sets comprise observation and imaging data from satellites as
well as results from numerical particle simulations. To analyze the clouds from the
volcano eruption in the spatiotemporal domain we apply topological methods. We
show that topology-related extremal structures of the data support clustering and
comparison. We further discuss the robustness of those methods with respect to
different properties of the data and different parameter setups. Finally we outline
open challenges for the effective integrated visualization using topological methods.

1 Introduction

The analysis of atmospheric gas and particle traces, such as of SO2 or ash particles,
is of fundamental importance for a better understanding of global atmospheric
processes. Specifically volcano eruption events can produce massive amounts of
such ‘tracers’ over a short time period. These substances can have severe global
impact and may trigger complex atmospheric interactions. To better understand
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those processes an increasing number of modalities (including measurements and
simulations) is utilized. One major challenge is to extract and combine the essential
information, which is spread over various, mostly (w.r.t. space and time) sparse
data sources. This requires a careful integration of information from each modality,
considering its quality and limitations. For instance, sparse but particularly reliable
measurement data can be used to calibrate the simulations producing denser data,
while simulation data provide a means to interpolate measured data and to fill
spatial and temporal gaps. The increased amount of information available today
provides more complete representations of the physical phenomena, but increases
the complexity of the analysis; hence a main objective are effective methods for
data filtering, information reduction and abstraction. In this work we address those
challenges by applying topology-based methods. Using the example of trace gas
clouds we show that topological data analysis can serve as an effective tool to
address essential analysis tasks. We focus on the extraction of extremal graphs as
means for feature-oriented data reduction and as basis for visual comparison of the
data from different sources. Spatio-temporal clustering in the space-time domain
is used for a visual representation of the evolution of aforementioned atmospheric
events. Hence, our main contributions are:

• Integration of spatially and/or temporally sparse data into a space-time domain
• Topological analysis and visualization of features in the common domain
• Topology-based spatio-temporal segmentation of features in the space-time

domain, and fused visualization thereof.

The specific application considered is the analysis of pollutant clouds that emerged
from volcanic eruptions. We are using data provided for the 2014 IEEE Visualiza-
tion Contest [18]. This work is a follow-up of a contest contribution [11] that focuses
on topological aspects and deepens them.

2 Related Work

Climate research is a data-intensive field. Depending on the application the data
comes from various sources, e.g. large-scale simulations or observations from
satellites. Accordingly, understanding and analyzing the data plays an important
role. While visualization is used on an everyday basis, it is mostly limited to
simple methods such as diagrams, statistical plots, color plots in a geographical
context. More advanced visualization tools are often unknown due to their limited
dissemination [29]. A particularly important topic is cloud evolution, which requires
identification and tracking of clouds. Many methods have been proposed for this
purpose, but they are often very complicated and only suitable for a specific
application. For example Kober et al. follow a multi-scale approach based on
image pixel displacement to track thunderstorm clouds from satellite data [21].
Extraction of contours and isosurfaces as well as tracking their change over time
is part of multiple other approaches. Gambheer et al. track clouds by considering
the overlap of sub-level sets across time steps [13]. Isosurface cloud-tracking in VR



Topological Methods to Analyze Volcano Eruptions 37

environments was introduced by Griffith et al. [15]. An example for cumulus cloud
tracking is based on region growing followed by a space-time segmentation [19].

Many of the ideas used in these papers fit well into the framework of topological
feature identification and tracking. A perspective that seems not yet to be present
in meteorology and climate research. For instance, topological methods can be
very powerful regarding abstraction, simplification and comparison of features
such as clouds or trace gas emissions clouds. This has been shown in a recent
paper, where cloud systems are tracked by employing topological segmentation
for the identification of clouds and an optical flow method for sub-scale motion
tracking [7]. Topological data analysis plays an increasing role in the field of
visualization with many different applications. The full topological information
of a scalar field is given by its Morse decomposition or topological graph. There
are different strategies available to extract the topological graph from sampled
scalar fields. The most common approaches for its computation go back either
to Edelsbrunner [9] (using a piecewise linear interpolation) or to Forman [12]
(who proposed a discrete Morse theory). Nowadays, efficient algorithms exist
implementing these approaches [16, 17, 27, 28]. In many applications it is not
necessary to compute the complete topological graph. A reduced structure keeping
track only of changes in the number of components is the contour tree [3]. A
structure that frequently represents features of interest is the extremal graph, which
focuses on maxima and ridge lines [4]. Overviews on topological approaches in the
context of vector fields are presented by Laramee et al. [23] and Pobitzer et al. [25].
Also tracking of topological structures over time has been considered. The proposed
methods can roughly be categorized according to the geometric and topological
criteria they are using to establish correspondences between features at successive
time points. Geometric methods considering overlap of regions have been used
for the tracking of burning cells [1, 2]. An example for topological tracking is
mapping of critical points across time steps defining a feature flow field [26]. Other
approaches are based on Jacobi sets [8].

3 Description of the Application and Data Sources

The aim of this work is to analyze the atmospheric impact of volcanic eruptions
covered by several measurement modalities and simulations during the time from
30.05.2011 until 07.09.2011. In the focus of the presented analysis are three
dominant volcanic events that have been recorded during this period: The eruptions
of the volcanos Puyehue-Cordón Caulle (Ranco Province, Chile), Nabro (Red
Sea Region, Eritrea), and Grimsvötn (South-East Iceland). The eruptions can be
characterized by considering atmospheric tracers, like ash particles and SO2 gas
concentrations. The tracers form ‘plumes’, whose spatio-temporal evolution can be
observed in all modalities. An overview of the temporal availability of the modalities
is shown in Fig. 1.

All data sources are inherently time-dependent and have a common geographic
reference grid (longitude, latitude, and optionally height). The presented methods
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Start of Data
01.06.2011

Fig. 1 Overview over the temporal availability of the various data: The three eruption events and
the time span of the respective measurements or simulations are displayed. The yellow and gray
bars indicate the ‘lifetime’ of the ejected sulfur, respectively ash particles

address the following questions that have been raised by the domain scien-
tists [18]:

1. What are suitable methods to combine and relate the given modalities into a
common reference space (integrated domain)? See Sect. 4.1.

2. How to reduce the amount of data to focus on the phenomena of interest (i.e.,
events related to volcano eruptions)? See Sect. 4.2.

3. How to integrate sparse data sources, derive compact feature-oriented visualiza-
tions, and how to associate this information to specific events? See Sect. 5.

3.1 Input Data Sources

The first type of data was obtained using the Michelson Interferometer for Pas-
sive Atmospheric Sounding (MIPAS) [14]. MIPAS measurements provide vertical
sampling profiles at altitudes between 5–70 km, with approximately 14 orbits per
day. The measuring technique is highly sensitive towards aerosol tracers and offers
a good vertical resolution. The data is stored as single trajectory, containing the
sampling points (longitude, latitude, altitude, and time) and values for different
events (clear sky, ice detection, ash, and sulfate aerosol detection) [18]. Note that
each event is represented as a binary value that indicates whether a predefined
threshold has been exceeded. All sampling points (� 1.3 Million points at 48 MB,
starting from 01.06.2011 until 01.09.2011) of the MIPAS data set are shown in
Fig. 2a.

The second data source are simulated trajectories using the Chemical Lagrangian
Model of the Stratosphere (CLaMS) developed at the Institute for Energy and
Climate Research, RWTH Aachen Univ. [22, 24]. This is an hierarchical model
to describe the global chemical transport and contains a selected subset of pre-
integrated trajectories, seeded at MIPAS detections. These are sulfur detections on
the northern hemisphere for Grimsvötn and Nabro (� 55.000 trajectories at 1 GB)
and MIPAS ash detections on the southern hemisphere for Puyehue-Cordón Caulle
(� 5.800 trajectories at 62 MB). The input boundary conditions for the simulations
are based on ERA interim data [18]. CLaMS trajectories are characterized by
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a) b)

c)

Fig. 2 Overview of the available data sets: (a) MIPAS satellite measurements, (b) CLaMS
simulated trajectories, and (c) AIRS satellite measurements.

an high spatial and temporal resolution and contain additional information about
physical scalars (e.g., pressure, temperature, potential vorticity). However, since
numerical simulation can only approximate the real world phenomenon, the relia-
bility of the trajectories decreases with their temporal distance to the seeding point.
The trajectories are shown in Fig. 2b.

The third data source are measurements from the Atmospheric Infrared Sounder
(AIRS), acquired by the NASA Aqua satellite. It measures thermal emissions in
the atmosphere [20]. The satellite scans horizontal cross-sections of the atmosphere
at very high resolutions and performs 14.5 orbits per day. Individual scanning
samples are organized on a high-resolution quad-strip, which has been cut into 200
segments describing 12 h of measurement with �1.4 Million quads at 95 MB each
(in total 19 GB). Every segment provides almost global coverage (i.e., temporal
delay produces gaps between neighboring strips) and provides index information
about SO2 and ash concentrations [18]. Note that the index summarizes atmospheric
information of a vertical column, hence height information is lost during acquisition.
The original data acquired at a 12 h interval is shown at Fig. 2c.

4 Analysis of the Common Reference Domain

To combine and analyze the different data sources we proceed as follows: The basis
is a projection of all individual data sets into one common space-time domain;
second, extremal structures for both major measurement sources are extracted
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for visual comparison; finally, a space-time segmentation method is applied for
a combined visualization integrating standard methods as isosurfaces, trajectory
rendering for a detailed visual analysis.

4.1 Construction of the Common Reference Domain

In a first step, we sample the given data sets (Sect. 3.1) into a common reference
domain. It is constructed as discrete regularly-sampled 4D domain with the dimen-
sions longitude, latitude, altitude, and time. For visualization purposes, we mainly
refer to the 3D subspace consisting of longitude, latitude, and time. Thereby, the
measurement data builds the core of the new data set. Each source adds specific
information to this domain according to the characteristic of the respective modality,
e.g., SO2 or ash concentrations, number of detection events. To increase the spatial
and temporal coverage we interpolate the data on basis of the simulated CLaMS
trajectories. In detail we introduce two filtering procedures:

1. Gaussian filtering of the raw data: The goal of this step is to assign a small
volume to the point measurements and to the one-dimensional trajectories.
This is achieved using a Gaussian convolution kernel, which adds an isotropic
footprint with decreasing intensity to the samples in space and/or time. The size
of the kernel is chosen very small in the order of a couple of gird cells. After this
filtering step the field is still sparse and does not cover the entire domain.

2. Spatio-temporal interpolation using trajectories: The CLaMS particle sim-
ulation provides the necessary information for a realistic interpolation of the
sparsely filled domain. It is assumed that the detected particles roughly follow
these trajectories. This leads to a convolution of the measurements along the
CLaMS trajectories with a non-linear and anisotropic spatio-temporal footprint.
Technically, we apply an advection of the measurements along the trajectories.
The length of the chosen trajectory segment 	 and the decay of the signal along
the trajectory are parameters of the method. In the following we assume a linear
decay to zero within an interval ŒC	;�	�. For small values of 	 the accuracy of
the trajectories is high enough to obtain a reliable approximation of the particle
distribution.

If not mentioned differently, we use a sampling resolution of 720 � 360� 800 cells
for the reference sub-domain. Detailed views for sub-spaces of higher resolution
or dimension may be extracted and analyzed using the same methodology. In the
following the data specific projections are described in more detail.

MIPAS Data Processing The MIPAS samples are point samples that only carry
a flag indicating a detection. The first step to integrate the MIPAS data is to count
the number of detections per grid cell. Next, we apply at first the isotropic Gaussian
filter and then the anisotropic interpolation filter. For the Figures a kernel size of 5
cells and 
 D 0:4 is used. A temporal reasonable range of 	 is in the order of 48 h
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(see [22, 24] for details, the impact of different setups are illustrated in [11]). This
result of the MIPAS integration is a scalar density field approximating the spatial
and temporal distribution of the particles.

AIRS Data Processing AIRS data has a high spatial but low temporal resolution
due to the orbiting of the measuring satellite. There is no altitude information
attached to these measurements. The temporal gaps between two measurements are
in the order of 12 h. A Gaussian filter in temporal direction provides a simple but
not very accurate solution to bridge the gaps. A more realistic result is obtained by
interpolating the data using the CLaMS data as described above.

CLaMS Data Processing For the particle simulation trajectories are seeded at
relevant MIPAS detections during the Puyehue-Cordón Caulle and Nabro eruptions.
The detections are pre-filtered by domain experts before the simulation [18]. Thus,
the density of the trajectories depends on the number of MIPAS samples and they
are only available at irregularly distributed locations. Its reliability is decreasing
with the simulation time. Therefor we use the CLaMS data mainly as basis for the
interpolation of the satellite observation-data via advection.

To speed up the advection procedure along the trajectories, we generate an
auxiliary time-dependent vector field from the CLaMS trajectories. To construct this
field, we compute a weighted average of the velocity information within each cell.
The velocity is given as the tangent directions of the trajectories passing through
that cell. The weight accounts for the decreasing reliability along the trajectories.
Here we use a linear decay along the trajectory. Note that the resulting field is not
an approximation of the meteorological wind field used for the simulation, since the
simulation also accounts for chemical reactions in the atmosphere [22, 24].

4.2 Topological Analysis in the Common Reference Domain

The integration of all input data into the common space-time domain yields
fields that characterize the spatio-temporal distribution of ash and sulfur. In our
framework, topological techniques are applied to analyze and visualize these fields.
The benefit of topological analysis is a high level of abstraction which is compactly
represented by explicit geometrical structures. These are graphs, segmented vol-
umes, or surfaces characterizing the underlying field. The applied methods provide
also access to topological simplification and filtering. The topological features
can be used to link and compare the given modalities against each other, e.g.,
reference ash against SO2, or advected MIPAS against AIRS. Further they can be
associated to observable phenomena, like specific volcano eruptions, at an abstract
feature-based level. In the following we explore possibilities to characterize physical
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Data: Regular scalar field s.x/
Result: Segmentation by hierarchical labels, topological graph
1) Init union-find data structure UF.Gj/,
where each group Gj has an label j and stores a set of grid nodes
2) Sort all sample points, based on its value into sorted list L
(ascending: maxima, descending: minima features)
while L contains grid nodes gi with values larger than threshold hmin do

classify current grid node gi:
if gi is isolated extrema then

add new group to UF
else if gi is adjacent to a single group Gj then

add gi to Gj

else if gi is adjacent to multiple groups (saddle point) then
process node gi: construct graph edge (see Sect. 4.2) or
merge two groups (see “Topology-Based Space-Time Segmentation” in Sect. 4.2)

end
Algorithm 1: Approximated topological feature algorithm

features, as eruption plumes, using extremal structures in the respective field.
For an algorithmic outline to derive approximate topological structures similar to
topological spines [4, 6] and segmentations of a scalar field s.x/, see Algorithm 1.

Extremum Graph Extraction An approximate extrema graph [4] is used
to describe the spatial structure of the particle distribution for every time slice.
Extrema graphs represent the target phenomena, in our case ash and SO2 plumes,
as spatially embedded graphs. They connect saddle points with extremal points
(see Algorithm 1) according to the approximate Morse-Smale complex of the
function s. Note that in this step a persistence based filtering is not necessary since
the construction of the common reference domain already comprises a smoothing
and down-sampling step. Instead we define a minimum threshold hmin filtering out
parts of the graph below this value. The graph is used in three ways: Visualization—
the graph describes the spatial connectivity of extremal events in each time slice. It
visually captures advection patterns that are eminent in temporal snapshots in AIRS
or advected MIPAS data (see Fig. 6). It also serves as basis for visual comparison of
the fields from the different modalities as illustrated in Fig. 3. Filtering—the graphs
are further used as input for filtering, e.g. by considering only trajectories in the
vicinity of those structures. This allows to focus on specific topological events. It
further supports feature-based filtering with respect to size or the location of the
plume. Space-time segmentation—the extremal graph lives by construction in single
time slices. To obtain a connected structure in space-time the graphs are further used
as input for spatio-temporal clustering, see below.
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Fig. 3 Combining AIRS and CLaMS data: AIRS and CLaMS data describe the spatio-temporal
structure of occurring SO2 events and characterize the evolution of the SO2 plumes: The SO2
cloud created by the Puyehue-Cordón Caulle eruption moves rapidly eastwards, following the
major jet streams on the southern hemisphere. In contrast, the Nabro event remains ‘trapped’ in
a larger vortex structure and is distributed across central Asia, while the Grimsvötn SO2 cloud
circulates towards the north pole. In combination, the space-time view of multiple modalities
conveys location and time of strongest value concentrations and their distribution during the plume
development. (a) AIRS SO2 & graph 1:6:2011. (b) AIRS SO2 & graph 7:6:2011. (c) All SO2 graphs
with offset surfaces over the observation time (space-time see Fig. 4).

Topology-Based Space-Time Segmentation To capture the temporal evolution
of extremal structures we use a topological method to segment regions within the
common reference domain. This segmentation results in labels for extremal events
that can be associated to individual physical phenomena (see Fig. 4b). Two adjacent



44 A. Kuhn et al.

Fig. 4 Combining AIRS and CLaMS data: The space-time segmentation of AIRS SO2 graph
fields conveys location and time of largest features and their distribution during the plume
development. The segmentation determines cluster volumes (filtered such that only volumes larger
than 10.000 cells remain) that can be used to classify individual events. (a) CLaMS segments &
surfaces (slices in Fig. 3). (b) Topology-based segmentation

groups are merged, if the difference of their maximum values is lower than a
user-defined persistence threshold pmin. Technically this corresponds to a watershed
algorithm [5] with a persistence-based hierarchical merging step [10]. We can obtain
one connected cluster for dominant events choosing a maximum persistence value
for pmin D max.s.x//. The results of this segmentation are shown in Fig. 4.

4.3 Topology-Based Analysis and Visualization

The extraction of topological features, such as graphs or segmentation surfaces
(“Topology-Based Space-Time Segmentation” in Sect. 4.2), allows characterizing
and grouping extremal features of the underlying scalar fields. Extremum graphs
capture the spatial structure, e.g., longitudinal and latitudinal extents, as well as
spatial connectivity of extremal regions. To enhance the information content of the
graph, we map the local values of the scalar field to its thickness and color (see
Fig. 5a). The picked color schemes emphasize different data sources and modalities
in combined visualizations (i.e., AIRS SO2 in blue, AIRS ash in red/yellow, MIPAS
in green/blue scheme). Extremal structures can further be emphasized by visualizing
corresponding iso-surfaces in the underlying advection fields (see Sect. 3.1).
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Fig. 5 Space-time AIRS, CLaMS, MIPAS: AIRS data is used to analyze SO2 and ash
concentration during the eruption events in space and time. In subfigures (b) and (c) the extremal
graphs are displayed for each time slice. They are colored and sized by AIRS field values to
emphasize strong production events. Transparent surfaces enclose the extremal graphs connecting
them in temporal direction. The extend of these surfaces in time direction (z-axis) characterizes the
life time of a plum. In (c) the circulations of the tracers in the southern hemisphere can be observed
in terms of visual stripes. (a) AIRS SO2 rendering. (b) AIRS SO2, ash graphs. Details see Fig. 4.
(c) AIRS ash, MIPAS graphs. Details see Fig. 6

5 Results

We use the topology-based methods from Sect. 4.2 to visualize characteristics of
the data in the common reference domain. Figure 5 shows a visualization of the
integrated data in a space-time frame. The combination of filtering, interpolation and
topology allows to extract a set of distinct extremal objects that can be associated
to the major events of interest. The respective parameter setup allows to derive
different levels of detail. Thus, not only the three dominant volcano eruptions but
also a set of small-scale events are captured, which exhibit a much lower particle
density.

To get a better impression of the movement of the particles we further augment
this visualization with CLaMS trajectory segments, illustrated in Fig. 5b. The dis-
play of events associated to specific eruptions allows to compare ash concentrations
based on AIRS satellite and MIPAS advected measurements. Mapping additional
scalar information to the geometry of the topological graphs emphasize regions
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Fig. 6 Combining AIRS, MIPAS and CLaMS: Comparison of the AIRS ash data and the
advected MIPAS ash field for the Puyehue-Cordon Caulle eruption. (a) shows the reference fields
for both modalities (AIRS, advected MIPAS). The detail views reveal the strengths and weaknesses
of both information sources: AIRS captures fine spatial advection patterns, but suffers a limited
detection accuracy. MIPAS advection fields are more sensitive, but do not convey information of
the strength of the detection and sometimes miss samples across thin cloud structures. (a) AIRS
ash & MIPAS advection field for 6:6: and 12:6:2011. (b) AIRS, MIPAS graphs

of specifically high scalar values. This is a clear advantage compared to slice-
based color plots or direct volume visualizations. The spatial connectivity of the
extremum graphs serves as a suitable description of the spatial structures of the
corresponding plumes. Figure 5c shows a visualization of ash events form AIRS
(red) and advected MIPAS (green) data. The higher sensitivity of the MIPAS data in
space-time, compared to AIRS ash detection is clearly visible.

Detailed visualizations of single time slices, see Fig. 6, illustrate the different
characteristics of both measurement modalities. While AIRS data captures very
detailed transport structures of the ash cloud, the MIPAS-CLaMS combination
results in a blurred reconstruction and misses thin cloud structures. The concen-
tration derived from the binary MIPAS signal is only an approximation of the true
values. Due to its higher sensitivity, advected MIPAS better illustrates the spread of
the ash cloud during the time of observation over the southern earth hemisphere.

Figure 3 illustrates the benefits of the high spatial resolutions of the AIRS
measurements. Depending on the filtering scales, it is possible to detect also small-
scale volcanic eruptions. An example is the Lokon-Epung event in Indonesia around
July 2011 and multiple SO2 and ash emissions associated to the Etna Volcano
in Sicily. These smaller events are often not covered by the MIPAS data or are
represented only by a very small number of detections. There are also multiple
additional SO2 events that are typically associated to mining or shipping trails
(Fig. 7).
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Fig. 7 Integrated Visualization: This image shows snapshots of an integrated visualization
of AIRS SO2 (blue) and AIRS ash (red) with its corresponding graphs (scaled and colored by
AIRS value) and MIPAS advection surfaces (green transparent surfaces). Each image captures
the situation of one day and highlights the different characteristics of the Puyehue-Cordon Caulle
and the Nabro eruptions, especially with respect to ash production (animation in accompanying
video). (a) AIRS & MIPAS for 6:6:2011. (b) AIRS & MIPAS for 9:6:2011. (c) AIRS & MIPAS
for 12:6:2011. (d) AIRS & MIPAS for 25:6:2011

5.1 Limitations

Topological analysis tools have been shown to be valuable for reduction of complex
input data to a smaller and visually assessable set of extremal structures. However,
transferring sparsely sampled data from different modalities into a common refer-
ence domain still requires multiple filtering and interpolation steps (see Sect. 4.1).
These use implicit assumptions, heuristic parametrizations and approximations of
the real world phenomena, which are not covered by the data. Critical applications,
as flight route planning after volcanic eruptions, require a more profound assessment
of the impact of those techniques w.r.t. uncertainty and sensitivity in the final results.
We assume that by using higher-order interpolation methods (e.g., for CLaMS
and AIRS data) and samplings of the integrated domain, approximations can get
more accurate, while some fundamental sources of uncertainty will remain (e.g.,
reliability of the CLaMS simulation, AIRS sensitivity).



48 A. Kuhn et al.

6 Conclusion

In summary, we have described a basic procedure to construct a common data
domain and integrated data from a variety of input modalities, including measure-
ments (MIPAS, AIRS) and simulations (CLaMS), to analyze volcanic eruptions.
We have showed that topological processing provides suitable tools to characterize
extremal features of such integrated data. The availability of explicit feature
descriptors (i.e., topological graphs, segmentations) allows for improved filtering,
compact visualization, feature-based comparison and visual analysis. The presence
of topological features allows utilizing a broad set of tools known from the topology-
related literature (e.g., persistence-based filtering, topology-driven rendering, high-
dimensional visualization). As topological methods have been shown to scale in
settings with large amounts of data (e.g., [6, 17]) and in high-dimensional settings
(e.g., [3]), similar analysis procedures should be able to cover future high-resolution
input modalities. For future work we plan to analyze the impact of filtering methods
in further detail. Of interest are also feature-based statistics (e.g., life-time and size
distributions) and automated quantitative analytics of the data (automated event
detection and classification).
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A Comparison of Joint Contour Nets
and Pareto Sets

Lars Huettenberger, Christian Heine, and Christoph Garth

Abstract For the scientific visualization and analysis of univariate (scalar) fields
several topological approaches like contour trees and Reeb graphs were studied and
compared to each other some time ago. In recent years, some of those approaches
were generalized to multivariate fields. Among others, data structures like the joint
contour net (JCN) and the Pareto set were introduced and improved in subsequent
work. However, both methods utilized individual data sets as test cases for their
proof-of-concept sections and partially lacked a complete comparison to other
multivariate approaches. Hence, to better understand the relationship between those
two data structures and to gain insights into general multivariate topology, we
present a deeper comparison of JCNs and Pareto sets in which we integrate data
sets applied in the original JCN and Pareto set papers.

1 Introduction

In recent years, several ideas towards multivariate topology were presented to the
visualization community. Their common goal is to visualize high-dimensional and
multivariate data sets like ensemble data using a topological point of view. These
approaches are often based on the extension of topological methods for univariate
data like Reeb graphs, contour trees, or Morse-Smale complexes. The visualizations
use those ideas to identify interesting features and/or facilitate abstracted views on
the data without loss of important information. They thereby support users in their
exploration of the data.

While for Reeb graphs, contour trees, and other univariate scalar field methods
their (dis)advantages and their relations to each other are well understood, such
research is not yet done thoroughly for most of the multivariate methods.
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For this paper, we therefore take a closer look at two recently proposed
approaches: the joint contour nets (JCN) and Pareto sets. We chose these methods
since both aim to identify and visualize interesting features in multivariate scalar
data sets given with arbitrary dimensionality in both domain and range space.
Furthermore, they are both relatively novel and have matching requirements on the
input data. Hence, if a data set is suited for a JCN approach then the Pareto set
approach can also be applied and vice versa.

Both theoretical definitions require scalar functions f on a continuous d-manifold
M, while for practical usage, the methods assume simplicial complexes where the
function values f D . f1; : : : ; fn/, n being the number of underlying functions,
are only given at vertices and expanded to the whole domain through barycentric
interpolation. Note, that both methods have no restriction with respect to the number
of underlying functions or dimensionality, though focus on two- or three-manifolds
for visualization purposes.

We specified a subset of nodes in the JCN and prove a close relation between
these and the Pareto set. In detail, our theoretical considerations in Sect. 6 suggest
equality of both sets in the limit of fine nets and simplicial complexes, respectively.
This allows a combination of the algorithms to calculate those structures and the
respectively inner relations between connected components in the Pareto set and the
mentioned subset of JCN nodes.

Both structures are based on different approaches, yet yield similar, in the limit
even equal, results. This promotes their impact on the understanding of multivariate
topology.

2 Previous Work

In the following sections, we present the idea and definition of JCNs and Pareto sets
as well as some related work to each method, such that the theoretical considerations
in Sect. 6 and the visualization examples in Sect. 7 are easier to follow. Both
methods are topological approaches to the analysis of multivariate scalar data. Those
concepts are delimited on one side by non-topological methods like multiple linked
views [6] or approaches that use, for example, correlation [20], multidimensional
transfer functions [16], or field coherence [17] to define a similarity measure
between the underlying fields. However, those usually do not provide a single view
to show common behavior and become confusing for large numbers of functions.

The second delimitation is given by univariate methods which usually cannot
be extended ad hoc to multivariate fields. Such methods are, for example, Morse
theory [12], Reeb graphs [8], and contour trees [3]. As mentioned this area is already
well researched. For example, it includes for contour trees parallel algorithms [19],
simplification [4], and relations to other concepts like Reeb graphs [9].

The third delimitation is towards multivariate approaches for other data types
like vectors. One concept for this kind of data sets are Morse decomposition [7, 22].
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Other data types like tensors are also possible, though less studied and beyond the
context and scope of this work.

Within the field of topological approaches to multivariate scalar data, other
work exists like largest contours and Jacobi sets. Largest contours was proposed
by Schneider et al. [21] as a comparison of the underlying functions based on
normalized spatial overlap of the largest contours, i.e. sets of maximal contours
containing only one critical point each. Edelsbrunner and Harer [10] introduced
Jacobi sets which work with the intersection and restriction of level sets, see Sect. 3,
to multivariate data analysis.

3 Joint Contour Nets

The JCN was introduced by Carr and Duke [2] as an extension of contour trees to
multivariate data. The contour tree [3] is a graph structure based on contours, i.e.
connected components in the isosurface f�1.c/ D fx 2 M j f .x/ D cg for some
isovalue c 2 f .M/ 	 R. Each contour corresponds to a point on an edge in the
contour tree while locations where contours appear, disappear, or merge/split when
c is only changed by a small amount � correspond to nodes. In univariate topology
these locations are denoted as maxima, minima, and saddle points, respectively.

Carr and Duke also compared their approach to Reeb spaces [11], where f�1.c/,
called a fiber, is calculated for the high-dimensional isovalue c 2 R

n. The connected
components are again compressed to points, though in a high-dimensional structure
in R

n. Edelsbrunner et al. [11] gave a mathematical algorithm to compute the Reeb
space which only worked for four underlying functions. Further work on a related
notion, persistence, by Carlson et al. [1] produced results for a higher number
of functions at the cost of higher running time. However, even without run time
restrictions, note that f�1.c/ will be reduced to a point (dimension zero) or become
empty if d � n such that the Reeb space is equivalent to the original manifold
M 	 R

d.
Hence, Carr and Duke used a method without loss in dimensionality and defined

a joint level set (JCN) for c 2 f .M/ 	 R
n:

f�1.c/ D fx 2 M j round. f .x// D cg

The rounding function can be, for example, the floor function, f W R 7! N with
round.x/ D bxc. Hence, the joint level sets of f are equivalent to the fibers of
the discretized function round. f /. The connected components in the joint level
set are defined as slabs. Figure 1 illustrates the creation of slabs in a simple one-
dimensional example with two functions.

Carr and Duke transformed the slabs into a graph structure in which each slab
corresponds to a node and adjacent slabs result in an edge between their nodes.

Note how the size of the slabs depends on the round-function, such that the
coarseness of that function allows an user to adjust the level of detail of the JCN.
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Fig. 1 The left image shows two functions f and g colored red and blue, respectively, with an
image interval from zero to four. The right image overlays the functions with their discretized
versions round. f / and round.g/ colored similarly using the floor function. The yellow colored
regions A, B, and C indicate the slabs for the joint level set for c D .1; 2/

The changes in the JCN based on this coarseness parameter is another option to
analyze the data not given in the Pareto set concept we present in the next section.

For an alternative approach to JCN, note that round�1.c/ is a continuous n-
dimensional interval in R

d with a lower bound li and an upper bound ui in each
of the n dimension. Each slab containing x, with f .x/ D c, can also be defined by a
set of isosurfaces f�1i .li/ and f�1i .ui/ for each 1 � i � n. In Fig. 1 the slabs A, B, and
C are bounded by the fibers with f .x/ D 1 or f .x/ D 2, and g.x/ D 2 or g.x/ D 3.

Note that the contour for li 2 R is equivalent to the set of fibers for all c 2 R
n

with ci D li such that this set builds a fiber surface [5]. Hence, the domain M can
either be separated into slabs by a round-function or by a set equivalent to contours
or fiber surfaces, respectively.

Increasing the number of used fiber surfaces to infinity without having the same
contour twice or, analogously, an infinitely fine round-function will result in a
structure equivalent to the Reeb space.

4 Pareto Sets

In contrast to JCN, in which a slab can contain several vertices and depends on the
round-function or the set of used isosurfaces, the Pareto set is calculated for every
simplex separately. To decide if a point x is Pareto extremal, the ascending set

HCU.x/.x/ D fy 2 U.x/ j fi.x/ < fi. y/8ig

and the descending set

H�U.x/.x/ D fy 2 U.x/ j fi.x/ > fi. y/8ig

are calculated for a sufficiently small open neighborhood U.x/ around x. If either of
these sets is empty, the point x is Pareto extremal. Assuming that the function values
are only given at the vertices and barycentric interpolated otherwise, it is sufficient
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Fig. 2 For two functions f and g, colored red and blue, respectively, the regions A and B
indicate the location of the Pareto extrema. Pareto optima that have both empty ascending and
descending sets are implied by yellow color. Pareto minima and Pareto maxima either have an
empty descending or ascending set, respectively, and their positions in are shown in the image by
green and red strips, again respectively

to calculate Pareto extremity for one point inside a simplex to determine the status
of all points inside that simplex.

The Pareto set, the set of all Pareto extrema, was defined by Huettenberger
et al. [14] on piecewise linear scalar fields. The authors also introduced the definition
of Pareto maxima, Pareto minima, and Pareto optima, special cases of the Pareto
extrema. However, for this paper, the general definition of Pareto extrema is
sufficient. Figure 2 illustrates the Pareto set in a simple one-dimensional example.

Note that both, the Pareto set and the JCN, are invariant to some transformations
of the function values. For Pareto sets those transformations have to be continuous,
monotonically increasing while for JCNs linear transformations are sufficient.
However, then also the round-function and thus the slab width has to be transformed.

5 Runtime Complexity Comparison

Huettenberger et al. used marching triangle and marching tetrahedron [14] algo-
rithms for d D 2 and d D 3, respectively, to calculate the ascending and descending
set inside the simplices of highest order, i.e. for d D 2 inside triangles and for d D 3
inside tetrahedrons with a worst-case running time of O.dn/.

For points inside simplices of lower order, the sets are calculated for all adjacent
high-order simplices separately such that the total worst-case running time is O.dn �
N � dŠ/ with N the number of high-order simplices.

However, the question wether the ascending or descending set is empty or not,
can be seen as a linear inequation system where each underlying function provides
one linear inequation [13]. Solvers for those systems are known to run in O.n3:5L2/
and better, with L the number of bits in the input [15]. Such an improvement
therefore suggests a running time of O.n3:5 � N � dŠ/ and is mentioned as future
work by Huettenberger et al. but not yet published.
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The time to calculate the JCN was bounded from above by Carr and Duke by
O.nNeCNe˛.Ne// with Ne D O..2nCd/kN/, with parameters n, N, and d as above,
the upper bound of slabs k, and ˛ the slow-growing inverse Ackermann function.

Note that the number of slabs k depends on the round-function and can be limited
by k < ˘ n

iD1ci with ci the number of used isosurfaces for function fi. Hence, under
the assumption that an approach using a linear inequation solver is provided in future
work for Pareto sets, the major difference in running time between JCNs and Pareto
sets depends on the ratio of dŠ < dd to k < cdmax, cmax D max ci and thus of d to cmax.

6 Theoretical Comparison

As mentioned in the introductory paper of Pareto sets [14], Pareto extremality of
a point depends on the orientation of the underlying functions, i.e. whether fi.x/ is
considered or �fi.x/ instead.

The JCN however is not effected by such a consideration. To facilitate compar-
ison, we introduce the structure of a directed joint contour net (dJCN) which uses
directed edges. If two slabs are adjacent, the edge between the corresponding nodes
is directed towards the node with the higher rounded function values. In case this
classification is ambiguous because one underlying function fi has a higher rounded
function value and another fj has a lower one the edge is excluded from the dJCN.

The extension from a JCN to a dJCN is straightforward to implement and
does not influence worst-case running time stated in the previous section. Hence,
while a comparison of JCN and Pareto extrema is rather unfruitful, the inexpensive
consideration of orientation results in some direct relation between the dJCN and
the Pareto set. Furthermore this relation can then be directly translated into relations
between JCNs and Pareto sets since the relation between dJCNs and JCNs, namely
the difference between directed and undirected edges, is straightforward.

The usage of directed edges allows the definition of critical slabs in a dJCN.
Slabs are called critical if their corresponding nodes have only incoming or only
outgoing edges. It is possible to distinguish maximal and minimal critical slabs
similar to Pareto maxima and Pareto minima, also introduced by Huettenberger
et al. [14]. However, this is beyond the scope of this paper and not necessary for the
remaining work. Furthermore, note that neither the complete definition of Pareto
sets given by Huettenberger et al. [14] nor the definition of critical nodes for the
dJCN supports an equivalent to saddle points.

Hence, we focus an critical slabs, and, in the remaining section, show the relation
between those and Pareto extrema under the assumption of sufficiently small slabs.

In this context, sufficiently small means that round. f .x// 
 f .x/, especially
neither the ascending nor descending set of x become empty due to round-
ing inside the slab. The latter case is possible if the slab contains maxima or
minima with persistence smaller than the rounded range in the slab S, namely
Œminx2S f .x/;maxx2S f .x/�.
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Note that in the limit, when round. f .x// D f .x/ such that each point x is a
slab itself, the neighborhood U.x/ consists of all adjacent slabs of x. If the edge
between x and an adjacent slab y is in the dJCN, the point y can clearly be placed in
either HCU.x/.x/ or H�U.x/.x/ depending on the edge direction. This translation from
ascending set and descending set to edge directions in the limit straightforwardly
implies a translation from the set of Pareto extrema to the set of critical slabs. Hence
both sets are equal in the limit.

For practical reasons, though, instead of the limit only round. f .x// 
 f .x/ can
be reached. However, we claim that already a sufficiently fine round-function is
enough such that the critical slabs are a good approximation of the Pareto set.

To back up this assumption, we investigate in two directions. First, we consider
critical and non-critical slabs and study if the unrounded function f has Pareto
extrema in the same location, or not. Contrariwise in the second direction, we
consider Pareto extrema and regular points and study if the slabs that contain these
points are critical or not.

To simplify the following theoretical considerations, for the remainder of this
paper we assume no two fiber surfaces used during the construction of the JCN are
locally equal. A property that otherwise can be achieved by only slight perturbation
of the data. This implies that the rounded function values of two adjacent slabs only
differ in one of the underlying functions while all other values are the same. Hence,
during transformation from JCN to dJCN no edges are removed.

Direction 1 The status or criticality of a slab is based on the number of in- and
outgoing edges of the corresponding node in the dJCN. Thus, each slab can be
placed in one of four groups.

Case 1.1 Consider a critical slab whose corresponding node, without loss of
generality, only has incoming edges. Hence, all adjacent slabs contain only values
with equal or lower function values. Starting from any border point of the critical
slab, moving in ascending direction, this path cannot leave that slab. Furthermore,
since the slab is a finite space and an ascending path cannot run in circles, the path
has to reach an end at a Pareto maximum inside that slab.

Ascending direction requires that at least one unrounded function value increases
which implies that the functions are not allowed to be all constant inside the slab.

Case 1.2 The same holds if the corresponding node only has outgoing edges,
though then the critical slabs contains a point with an empty descending set.

Note that the absence of incoming edges or outgoing edges does not imply a
statement regarding the descending set or ascending set, respectively. Hence, a
critical slab implies only the existence of a Pareto extremum and not if those are
Pareto minimal or Pareto maximal.

Case 1.3 For the third, special case assume that a node has neither incoming nor
outgoing edges in the dJCN. However, the JCN and therefore the dJCN only has
isolated nodes, if the functions fi are relatively flat or the round-function is very
coarse and the JCN only consists of one node. If the functions are flat, every point
is Pareto optimal and otherwise the round-function needs to be refined.



58 L. Huettenberger et al.

(a) (b) (c)

Fig. 3 Given three linear functions f , g, and h and a Pareto extremal point x, (a) shows
the isosurfaces for each function based on the function value at x—the central blue point at
the isosurfaces’ intersection—while triangles at these isosurfaces point towards the ascending
direction of the functions. Since f , g, and h are linear, all isosurfaces based on the same function
are parallel to each other. (b) shows the same three functions and central point x as (a) though
with a different set of isosurfaces. The labeling at these lines indicate the functions on which the
isosurfaces are based. Using this set of isosurfaces, slabs, and the corresponding dJCN are created
and presented as an overlay in (c). Nodes are printed as circles inside their corresponding slabs and
red circles mark critical slabs. Note that the slab containing x is not critical however, since at least
two of its bordering isosurfaces are based on the same underlying function

Case 1.4 Conversely, consider a non-critical slab that corresponds to a node with
both incoming and outgoing edges, as Fig. 3 illustrates. Note how this does not
imply the non-existence of Pareto extrema inside that slab. While all our following
theoretical examples suggest that if a slab contains a Pareto extremum, at least one
slab nearby is critical; we were not able to prove this so far.

Direction 2 For the opposite direction, from Pareto extrema to critical slabs, we
consider different cases based on the ascending and descending set. Note that the
ascending set, fy 2 U.x/ j fi.x/ < fi. y/8ig for some point x 2 M, if non-empty, is
bordered by isosurfaces fy 2 M j fi.x/ D fi. y/g for some 1 � i � n and U.x/. The
same holds for the descending set.

Case 2.1 Assume a Pareto extremum x 2 M with a non-empty ascending set.
Since the functions are linear inside highest-order simplices due to the barycentric
interpolation, ascending and descending sets are symmetric for points inside these
simplices. Hence, either also the descending set of x is non-empty, a contradiction
of the definition of Pareto extrema, or x lies inside a proper face of a d-simplex 
 .

Furthermore, let x0 2 
 with x0 2 HC
 .x/ and jx � x0j � � for some small value
� such that fi.x/ � fi.x0/ for all 1 � i � n. Note that based on the symmetry of
ascending and descending sets this implies that x 2 H�
 .x0/. Also let the ascending
set in 
 of x be bordered by fiber surfaces based on some fixed function values fi.x/.
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Fig. 4 The image shows a section of two sets of isosurfaces colored in red and blue, respectively,
based on two distance functions with x1 and x2, respectively, as centers. The visible section also
shows the Pareto extrema colored in green and critical slabs based on those isosurfaces marked
with a red circle

The symmetry again implies that the descending set in 
 of x0 is bordered by the
same functions though based on the values at x0.

Hence for a slab based on the fiber surfaces for fixed function values at fi.x0/
we can conclude the following statement: first that x is inside this slab, second, if
� is small enough, the slab is only bordered by those fiber surfaces, and third, for
each of these borders the function values increase towards the slab. Hence, the slab
containing x is critical. Note however, this does not hold if the slab is also banded
by other fiber surfaces, especially those with different fixed values fi.x/ but for the
functions fi. Figure 4 shows such a counterexample.

Case 2.2 A Pareto extremal point with a non-empty descending set is analogous to
the first case again based on the symmetry of the ascending and descending sets.

Case 2.3 Hence, excluding the two previous cases, a point is Pareto extremal if
HCU.x/.x/ D H�U.x/.x/ D ;. Following the definitions of HC and H�, this directly
implies that for every point y 2 U.x/ there exist two functions fi and fj such that
fi.x/ < fi. y/ and fj.x/ > fj. y/.

For every function fi we choose a point y 2 U.x/ with fi.x/ < fi. y/ to construct
a isosurface fz 2 U.x/ j fi.z/ D fi. y/g. Note that these isosurfaces enclose x and
thus creating a slab. Otherwise a point x0 would exist with fi.x/ � fi.x0/ for all
1 � i � n in contradiction to our assumption that both ascending and descending
sets are empty. An example of such a slab and its corresponding isosurfaces based
on the function from Fig. 3 is presented in Fig. 5.

Since round. fi.x// < round. fi. y// for any y in an adjacent slab and fi the
function on which the bordering isosurface is based on, the created slab is critical.

Again, a counterexample is provided in Fig. 3 showing that a Pareto extremum
does not enforce the existence of a critical slab at the same position. Especially if
the slab containing x has at least two bordering fiber surfaces with fixed function
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(a) (b)

Fig. 5 Given the same functions as in Fig. 3, reprinted in (a), the second image (b) uses a different
set of isosurfaces. Using these isosurfaces, the created slab which contains the central point x is
critical. To see this, note that the blue triangles which point towards the ascending directions of the
functions also indicate the edge directions in the corresponding dJCN

values fi.u/ and fi.v/, respectively, based on the same underlying function fi and
with fi.u/ < fi.x/ < fi.v/.

Case 2.4 For the last case, namely a point x 2 M that is not Pareto extremal, let
i0; : : : ; ik be the indices of functions such that the fiber surfaces with fixed values in
these functions border the ascending set of x. Note that a slab created through the
isosurfaces fy 2 M j fij. y/ D fij.x/ � �g and fy 2 M j fij. y/ D fij .x/C �g for every
0 � j � k is obviously not critical since every pair of those isosurfaces provide
incoming and outgoing edges for the corresponding node in the dJCN. This is under
the assumption that � is very small such that all functions can be considered linear.

Assume that some additional isosurface fy 2 M j fi0. y/ D cg splits the slab such
that the created slab containing x becomes critical. Without loss of generality, let the
critical slab only have outgoing edges, which implies c > fi0.x/. Since we assumed
� to be sufficiently small such that jc � fi0.x/j is also sufficiently small, fi0 can be
considered linear close to x. Hence, fy 2 M j fi0. y/ D fi0.x/g runs parallel to the
additional isosurface at least in a small neighborhood around x.

Therefore, for every point y in this neighborhood it holds that fi.x/ � fi. y/ for
either i D i0 or some i D ij. This implies x to be Pareto extremal in contradiction to
the original assumption.

Summary Given that the underlying functions are linear in a close neighborhood
around x, for every Pareto extremum we find a set of fiber surfaces and thereby
a suitable round-function such that the slab containing the extremum is critical.
Analogously for points that are not Pareto extremal, non-critical slabs can be
created.

Note that we assumed small slabs but also indicated that splitting slabs with
additional fiber surfaces to create smaller ones usually results in non-critical slabs.
Hence, reducing the slab size by introducing new fiber surfaces to receive a better
correlation between critical slabs and the Pareto set is not trivial. Furthermore, the
existence of suitable round-functions for each Pareto extremum does not imply the
existence of a single round-function under which the set of all Pareto extrema is
equivalent to the set of all critical slabs.



A Comparison of Joint Contour Nets and Pareto Sets 61

A main result is that the location of a critical slab implies a Pareto extremum
inside that slab. However, these consideration do not provide a statement about the
approximation error, in other words the volume ratio between the critical slab and
the Pareto set. In future work and in illustrations in the next section we are going to
investigate that under a finer round-function this error will be reduced.

7 Visual Comparison

We applied dJCN and Pareto set calculation on the LAMPS data set [2] set and some
artificial data sets to identify further relationship between those concepts.

LAMPS stands for “Limited Area Mesoscale Prediction System” an atmospheric
simulation, is distributed with the VIS5D system, and provides a set of 10 scalar
fields, including wind, temperature, pressure, and specific humidity. We focus on
the east/west component (U) and the north/south component (V) of wind.

Note that as an additional step we smoothed the LAMPS data with a Gaussian
filter [18] before calculating the Pareto set. Thereby we removed smaller noise-
based features, which is automatically done by the round-function in the dJCN
method.

The following figures present the dJCN and the Pareto set for this and other,
artificial, data sets. In the right images, Pareto extrema are colored red, green, or
yellow, depending on whether the ascending, descending, or both sets are empty. In
the left images, the nodes of the dJCNs corresponding to critical slabs are colored
red and blue, depending on the existence of only incoming or only outgoing edges.
Otherwise, the nodes are either colored green or, to avoid obscuring, have been
reduced to points.

Figure 6 shows the dJCN and Pareto set for a synthetic example based on two
functions. At each point, the first is based on the distance to the center of the domain

Fig. 6 dJCN and Pareto set for a synthetic example based on a high and a distance function



62 L. Huettenberger et al.

Fig. 7 dJCNs(a, c) and Pareto sets (b, d) for two synthetic examples based on a set of Gaussian
functions in 2D and 3D, respectively. (b) Shows isosurfaces in blue and gray for the 2D functions

and the second is based on the value of the y-direction. Note how the pyramid-
shaped component of Pareto extrema in the lower middle corresponds to the row
of critical nodes at the same location in the dJCN image. This figure also shows
some issues the Pareto set calculation has with degenerated functions, especially
locations where adjacent vertices have the same function values. Such functions
together with the triangulation of the data result in faulty Pareto extrema left and
right to the mentioned pyramid-shape and the domain border. Note that this does
not seem to be an issue for the calculation of the dJCN.

To consider further synthetic data sets, we used those presented in the paper for
Pareto sets [14]. Therefore, for each underlying function a set of fixed points in R

2

for Fig. 7a, b and in R
3 for Fig. 7d, c is given and the Gaussian function value is

calculated as the sum of the exponentiated and weighted distance maps for these
fixed points. For our examples, between the underlying functions only the location
of the fixed points is moved by some degree.

As with the previous images, note the correspondence between most of the
connected components of Pareto extrema with the groups of colored nodes in the
dJCN. However, there are also Pareto extrema which cannot be linked to a critical
slab, for example the central component in Fig. 7a and the larger two components
in Fig. 7d bordered by both red and green colored triangles. Those components
correspond to the location of saddle points in terms of a univariate topology.
Therefore and since the slab width is too large as the isosurfaces in Fig. 7b show, the
corresponding nodes in the dJCN have incoming as well as outgoing edges. Hence,
Fig. 7a does not contain critical slabs in the image center, even though Fig. 7a clearly
shows Pareto extrema at this position.

The last example is based on the LAMPS data set introduced in the beginning
of this section. Figure 8 presents the Pareto set and the dJCN, for which each node
is positioned in the barycenter of their corresponding slab. The figure shows how
both visualizations have problems with 3D data. Interactivity, i.e. rotation, zoom,
etc., with the dJCN and the Pareto set helps to identify corresponding components
of Pareto extrema and groups of critical nodes. While we highlighted some of
these pairs through yellow circles, a complete identification of all links has to be
computer-based and is part of future work.
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Fig. 8 dJCN and Pareto set for the multivariate function based on the U and V component of the
LAMPS data set. The grid has over 21,000 vertices which results in 95,200 tetrahedrons. For the
dJCN the slab width is set to 5 for each underlying function. The calculation of 895 nodes and
1667 edges took around 25 s. As suspected, the Pareto set calculation used a larger amount of time,
around 2 min. The encircled areas highlight recognizable similarities between the critical slabs of
the dJCN and the Pareto set

Note that some critical nodes in Fig. 8a do not seem to correspond to any Pareto
extremum in Fig. 8b. However, also note that we made Pareto extrema that lie on the
frontal domain border completely transparent to avoid occlusions.

8 Conclusion

As a final remark, consider that points are Pareto extremal if the underlying
functions disagree so to say in terms of ascending and descending direction and
are regular if there is an agreement. This agreement is similar to the question of how
close the isosurfaces are to be parallel which is closely related to the size of the slabs
based on these isosurfaces. While our artificial data suggest such a relationship, we
were not able to see some evidence for this assumption between the structures in the
LAMPS dataset seen in the dJCN and the Pareto extrema.

In conclusion, our theory suggest that for a sufficiently fine round-function, crit-
ical slabs in dJCNs and Pareto sets are sufficiently equivalent and even completely
the same in the limit. Though, latter would result in unacceptable running time to
calculate the dJCN. However, our examples show that also a relatively coarse round-
function provides a well enough approximation of the Pareto set and is computed
much faster than the Pareto set itself in the current published form. The dJCN
thereby provides the location of critical slabs and how those are connected, though
just an approximation of the real data.
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The location of the critical slabs can then be used to calculate the Pareto set. First,
Pareto extrema are only identified in those critical slabs and then the calculation is
expanded to adjacent simplices until no more Pareto extrema are found.

This provides an exact shape of the connected components in the Pareto sets,
regions where the underlying functions are conflicting, while the dJCN provides an
approximated map on how those components are interconnected to each other in the
region where the underlying functions do not conflict with respect to ascending and
descending directions.

Furthermore, this map, in particular the paths between critical slabs in the dJCN
following the directed edges, is a discretization of ascending paths. The latter are
defined by Huettenberger et al. [14] as continuous paths between Pareto extrema
in which the function values between subsequent points on the path either stay the
same or increase. Note that these paths are calculated separately in the Pareto set
paper which results in even further running time while an approximation is already
given in the dJCN almost for free.

Hence, under the examples and theory given in the previous sections, we
conclude that dJCNs are a good approximation of Pareto sets and the connections
inside these sets and can be used to speed up the calculation of Pareto sets itself.
While the Pareto set and its inner connections are close to the data but take long
to compute, the dJCN calculation is only an approximation but runs fast and is just
a small extension to the JCN calculation which provides further options, like the
coarseness of the round-function to analyze the data. How exactly the coarseness
influences the approximation error is a task for future work.

Finally note that our work can be translated easily to results regarding the Reeb
space because that structure is also approximated by the JCN [2] and equal in case
of an infinitively fine round-function. Thus, all our considerations can be done also
for a directed form of the Reeb space and, combined with prior work [13], indicates
close relations between Jacobi set, Reeb space, JCNs, and Pareto set.
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Visualizing Topological Properties of the Search
Landscape of Combinatorial Optimization
Problems

Sebastian Volke, Dirk Zeckzer, Martin Middendorf, and Gerik Scheuermann

Abstract Discrete combinatorial optimization problems such as the Traveling
Salesman Problem have various applications in science and in everyday life. The
complexity of the problem and the effectiveness of search algorithms depend not
only on the problem itself but also on the search operator in use. Therefore,
investigating search operators and the search landscapes they give rise to is an
important field of research. However, a full topological analysis of the landscapes
is impossible due to their exponentially growing size. We propose a visualization
system that gives a visual intuition about topological properties of the search
landscape. We obtain representative samples of the search landscape and its optima
by random sampling and by computing the related optima using local search. The
distribution and the correlation of this data within the search landscape is visualized
with a combination of one and two dimensional visualizations. Using the TSP
as an example we illustrate how the visualization supports the understanding and
comparison of search landscapes and their complexity.

1 Introduction

Optimization is an important field of research with many applications in economy,
engineering, natural sciences, and operations research. A frequent class of problems
are discrete, combinatorial optimization problems, where an optimal solution has
to be found from a finite set of solutions. Typically, the solution space grows
exponentially in the problem size. Therefore, exhaustive search by complete
enumeration is only possible for very small problem instances. In practice, optimal
solutions can only be approximated using heuristic search algorithms.

One class of these algorithms are local search algorithms [18] that construct
a graph—the search landscape—on top of the set of solutions (cf. Sect. 2) and
search optimal solutions by traversing it. Thereby, the connectivity in the graph
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is determined by a search operator. The topological complexity of the search
landscape, e.g., the number of local minima or the average length of search
paths, depends on the interaction between the search operator and the optimization
function. Optimization is much easier in search landscapes with simpler topology.
Thus, an optimization problem can be solved by finding a search operator that
induces a preferably simple search landscape. The analysis of search landscapes is
crucial in identifying well-performing search operators. However, to our knowledge,
few effective and generally applicable visualization approaches exist that support
this task.

In this paper, we build upon a method for analyzing search landscapes that
is based on steepest descent walks in the landscape [40]. The method does not
depend on a specific problem definition and thus is widely applicable. Our main
contribution is the introduction of a visualization system that facilitates the fast and
easy interpretation of the analysis results. We confirm the correctness of the method
by reproducing known results about the Traveling Salesman Problem. Thereby, we
also showcase the effectiveness of both, the method and the visualization system.

2 Background

Discrete combinatorial optimization addresses the selection of the best solution out
of a finite set of solutions X of a problem instance. The notion of one solution being
“better” than another is usually modeled by means of a cost function f W X ! R
where x 2 X is better than y 2 X if f .x/ < f .y/. Thus, one searches for a solution
that minimizes f .

In this work, we are particularly interested in permutation problems, i.e.,
optimization problems where the set of solutions is a set of permutations of size
n or a subset thereof. In the following, n is referred to as the problem size. Many
practically relevant permutation problems are NP-hard [10], a famous example
being the Symmetric Traveling Salesman Problem (STSP), which is defined as
follows: given n locations and for each two locations 1 � i; j � n a distance
dij D dji, find a shortest route that visits each location exactly once and returns
to the initial location. This is equivalent to finding a permutation � of the locations
that minimizes fTSP.�/ DPn�1

iD1 d�.i/;�.iC1/ C d�.n/;�.1/.
A major problem with permutation problems in general and the STSP in

particular is the factorial growth of the set of solutions with respect to the problem
size. This makes a complete enumeration of all possible solutions computationally
infeasible even for relatively small values of n. Therefore, different search strategies
have been developed for efficiently finding optimal or near optimal permutations.

Local search methods rely on the notion of a neighborhood among the solutions.
We define a neighborhood as a mapping N W X ! 2X that associates every
solution with a set of neighbor solutions. The set of solutions together with the
neighborhood define a neighborhood graph GX;N D .X;EN/. The set of directed
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edges is defined as EN D f.x; y/jx 2 X ^ y 2 N.x/g and reflects the neighborhood
function. This type of graph was introduced, e.g., in computational biology already
in 1932 [42] and is often called a landscape. Following this terminology, we refer to
the neighborhood graph as the search landscape of the optimization problem for the
given neighborhood. Local searches can then be viewed as locally improving (with
respect to f ) walks in the search landscape, starting from some initial solutions.

Local search algorithms can be characterized with respect to the strategy that
they use for traversing the search landscape (e.g., steepest descent or random walks)
as well as with respect to the neighborhood that they use. The latter can be described
by means of a search operator. Following Schiavinotto et al. [30], we define a search
operator� as a collection of operator functions ı W X ! X such that y 2 N.x/ ”
9ı 2 � with ı.x/ D y. Then, the edge set of the landscape can also be defined as
EN D E� D f.x; y/jx 2 X ^ 9ı 2 � W y D ı.x/g. Thus, we can define the search
landscape through the search operator as GX;� D GX;N D .X;E� D EN/. In this
paper, we restrict ourselves to operators that result in a connected and symmetric
(i.e., for each two nodes i; j holds .i; j/ 2 E� ” . j; i/ 2 E�) search landscapes.

The topological structure of f on the search landscape GX;� depends both on the
cost function f as well as on the search operator �. This includes the number of
local minima, the number of paths to these minima, and the lengths of these paths.
Therefore, the topology of the search landscape reflects how well the search operator
matches the optimization problem. In particular, we are interested in shortest paths
between solutions in the search landscape. Due to the construction of GX;�, every
edge in a path between solutions x and y corresponds to one application of an
operator function from �. Therefore, the graph theoretic distance between x and y,
i.e., the length of the shortest path between x and y, is equal to the minimal number
of applications of operator functions from � that is needed to transform x into y.
We denote this distance with d�.x; y/ for x; y 2 X. For many operators, there exist
efficient algorithms to compute the distance between two solutions or at least a good
approximation for this distance (cf. [30]).

The following two operators are of particular interest and will serve as examples
throughout the paper. The 2-opt operator �2opt, also known as 2-edge exchange
operator, is a well established search operator for TSP [4, 19]. Basically, it
disentangles a route by eliminating edge crossings, i.e., by flipping the order of
some consecutive cities in the route (see Fig. 1a for an illustration). Formally,
the application of this operator corresponds to the reversal of a subsequence of
a (circular) permutation. The corresponding distance is called reversal distance.
Unfortunately, the computation of this distance—also called the sorting by reversal
problem—is NP-hard. However, the bond distance provides a good approximation
for it: the number of edges is counted that are not in common between the two
tours. The bond distance differs from the reversal distance at most by a factor of 2
as proven by Boese [2].

The interchange operator �X D fıijXj1 � i < j � ng is the set of transpositions,
i.e., ıijX.�/ D .�1 : : : �i�1�j�iC1 : : : �j�1�i�jC1 : : : �n/ for each permutation � D
.�1 : : : �n/. As illustrated in Fig. 1b, this corresponds to a swap of two permutation
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Fig. 1 Illustration of the functioning of the 2-opt operator�2opt (left) and the interchange operator
�X (right) on the TSP problem. The operator function characterized by the indices 5 and 8 is
applied to the permutation that corresponds to the shown round-trip. The result of the application
is shown on the right for both operators, whereas the arrows indicate how the elements of the
permutation are shifted around. (a) 2-opt operator. (b) Interchange operator

elements. The distance between two permutations with respect to �X can be
determined by d�X .�; �

0/ D n � c.��1 ı � 0/; see Schiavinotto and Stützle [30]
for details. Thereby, c.�/ is the number of cycles of the permutation � , ı is the
composition of permutations, i.e., .�1 ı �2/.i/ D �1.�2.i//, and ��1 is the inverse
permutation, i.e., � ı ��1 D ��1 ı � D .1 : : : n/.

Both search operators have j�j 2 O.n2/. The number of solutions being jXj � nŠ,
this results in very dense search landscapes with jE�j 2 O.n2 � nŠ/.

3 Related Work

Concerning the visualization of landscapes in general, several papers have been
published—starting with the original paper by Wright [42]—that use projections
to create images resembling geological landscapes. Among them the work by
McCandlish [25] is closely related to our approach. He uses an approximation of
the number of evolutionary generations between individuals to obtain a transition
or distance matrix. Afterward, he performs an Eigen-decomposition of this matrix
in order to project the individuals into 2D space while preserving their evolutionary
distance. Instead, we use a force-directed layout described in Sect. 5 together with
additional plots. Furthermore, since our area of application is different, we use a
different analysis method for acquiring the data.

Another direction of research uses the barrier tree [7] for visualizing the search
landscape. Hallam and Prügel-Bennett [15] study the search landscape of SAT
problems. Volke et al. [38, 39] apply the barrier tree to RNA secondary structure
prediction (among others) and also integrate search results of metaheuristics into
the visualization. This work has also been extended for a more in-depth analysis of
search operators by Bin et al. [1]. However, all of these approaches are limited to
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small problem instances or problems where all solutions below a certain threshold
can be enumerated efficiently. Our proposed approach does not result in a rigorous
representation of the topology of the search landscape, but is applicable to problem
instances that can not be exhaustively searched. Instead of a tree representation of
the search landscape, we derive visualizations that allow to draw conclusions about
the shape of the search landscape from a small subset of it.

There is also a couple of visualization approaches for the Traveling Salesman
Problem in particular. TSPAntViz [36] is a simulation and visualization environment
for analyzing the performance of metaheuristics on TSP problems. Different to
our work, the focus is on the metaheuristic and on the visualization of individual
solutions as opposed to a visualization of the search landscape. The same author
also proposed algorithms for TSP problems on cuboids [35] and on spheres [37].
Both of them incorporate visualizations of individual solutions, i.e., routes plotted
on cuboids and spheres, but no discussion or visualization of the search landscape.
Halim et al. [14] propose a visualization system called “Viz” that facilitates the
analysis of local search behavior. They use a force-directed layout to create a 2D
embedding of important landmarks from local search runs based on the Hamming
distance function between the landmarks. Then, search runs are plotted as trajecto-
ries in this depiction. Again, the focus is on the analysis of the search algorithm, not
on the search landscape itself. Furthermore, the fixed distance function introduces
a gap between the perceived search space and the actual behavior of the search
strategy. In contrast, we use distance functions that match the search operator in
order to visualize the search landscape as seen by the search strategy.

There is also much previous work about the analysis of search landscapes,
e.g., [9, 11, 18, 27, 31] and others. To our knowledge, these papers mostly rely
on statistical methods and do not include effective visualizations apart from simple
function plots.

4 Topological Analysis of the Search Landscape

In the following, we discuss the topological analysis method of search landscapes
[40] that we developed to support research in the field of swarm intelligence and
optimization. The goal is to ascertain data about the search landscape that enables
multiple analysis approaches known from literature. Furthermore, the method
should not be specific to a certain problem definition, problem instance, or search
operator. Thus, the comparison of search landscapes of different problem instances,
different search operators, and even different problems should be enabled.

The basic idea is to reduce the amount of data by considering walks within the
search landscape and to analyze their properties instead of analyzing the whole
search landscape directly. Therefore, we obtain a set of initial solutions, called
samples, by generating random permutations using Knuth shuffles [22]. For every
such sample we have the permutation itself as well as the cost value given by the
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cost function of the problem instance. Additionally, we compute the steepest descent
search path, i.e., we track the sample to its associated local minimum. For every path
we compute certain characterizing measures:

• the length of the search path, i.e., the number of solutions in the path
• the cost difference between the initial solution and the local minimum
• the length of a shortest path between the initial solution and the local minimum,

i.e., the distance between these two solutions

The last measure can be easily computed by means of the distance function that
accompanies the search operator. These measures are often used for correlation
analysis of the search landscape (cf. Chap. 5 in [18]). The measures for every path
can be associated with the samples, as there is exactly one such path for every
sample.

Furthermore, we derive additional sets of solutions from the search paths. First,
we have the set of found local minima, which is a subset of the local minima within
the search landscape. Note, that multiple steepest descent paths may end at the same
local minimum. Therefore, the number of found local minima is less or equal to the
number of samples. The number of distinct local minima can be used as a measure of
the complexity of the problem instance and is related to the difficulty of the problem
(e.g., [5, 6, 11]). Furthermore, given a number of independent group optima, it is
possible to statistically estimate the cost value of the global optimum [12, 26].

The set of all solutions that lead to the same local minimum via steepest descent,
are called the basin of the corresponding minimum. To some extent, information
about the basins of a problem instance can be estimated from the search paths. The
size of a basin can be estimated by using the sum of the lengths of all paths that
lead to the corresponding local minimum. The height of the basin can be estimated
from the maximum of the cost differences among the solutions on the paths. The
“appeal” of the basin, i.e., the likelihood that a random solution belongs to a basin,
can be estimated from the size of the basin or from the number of paths that lead to
the corresponding local minimum.

Beside the set of local minima, we also derive the set of all median solutions
of the generated paths. The main purpose thereof is to provide additional data for
characterizing the basins and the search paths. Thereby, the median solutions are
used as representatives of their paths to keep to total amount data points small.
This avoids visual clutter, leads to a clear visualization (see Sect. 5), and permits
interactive exploration.

To obtain information about the connectivity and adjacency within the search
landscape, we compute the distance with respect to the search operator between
any two solutions from all three sets (i.e., the sample set and the sets of the
corresponding local minimum solutions and the corresponding median solutions).
This results in six groups of distances. This approach is inspired by Fonlupt et al. [9]
who have drawn several conclusions about the shape of the TSP landscape
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from an analysis of the mutual distances between local minima. Based on this,
they introduced a new algorithmic approach—combining local search with a
genetic algorithm—that is tailored toward the TSP problem. However, they have
considered only distances between local minima and also used only a simple
means of visualization. We generalize their approach by computing distances
between different types of solutions, broadening the scope of the investigation,
and accompany the analysis with a more appropriate, well-suited visualization (see
Sect. 5).

4.1 Alternative Approaches

Topological methods such as the barrier tree [7] require the set of all solutions
below a certain cost threshold to be available. Therefore, they cannot be applied to
search landscapes of even medium sized problems because of their complexity (see
Sect. 2). Furthermore, no branch-and-bound techniques (as used in [15]) that would
allow for an efficient reduction of the search space are available for permutation
problems in general.

There are basically two approaches in literature for dealing with large landscapes.
The first one tries to acquire information about the search landscape by obtaining
a representative subset of the solutions, i.e., by sampling. The other approach
considers walks in the search landscape and obtains information about the whole
landscape from properties of these walks [9, 31]. Both approaches are combined in
our method described above.

Multiple strategies are possible for sampling the search landscape. One extreme
is a full enumeration of all possible solutions. It reveals most information about the
search landscape but is computationally infeasible for all but very small problem
instances. Random sampling is the other extreme revealing least information. It
has been shown, that much more representative samplings can be obtained when
guiding and filtering the random sampling within a Monte Carlo method [21]. In
particular, the obtained results contain near optimal solutions and allow reasoning
about the overall distribution of costs within the landscape. However, assessing
the distribution of costs is not the primary concern of this paper. Therefore, the
application of a random sampling is sufficient here. Knuth shuffles are often
used to generate initial solutions for search heuristics. In our tests, we found that
Knuth shuffles usually generate solutions in a small range of very high costs. The
combination with local search paths guarantee that local minima are included in
our sampling and major topological properties of the landscape are reflected. Our
sampling leads to long search paths which reveal more information about the basins.
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Most analyses that exploit walks within the search landscape, apply random
walks, e.g., Stadler and Schnabl [31]. While random walks also descent monoton-
ically within the search landscape—the costs of solutions on the path are smaller
than the costs of their predecessors—and they also end up in local minima, they
are ambiguous: there are many possible random walks starting from every solution
in the search landscape. As a consequence, every solution can be associated with
multiple local minima using random walks. This makes topological notions such
as basins much harder to define (e.g., [32]). On the other hand, there is exactly
one steepest descent walk for every solution in the search space, so that each
solution is associated with exactly one local minimum. Furthermore, there is a close
connection between the basins defined by steepest descent walks and the barrier
tree [7]. Therefore, we preferred steepest descent walks here.

5 Topological Visualization of the Search Landscape

From the analysis of the search landscape (see previous section), we obtain a
multivariate dataset consisting of three groups of data points: the samples, the local
minima, and specific intermediate solutions on the search paths. Every data point
has a permutation and a cost value associated. For the set of samples we have the
following additional attributes:

• the associated local minimum
• the path length to the local minimum
• the cost difference to the associated local minimum
• the distance within the search landscape to the associated local minimum

The attributes of the set of local minima are:

• the number of samples that lead to the specific minimum
• the maximal known cost difference along a path that leads to the minimum
• the number of solutions on known paths to the minimum

Additionally, the distance between any two data points is known.
The visualization of the data should facilitate two important tasks: correlation

analysis (cf. [18]) and analysis of the shape of the search landscape (cf. [9]). Thus,
the requirements on the visualizations are that they support these tasks effectively
and that they allow to see the essential results of the analysis at a glance. Since
the data is multivariate, we select and configure known visualization techniques for
multivariate data visualization.

Correlation analysis, the first task, examines the correlation between different
distances within the search landscape. Thereby, the cost difference between solu-
tions and their associated minima, the length of the search paths from solutions to
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local minima, as well as the distance between solutions and their associated minima
with respect to the search operator are compared. In particular, we are interested
whether there is a proportional or anti-proportional correlation between any two of
these three measures. We use scatterplots (see, e.g., [13]) to visualize relationships
between these variates, since they allow to visually identify many different types of
correlation [16].

The analysis of the shape of the search landscape is more complex and
requires domain specific knowledge. Domain experts use information like the data
generated (see Sect. 4) and interpret it in the light of their own experience and
previous knowledge about the optimization problem (cf. the procedure described
by Fonlupt et al. [9] and Fleurent and Glover [8]). First of all, the relative number
of minima within the search landscape is considered. Being a single number, it can
be represented as text.

Second, the distribution of cost values among the found solutions is analyzed.
The distribution of the cost values is visualized by computing histograms for the
three groups of data points (samples, minima, and intermediate solutions) and
using stacked bar charts [41] for their presentation. This allows to analyze the cost
distribution of each individual group of data points at the same time as the global
cost distribution.

Third, the distances between the found solutions are investigated. We use the
same approach as for the visualization of the distribution of distances. In this case,
however, we have six different distributions, resulting in six bar charts, that are
stacked above each other: the distributions of distances within each group (3) and
the distributions of distances between any two of these groups (3). This allows
investigating the distance distribution between pairs of groups in the context of the
intra-group distances.

For both histogram visualizations coloring is used for distinguishing between the
different groups of data points. Thereby, all data points of one group are assigned the
same color. The colors of the groups are determined using a qualitative color scheme
from color brewer [17]. This ensures that the groups are easily distinguishable. In
the case of the distance distribution additional colors are assigned for the distances
between different groups.

A topological visualization is proposed that supports the investigation of the
shape of the search landscape. Therefore, we exploit that the distances between the
solutions carry topological information. We use them to reconstruct a depiction of
the search landscape that preserves the topological properties as good as possible.
In particular, we map the solutions onto the 2D plane such that the Euclidean
distances between the points in the plane approximate the distances within the
search landscape. The visualization then allows to differentiate, e.g., between crater-
like landscapes and landscapes that resemble large plains with many small cavities.
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The mapping is done using a metric Multidimensional Scaling [3] technique. In
this case, we rely on a variant of the Shepard-Kruskal algorithm which simulates
a spring force model. All data points are placed at random initial positions in the
2D plane. Every data point exerts a force on every other data point. Let dij be the
distance between i and j in the search landscape (according to the search operator),
and be xi the position of i in the plane. Then, the force on i is

F.i/ D ˛
X
j¤i

xj � xi

k xj � xi k �
�
dij� k xj � xi k

�

In this case, we use ˛ D 1=#points. In every iteration, the force on every data point
is computed and the data points are moved accordingly (x0i D xi C F.i/). This is
repeated until an equilibrium or a maximal number of iterations is reached.

5.1 Design Alternatives

Multiple visualization techniques have been proposed to facilitate the detection of
correlations. Harrison et al. [16] investigate many different such techniques and
evaluate their effectiveness for this task. It shows that scatterplots are the most
effective technique, even superior to parallel coordinates, when different types of
correlation can be present within the data.

The cost and distance distributions are multimodal and thus cannot be captured
in individual statistical quantities. This excludes box plots [34] that show only those.
Histograms in stacked bar charts, on the other hand, allow for a more fine-grained
visualization and depict the shape of the distribution.

Multiple techniques are available for the task of projecting the data points onto
the 2D plane while preserving their relative distances as good as possible. Principal
Components Analysis [20] would require a spatial embedding of the original high-
dimensional dataset. Because we are not aware of any useful spatial embedding of
the set of permutations, we cannot apply PCA here. Projection techniques have been
proposed that facilitate eigenvalue decomposition of the distance matrix, e.g., [25].
The main problem in this case is the bad scalability of these techniques [33].
Self-Organizing Maps [23] could be used, however, they require setting several
parameters and the interpretation of the final layout is not straight forward.

Clustering techniques are not adequate for the problem presented in this paper.
First of all, in our case, the points are already assigned to different categories: sample
points, minima, and path medians. Further, as can be seen from the histograms, a
distance based clustering will not adequately reflect the structure of the data (cf.
Fig. 2).

Using the proposed layout algorithm has multiple advantages: data points with
small distances to each other are clustered visually, the relative placement of
different groups of data points represents their actual distances, and thus the relation
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Fig. 2 Distribution of the distances within the whole set of permutations of length 9. The bond
distance is used on the left side and the interchange distance on the right side. Both distance
metrics lead to a similar distribution with most pairs of permutations having a very large distance
(almost the maximal distance) and few such pairs having a distance of less than half of the maximal
distance. This distribution is the reason, why both clustering of the solutions as well as projection
of the solutions into low-dimensional spaces are difficult

between distinct clusters is kept, and data points that can not be clustered do not
break the layout, but are presented as outliers.

6 Confirmation of the Method: Topological Analysis
of the Search Landscape of TSP

To confirm the method presented above, we perform a topological analysis of the
search landscape of TSP. Thereby, we show the effectiveness of the method in
reproducing known results mainly from Fonlupt et al. [9]. Furthermore, we describe
two additional findings during our experiments.

Fonlupt et al. [9] concluded from their analysis of the TSP landscape using the
2-opt operator, that it there is a “massif central” around the global optima. This is in
accordance with the previous findings by Stadler and Schnabl [31]. We applied our
method to all problems in the TSPlib [29] up to a problem size of 1048 to confirm
these results (see Fig. 3). In all problem instances, we found mutual distances
between the minima of 1=3 to 1=2 of the problem size. This can easily be seen from
the histograms in Fig. 3. On the other hand, the samples that we randomly generated,
usually had an almost maximal distance to every other solution. These results are in
accordance with Fonlupt’s findings and suggest the same interpretation of a “massif
central”. The force-directed layout (top row in Fig. 3) shows these findings in a
very intuitive way: the local minima are clustered in the center of the depiction.
The intermediate solutions are located on a ring around the local minima and the
samples with their large distance to all other solutions are located on the outer ring
around the local minima and the intermediate solutions. This suggests a crater-like
structure and thus is an appropriate visualization of the common understanding of
the TSP landscape among domain experts. Furthermore, Fonlupt et al. [9] found
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Fig. 3 2-opt search landscapes for three TSP instances from the TSPlib. The number in the
problem names indicates the problem size. Notably, the distances between the local minima are
very small. Also, the minima are well separated from both, the samples and even the intermediate
solutions, in the distance histograms. This results in the crater-like layout of the search landscape
(top pictures), showing the cluster of local minima with close proximity. The scatterplots in the
bottom row show no correlation between path lengths and cost differences

no correlation between the cost value of both, the initial solutions and the local
minimum, and the length of related local search paths. This can also be seen from
the scatterplot in the bottom row of Fig. 3.

While evaluating these results, we also noticed a difference between small
problem instances and larger ones. Small problem instances (up to a size of
12 to 15 cities) are sometimes used to test search algorithms because they are fully
enumerable and easy to reason about. This has been criticized because small and
large problem instance have severely different characteristics so that investigations
based on small test instances can be misleading (cf. Sect. 5.1 in [28]). We found a
clearly visible shift in the search landscapes of TSP instances somewhere between
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Fig. 4 Analysis of the complexity of TSP problems with increasing size. The total number of
distinct local minima found by 3000 search paths for various problem sizes is shown. For distance
distributions and search landscape layouts of chosen examples from these problems see Fig. 5

20 and 50 cities. Figures 4 and 5 show the results from analyzing randomly gener-
ated TSP instances of increasing size. Thereby, we found that for small problem
sizes (up to 20 cities) there is a very small number of local minima. However,
somewhere between 20 and 50 cities, the number of local minima increases until
almost every search path reaches a different local minimum (cf. Fig. 4). Another
effect is visible in the distribution of the distances (cf. Fig. 5). In problems of size
25 and above the distances between the local minima are clearly separated from
the distances between the samples within the bar chart. That means that the local
minima are located closer to each other than to the random samples. This is also
clearly visible in the layouts of the search landscapes in Fig. 5. For the small problem
of size 12, local minima and random samples are intermingled. While the layout of
the 25-city problem already shows an accumulation of local minima in the center
of the layout, the minima are still mixed with the random samples. For the larger
problem of size 30, a clear separation between local minima and random samples
is shown. From these observations we conclude, that TSP problems indeed change
their complexity and become harder when exceeding a size of about 50 cities.
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Fig. 5 Randomly generated TSP problems with increasing size, analyzed using 3000 search paths.
The top row shows the distance distributions in the search landscape. Distances between local
minima are clearly separated in the bar chart from distances between samples when the problem
size increases (see also Fig. 3). Distances between local minima are not visible in the left histogram
(problem size 12), because the number of minima is orders of magnitude less than the number of
random samples. The bottom images show the layout of the search landscape for various problem
sizes. Up from around 25 cities, a separation between minima and samples becomes visually
apparent in the layout

Further, we compared the search landscapes of different search operators. In
particular, we applied the interchange operator to the TSP problem. Previous
research showed, that steepest descent using the 2-opt operator is more efficient
than using the interchange operator for TSP [24, 31]. Figure 6 shows a juxtaposition
of both search landscapes of the Bier127 problem from the TSPlib. This is only one
example, but we also found the same behavior in the other instances from the TSPlib.
When using the interchange operator, the search paths are longer on average (as can
be seen from the histograms on the right column of Fig. 6) and the found local
minima are not located near each other. Instead, there are almost maximal distances
both between the samples as well as between the local minima. This results in a
much different landscape layout, revealing almost no structure. Our intuition is that
the missing structure makes TSP harder when using the interchange operator. A
potential reason for this might be the interaction between the search operator and
the cost function: the interchange operator changes four inter city connections in
the route while 2opt only changes two and thus potentially causes smaller changes
in the route length.
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Fig. 6 Juxtaposition of the layouts and the distance distributions of the search landscape of the
Bier127 problem for the 2-opt operator (top row) and the interchange operator (bottom row). On
the right, the distribution of path lengths are shown. The search landscape from the interchange
operator reveals much less structure, which hints that the interchange operator performs worse on
the TSP

7 Conclusions and Future Work

We introduced a visualization system for the analysis of search landscapes of
discrete optimization problems. The underlying analysis method is described in
more depth in a companion paper [40]. It uses steepest descent paths from random
solutions to reveal topological properties of the search landscape. The presented
system involves visualization of statistical data as well as a topological visualization,
and supports the interpretation of the search landscape by the domain expert. In
particular, different topological shapes, e.g., crater-like or moon surface-like shapes,
are revealed in an intuitive manner. We applied the method to many instances of the
Traveling Salesman Problem to reproduce and confirm previous findings. Thereby,
the effectiveness of the analysis method and the visualization were demonstrated.

We mainly focused on the Traveling Salesman Problem in this paper, which
is well understood and is suitable as a benchmark. However, the method itself is
not specific to it. It might be interesting to apply the method to different discrete
optimization problems, not necessarily limited to permutation problems. We expect
that new directions of research for these problems can be identified, as well as
indications of how our visualization can be adapted to problem specific analysis
tasks.
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Computing and Visualizing Time-Varying
Merge Trees for High-Dimensional Data

Patrick Oesterling, Christian Heine, Gunther H. Weber, Dmitriy Morozov,
and Gerik Scheuermann

Abstract We introduce a new method that identifies and tracks features in arbitrary
dimensions using the merge tree—a structure for identifying topological features
based on thresholding in scalar fields. This method analyzes the evolution of features
of the function by tracking changes in the merge tree and relates features by
matching subtrees between consecutive time steps. Using the time-varying merge
tree, we present a structural visualization of the changing function that illustrates
both features and their temporal evolution. We demonstrate the utility of our
approach by applying it to temporal cluster analysis of high-dimensional point
clouds.

1 Introduction

With increasing size and dimensionality, time-varying data has become difficult
to visualize and analyze. One solution to this challenge is to detect features, i.e.,
salient data subsets, at each point in time and track their evolution to obtain more
compact and less cluttered visualizations. For example, when meaningful features
of scalar fields are defined by thresholding, a topological structure called the merge
tree compactly encodes features for all possible thresholds.

To track features over time, existing methods commonly fix a threshold; changing
this value requires expensive recomputation of the tracking information [29].
Supporting threshold changes over time or on a per-feature basis depends on
specifying a large number of parameters a priori. Moreover, many existing methods
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correlate features via spatial overlap in consecutive time steps—an approach that
can lead to ambiguities [24] and becomes computationally intractable in higher
dimensions. Time-varying Reeb graphs [13, 18] require complicated distinction of
cases for topological events; their number increases with the dimensionality and no
case tables have been presented beyond the 3-D case.

Here, we introduce time-varying merge trees—a topological summary of time-
varying scalar fields that addresses these issues as follows. Instead of using a single
threshold, we track features for all thresholds, enabling threshold selection guided
by the time-varying merge tree’s visualization. To avoid tracking ambiguities, our
algorithm records all necessary changes to the merge tree within the time interval
between adjacent linearly-interpolated time steps, establishing a clean topological
foundation for feature tracking. By focusing on merge trees for threshold-based
feature tracking, we are able to provide a complete set of cases valid for all
dimensions.

We represent time-varying merge trees as sequences of landscape profiles [21]
and link hills visually to indicate structural changes. To reduce the clutter caused
by showing many hills and links, we use topological simplification and represent
preservation of topological feature groups by one visual link rather than many.

We demonstrate the utility of our approach by applying it to the analysis of time-
varying, high-dimensional point clouds, where the merge tree of the density function
captures clusters and their nesting [20].

2 Related Work

Defining and tracking features [22] is a common solution to visualizing large time-
varying data sets. We focus on scalar fields, where many feature definitions are
based on isosurfaces [19].

Szymczak [25] annotates contour trees for consecutive time steps to support
queries of contours that evolve in particular ways or hit the boundary. Sohn and
Bajaj [24] track contours using a similarity measure that considers spatial overlap
of the inside and outside of contours. Ji and Shen [16] use the earth mover’s distance
to determine correspondence among contours.

For a family of real-valued functions on a common d-manifold without boundary,
Edelsbrunner et al. [10] define Jacobi sets, which can be used to track critical points.
On this basis they compute the time-varying contour tree of a function on the 3-
sphere [13]. However, changes to the contour tree require detailed case analysis
and the algorithm is difficult to extend to higher dimensions [13] (Mascarenhas,
private communication, 2013). By restricting considerations to the merge tree, our
algorithm considers fewer and simpler cases, and—more importantly—makes it
independent of the domain’s dimension. Instead of tracking critical points explicitly,
Cohen-Steiner et al. [9] use evolving persistence diagrams to trace critical value
pairs visually.



Computing and Visualizing Time-Varying Merge Trees for High-Dimensional Data 89

Keller and Bertram [17] present a method to compute a time-varying isosurface
from a so-called hyper-Reeb graph, i.e., a Reeb graph augmented with Betti numbers
indicating, e.g., genus changes. While isosurface extraction is applicable for
arbitrary dimensions [2], d-dimensional regular grids of hypercubes and isosurfaces
extracted as sets of .d�1/-dimensional simplices are quickly becoming impractical
in higher dimensions, and Bhaniramka et al. [2] provide only 4-D and 5-D examples.

Bremer et al. [4] use the Morse-Smale complex to compute burning regions
restricted to an isotherm for a range of fuel consumption thresholds. Once an
appropriate fuel consumption threshold is identified, they use the Reeb graph of
a 4-D space-time isosurface to track these regions over time [4, 28]. In later work,
Bremer et al. [5] use the merge tree to compute statistics about burning regions in
combustion simulations within a single time step. Once an appropriate threshold is
identified, burning regions are tracked over time via overlap.

Visualizing tracked features can be challenging. Bremer et al. [3] survey methods
and applications of topological feature tracking in molecular analysis, combustion
simulations, and porous materials analysis. The results are shown as feature tracks
embedded in the original domain. Similarly, Chen et al. [8] showed an embedding
of the Reeb graph in the original data to track level sets of particle data. Other
approaches store the tracking in a graph that is then shown using graph layout
techniques. Widanagamaachchi et al. [29] present tracking graphs that update
quickly when the user changes the isovalue of the tracked features. Because we
compute tracking information for all features up front, we can layout the tracking
information directly and show more feature properties, e.g. their size and robustness.

For point cloud data—the high-dimensional example application in this paper—
Turkay et al. [26] present a system to explore time-varying clusters along with their
structural properties, but this splits information into multiple views that need to be
integrated in the analyst’s mind. In contrast, our visualization technique shows all
relevant metrics in the same view as the cluster evolution.

3 Background

A superlevel set of a function f W ˝ ! R;˝ � Rd for a value v is the set of all
points x 2 ˝ where f .x/ � v. It may consist of multiple connected components,
whose evolution with varying v is of particular interest to us. Imagine the function
f as a landscape, initially fully submerged by water, and the value v as the current
water level. When the water is slowly drained, i.e., v is decreased, hills will start
to emerge from the water, corresponding to new superlevel sets created at f ’s local
maxima. When draining the water further, hills/superlevel sets will merge at points
called saddles. The draining process stops when v reaches f 0s global minimum.
Although the metaphor uses a 2-D landscape, the concepts are applicable in any
dimension.
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Fig. 1 (a) A scalar function’s superlevel set boundaries and critical points indicate feature
candidates. The merge tree encodes superlevel set evolution; its arcs and properties can be
represented as a landscape profile. Color indicates correspondences among regions, merge tree
arcs, and hills. A hill’s height and width signify the corresponding superlevel set’s persistence and
size, respectively. The distribution of implicitly stored function values is reflected by a hill’s shape;
and thus its area reflects stability. The green hill is not very stable and the blue hill is maximally
stable. (b) Left: If nodes u and l transpose, the merge tree needs to be reconstructed locally. Center:
Only the arcs incident to u and l (red) are affected, whereas the rest of the tree remains unchanged.
Right: Some arcs (black) are implicitly correct, while others (dotted red) need to be validated

The merge tree encodes changes of superlevel set connectivity. Leaves represent
local maxima, inner nodes represent saddles, the root represents the global mini-
mum, and arcs, i.e., directed edges, connect nodes according to the process outlined.
Each node is labeled with the value v of its corresponding event. Each node and each
point on an arc correspond to exactly one connected component of a superlevel set
for one value v (cf. Fig. 1a).

For piecewise-linear functions on simplicial grids, Carr et al. [6] give an
algorithm to compute the augmented merge tree: Initially, each grid vertex is
represented by one node in an otherwise empty tree and one set in a union-find
data structure. The algorithm processes all grid vertices u in order of decreasing
function value and (1) determines the sets of u’s upper link, i.e., grid neighbors with
higher function value, (2) adds an arc from each set’s lowest node to u’s node, and
(3) unites these sets with u’s set and declares u’s node as the new set’s lowest node.
In addition to leaves, saddles, and the root node, the augmented merge tree also
consists of regular nodes, which have exactly one outgoing and one incoming arc.
Removing all regular nodes yields the merge tree, consisting of so-called superarcs
and supernodes.

Noise in the data complicates the merge tree, but it can be detected and removed
by topological simplification. In this process, superarcs are annotated with a
measure of robustness. Repeatedly, the leaf superarc of lowest robustness is removed
from the tree, potentially turning a saddle into a regular node, which, together with
its two incident superarcs, is then replaced by a superarc. For each region mapped
onto a superarc, we use three measures: persistence [12], the difference between the
maximum and minimum function value of a region, size, the number of grid vertices
of a region, and stability [21], a summed function value distribution of a region.
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The merge tree can be represented as a 2-D landscape profile [21], which is a
variation of 3-D topological landscapes [15, 27]—a terrain metaphor for the more
complex contour tree. A topological landscape has the same topology like its input
tree and can represent structures of any dimension without structural occlusion. In a
2-D landscape profile, nesting hills represent superarcs of the merge tree; free of any
occlusion and perspective distortion. Feature size is signified by width, persistence
by height, and the distribution of function values in a region by the shape of the
hills.

4 Overview

We visualize time-dependent, real-valued functions defined on domains of any
dimension by studying how superlevel sets evolve with time. Our algorithm
(1) computes the merge tree for each scalar field in the input sequence; (2) finds the
sequence of structural changes that transforms each merge tree into its successor,
storing these changes as tracking records; (3) uses topological simplification to
remove noise from the merge trees, adjusting the tracking information accordingly,
and (4) represents each tree as a landscape profile and translates tracking records
into visual links connecting related hills. Steps (1)–(3) can be run concurrently for
pairs of consecutive snapshots.

5 Merge Tree Transformation

To compute the merge tree evolution between two time steps, suppose that we
computed the merge tree at each point in time for linear interpolation of the function
between the two time steps. The construction algorithm outlined in Sect. 3 implies
that the augmented merge tree’s structure does not change as long as the ordering
of grid vertices based on their function value stays the same. Instead of an infinite
set of merge trees, we only need to consider the finite number of changes to the
augmented merge tree that arise when vertices transpose, i.e., their function values’
ordering changes. Moreover, because the augmented merge tree represents domain
subset relations via arcs and paths, transpositions of nodes not connected by an arc
do not affect the tree structure. It suffices to observe changes in the tree whenever
two nodes joined by an arc transpose and their common arc collapses. We need to
work on the augmented version of the merge tree because otherwise we would miss
when a regular node pair becomes critical through a transposition.

Because reconstructing the whole merge tree from scratch after every single arc
collapse would be computationally expensive, we consider how the merge tree can
change after a single transposition. Figure 1b illustrates a transposition for arc .u; l/,
with u and l being the upper and lower nodes, respectively. There are two types of
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arcs: arcs not affected by the transposition that are implicitly preserved in the tree
and arcs that may change, thus requiring additional validation.

Lemma 1 (Arc Lemma) For a fixed domain and a fixed vertex order F, there is an
arc .u; l/, with F.u/ > F.l/, in the merge tree of F if and only if the component of
l in the domain restricted to the vertices w with F.w/ > F.l/ contains the vertex u
and does not contain any vertex w with F.u/ > F.w/ > F.l/.

The proof of the lemma follows immediately from the algorithm used to
construct merge trees, described in Sect. 3. It follows from the Arc Lemma that
the transposition of u and l affects the merge tree only locally.

Property 1 Any arc that does not contain u or l remains in the merge tree.

Proof Since the only change in the order F is the transposition of vertices u and l, if
the two properties of the Arc Lemma hold for an arc .x; y/, with x; y … fu; lg, before
the transposition, they continue to hold after the transposition. (And if they do not
hold before, they do not hold after.) ut

This property implies that the merge tree remains unchanged above all of u’s and
l’s children, as well as below l’s parent and thus only arcs incident to u and l need
further validation. While it is immediate that u and l are still connected after the
transposition, the Arc Lemma also implies an arc between u and l’s parent node.

Property 2 u inherits l’s parent node.

Proof Let p be l’s parent node. The component of l before the transposition is the
same as the component of u after the transposition. Since the order of nodes between
l and p before, and u and p after the transposition are the same, the Arc Lemma
implies that we have an arc .u; p/ in the tree after the transposition. ut

The validation of u’s and l’s child arcs depends on their connection in the
underlying grid. The nodes’ links do not change, but their upper links do, and thus
require analysis. For node l, the change of its upper link is limited.

Property 3 l retains the arcs to all the components that remain in its upper link.

Proof For any arc .w; l/, the two properties of the Arc Lemma hold before
the transposition. After the transposition, the first property holds because if the
component of w remains in l’s upper link, then u belonged to a different component
of l than w (so its removal could not have disconnected w from l). The second
property holds because there is one less node between w and l. In other words,
.w; l/ remains an arc after the transposition. ut

To understand the changes to u’s children, we need to determine how its upper
link is affected by the transposition. l can become a new upper link component,
it can become part of an existing upper link component (a regular node), or l can
combine an arbitrary number of u’s previous upper link components. We need to
check which of u’s upper link components are in l’s upper link, once l is higher than
u. In other words, we determine whether l is connected to some of u’s upper link
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components and thus becomes a regular node or a saddle. If l is not connected to
any of u’s upper link components, it becomes a new maximum within the upper link
of u.

To achieve our goal, we start a traversal towards the merge tree’s root from each
grid node x in l’s upper link. The traversal follows the unique path from x to the root
of the tree. Node l lies on this path since x belongs to the superlevel set component
of l. Node u lies on this path if and only if x falls in the superlevel set component
of some node y in u’s upper link (possibly, with x D y). The component of y in
the upper link of u is represented, without loss of generality, by an arc .y; u/. In
this case, l inherits the arc .y; l/ after the swap. Indeed, both conditions of the Arc
Lemma are satisfied. If u does not lie on the path from x to the root, then, after the
transposition, there is no connection in the superlevel set component of l between l
and u’s former upper link. In this case no arc is redirected to l. Most transpositions
are between regular nodes, but only few of these produce a new maximum-saddle
pair. We noticed that this can only happen when the involved regular nodes are grid
neighbors. If not, we can safely swap them without performing a child traversal.

Our implementation starts with the augmented merge trees of the first time
step and two lists of the grid vertices sorted descending by their values at the
first and second time step. The first list will be reordered over time for correct
determination of a node’s (changing) upper link. The second list is to determine
potential transpositions of new arcs that occur after a transposition. The time of an
arc collapse is inferred from the linear interpolation between the vertices’ values in
the first and the second time step. We keep arc collapses in a priority queue, breaking
ties based on the lexicographical order of their incident node IDs; a straightforward
extension of simulation of simplicity [11].

The number of arc collapses depends on how many node pairs change their
relative order in both time steps; i.e. on the structural variation of the function. In
the worst case, i.e., if the node ordering is reversed, their number is bounded by
O.n2/ for n tree nodes. Potential push-updates to the priority queue take O.log e/,
for e arcs in the queue. The traversal to validate node l’s upper link depends on
the number of tree nodes on the paths between l’s upper link nodes and l itself.
Trivially, this number is bounded by n; better bounds depend on the function itself
and on grid granularity. In our experiments, however, we observed that the number
of arc collapses is usually less than 5% of n2 and that the 90th percentile of the
traversal lengths is around 10% of n; while no traversal was longer than 30% of n.

6 Feature Tracking

By using a continuous transformation, we can identify structural changes of the
augmented merge tree and we know the exact time and the order of all events. The
challenge is now to infer the changes to the unaugmented merge tree’s superarcs.

Between two time steps, superarcs may be born, die, or match with a superarc
of the following merge tree. Figure 2 illustrates how we distinguish these cases.
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Fig. 2 Case table indicating how tracking information is affected by the nodes’ types before and
after the transposition. For every possible configuration (dotted boxes), the bold arc is about to
collapse and all possible results are shown to the right. In principle, superarcs die when supernodes
pass each other, and a new superarc is born when the passing node becomes a supernode

For birth and death events we keep track on which parent superarcs they take place
because the tree may undergo many changes. For example, a newborn superarc may
move within the tree, or it may give birth to other superarcs. Similarly, a superarc
on which another superarc died may move or die. In rare circumstances, an arc
gives birth to the arc it dies on. Therefore, we have to store tracking information
recursively. To display superarc relations later on in the visualization, each superarc
needs a representative. We use its upper supernode for this purpose. Leaf superarcs
are thus represented by their maxima, and inner ones by their upper saddle node. For
each transposition, we check if the superarcs of the tree are affected. If necessary,
we create or destroy tracked arcs, and we record on which arcs these changes occur.
If superarcs do not change, we record when regular nodes change their association
to a superarc and, if necessary, update a superarc’s representative to handle moving
features that are represented by a different set of grid vertices in the next time step.

For every superarc we maintain a tracking record that stores: the initial represen-
tative, the current representative, the superarc born from, and the superarc died on.
Initially, the entries for superarc “born from” and “died on” are empty. We also store
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for each node to which superarc it belongs. One possibility to track superarcs—
including precise place of birth/death and correct times—is to consider the node
types before and after an arc collapse and to handle this event according to the case
table in Fig. 2. This table summarizes all possible configurations of an arc collapse,
using symmetry of events (e.g. “a saddle node rises above a maximum” versus “a
maximum falls below a saddle”) and impossible events (e.g. “two maxima swap”) to
reduce the number of considered cases. Possible results of a configuration reflect the
changes of l’s upper link. Furthermore, the table indicates in which configurations
superarcs are born or die and in which cases a node’s superarc affiliation changes.
Tracking then consists of simply creating or updating affected tracking records after
every arc collapse. For example, if before a transposition the lower node is a saddle
s and the upper node is a regular node r (Fig. 2, right column, second row) and both
nodes are saddles after the transposition (Case 0), we first create a new superarc
with s as its current representative and s’s previous superarc as the “born from”
entry. Then we set r to be s’s previous superarc’s new representative and update the
superarc connecting both nodes. For simplicity, events relating to the minimum of
the tree are considered to be either regular or saddle events.

A function’s main features naturally appear as maximum-saddle pairs of sig-
nificant persistence, size, or stability. Therefore, we restrict further processing and
visualization to leaf superarcs. To create pairwise relations between original and
final superarcs we post-process the tracking records after the transformation as
follows: If the “died on” entry for an original leaf record is empty, we associate
that record’s initial representative with its current representative, and store this as
a match record. If the “died on” entry of an original leaf record is not empty,
we recursively follow it until we reach the record where “died on” is empty. We
associate the record’s initial representative with the record’s current representative
found and store this as a death record. Finally, for each new leaf record, we
recursively follow the “born from” entry, associate the found record’s initial
representative and the new record’s current representative, and store this as a birth
record. This gives us a set of records, classified into either match, birth, or death
events, that tell us how features of the complete function relate to each other between
the original and the final tree.

7 Simplification

Merge trees of noisy functions contain many small superarcs that represent features
below meaningful thresholds. Topology-based simplification [7], i.e., the removal of
those superarcs whose properties, e.g. their persistence, are below a user-specified
threshold, has been applied successfully to reduce noise in the data.

If a superarc is removed from the tree, we also have to adjust those tracking
records that have this superarc as their origin or target, i.e., as their initial or current
representative. To this end, we redirect the tracking record by replacing the removed
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superarc by its parent superarc. Tracking records may become redundant by this
process, e.g. if the target of a birth-record, or the origin of a death record is removed.

Note that for the time-varying analysis, changing the simplification threshold for
the merge tree at time step i requires repeating simplification of tracking information
between time steps i � 1 and i, and between time steps i and iC 1.

8 Prototype Visualization and Examples

The time-varying merge tree consists of: the merge trees at the given time steps that
describe the hierarchy as well as quantitative properties for all features, the tracking
information of all features over time, and exact times for structural events of the
complete function.

To reduce visual complexity, we use a discrete approach that separates the
depiction of structure from that of temporal evolution. We display the merge
trees as occlusion-free 2-D topological landscape profiles [21], stacked in the
third dimension according to their time stamp, and using orthographic projection
to facilitate feature comparison. We relate features over time using visual links
between the profiles, similar to standard isotracking graphs [5, 24], but showing
more feature properties and, most importantly, features for all thresholds in the
landscape profiles.

To visualize the tracking records that associate two superarcs of two subsequent
merge trees, we identify both superarcs using the record’s initial and current
representative, identify their areas in the profiles, and use these areas’ centroids as
the visual link’s origin and target coordinates. To distinguish record types, we use
black, green, and red links for match, birth, and death records, respectively. The user
can filter tracking information by selecting arbitrary parts of the profiles. Tracking
information is then filtered either forwards, backwards, or in both directions in time.
More sophisticated analysis is achieved by combining simplification and interactive
selection. For example, small features could be excluded from simplification if
they are related to the evolution of user-selected features—e.g. if noise becomes
a prominent user-selected feature later on.

Although topological simplification is the primary tool for removing irrelevant
hills, we further reduce the remaining links to increase visual clarity by: link
aggregation to group multiple incoming or outgoing links per hill by type/color
and let them fork if necessary; link unification for links of different type/color that
have exactly the same origin and target hills, which could happen for fine-grained
topological events in one and the same feature, e.g., if a new arc is born inside a
region on which the former maximum dies; and match-link combination to connect
hierarchical subfeatures that do not change over time with a single black link at
their lowest shared saddle. A single match link between two profiles indicates that
structure is preserved entirely. Finally, reordering saddle node children can change
hill positions in the profile without changing its topology. This strategy could be
used to optimize crossing links; but does not allow to switch arbitrary hills.
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8.1 2-D Example

Figure 3a uses an artificial function in 2-D to illustrate the visualization of a time-
varying merge tree. The grid consists of 2500 vertices and the computation of the
topologically most complex time step takes less than a second. We used a machine
with two 2.4 GHz Quad-Core AMD Opteron(tm) processors for all experiments.
Because time steps are processed concurrently, the total time to obtain the image,
including topological simplification to remove small features, is approximately 1 s.

As can be seen, the tracking is robust with respect to noise and feature shape, and
moving features are recognized if their spatial distance is small enough. Typically,
a moving feature is identified as a superarc whose implicit regular nodes (grid
vertices) only change or as a superarc that gives birth to a new one on which it
dies afterwards. Time steps t1 and t2 show a counterexample. Because the spatial
distance of the right feature in the function is too big, the tracking detects that a
new feature gets born and the old one vanishes. A higher time resolution would be

Fig. 3 (a) Artificial, topologically simplified 2-D function (right): t0: flat function. t1: three main
features are born. t2: all features move and noise is added. t3: all features move, one splits, the
other two grow in size and persistence, respectively. t4: features move and join. t5: one feature dies,
another is rotated, noise is removed. (b) Reuters data: Hills on the profiles for each time slice show
the number, nesting, importance, and homogeneity of clusters with all relevant metrics (persistence,
size, and stability) in the same view. Histograms, colored by class, verify that documents primarily
accumulate by class and form subclusters for related categories. Over time, tracked features of the
varying merge tree show how more subclusters break apart and grow individually. The profiles
grow in their width and height to reflect that new documents are added with each additional time
slice
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needed to correctly detect this as a fast moving feature. In general, death events are
detected, but in time step t5 a feature matches to one of the maxima produced by
added noise in that area. Because noise is removed by topological simplification,
the link target correctly points to the removed hill’s parent hill. If a feature splits,
the new one typically matches to one of the former maxima (t3, second hill) or a
new feature is born (t3, right hill). Likewise, if features join, they first share a higher
saddle and then one feature would die on the other (t4). In t3, the first two hills
change their order because the topological landscape profiles [21] sort subtrees of
each merge tree saddle by persistence to put the highest hills to the left.

8.2 High-Dimensional Example

To demonstrate the effectiveness and applicability of time-varying merge tress
for high-dimensional data, we extend previous work by Oesterling et al. [20]
on topology-based cluster analysis of static, high-dimensional points clouds. The
authors assume the point cloud to be outcomes of a set of random variables with
identical high-dimensional probability distributions. Using geometric graphs and a
Gaussian kernel, they obtain an approximation of the high-dimensional probability
density function whose merge tree topology they then visualize as a topological
landscape. We extend this work by approximating a point cloud in space-time by its
varying density function and analyze its superlevel set topology over time.

To make computation of the time-varying merge tree tractable, we construct
a grid that remains unchanged over time, but still supports sampling the density
functions of all time steps with sufficient accuracy. We merge all input point clouds
into a single set of points, construct the neighborhood graph, and determine point
densities using an appropriate Gaussian filter radius (see [20] for details) so separate
all clusters.

We use categorized documents from the Reuters-21578 collection [1] that
appeared on the Reuters newswire in 1987. To demonstrate accurate feature tracking
in high dimensions, we extract documents for ten economy-related categories and
use the tf-idf [23] document-term weighting to define word importances for each
document’s dimensions in the vector space model. Using Linear Discriminant
Analysis [14], a supervised projection that uses given classification information to
minimize information-loss, we project the data to a .#classes� 1 D 9/-dimensional
space and end up with 5309 documents, manually divided into eight time slices, 20
days each, from 02/21/1987 to 10/19/1987. Figure 3b shows the visualization of the
time-varying merge tree. The total time to obtain the image is around 1 s. The most
complex transformation required processing approximately 33;000 arc collapses.

Based on classification information attached to the documents, we can place
colored histograms on the hills to indicate how documents of different classes are
distributed across the clusters. As can be seen, dense regions primarily match to
documents of a single class, while some documents of related classes are in a
subcluster relationship. The valley between hills of unrelated topics is typically low



Computing and Visualizing Time-Varying Merge Trees for High-Dimensional Data 99

as it reflects the density between the corresponding clusters. Likewise, for related
topics, like “grain”,“wheat” and “corn”, the subspace spanned by the vocabulary
used in these documents also contains less specific documents between the cluster
centers and thus saddle densities are higher. Another insight, suggested by the
rectangular hill shape, is that clusters are very compact in the sense that document
densities are close to the cluster’s maximum density; hence their positioning close
to the hilltops. Over time, dense regions are primarily stable, but grow in size and
persistence, and occasionally split into more subclusters that become increasingly
prominent.

9 Conclusion

We introduced time-varying merge trees as a compact description of time-varying
scalar fields and combined landscape profiles with a tracking information overlay
to support exploration of time-varying scalar fields. We further demonstrated the
utility of our method using a 9-D document collection data set. Our method can
inform parameter selection for in-depth feature analysis.

The visualization is currently limited to showing a few time steps in a single
image, and the optimal depiction of time-varying merge trees remains an open
question. Future work will also focus on reducing the runtime of the transformation,
which depends on the topological variance between two time steps. While the
considered events are both necessary and sufficient for the augmented merge tree,
it may be possible to process fewer events for the unaugmented merge tree. We
will also extend topological simplification to the time-varying merge tree, instead of
simplifying time steps individually. While it is trivial to adapt our algorithm to the
time-varying split tree and compute the contour tree for a given time, tracking the
contour tree edges remains a topic of future work.
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Agreement Analysis of Quality Measures
for Dimensionality Reduction

Bastian Rieck and Heike Leitte

Abstract High-dimensional data sets commonly occur in various application
domains. They are often analysed using dimensionality reduction methods, such
as principal component analysis or multidimensional scaling. To determine the
reliability of a particular embedding of a data set, users need to analyse its quality.
For this purpose, the literature knows numerous quality measures. Most of these
measures concentrate on a single aspect, such as the preservation of relative
distances, while others aim to balance multiple aspects, such as intrusions and
extrusions in k-neighbourhoods. Faced with multiple quality measures with different
ranges and different value distributions, it is challenging to decide which aspects of
a data set are preserved best by an embedding. We propose an algorithm based
on persistent homology that permits the comparative analysis of different quality
measures on a given embedding, regardless of their ranges. Our method ranks
quality measures and provides local feedback about which aspects of a data set
are preserved by an embedding in certain areas. We demonstrate the use of our
technique by analysing quality measures on different embeddings of synthetic and
real-world data sets.

1 Introduction

High-dimensional data sets are ubiquitous in most scientific disciplines today. By
including more variables, natural phenomena can be modelled and understood more
precisely. With an increasing number of variables, visualization for exploratory
data analysis becomes essential to gain an understanding of the data. A common
approach for visualizing complex high-dimensional data employs dimensionality
reduction methods. For embedding their data into a lower dimension, users can
choose from many algorithms, such as principal component analysis (PCA),
Isomap, and t-distributed stochastic neighbour embedding (t-SNE).
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Since ground truth information is often unavailable, quality measures are
required to judge how accurately a given method is able to retain a structural
property of the data set such as local neighbourhoods. Quality measures usually
only assess a single property of the data set. Given an embedding of a data set and
several quality measures, users often want to know about compromise solutions:
For example, an embedding that distorts local neighbourhoods somewhat but keeps
the global structure of the data set intact might be preferable over an embedding
that does not distort local neighbourhoods but completely distorts the input data at
a global scale.

For an embedding of a high-dimensional data set, we are thus interested in
finding out which specific properties (e.g. neighbourhoods, distances, etc.) of it
are faithfully retained. To this end, we analyse the agreement of multiple quality
measures on the data. Modelling each quality measure as a scalar field on the
embedding, we are interested in the regions of the highest error of a quality measure
and hence decompose each scalar field into regions defined by their maxima.
Instead of having to compare the quality measures per point, we compare only their
decompositions, which are much more stable with respect to noise. If two measures
highlight the same regions as having a low quality, their resulting decompositions
will be very similar, and we thus consider their behaviour on the data set to be
similar. This implies that their respective properties are retained to a similar extent.
To measure similarity and highlight areas in which different quality measures
disagree the most, we use a similarity measure and a graph matching algorithm.
Using several real-world data sets, we demonstrate how our method helps users
determine which properties of a data set have been respected by an embedding.

2 Related Work

Multi-Field Data The task of comparing different scalar quality measures on a
data set is a particular instance of a multi-field problem. In this context, several
methods already permit the comparison of scalar functions. Sauber et al. [17]
used gradient similarity measures and local correlation coefficients to analyse
correlations in scalar fields defined over (regular) 3D or 2D grids. Their approach
quickly becomes computationally infeasible with a larger amount of scalar fields.
Schneider et al. [18, 19] used contour trees for comparing iso-surfaces in two
scalar fields. To define similarity between features, they use similarity measures
based on the approximated contour volume as well as information-theoretic and
graph clustering methods. Their method is geared towards analysing fields for
flow visualization and requires cell-based grids, whereas our method is specifically
targeting unstructured data.
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Scalar Field Topology and Persistent Homology Our method uses persistent
homology to analyse the topological structure of quality measures on a data set.
This approach is related to other methods from scalar field topology. Gerber
et al. [10] used inverse regression in Morse-Smale complexes to obtain a simplified
visualization of scalar functions on high-dimensional data. Their method is used
for parameter studies but does not permit the comparison of multiple scalar fields.
Chazal et al. [3] decompose a scalar field of density values of a manifold into basins
of attraction to find stable clusters. Their algorithm does not allow for comparing
clusters in different scalar fields but has well-defined stability guarantees that we
will use in our approach. Correa et al. [7] use sparse subsets of the Morse-Smale
complex to visualize the structure of scalar fields. This approach complements our
method as a visual aid for comparison but does not visualize features in different
scalar fields. Oesterling et al. [14] use join trees to visualize the behaviour of density
functions on high-dimensional point clouds. Their visualization yields a topological
landscape in which regions of similar density are highlighted, or a landscape profile
that represents clusters as peaks [15]. Both methods are not specifically suited for
comparing multiple scalar fields among each other. A complete decomposition of
merges and splits of contours in scalar fields is given by the contour tree [2]. Our
method requires a computation that is similar to the join tree, because we are only
interested in the maxima of a scalar field.

Dimensionality Reduction An in-depth overview of state-of-the art dimensional-
ity reduction methods is given by van der Maaten et al. [21]. Lee and Verleysen [11]
survey numerous quality measures and show how the analysis of global quality mea-
sures helps in selecting from a set of different dimensionality reduction methods.
Bertini et al. [1] survey quality measures in the context of high-dimensional data
visualization. Quality measures are used to provide a broad overview of a data set.
By contrast, our method assumes that the data set has already been embedded and
aims on communicating which structural properties are retained with respect to the
original data.

3 Quality Measures

For the subsequent analysis in Sect. 5, we shall use two groups of local quality
measures: Distance-based measures and rank-based measures. The former are more
stable against small changes in the embedding whereas the latter are more stable
against large changes or linear scaling in the data [11]. In the following, we use
pointwise definitions of all quality measures for a data set of cardinality n. We also
transform their range such that high values indicate regions of low quality (hence,
the functions measure errors). Subsequently, dij refers to the original distances in
the high-dimensional space, while ıij refers to the distances in the embedded space.
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Table 1 Properties that are measured by the quality measures

Measure Property

RMSE Average squared distance deviation

Kruskal’s stress Average squared distance deviation penalizing small deviations

Residual variance Correlation between original and embedded distances

Rank correlation Correlation between ranks of original and embedded distances

Neighbourhood loss Changes in k nearest neighbours; measure of group preservation

MRRE Extrusions and intrusions of k nearest neighbours

There are more measures available in literature [11, 21], but we have decided
to select the most common ones and aimed for those that are not specifically
optimized for a certain algorithm. Table 1 gives a short overview of the properties
they measure.

Root-Mean-Square-Error (RMSE) RMSE measures the average squared differ-

ence between the distances: f .xi/ D
qPn

jD1
�
dij � ıij

�2
=n

Kruskal’s Stress In contrast to RMSE, this stress measure penalizes deviations in

small distances more than in large distances: f .xi/ D
qPn
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Residual Variance The residual variance measures the complement of the
explained variance between dij and ıij, using the linear correlation coefficient:

f .xi/ D 1 � R2.fdi0; : : : ; ding; fıi0; : : : ; ıing/ (1)

Spearman’s Rank Correlation By converting the distances dij and ıij to ranks rij
and 
ij, respectively, this measure is more stable against outliers in the data and
invariant to linear scaling: f .xi/ D 1 � 6Pn
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Neighbourhood Loss This measure is agnostic to distances and requires an
enumeration of the k nearest neighbours of each point both in the original space
and the embedded space, which we denote nk.i/ and �k.i/:

f .xi/ D 1 � jnk.i/\ �k.i/j=k (2)

Mean Relative Rank Error (MRRE) MRRE measures the mean amount of rank
deviations using the k nearest neighbours of the point in both the original space
and the embedded space. Lee and Verleysen [11] developed MRRE to penalize two
common errors in embeddings, namely very distant points that intrude into the k-
neighbourhood of a point, as well as very close points that extrude from such a
neighbourhood.
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4 Methods

In the following, we will describe the components of our method. The main
algorithm is similar to the calculation of the join tree, but uses persistent homology
to obtain a criterion for the stability of maxima. We refer the reader to Edelsbrunner
and Harer [9] for a more detailed account of computational topology and persistent
homology.

4.1 Scalar Field Decomposition Using Persistent Homology

Let D be a connected domain and f WD!R a scalar function such as a quality
measure. A natural way of summarizing this function for data analysis and
comparison is to detect its peaks and decompose the data according to the gradient
of f , i.e. we decompose D into disjoint subsets consisting of all those points that
reach a certain peak when following the gradient. This approach is also known as
mode-seeking [4]; see Fig. 1, left, for a simple example. With discrete data, however,
mode-seeking approaches are known to be very unstable. To obtain a measure of
the stability of the detected peaks, we thus use persistent homology, an algorithm
from computational topology. Persistent homology summarizes data sets using their
topological features. Each topological feature is assigned a significance measure,
the persistence.

d

c c

d

d

c

Regions

Fig. 1 Left: By following the steepest ascent (shown as arrows on the abscissa), the domain of
f is decomposed into disjoint regions. The minima are the boundaries of a region. Right: The
persistence diagram of f . The distance from the diagonal is a measure of the stability of a peak
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4.1.1 The 1-Dimensional Case

Let D 	 R be our domain and f WD ! R a scalar function. We can use persistent
homology to describe connectivity changes in the superlevel sets of f , i.e. sets of the
form LCc . f ; c/ D fx j f .x/ � cg for c 2 R. We now traverse the function values of
f in decreasing order and keep track of how the connected components of f change.
When we reach a new peak in f , i.e. a maximum of f , a new connected component
will be created. By contrast, when we reach a minimum, two connected components
are merged into one. We always merge the “younger” connected component (the one
with the smaller peak) into the “older” connected component (the one with the larger
peak) to ensure consistency [9, p. 150].

By keeping track of the merges, we obtain the persistence diagram. It contains a
point .c; d/ for every connected component created at c D f .x/ and merged into an
older connected component at d D f .x0/. Since by definition of the superlevel sets,
c � d, all points in the persistence diagram are located below the diagonal. Figure 1
illustrates this process for a simple function with several peaks. The persistence of
a tuple .c; d/ is given as c � d � 0 and serves as a measure of significance. Peaks
that quickly get paired with higher peaks result from coarse samplings of a scalar
function, whereas peaks with a large difference between creation and destruction
may be assumed to represent real features in the data set—in Sect. 4.1.3 we describe
an algorithm for automatically finding a significance threshold.

4.1.2 The High-Dimensional Case

For a discrete set of unstructured points D 	 Rn, we first need to approximate
its connectivity before calculating persistent homology. The literature knows many
neighbourhood graphs with different strengths and weaknesses for this purpose [6].
Since our data sets are not too sparse, we follow the approach of Chazal et al. [3]
and use the Rips graph R� of the domain D. This graph requires a metric such
as the Euclidean distance and a threshold �. The Rips graph R� has a vertex set
of V D f0; 1; : : : ; jDjg and an edge set of E D f.u; v/ j duv � �g, meaning that there
is an edge between vertices u and v if their distance (measured using the metric) is
less than or equal to the selected distance threshold. It endows the unstructured
data set with connectivity information, which we require in order to perform mode-
seeking just as in the 1-dimensional example.

We now apply a decomposition algorithm of Chazal et al. [3] to the scalar field.
The algorithm requires that each vertex v of R� has been assigned its corresponding
scalar value f .v/. It consists of a peak-seeking and a merge phase:

Peak-seeking: Traverse the vertices of R� in decreasing order of their function
values. Connect each vertex to its neighbour with the largest function value.
If the function values of all neighbours are smaller than the one of the current
vertex, we have found a tentative peak. The edges that are created by this step
correspond to discrete gradient lines of the scalar field in D. When all vertices
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have been traversed, we have a collection of tree edges that decompose D into
disjoint regions, similar to the regions shown in Fig. 1.

Merging: Traverse the vertices of R� in decreasing order of their function values
while maintaining a union-find data structure [5, pp. 561–568]. The root of
each entry in the data structure corresponds to the peak vertex of a connected
component. When arriving at an existing peak during the iteration, a new entry
is added to the data structure. Upon arriving at a vertex that is not a peak, we
again iterate over all neighbours. We merge neighbours that belong to peaks that
are lower than the current peak into our component—this ensures that we always
reach the highest possible peak. By contrast, we merge our current peak with the
peaks of all neighbours that belong to higher peaks. This changes the value of the
current peak, which in turn might trigger other merges with lower peaks again.

This algorithm is a reformulation of the upper-star filtration [9, pp. 164–165]
in persistent homology. We obtain the corresponding persistence diagram from the
algorithm by keeping track of the creation and destruction of components in the
merge phase. The peaks of infinite persistence yield the desired decomposition of
the domain. In order to have a fine-grained control about which peaks to consider
significant and which peaks to prune because they are unstable, Chazal et al. [3]
suggest merging peaks based on the differences in their persistence—this accounts
for noise in the data. Given a threshold 	 2 Œ0;1�, merges in the second phase of the
algorithm are only performed if the peak is lower and the persistence of the peak, i.e.
the difference between the peak function value and the function value at the current
vertex, is smaller than the threshold. In the algorithm above, we have 	 D 1,
meaning that all regions will be merged if possible. In general, the resulting regions
are known to be stable [3]. Since 	 affects which peaks are considered relevant and
which peaks are considered noise by the algorithm, we subsequently describe an
algorithm for choosing it automatically, based on the input data.

Choosing � Varying � controls the connectivity of the unstructured domain D of
the data set. Very small values for � result in a disconnected graph without any
edges. Very large values for �, on the other hand, make R� the complete graph on
n vertices. However, since R�0 	 R� for �0 � �, numerous useful choices for �
exist. In practice, methods such as dendrograms have proven to be effective [3, 6].
Here, we use a computationally cheap method [16] based on the average distances
of points to their respective k nearest neighbours, for k 2 f10; : : : ; 20g. This yields
initial estimates for �. We pick the smallest one such that R� is still connected.
If this is not possible, we add edges between the connected components of the
graph. We assign these edges the average pairwise distance between the connected
components, ensuring that 	 D1 results in a single region.

4.1.3 Threshold Selection

Finding a suitable threshold 	 involves checking the separation of points in the
persistence diagram. A result of Chazal et al. [3, Theorem 4.8] states that relevant
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Fig. 2 A noisy scalar field (left), its corresponding persistence diagram (middle) with the region
of largest separation, and the resulting decomposition (right). Our algorithm suggests a threshold
of 	 � 0:33. The decomposition remains stable for 	 2 Œ0:18; 0:48�

peaks can be extracted from the persistence diagram if it contains a band of a certain
width (that depends on �) that does not contain any points. This is the largest empty
region parallel to the diagonal we can draw into the persistence diagram (see Fig. 2,
middle). The distance to the diagonal from any point within this region is then an
admissible value for the threshold parameter 	 , which remains stable over a large
range.

The theorem makes assumptions about the structure and the sampling conditions
of the input data—both of which are unavailable for real-world data. Nonetheless,
we can apply a threshold selection process inspired by the theorem. The theorem
essentially searches for the largest empty area in a persistence diagram. If this area
is deemed large enough (which depends on assumptions about the input data and
the function values of the Rips graph), the relevant peaks can be extracted with high
probability. We can simulate this decision process by searching for the largest empty
area in a persistence diagram and relating its size to the persistence values.

More precisely, we transform the coordinate system of the persistence diagram
by a rotation of �=4. This makes the diagonal become the abscissa of the new
coordinate system. In this transformed coordinate system, we sweep over all points
by descending y-value and keep track of the vertical distance between subsequent
points. Using the largest vertical distance—which is the width of the desired empty
region—and the y-coordinate at which it was detected, we obtain a potential value
for the threshold parameter 	 . We then calculate the ratio of the width of the largest
empty region to the mean width of all empty regions in the persistence diagram.
In our experiments, we found that a ratio of at least four results in useful and
stable thresholds for 	 . Smaller ratios are indicative of much noise and may require
manual selections via persistence diagrams. In each of our experiments, for instance,
automated threshold selection only failed for at most one out of the six quality
measures.
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4.2 Similarity Measure and Quality Visualization

As a result of the scalar field decomposition algorithm, we are given a set of disjoint
regions. We now want to compare the similarity between two such regions over
different scalar fields, given the assumption that scalar fields with a similar amount
of similarly placed maxima exhibit the same coarse behaviour. Given two regions
A D fa1; a2; : : : g and B D fb1; b2; : : : g, where each a and b refers to a vertex in the
scalar field, we calculate their similarity using the Jaccard index, i.e.

J.A;B/ D jA \ Bj=jA[ Bj 2 Œ0; 1�: (3)

Inspired by the bottleneck distance and Wasserstein distance calculations between
persistence diagrams [9, pp. 229–236], we propose an assignment problem for
assessing the global degree of similarity between two scalar fields. We define the
cost between two regions as 1 � J.A;B/, meaning that we want to penalize regions
that do not overlap. To account for different numbers of regions in two scalar fields,
we include empty dummy regions so that a region may also be matched with no
region from the other scalar field. The total cost of the assignment problem serves
as an indicator of how much the decompositions calculated from two scalar fields
differ. The pairwise total costs between two scalar fields yields a matrix of pairwise
distances. Using a 1-dimensional PCA of this matrix, we obtain a linear ordering of
the scalar fields which reflects their respective distances—similar scalar fields are
thus placed in proximity to each other. This allows us to read off which properties
of an embedding are most likely retained.

Note that J.�; �/ cannot differentiate between all functions. It is possible to have
two very different functions whose topological decompositions are very similar. We
did not encounter this in our experiments, though.

Local Similarity Scatterplot To provide a local degree of similarity assessment,
we select a reference scalar field. We now solve the assignment problem for each
remaining scalar field and keep track of the costs for matching all regions in the
reference field. We then visualize the average assignment costs of the reference field
using three colours (red, orange, green; each corresponding to 33% of the value
range) on the embedding. In the optimal case, all other scalar fields result in the
same decomposition as the reference scalar field—the visualization will thus not
highlight any region. Green regions indicate an (almost) perfect agreement with all
other quality measures. Orange regions show that there are mild differences to the
other measures, whereas red regions highlight regions that are severely mismatched
with the remaining measures—thereby indicating that a region is unique and does
not occur often in the other scalar fields.
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5 Results

In the subsequent data sets, we assume that the user has chosen a specific property
that needs to be minimized by the embedding, e.g. stress. With this in mind, users
can choose a dimensionality reduction scheme that minimizes this measure on a
global scale. We now have the additional task of finding out whether other measures
are retained as well on the data. As a data pre-processing step, we normalize the
scalar values of each quality measure to Œ0; 1� such that 0 represents no error (highest
quality) and 1 represents the maximum error (lowest quality). This is only required
to ensure that the scales of different persistence diagrams may be compared more
easily.

5.1 Swiss Roll

The Swiss roll data set was introduced by Tenenbaum et al. [20] as an example
of how non-linear embedding methods (Isomap) are able to outperform classical
linear embeddings (PCA) in certain cases. The data set consists of a “curled up”
plane. Isomap is one of the few algorithms capable of embedding this data set
properly. We thus work with quality measures on the Isomap embedding. Figure 3,
left, shows the embedding of the data set (using rainbow colours to indicate the
position along the curled plane). We apply our algorithm on the scalar fields induced
by the quality measures and choose the threshold automatically. All distance-based
quality measures exhibit comparatively large errors along the bottom and the top of
the embedded data, while the middle region contains almost no errors. The range
of these errors is very small, though. This effect is caused by the unwrapping that
distorts distances on a global scale. The same effect occurs somewhat less obviously
in all rank-based quality measures. Here, the impact of the unwrapping is somewhat
mitigated by the local neighbourhood size—although we now have the additional
error source of small changes in neighbourhoods. Our automated threshold selection
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Fig. 3 Swiss roll and two example measures with their decompositions. All quality measures
exhibit a large amount of errors in the bottom and top regions of the embedding. This results
in a two-region decomposition. The local similarity plot hence does not change, regardless of the
selected reference measure
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results in the same decomposition of the data, though. The measures hence exhibit a
very similar behaviour on the data set, proving that Isomap preserves their properties
to the same extent. Combined with the knowledge about the small range of the
errors, we thus conclude that Isomap yields a perfect embedding of the Swiss roll.

5.2 Handwritten Digits

We use the Optical Recognition of Handwritten Digits data set from the UCI
Machine Learning Repository [13]. It consists of 5620 instances of 64-dimensional
feature vectors describing the handwritten digits of multiple writers. We will
compare the behaviour of different quality measures on a linear embedding (PCA)
and on a non-linear embedding (t-SNE) of the data.

PCA Figure 4 shows a selection of different quality measures for this data set.
They all exhibit a large spread in their value range, indicating that the errors are
substantial. Our algorithm thus rates all quality measures on this data to be very
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Fig. 4 Errors in the PCA projection concentrate on a single region of slightly variable size in the
data. This is easily seen in the plots of residual variance and Stress, for example, but not in MRRE.
Here, larger errors seem to be distributed uniformly. Upon decomposing the data, these peaks are
shown to be of low persistence, resulting in one region with a single peak
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similar. Except for MRRE, we observe a single region of variable size in the central
region of the embedding. By contrast, MRRE appears to contain multiple smaller
peaks but not a single expressive region. Our decomposition shows that due to
the higher baseline error in the quality measure, the detected peaks do not have
a sufficiently high persistence. Thus, the decomposition of all measures results in a
single large region. By assigning labels to the data set (Fig. 4, bottom), we see that
the quality measures have their largest errors around the region of the digits 5, 8 and
9, as this region is not well-separated by PCA. The embedding is thus an example
of a compromise solution: The embedding favours global over local structures (as
measured by MRRE), but errors accumulate in a single region.

t-SNE The relative distances of the different quality measures (Fig. 5, top) show
that three measures (MRRE, rank correlation, and residual variance) are very
similar: With a high baseline error, they only have one significant peak in each
of the regions of the embedding. The stress measure yields a more fine-grained
decomposition. Here, regions A, B, C, and D are split (instead of staying a larger
region). When comparing with the labelled embedding (Fig. 5, bottom), we see that
e.g. Region B corresponds to a separation of the digit 1. The higher stress values in
the bottom part of this region indicate that the distances in t-SNE do not reflect the
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Fig. 5 Large errors in the t-SNE projection occur uniformly in the regions corresponding to the
digits. This is indicated well by e.g. MRRE. RMSE, by contrast, highlights regions with a non-
uniform error distribution
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high-dimensional distances very well. RMSE differs the most from MRRE. Here,
we see an additional split introduced by two new regions A and B. This is caused
by two peaks of high persistence at the top and bottom of the marked region. The
new regions correspond to the digit 2. RMSE highlights that t-SNE is distorting
the distances for these points in favour of the very good global separation in the
embedding.

The contested regions are highlighted in the local similarity scatterplot (Fig. 5,
bottom), using MRRE as a reference measure. Orange and red highlight regions in
which the other measures differ the most from MRRE: For the most part, t-SNE
is able to separate the data set very well, but local distances are distorted locally
for some digits. When comparing the embeddings obtained from PCA and t-SNE,
we can check e.g. the residual variances to conclude that t-SNE with a residual
variance of 
0:55 commits smaller distance errors on average than PCA with a
residual variance of
0:78, thereby offering a better global separation of the digits.
Hence, t-SNE might be preferable over a PCA embedding, despite the localized
errors it introduces.

5.3 Concrete Compressive Strength

The concrete compressive strength data from the UCI Machine Learning Reposi-
tory [13] contains 1030 mixtures of 8 different concrete compounds. We use PCA
to obtain an embedding because it is known to yield a good overview of this data
set [12]. Since the data are known to exhibit linear structures [10], which should
ideally be preserved locally, we use Neighbourhood loss as the reference quality
measure. The relative distances (Fig. 6, top) indicate that there are three groups of
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Fig. 6 Neighbourhood loss exhibits three maxima of high persistence, resulting in a decomposi-
tion in three regions. MRRE yields a different decomposition into three regions. RMSE (represent-
ing distance-based measures) exhibits large errors in the upper region only. Using neighbourhood
loss as a reference measure, the local similarity scatterplot shows that the measures disagree mostly
in the upper region of the embedding
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quality measures on the data. The distance-based quality measures stress, RMSE,
and residual variance all exhibit a single large peak around the top of the data set.
Since there are no maxima of high persistence in the remaining part of the data set,
our decomposition algorithm results in a single large region. By contrast, MRRE and
rank correlation, decompose the top part of the data further into two regions A and B
because the corresponding peaks are separated by lower values. Neighbourhood loss
results in a complementary decomposition, showing that the top part of the data is
dominated by a single peak of high persistence, while the bottom part decomposes
into two regions B and C.

The local similarity scatterplot indicates the agreement of quality measures with
respect to neighbourhood loss. We can see that the measures disagree on both the
upper regions, indicating that their error distributions are very different. This leads
us to question the quality of the embedding at these areas—which are rated very
differently by the rank-based measures, while the distance-based measures mostly
agree.

6 Conclusion

We introduced a method for comparing the behaviour of different quality measures
for dimensionality reduction algorithms. Our method currently decomposes scalar
fields according to their maxima only. For future work, we plan on evaluating
whether the inclusion of minima would further increase the expressive power.
We also want to evaluate the effects of different neighbourhood graph type
approximations [6]. Furthermore, we want to investigate how different measures
for feature relevance in scalar fields, such as topological saliency [8], can improve
the results. Last, we want to look for alternatives to the Jaccard index for measuring
the similarity of decompositions.
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Scalar Field Topology



Fast Similarity Search in Scalar Fields using
Merging Histograms

Himangshu Saikia, Hans-Peter Seidel, and Tino Weinkauf

Abstract Similarity estimation in scalar fields using level set topology has attracted
a lot of attention in the recent past. Most existing techniques match parts of contour
or merge trees against each other by estimating a best overlap between them. Due
to their combinatorial nature, these methods can be computationally expensive
or prone to instabilities. In this paper, we use an inexpensive feature descriptor
to compare subtrees of merge trees against each other. It is the data histogram
of the voxels encompassed by a subtree. A small modification of the merge
tree computation algorithm allows for obtaining these histograms very efficiently.
Furthermore, the descriptor is robust against instabilities in the merge tree. The
method is useful in an interactive environment, where a user can search for all
structures similar to an interactively selected one. Our method is conservative in
the sense that it finds all similar structures, with the rare occurrence of some false
positives. We show with several examples the effectiveness, efficiency and accuracy
of our method.

1 Introduction and Related Work

Finding structural similarities in scalar fields is of prime importance when one
needs to analyze repeating patterns or symmetric arrangements in the data. To this
end, several methods involving feature-based analysis using the topology formed by
level-sets have been proposed. The merge tree is one such arrangement of features
which traces the connectivity evolution of sub/super-level sets in the data. It is easy
to see that similar structures exhibit similar level-set arrangements and hence similar
branchings in the merge tree, each such branch or subtree representing a unique
structurally important region. The contour tree [2] is an extension of the merge tree
as it contains the combined information for both sub and super-level sets.
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The Reeb Graph [6] is a generalized form of the contour tree to include non-
simply connected manifolds. The Morse-Smale Complex [7] is a segmentation of
the data into regions of uniform gradient flow. These topological arrangements give
rise to graph representations like the extremum graph [17] or topological spines [5].

Beketayev et al.[1] compare two merge trees by comparing all of their possible
branch decompositions. This method provides an accurate �-match with respect to
noisy perturbations, but is not practical for interactive applications. This is because
computing all possible branch decompositions has exponential complexity and a
memoized solution that the authors propose still involves a higher order polynomial
runtime. Precisely, O.n5/ for comparing two trees of n nodes each for a given
threshold �.

Thomas et al. [16, 18] present methods to visualize all symmetric structures
in a scalar field using the contour tree. In [16], the authors cluster the different
branches in the branch decomposition tree of the contour tree to display symmetric
arrangements. Using a single branch decomposition tree, however, is less robust
against noise. In [18] they extract iso-surfaces using the contour tree and cluster
them in a feature space. In another work,[17], the authors achieve similar results
using the extremum graph.

Saikia et al. [12] perform a similarity search for any structurally significant region
as given by a subtree in the merge tree by first pre-computing the similarity of
all possible subtrees to all other existing subtrees. The method involves computing
branch decomposition trees for every subtree and overlaying them in the best way
possible. The similarity is then computed as the minimum cost of this overlay.
Although the method is fast owing to a memoized algorithm to compute and
compare branch decomposition trees, the result can be affected by perturbations
that lead to a different order in the hierarchy of branching.

We employ the method by Saikia et al. [12] in the sense that we compare all
subtrees of a merge tree against each other. However, in this paper, instead of
overlaying branch decomposition trees obtained from the subtrees, we describe
every subtree using a feature vector. This is given by the intensity distribution
of the member voxels within a subtree region and is thus appropriately termed
as a histogram. These histograms can be efficiently computed using just a small
modification to the merge tree computation algorithm, exploiting the fact that the
tree is created bottom-up. This augmented algorithm allows us to compute the
histograms for every subtree on-the-fly, i.e., while the merge tree is being computed.
The merge tree computation is done by a single sweep through a sorted (by function
value) array of the voxels in the data as described in [2, 15]. Augmented contour tree
algorithms have also been used before for topological simplification by computing
local geometric measures such as volume in [3].

Histograms have had a long standing use in data visualization [8], automatic
transfer function generation [9, 10] and various volume rendering techniques [14,
20]. Histograms have also been used in shape retrieval, where they are defined on
the distances from the barycentric center of a simplicial mesh to its surface triangles
[19]. This distance metric is known as a cord. A histogram presents itself as a simple
and powerful statistical representation of the data distribution. It is also shown in
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[4, 13] that the histogram has a close relationship with isosurface area. However, we
do not focus on a precise calculation of the distribution within a region for the sake
of simplicity and efficiency.

In the following sections, we provide some background and notation in Sect. 2,
the method to compute merging histograms in Sect. 3, how similarity search is
performed using the new method in Sect. 4, show a few results obtained using our
method in Sect. 5 and conclude after some evaluation and discussion of our method
in Sect. 6.

2 Background and Notation

Given a Morse scalar field f W IRn ! IR, and any value c in the range of the function
f , super-level sets LCc and sub-level sets L�c are defined as follows

LCc D fxj f .x/ � cg (1)

L�c D fxj f .x/ � cg: (2)

For the sake of convenience let us only talk about super-level sets from here on. Each
super-level set can have one or more disconnected components. These components
are born at the maxima, merge with other components at saddles, and finally merge
and disappear at the global minimum.

We define a region R as the set of voxels belonging to any component just
before it merges with another component. A is the representation of the connectivity
evolution of these regions. Every birth or merge is represented as a node in this tree,
and these nesting relationships are denoted by edges. Every region is represented
as a non-empty subtree, the largest region being the entire merge tree. In case of
super-level sets, the merge tree is often called a .

We denote a merge tree as M D .N ;E / where N D fn1; n2; : : : ; npg are the
nodes and E D fe1; e2; : : : ; ep�1g are the edges of the tree. Note that a tree with p
nodes has p � 1 edges.

Figure 1 illustrates the idea of regions and edges. Region RA is given by feAg
and corresponds to the entire blue area, RB by feBg—the entire red area and RC by
feA; eB; eCg—the entire green, red and blue areas together.

3 Merging Histograms

3.1 Histograms as Feature Descriptors

Our objective is to compare subtree regions of a merge tree. Given that these
regions are similar in data value, size and also to a certain extent the geometry, a
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Fig. 1 A region in a scalar field and its join tree J D .N ; E /. Here N D fnA; nB; nC; nDg and
E D feA!C ; eB!C; eC!Dg or simply feA; eB; eCg. The two red nodes are maximas and leaf nodes,
the yellow node is a saddle, and the blue node is the global minimum and the root. The edges signify
the corresponding areas in the same color and the arrows show the unidirectional path from every
maximum to the global minimum

of the distribution of the member voxels in the data range is a good measure for
comparison. This is because a histogram roughly encapsulates the surface area of
a region at various iso-levels. This gives us a good measure of the distribution of
intensity in the region.

Given a scalar function f , and a subtree region R, the histogram is computed by
binning all voxels (or pixels for 2D) in this region into a number of bins by their
function value.

Figure 2 shows an illustration of this feature descriptor. Two structurally different
subtree regions of a dataset can be distinguished from each other by comparing their
individual histograms.

3.2 Computation

The good thing about constructing these histograms is that they can be computed
incrementally during the construction of the merge tree itself. The part not marked
in red in Algorithm 1 shows the classic merge tree computation. Let us look closely
at the three different cases encountered while sweeping through the sorted data, and
how the histograms have to be modified during this process.

Case 1: extremum This is the if clause in line 10 of Algorithm 1. In this case a
new node ni is added to the set of nodes and a new component in the union-find ci
starts. The initial histogram is set to zero for all bins, i.e., hi D 0 D Œ0; : : : ; 0�.

Case 2: regular voxel This is the else-if clause in line 15 of Algorithm 1. Here
the current voxel is added to the component it belongs to. The appropriate histogram
bin has to be incremented for the corresponding component. Let us assume the
histogram bin that this point falls into is b. Then, hi;b  hi;b C 1, where ci is the
component to which this voxel belongs to.
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Fig. 2 Four different subtree regions in the benzene dataset along with their corresponding
histogram feature vectors. The x-axis in the plots shows the corresponding histogram bins and
the y-axis shows the log scaled values of the total number of voxels in each bin. A total of 100 bins
were used in all cases. The x-range with only non-zero values is shown. As can be seen, the regions
corresponding to the hydrogen atoms have similar histograms as do the regions corresponding to
the carbon atoms

Case 3: saddle This is the else clause in line 19 of Algorithm 1. This is the case
when a point is in contact with two or more edges. All edges pertaining to every
component are added to the set of edges. A new component is constructed and a
new node corresponding to this voxel is added to the set of nodes. The histogram
corresponding to this component has to be initialized using the sum of all histograms
pertaining to all of the components in set CG. Thus, for a saddle node ni and number
of bins B we have hi D Œhi;1; hi;2; : : : ; hi;B�, where each bin is given by

hi;b D
X
cj2CG

hj;b (3)

The only modification that needs to be done to the algorithm is to incorporate these
three cases. Thus, when the merge tree is computed, the feature vectors are also
pre-computed as a result.

4 Similarity Search Using Merging Histograms

After the computation is performed using Algorithm 1, in addition to the merge
tree, we also obtain the feature descriptors for every subtree region in the form of
a histogram of values. Using these feature descriptors we compare every subtree
region with each of the others and store the results in a distance matrix. Later we
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Data: The scalar field f , with vertices x1; : : : ; xm in sorted order.
Result: If f .xi/ � f .xj/ for i < j then Join Tree J D .N ; E /. If f .xi/ � f .xj/ for i < j then

Split Tree S D .N ; E /. Also the set H D fh1; : : : ; hi; : : :g containing all histograms
corresponding to every edge ei 2 E and subtree region Ri.

1 begin
2 N WD ; , E WD ; , H WD ;, UnionFind U
3 for i 1 to m� 1 do
4 Set of neighbors of xi : GD fg1; : : : ; gpg
5 Set of components containing G : CG WD ;
6 for j 1 to p do
7 CG CG

S
findComponentU .gj/

8 end
9 b WD bin.f .xi// // Finding the bin value.

10 if jCGj D 0 then
11 c�  createNewComponentU .xi/
12 N  N

Sfnig
13 h� D Œ0; : : : ; 0� // Initializing.
14 h�;b  h�;b C 1
15 else if jCGj D 1 then
16 CG D fc�g
17 addMemberToComponentU .c� ; xi/
18 h�;b  h�;b C 1 // Incrementing the bin.
19 else
20 CG D fca; : : : ; ckg
21 N  N

Sfnig
22 E  E

Sfea!i; : : : ; ek!ig
23 c�  createNewComponentU .xi/
24 H H

Sfha; : : : ; hkg // Adding to output.
25 h� D ha C : : :C hk // Merging.
26 end
27 end
28 N  N

Sfnmg
29 end

Algorithm 1: An augmented version of the classic merge tree algorithm to account
for merging histograms. The augmented parts are shown in red.

can reference any of these subtree regions by means of interactively selecting it, and
querying for its best matches in the distance matrix.

4.1 Distance Measure

The distance measure between two histograms should be as discriminative as
possible. To compare two histograms we use the L2-norm of the log-scaled bin
values. Log scaling helps to smooth the histograms a little bit and make the
comparison function slightly robust to noise. Thus, the distance d between two
subtree regions Ri and Rj can be given as
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d.Ri;Rj/ D
X

b2Œ1;B�
jjg.hi;b/� g.hj;b/jj (4)

where g is given by

g.x/ D
(
0; if x D 0
log x; otherwise:

(5)

4.2 Querying the Distance Matrix

A distance matrix is then constructed using the distance values for every pair of
subtree regions computed using Eq. 4. Any row and column in this matrix refers to
a subtree region. As has been seen before in Sect. 2 the number of subtree regions is
equal to the number of edges in the merge tree. This shows that the time complexity
of computing a distance matrix and its size are dependent only on the merge tree
and not on the size of the data.

In an interactive setting, a user picks any voxel in the dataset. Since every voxel
is contained within an edge, the corresponding edge can be queried for. And since
every edge corresponds to a unique subtree, we can immediately identify which
subtree region is selected by the user. Once this region is known, similar regions to
it can be queried simply by looking for the smallest values in the corresponding row
of the distance matrix. A distance threshold slider also allows the user to increase or
decrease the threshold and show correspondingly more or lesser close matches.

5 Results

Now we show a few results obtained using our method. Figure 3 shows a volume
rendering of the Benzene data set and two different search regions. As can be seen,
the sixfold symmetry in the molecule is evident from the closest matches to the
selected subtree region. Figure 4 shows the EMDB-1603 data set and a few different
search regions. The dataset had nearly 38,000 edges in its merge tree, which were
then simplified to around 900 edges by eliminating low persistent edges (below 2%).
The particle exhibits a ninefold symmetry as seen in all three selections and their
closest matches. As can be observed, interesting structures which could otherwise
not be seen clearly are apparent when singled out. Figures 5 and 6 show two other
protein datasets alongwith some interesting self-similar structures. Figure 7 shows
another EMDB dataset with a helical structure. This is identified in the selected
subtree region and its closest matches. Figure 8 shows another complicated dataset
where the symmetric arrangements are revealed during exploration.
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Fig. 3 Scalar field depicting the potential around a Benzene molecule. Two different sixfold
symmetry regions are seen. (a) Full volume rendering. (b) First selected region and its closest
matches. (c) Second selected region and its closest matches

Fig. 4 EMDB-1603. A cryo-electron microscopy reconstruction of a recombinant active ribonu-
cleoprotein particle of influenza virus. The ninefold symmetry is apparent in the matchings shown.
Different transfer functions are used for the three different selections for better visibility. (a) Full
volume rendering. (b) First selection and its corresponding best matches. (c) Second selection
visualized at a slightly different angle and its best matches. (d) Third selection and its best matches

All EMDB data sets are obtained from the Protein Data Bank Japan (pdbj.org)
online archive. The results are all rendered using the Voreen volume rendering
engine (voreen.uni-muenster.de).

6 Discussion

6.1 Runtime Comparison with Tree Overlay Methods

Computing feature vectors on the fly while computing the merge tree itself leads to
a more efficient implementation as opposed to performing the two steps sequentially

voreen.uni-muenster.de
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Fig. 5 EMDB-1201. The myosin V inhibited state obtained by cryo-electron tomography. There
exists a sixfold symmetry. (a) Full volume rendering. (b) first selection and its best matches.
(c)Second selection and its best matches

Fig. 6 EMDB-1706. Cryo-electron reconstruction of Lactococcal phage p2 baseplate. There exists
a sixfold symmetry. (a) Full volume rendering. (b) First selection and its closest matches. (c)
Second selection and its matches. (d) Selection in (b) from a different angle. A few more best
matches are shown to reveal a duplicate sixfold symmetric pattern

as in the Extended Branch Decomposition Graph method in [12]. There is almost no
overhead of running the augmented merge tree computation algorithm as opposed
to the classic algorithm, as can be seen in Table 1.
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Fig. 7 EMDB-2400. MuB is an AAA+ ATPase that forms helical filaments to control target
selection for DNA transposition. (a) Full volume rendering. (b) A selection and its closest matches.
The helical structure is apparent

Fig. 8 EMDB-5300. Structural Diversity of Bacterial Flagellar Motors: Campylobacter jejuni. (a)
Full volume rendering. (b) A selection and its closest matches.

For searching a subtree region, a distance matrix has to be constructed and this
can be achieved in O.n2B/ time as opposed to O..n log n/2/ in [12]. Note that both
methods, the one in this paper and the method in [12], compare all subtrees to all
others and then allow for similarity searching interactively in real-time. Comparing
two subtree regions using our method is very fast as it just compares the two
individual histograms in O.B/ time. Hence our method is orders of magnitude faster.
This can be seen in Table 2.

6.2 Robustness

Merging histograms perform well under small perturbations in the data. This can
be immediately observed from the fact that there is no ordering of hierarchy in
this representation unlike a branch decomposition tree. Since every ROI is defined
only by its complete underlying structure and not on the precise order in which its
containing iso-contours evolved, this method is immune to slight changes in the
merge tree due to noise (see Fig. 9).

For more complicated branchings however, the histogram cannot accurately
represent the branching hierarchy. This means that two trees with extremely
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Table 1 Merge tree computation times (in milliseconds) for various data sets—without his-
tograms and with histograms of bin sizes 10 and 100

Merge tree computation time in ms

Augmented algorithm 1
With 10 bins With 100 bins

Dataset Vertices Edges in join tree Classic algorithm (% increase) (% increase)

Benzene 1013 23 678 752 (10.9) 700 (3.2)

Neghip 643 252 148 157 (6.1) 156 (5.1)

EMDB-1603 1603 38;671 4934 5470 (10.9) 6336 (28.4)

EMDB-1201 1803 41;169 1589 1873 (17.9) 2531 (59.3)

EMDB-1706 1303 155 935 1112 (18.9) 1141 (22.0)

EMDB-2400 1283 2003 1973 2189 (11.0) 2083 (5.6)

EMDB-5300 603 3685 191 210 (10.0) 237 (24.1)

As can be seen there is only a slight overhead to adding histogram information to the computation
phase. All operations were performed on a machine with a 2.66 GHz Intel Xeon processor and
12 GB main memory

Table 2 Total feature computation and comparison times (in milliseconds) for various data
sets—using the eBDG method in [12] and the histogram method

Feature computation and comparison
time in ms

Edges in join tree
Dataset Vertices (after simplification) eBDG approach Our approach

Benzene 1013 23 506 489

Neghip 643 252 268 142

EMDB-1603 1603 38,671 (910) 54;487 6572

EMDB-1201 1803 41,169 (198) 13;955 3749

EMDB-1706 1303 155 672 702

EMDB-2400 1283 2003 764;629 3632

EMDB-5300 603 3685 6;805;101 7081

As can be seen, with more number of edges the eBDG method requires far more time to compare
all features against each other than the histogram method. All operations were performed on a
machine with a 2.3 GHz Intel i7 processor and 16 GB main memory

different branchings (and hence underlying topological structure) might end up
having very similar histograms (see Fig. 10). This might result in false negatives.
However, note that similar subtrees have similar histograms, i.e., the method finds
similar structures independent of their complexity.

6.3 Histogram Resolution and Comparison

The bin number reflects the resolution at which we sample our data. The higher the
bin number, the greater the resolution. In our examples we observe that a bin number
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Fig. 9 Neghip dataset. The results are in accordance with the eBDG method described in [12]. The
matching results are stable even in presence of noise. (a) Full volume rendering. (b) A selection.
(c) Similar structures to (b) using merging histograms. (d) Similar structures to (b) using eBDG.
(e) 5% random noise added to (a). (f) Same selection. (g) Similar structures to (f) using merging
histogram. (h) Similar structures to (f) using eBDG.

(a) (b) (c) (d)

Fig. 10 An example of false positives in the histogram approach. Two simple yet topologically
different datasets were designed to have the exactly same pixel distribution (Red = 83, Blue = 57
and Green = 116) and hence identical histograms. (c) and (d) show their corresponding join trees.
As can be seen, a tree overlay method will be able to find the differences between these datasets
but the histogram method will not. (a) Simple dataset A. (b) Simple dataset B. (c) Join tree for A.
(d) Join tree for B

of 100 is a good estimate for most cases, and using a higher number does not alter
the results much. In our implementation, we do not impose a necessary condition on
the bin number. Sometimes it may so happen that two non-overlapping iso-valued
regions are assigned to the same bin due to the resolution being too low. This issue
can be addressed in future work. Another alternative binning strategy would be to
assign more bins to more dense parts of the dataset and vice versa, thereby choosing
a non-linear binning mechanism based on the intensity distribution of the entire
dataset.
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The current implementation considers applications which require finding similar
regions at nearly the same iso-range. For applications which require finding similar
structures at different iso-ranges, the method can be modified to finding the best
overlap between histograms which minimizes the distance between them. This can
be achieved by using standard dynamic programming techniques such as the Earth
Mover’s Distance [11].

7 Conclusion

Interactive similarity search in scalar fields using merge trees present a lot of useful
possibilities like real-time exploration of the data, and reveal interesting patterns in
volume renderings that are otherwise hard to see. Finding such patterns involve
the general idea of finding similar subtrees to the corresponding subtree of the
underlying pattern. Instead of trying to compare these subtrees, we focused on
comparing feature descriptors of the subtree regions themselves and showed that
a faster method can be used to achieve similar results.

We presented merging histograms—a feature descriptor defined for all subtrees
of a merge tree, which was shown to be easily computed on-the-fly as part of the
merge tree computation step. We presented a few simple modifications to the merge
tree computation algorithm to achieve this. The comparison was shown to be quite
discriminative and robust to small perturbations.

Computing these self-similarities between all pairs of subtree regions very
quickly, provides for a rich interactive possibility.

A direction for future work could be to display self-similar structures at various
iso-levels automatically without any user intervention.
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Morse-Smale Analysis of Ion Diffusion
in Ab Initio Battery Materials Simulations

Attila Gyulassy, Aaron Knoll, Kah Chun Lau, Bei Wang, Peer-Timo Bremer,
Michael E. Papka, Larry A. Curtiss, and Valerio Pascucci

Abstract Ab initio molecular dynamics (AIMD) simulations are increasingly
useful in modeling, optimizing and synthesizing materials in energy sciences.
In solving Schrödinger’s equation, they generate the electronic structure of the
simulated atoms as a scalar field. However, methods for analyzing these volume
data are not yet common in molecular visualization. The Morse-Smale complex is a
proven, versatile tool for topological analysis of scalar fields. In this paper, we apply
the discrete Morse-Smale complex to analysis of first-principles battery materials
simulations. We consider a carbon nanosphere structure used in battery materials
research, and employ Morse-Smale decomposition to determine the possible lithium
ion diffusion paths within that structure. Our approach is novel in that it uses the
wavefunction itself as opposed distance fields, and that we analyze the 1-skeleton
of the Morse-Smale complex to reconstruct our diffusion paths. Furthermore, it is
the first application where specific motifs in the graph structure of the complete
1-skeleton define features, namely carbon rings with specific valence. We compare
our analysis of DFT data with that of a distance field approximation, and discuss
implications on larger classical molecular dynamics simulations.

1 Introduction

First principles (ab initio) simulations of molecular structures, employing density
functional theory (DFT) or Hartree-Fock (HF) methods, are increasingly common
in materials science applications. Unlike classical dynamics simulations, they solve
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the Schrödinger equation to more accurately determine molecular geometry. They
compute the wavefunction, the electronic structure of the molecules they simulate,
which consists of scalar fields of component molecular orbitals. Most analysis of
such simulations is carried out on the resulting molecular geometry as opposed to
the wavefunction. However, the wavefunction offers advantages: it is the closest
we can come to “ground truth” concerning the structure of the molecule, and its
volumetric representation can be used for topological analysis of scalar fields.

We consider an application in materials science: determining the charge capacity
of simulated battery anode structures. The material in question is a sphere of
carbon sculpted from a solid block of graphite, heated to a high temperature (2500
Kelvin) via molecular dynamics, and then annealed. The resulting “nanosphere”
resembles ordinary graphitic soot, but possesses numerous channels that can
accommodate lithium ion electrolyte. These channels form as a result of defects
in the graphite structure, which in turn change the coordination number (valence)
of their component carbon atoms. Higher average coordination number indicates
more defect sites, and structures that are better-suited as battery anodes. While
effective, simple statistical analysis does not fully quantify the charge capacity of
these structures. To do that, we must understand the paths that lithium ions may
diffuse through inside the carbon nanosphere structure.

The goal of this work is to use Morse-Smale analysis to tackle this problem,
analyzing the scalar field of the wavefunction itself from DFT computation. We
compute a 1-skeleton of the Morse-Smale complex to determine likely ion diffusion
paths in the nanosphere, identifying defect sites in the carbon structure through
which lithium ions may pass. We present a model for these features, and examine
statistical properties of the topology to establish a methodology to analyze such data.
We apply this technique to extract and compare results from the DFT-computed
wavefunction to those of a distance field.

2 Background

Our scientific goal is to examine the structure of carbon nanospheres throughout the
heating and annealing process, and analyze the suitability for the resulting structure
as a battery anode material. To do this at a relatively small scale (hundreds of atoms),
but ensure higher physical accuracy, we conduct an ab initio molecular dynamics
(AIMD) simulation, specifically DFT computation using the VASP code [18].

In experiments, the monodispersed carbon nanospheres that are used for a
sustainable lithium energy storage electrode can be synthesized effectively by
autogenic reactions of hydrocarbon precursors (e.g. polyethylene from plastic
waste, etc.) at high temperature and pressure, enabling synthesis of a battery
anode from recycled materials [29]. From the reported studies, the unique carbon
microstructures (i.e. layered graphitic motifs and sufficient carbon defects) are
critical in promoting lithium diffusion into and out from the interior of carbon
nanospheres for a practical lithium ion battery operations (i.e. capacity, voltages
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and charging rates). In order to understand how Li ion can be diffused into or
from (or intercalated into or de-intercalated from) carbon microstructures, the Li ion
diffusion energy barriers along the diffusion paths within the carbon microstructures
of an electrode have to be determined at atomistic level. To accurately quantify
the Li ion diffusion dynamics, DFT nevertheless remains the preferred choice in
theoretical descriptions at the atomistic level. In addition to computing physically
accurate atom geometry, solving the Schrödinger equation explicitly generates the
electronic structure (electron or charge density cloud), volume data on which we
can apply topological analysis.

From the reported studies [29], the interlayer Li diffusion paths are most probably
determined by the presence of large n-membered ring (e.g. n > 6) defect sites due
to the extensive thermal graphitization and significant carbon dislocations during
the high temperature synthesis of carbon. To model the anticipated Li ion diffusion
energy barrier through the n-membered rings, the atomistic simulation is carried out
based on DFT calculations with plane wave basis sets as implemented in the VASP
code [18]. All the DFT calculations were spin-polarized and carried out using the
gradient corrected exchange-correlation functional of Perdew, Burke and Ernzerhof
(PBE) [26] under the projector augmented wave (PAW) method, with plane wave
basis sets up to a kinetic energy cutoff of 400 eV. For a Li-ion diffusion barrier, as
the size of the n-membered ring increases, the barrier for a Li ion to diffuse through
decreases significantly, as confirmed by the DFT study in this work (Fig. 1) and
previous studies [35]. For the larger 9-membered ring, the Li diffusion energy barrier
is even smaller, i.e. 0.15 eV, slightly smaller than the reported value (i.e. 0.5 eV) in
carbon nanotubes [24].

Fig. 1 Left: the symmetric feature of the energy barriers are due to the Li ion diffusion into and
out of the center of n-membered ring at a single graphene sheet. Right: the Li ion diffusion energy
barrier (in eV) obtained from DFT calculation
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In addition to large n-membered rings of carbon defects, the Li diffusion is
also facilitated through the intra-layer in-plane diffusion within the layered graphite
present in carbon nanospheres [19]. From the computed free energy surface explored
by our CPMD metadynamics simulation, we found the Li in-plane diffusion barrier
at arbitrary direction in between the graphitic layers is comparatively small (i.e.
8 kcal/mol = 0.35 eV), which is consistent with the reported values (i.e. 0.26–
0.50 eV) [30]. Thus, it is reasonable to assume that the diffusion dynamics of Li
ions are driven by inter-layer diffusion through n-membered rings (referred to as
defects in the perfect C-6 carbon ring structure) as well as intra-layer movement.

We can pair these insights with topological analysis to identify Li-accessible
tunnels inside the nanosphere, The approach of our work is to use the Morse-
Smale complex to define an initial skeleton of minima and 1-saddles, count the
size of carbon rings (number of maxima) adjacent to that skeleton to determine
which tunnels an ion would likely pass through, and thus extract the diffusion path
skeleton. Moreover, the 1-skeleton represents both inter and intra-layer diffusion
paths, making it well-suited for the analysis of this particular structure.

2.1 Morse-Smale Complex

The following provides a brief introduction to the Morse-Smale complex, which
we use to identify features in the DFT data, and topological simplification, used to
study the function at multiple scales and reason about the stability of the identified
features.

Morse Functions and the Morse-Smale (MS) Complex Let f be a real-valued
smooth map f W M ! R defined over a compact d-manifold M. A point p 2 M

is critical when jrf .p/j D 0, i.e. the gradient is zero, and is non-degenerate when
its Hessian (matrix of second partial derivatives) is non-singular. The function f
is a Morse function if all its critical points are non-degenerate and no two critical
points have the same function value. In this case the Morse Lemma states that there
exists local coordinates around p such that f has the following standard form: fp D
˙x21 ˙ x22 � � � ˙ x2d. The number of minus signs in this equation gives the index of
critical point p. In three-dimensional functions, minima are index-0, 1-saddles are
index-1, 2-saddles are index-2, and maxima are index-3.

An integral line in f is a path in M whose tangent vector agrees with the gradient
of f at each point along the path. The integral line passing through a point p is
the solution to @

@t L.t/ D rf .L.t//;8t 2 R, with initial value L.0/ D p. Each
integral line has an origin and destination at critical points of f , at t D ˙1.
Ascending and descendingmanifolds are obtained as clusters of integral lines having
common origin and destination respectively. The descending manifolds of f form a
cell complex that partitions M; this partition is called the Morse complex. Similarly,
the ascending manifolds also partition M in a cell complex. A Morse function f
is a Morse-Smale function if ascending and descending manifolds of its critical
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points only intersect transversally. An index-i critical point has an i-dimensional
descending manifold and a .d � i/-dimensional ascending manifold. The simply-
connected cells formed by the intersections of ascending and descending manifolds
form the cells of the Morse-Smale (MS) complex. A three-dimensional MS complex
is a cell complex where cells of dimension zero through three are called nodes,
arcs, quads, and crystals, respectively. Each arc is a 1-manifold bounded by two
nodes, 0-manifolds, each quad is a 2-manifold bounded by arcs, and finally, each
crystal of the MS complex is bounded by quads. Cells of the MS complex satisfy
several combinatorial properties: end points of arcs are critical points whose indices
differ exactly by one; quads contain exactly four arcs on their boundary (although
some might be repeated); and the closure of the boundary of a crystal contains a
collection of quads, arcs, saddles and exactly one minimum and one maximum. The
1-skeleton of the MS complex is formed by the nodes and arcs, representing much
of the connectivity information of the complex.

Topological Simplification A function f is simplified by repeated cancellation of
pairs of critical points connected by an arc in the MS complex. The local change
in the MS complex indicates a smoothing of the gradient vector field and hence
of the function f . Forman [9] showed how a cancellation could be achieved in a
discrete gradient field by reversing the gradient path between two critical cells.
Gyulassy et al. [12] provided a full characterization of cancellation operations
in terms of how they affect the connectivity of the complex and the geometry
of the ascending/descending manifolds, operating solely on the combinatorial
structure of the complex. Each cancellation operation removes a pair of critical
points, reconnects arcs of the complex, and merges their ascending and descending
manifolds with their neighbors geometry. Repeated application of cancellations in
order of persistence, the absolute difference in function value of the canceled critical
points, results in a hierarchy of MS complexes and a multi-resolution representation
of features. Gyulassy et al. [14] described data structures and search algorithms
to reconstruct the ascending and descending manifolds of any critical point at any
stage of simplification, allowing rapid browsing of the extracted features at multiple
scales.

3 Related Work

We review works that are most relevant to our proposed techniques. Most of the
geometric and topological methods discussed here originate from molecular shape
analysis, in particular, in the detection of protein cavities. A cavity is an empty space
enclosed by the molecule, and it includes voids (without openings that allow access
to the surrounding solvent), pockets and tunnels (with openings). A tunnel connects
multiple surface sites through pathways; while a pocket connects a site in the interior
with a surface site. We refer the reader to Lidow et al. [22, 23] for illustrations of
these scenarios. In our case diffusion paths correspond to the pockets and tunnels
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of a given molecule. Most of the geometry-based cavity detection algorithms rely
on the computation of Voronoi diagram, its dual graph Delaunay triangulation,
weighted Delaunay triangulation or its close relative alpha shapes. Because of the
large number of work in the field, we include a few significant ones.

Voronoi diagram-based techniques that have a special focus on the analysis and
visualization of tunnels include works in [22, 23], tools MOLE [28] and CAVER
[27], where the work in [23] detects structures from a molecular dynamics trajectory.

Alpha shapes are closely related to alpha complexes which are subcomplexes
of the Delaunay triangulation of the point set. Alpha shape theory [6, 8] has been
used for the detection of protein cavities [7, 20, 21] and has been featured in tools
such as CAST [5, 20], Proshape [17], CAVER [27] and MolAxis [34]. A related
concept that is similar to Alpha shape, but better in terms of remaining connected
for all resolutions, called Beta shape [16], has been proposed to define cavities [15]
in molecules.

A few works exist that employ Morse complex or Morse-Smale complex in
shape analysis. Sousbie used Morse complexes to compute filamentary structures
in of the cosmic web [31]. Topological spines [4], used as visual representations
that preserve the topological and geometric structure of a scalar field, have been
developed based on the extraction of sparse subsets of the Morse-Smale complex.
The works in [3, 25] decompose the protein surfaces into segmented features for
the analysis of protein-protein interactions. However these works are restricted to
study surface geometry of the proteins, while our proposed technique focuses on
both surface and interior structures. On the other hand, Bajaj et. al. [2] model
structural features of molecules by computing stable and unstable manifolds of the
critical points of the distance function induced by the iso-surface. Their work is
most relevant to our algorithm in a sense that both algorithms rely on properties
associated with stable and unstable manifolds of critical points of distance functions
to the surface of the molecule; and both detect pockets and tunnels simultaneously.
The work in [2] forms pockets and tunnels by clustering and merging adjacent stable
manifolds of critical points based on their scalar value; such an approach is not
applicable to diffusion in carbon nanospheres, since, as we show in Sect. 6, there
is no scalar threshold (either of the DFT field or distance field) that distinguishes
between ring structures of different valences. The full MS complex has been used
to identify atomic structures on volume data, identifying the atoms and bonds in
a C4H4 molecule and orbitals of a hydrogen atom [11]. Günther et al. [10] refined
topological analysis of electron density, by using a derived gradient for identification
of both covalent and non-covalent bonds.

In the chemistry literature, relatively little analysis is carried out on the wave-
function field itself, as opposed to atom geometry. Bader analysis [1] decomposes
charge density into regions of uniform gradient each associated with one atom, for
example using Voronoi partitioning. It is similar to Morse theory in that it uses
gradient descent to partition the scalar field, but would not help in identifying
tunnels between 1-saddles and minima.
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Our proposed technique uses persistence simplification to separate noise from
features, and similar simplification algorithms have been employed to simplify
surface features based on MSCs [3, 4, 25, 33] or alpha shapes [32].

4 Li Diffusion Paths in DFT Data

In this section, we first discuss our approach to handling DFT data, then present
the model for identifying features in such data, defining features according to the
structure of the MS complex. Next, we present justification and validation for the
model, analysing the stability of the extracted features. Finally, we discuss details
of the methodology, corner cases, and remaining ambiguities.

4.1 Preparation of DFT Data

DFT simulations employ a variety of different functionals and strategies to maxi-
mize accuracy and reduce computation time. As interior orbitals (1s, 2s) typically
remain static throughout a simulation, it is common to ignore their computation
entirely. A side-effect of this optimization is that electron density is ill-defined at the
nuclei: whereas the true wavefunction (e.g., obtained through x-ray crystallography
or computation of all orbitals) would exhibit maxima at the atomic nuclei, our data
instead show empty space (minima) at the nuclei.

As our analysis relies entirely on pre-existing connections within the MS
complex to define the skeleton, it is challenging to correct this phenomenon post
facto. We found it simplest to modify the scalar field itself to restore maxima at the
carbon nuclei. To do this, we created a field of summed radial distance functions
G D P

gi, gi.d/ D Z exp.�.d=r/2/, where Z=6 is the atomic number (maximum
possible electron density) and r = 0.36 Ȧngstrom is half the covalent radius of sp2

carbon (graphite). Then, given our DFT all-electron density field F, our augmented
field is F0 D supfF;Gg. This allows us to correctly identify maxima at the nuclei in
the MS complex, and is shown in Fig. 2.

We use standard techniques from discrete Morse theory to compute an initial
MS complex [13]. Our analysis entails every component of the MS complex taken
together, necessitating coherent simplification to remove low-persistence features
and artifacts due to discretizing a function onto a mesh. One challenge in using DFT
data is the exponential nature of the electron density as a function of distance from
an atom. For instance, the features of the 732-atom nanosphere dataset we use in our
results span 9 orders of magnitude; the difference between minima and 1-saddles,
and 2-saddles and maxima occurs on the scales of 10�4 and 102, respectively. To
obtain a coherent view of the structure, we apply a straightforward strategy of
computing the MS complex on the DFT field, but then rescaling critical points using
the log function before applying persistence simplification.
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Fig. 2 Modification of DFT data to restore maxima at the nuclei. Left: original DFT data F.
Center: RDF impulses G. Right: augmented F0 D supfF;Gg

4.2 Theoretical Model for Analyzing Electron Density

We follow a standard model relating the critical points of electron density to various
features of the carbon nanosphere. For each of the following features, we identify
the component of the MS complex that corresponds to it, and illustrate the features
in Fig. 3.

Carbon atoms: It is well-understood in chemistry that the electron density
reaches a maximum at atom locations, and in our model, we use maxima of the
electron density field as a proxy for carbon atoms.

Covalent bonds: The covalent bonds between carbon atoms also appear as
relatively high values, and typically a high-valued 2-saddle connecting two
maxima in the 1-skeleton of the MS complex indicates a bond.

Voids: Voids are minima of the electron density field, and represent locally
minimal energy configurations. In our model we identify voids as low-valued
minima in the MS complex.

Free Li diffusion path: The intra-layer in-plane regions are characterized by
regions where Li ions have a comparatively small energy barrier to diffusion,
corresponding to low electron density values. We model this as the network
connecting voids in the 1-skeleton corresponding to very low electron densities.

N-member rings: The bonds and atoms in a Carbon ring form a circular ridge-
line in space, that forms the boundary of a disk. The disk itself separates low-
valued voids, and corresponds to the ascending 2-manifold emanating from a
1-saddle in the MS complex. To account for possible pinching of the boundary
of a disk, we compute the valence of a ring as the number of carbon atoms in the
largest simple cycle on the boundary.

Defect sites: Defect sites, allowing Li to diffuse across layers, are a carbon rings
with valence > 6, and are identified as 1-saddles that are not part of free Li
diffusion paths and are also connected to > 6 bond 2-saddles in the MS complex.
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Fig. 3 The full MS complex (a) of the 732-atom nanosphere provides the structure for identifying
features. Carbon atoms (red spheres) and covalent bonds (yellow arcs) are identified as maxima,
high-valued 2-saddles, and the arcs between them (b). Rings are the boundary of ascending 2-
manifolds emanating from 1-saddles (c), and rings with valence > 6 are identified as defect sites
(d). Free Li ion diffusion paths (e) are the 1-skeleton connecting voids (blue spheres) with low
density value

4.3 Model Validation: Feature Stability

The model presented in Sect. 4.2 is missing some key information needed for prac-
tical feature extraction: the MS complex must first be simplified to a user-supplied
threshold, a second threshold is needed to identify the 2-saddles corresponding
to covalent bonds, and finally, a third threshold determines free Li ion diffusion
paths. Ideally, one can arrive at stable thresholds for each of these without a priori
knowledge, by simply examining the distribution and persistence of features of the
computed MS complex. The goal is to be able to identify such features and then
relate them back to what we know about the data, as a strong validation of the
approach. In the following, we describe this methodology as it is applied to the
732-atom DFT data.
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Fig. 4 Analysis of the feature set encoded by the MS complex leads to insights about the
location and stability of features. Counting critical points as a function of persistence simplification
threshold (a) shows that carbon atoms can be extracted in a stable manner. Plotting each arc
of the complex with a point whose coordinates are the values of the critical points (b) reveals
that the 2-saddle-maximum connections corresponding to covalent bonds are well separated from
other features, and furthermore stable with respect to simplification (c). Counting the number of
n-valence rings reveals that barrier 1-saddles are stable in a smaller range of simplification (d).
Finally, we identify a conservative estimate for threshold free diffusion paths by identifying flatter
regions in the cumulative density function of critical points (e) while avoiding any barrier rings

We begin with identification of Carbon atoms; in our model, they are maxima of
the MS complex. Figure 4a shows the count of critical points of the MS complex
as a function of persistence simplification threshold. A large stable threshold is
identified in the range [0.03:0.6]. In our example data, we find exactly 732 high-
valued maxima in this threshold range, corresponding exactly to the carbon atoms
in the atomistic simulation. For simplification thresholds less than 0.03, low-valued
maxima appear on some of the covalent bonds, and for thresholds greater than 0.6,
high-valued maxima begin to merge together.

Next, we validate our model for high-valued 2-saddles representing covalent
bonds by finding a stable threshold that distinguishes between 2-saddle-maximum
arcs of the complex. In Fig. 4b, we show each arc of the MS complex as a
point, with coordinates given by the lower and upper critical points of the arc.
A clear structure is apparent from this figure, notably the separation of high-valued
2-saddle-maximum arcs from the other arcs in the dataset. Selecting the 2-saddle-
maximum arcs in the box 2-saddle=[�0.05:2.0] provides a stable threshold, that
corresponds to the covalent bonds in the data. This is furthermore shown in Fig. 4c
to be stable for the same simplification threshold range as the carbon atoms, yielding
exactly 1110 covalent bonds in these threshold ranges.
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The rings that do not allow Li ions to diffuse, those with valence � 6, can be
identified by the count of 2-saddles corresponding to covalent bonds. Intuitively,
these are given by 1-saddles at some simplification threshold. The count of barrier
rings as a function of persistence is shown in Fig. 4d. This plot indicates that a
smaller stable threshold, as 1-saddles are lost after a persistence simplification
threshold of 0.11.

So far, we have established that carbon atoms, covalent bonds, and barrier rings
can be extracted in a very stable manner, with simplification threshold of 0:06˙0:03.
This stability aligns with expectation, due to the regular structure imposed by the
chemistry and physics of the annealed nanosphere. We make the logical step that any
2-saddles that are not covalent bonds must be part of an intra-layer region, where Li
ions can diffuse relatively easily. Furthermore, since the ascending 2-manifolds of
1-saddles form topological disks that fill in the interior of covalently bonded carbon
rings, any 1-saddle adjacent to a non-bond 2-saddle (and any minimum attached
to that) must also be part of the free diffusion region. Finally, we consider the case
where based on the electron density value alone we can determine if the Li ions may
diffuse. In Fig. 4e we show cumulative density functions of minima and 1-saddles,
categorized by whether they are ring, non-ring, defect, or non-defect points. To pick
the threshold that guarantees that Li may diffuse freely, we must pick a threshold
below the lowest ring saddle values with � 6 bonds, which occurs at value �3.7.
The most permissive, yet relatively stable threshold occurs around �4.

5 Comparison with Distance Field

Production-scale nanosphere simulations are expected to produce results on the
order of one million atoms, making DFT data impossibly expensive to compute. One
alternative we explore in this section is to use the atom positions to create a distance
field. In particular, we generate a signed distance field, that is the negative of the
minimum distance from a grid vertex to a Carbon atom, preserving the convention
of identifying carbon atoms as maxima. The same data-driven approach is applied
from Sect. 4.3 to obtain stable threshold of 0.1 for persistence simplification, �0.9
for identification of covalent bonds, and �5.0 to identify free paths. Figure 5 shows
a direct comparison of features extracted from the DFT data and the distance field.
There is a one-to-one correspondence between Carbon atoms and covalent bonds,
between the two fields (a, e). The first differences appear in the identification of
ring saddles (b, f), where certain 1-saddles appear as free paths in the DFT field,
and instead appear as defect sites in the distance field. This difference can be noted
in (c, g), where a defect present in the distance field (g) is instead identified as a
free path connecting the exterior to the interior of the nanosphere (d). In both fields,
every void in the interior of the nanosphere is completely connected by free diffusion
paths.
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Fig. 5 A visual comparison of features of the DFT data (top row) with features of the distance
field (bottom row). The exact same set of carbon atoms and bonds are found in each (a, e). While
the majority of rings are the same, the DFT data classifies some defect rings as intra-layer free
diffusion paths. For instance (f) displays a ring (yellow arrow) not present in (b). This difference
can be accounted for with (c, d, g, h), where (g) shows a defect detected in the distance field,
whereas (d) shows the same site as part of an intra-layer free path. Other defects sites match (c, g),
and the free paths in both (d) and (g) completely connect every void in the interior.

6 Discussions

We apply our data-driven approach to the 732-atom DFT field, and found a stable
persistence simplification threshold of 0.06, a stable selection threshold for bonds
of > �0.05, and a conservative estimate of free paths with value lower than �4.
With these thresholds, we found that the entire interior of the 732-atom DFT field is
accessible to Li ion diffusion. Figure 6a illustrates that according to the definitions
we presented the free paths directly connect the exterior of the nanosphere with
every layer. Figure 6b demonstrates a scenario where the ascending 2-manifold
of a 1-saddle does not have a simple circle as its boundary. To avoid incorrectly
classifying this as a fault, we perform an additional check on the ring, only counting
the atoms that form a simple cycle. Such configurations arise when carbon atoms
are bonded in the third dimension outside of the plane of the carbon ring. Finally,
we justify using the ring valence as opposed to selecting a threshold for diffusion
(as was done in [2]). Figure 6c shows the function values for various valence rings.
Even for large simplification thresholds, rings identified as valence 5 or 6 may have
lower function value than higher valence rings.
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Fig. 6 In the DFT field, free paths were identified between all layers of the nanosphere (a).
A corner case illustrates the need to compute the length of simple cycles when counting the valence
of a ring (b). The distribution of values for rings of varying valence shows that there are no scalar
thresholds that separate features (c)

7 Conclusion/Future Work

We have presented a new technique for analyzing Li ion diffusion paths in carbon
nanospheres that utilizes identifying motifs (rings) in the 1-skeleton of the MS
complex. We have further shown that feature analysis is stable, and appropriate
thresholds can be identified from the topology of the data itself without a priori
knowledge. Finally, we compared the analysis of the DFT data to a distance field,
showing similarities, but also differences in the classification of free path vs. defect
sites. Further study is needed to understand the implications on qualitative measure-
ments of Li storage capacity of nanospheres. We plan to use this methodology to
understand the energy storage properties of large-scale nanospheres.
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Piecewise Polynomial Reconstruction of Scalar
Fields from Simplified Morse-Smale Complexes

Léo Allemand-Giorgis, Georges-Pierre Bonneau, and Stefanie Hahmann

Abstract Morse-Smale complexes have been proposed to visualize topological
features of scalar fields defined on manifold domains. Herein, three main problems
have been addressed in the past: (a) efficient computation of the initial combinatorial
structure connecting the critical points; (b) simplification of these combinatorial
structures; (c) reconstruction of a scalar field in accordance to the simplified Morse-
Smale complex. The present paper faces the third problem by proposing a novel
approach for computing a scalar field coherent with a given simplified MS complex
that privileges the use of piecewise polynomial functions. Based on techniques
borrowed from shape preserving design in Computer Aided Geometric Design,
our method constructs the surface cell by cell using piecewise polynomial curves
and surfaces. The benefit and limitations of using polynomials for reconstruction
surfaces from topological data are presented in this paper.

1 Introduction

Morse-Smale (MS) complexes are combinatorial structures encoding topological
features of smooth scalar fields by connecting their critical points. The discrete
Morse theory [11] has been used to define MS complexes for scalar data defined
on meshes.

Because of their ability to characterize the topology of level sets, MS complexes
have found many applications in visualization [18]. Each cell in a MS complex is
a set of integral lines of a discrete gradient flow (the equivalent of streamlines of a
smooth gradient field) connecting a critical point with some value to another critical
point with a higher value. Along an integral line, the data is monotonic, strictly
increasing. Inside a 2d-cell, there are no critical points, and the level sets have
the topology of an open interval. Previous works have their focus on the efficient
computation of MS complexes [25, 26], on the simplification and hierarchical
representation of MS complexes [2, 5] or on the extraction of features using MS
complexes [18]. The simplification of a MS complex is a combinatorial operation
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consisting in deleting two adjacent 0d-cells in the complex. All adjacent cells to
the deleted nodes affected by the simplification are either deleted or unified. Since
the simplification is a purely combinatorial operation, for visualization purposes it
is thus often required to compute new scalar data that correspond to the simplified
complex. The scalar field reconstruction problem is the topic of the present work.
The main requirements on the scalar field reconstructed from a simplified MS
complex are the following

• interpolation of the scalar field values at the critical points
• bijection between the nodes of the MS complex and the critical points
• bijection between arcs of the MS complex and 1-cells.

This problem has been solved in the past by applying to each 1d- and 2d-cell a
discrete laplacian smoothing in the original mesh with the addition of constraints
in order to ensure the monotonicity of data inside the cells [2, 30]. In contrary to
previous mesh-based approaches, the present work investigates the use of smooth
surface representations.

In the fields of Computer Aided Geometric Design and Approximation Theory
shape preserving methods seek to approximate a scalar or geometric function
while preserving some “shape properties” such as the sign, the monotonicity or the
convexity of the given data. Most of these methods produce piecewise polynomial
Bézier and B-spline functions, parametric curves and surfaces.

In the present work we propose to reconstruct scalar fields from simplified MS
complexes in 2D, based on shape-preserving methods. Instead of using discrete
laplacian smoothing on the original mesh, our approach is to use piecewise
polynomial curves and surfaces. Specifically, we first approximate data along 1d-
cells by computing monotonic B-splines [19], and we then show how to fill-in
2d-cells with monotonic triangular Bézier patches based on our previous work on
monotonic interpolation of gridded data [1]. The final resulting scalar field is a
piecewise polynomial approximation of the original data that is coherent with the
simplified MS complex. We present different approaches for parameterizing and
computing these piecewise polynomial surfaces.

2 Related Work

Topology-based / Computational topology methods have become very effective
for analysis, visualization and simplification of features in scientific data sets and
geometric shape models. Most of these methods make use of results from Morse
theory which dates back to the nineteenth century. It became useful in scientific
visualization and computer graphics with a first efficient algorithm by Edelsbrunner
et. al [5] for computing the MS complex for piecewise linear scalar fields. The MS
complex is a topological representation of a scalar function which decomposes the
domain of a function into regions having uniform gradient flow. It consists of the
critical points (minima, maxima, saddles) and the separatrices connecting them.
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Efficient algorithms to compute the MS complex for 2D and 3D scalar fields can
be found in [14–17, 26].

Topological simplification is used for denoising, feature discrimination and
smoothing of scalar fields. Algorithms apply, inter alia, the notion of topological
persistence [6] for iteratively cancelling pairs of critical points [2, 7] in MS
complexes.

Closely related to topology-driven simplification algorithms are methods that
reconstruct a function obeying the simplified topological data. A setup similar to
ours are [2, 30] in the sense that the MS complex is simplified and a corresponding
scalar function is computed by fully constraining the simplified complex. In [2] a
MS complex is iteratively simplified by cancelling pairs of critical points ordered
by persistence resulting in a hierarchical representation. The discrete embedding of
boundary and the interior of the cells is smoothly reconstructed cell by cell using
constrained Laplacian optimization. In [30] a constrained bi-Laplacian optimization
is applied globally on the entire domain. Bi-Laplacians increase the order of
continuity from C0 to C1 but loose the maximum principle, i.e. loose the important
monotonicity property of the resulting function inside the MS cells. Inequality
constraints are thus added to enforce the scalar field to be monotonic inside each
cell. In [20] only the position and value of extremas are constrained to compute
smooth shapes by minimizing a non-linear functional similar to [30]. They further
provide an explicit control over the topology of a scalar field. As an extension
of [20, 30] Günther et al. [12] present a method for reconstructing iteratively
a smooth scalar field from a set of selected extrema by combining non-linear
optimization based on a monotonicity graph with topological simplification. Both
methods [12, 20] however do not constrain the entire MS complex, but use it to
satisfy the monotonicity constrains in the optimization.

However, a big challenge of these numerical reconstruction approaches is the
stability in the optimization process. This may create additional critical points in the
output preventing it from strictly conforming to the input constraints. Additionally,
the overall optimization process might be computationally expensive resulting in
extensive running times. Tierny et al. [28, 29] propose an interactive combinatorial
algorithm to edit a scalar field on a surface with a user-prescribed extrema that does
not build on the computation of a topological structure such as MS complex or
contour tree.

The major differences to our work are twofold: first, we provide an explicit
polynomial representation of the surface patches and the cell boundaries.

This explicit representation has two advantages: it allows for an arbitrarily
dense sampling of the resulting function. It further allows for exact evaluation and
computation of differential properties of the scalar function for post-processing
applications.

Second, our resulting surface exactly conforms to the input MS complex,
meaning that no undesired additional critical points occur as it may be the case
with numerical optimization methods.

Our method does not depend on the density/size of the discretization of the input
function.
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3 Background and Overview

In this section, the required theoretical background on MS complexes is given, for
scalar fields defined in a planar domain. First, Sect. 3.1 presents a summary of Morse
theory, then Sect. 3.2 explains how MS complexes can be simplified. For further
background about Morse theory, the reader is refereed to [22, 27].

3.1 Morse Theory

Let f W D ! R be a differentiable function, where D is a bounded open subset of
R
2. A point p 2 D is called a non-degenerated critical point of f if rf .p/ D 0 and

the determinant of the Hessian of f in p is non zero. f is called a Morse function
if its critical points are non degenerated. There are three kinds of critical points
depending on the sign of the two eigenvalues of the Hessian matrix. The number of
negative eigenvalues is called the index of the critical point. If the index is zero then
p is a minimum, if the index is one, then p is a saddle point and if all eigenvalues
are negative, then p is a maximum.

A C1 curve l W R! D is called an integral line of f if .8t 2 R/ @
@t l.t/ D rf .l.t//.

It is a path which follows the gradient of the function, so the values of f along this
line parameterized by t are strictly increasing. The limit of l when t ! �1 (resp.
t! C1) is called the origin (resp. destination) of l. The origin and the destination
of an integral line are critical points of f , and index.destination/ > index.origin/.
The union of a critical point fpg with the set of all points of integral lines which
share the origin p is called the ascending manifold of p. Analogously, the union of
a critical point fqg with the set of all points of integral lines which have the same
destination q is the descending manifold of q. The set of all ascending manifolds
and the set of all descending manifolds form two distinct partitions of D.

The MS complex is the partition of the domain D using the sets of integral lines
sharing the same origin and destination. In other words, each set in this partition is
the intersection of an ascending and a descending manifold. It has the structure of a
CW-complex, with cells of three types, as illustrated in Fig. 1a:

• 0-cells : these cells are critical points of the function,
• 1-cells : these cells are specific integral lines called separatrices,
• 2-cells : these cells are always bounded by a cycle of four 1-cells. Two of these

1-cells link a minimum with two saddles, and the two other 1-cells link the two
saddles with a maximum. There is no critical point in the interior of a 2-cell.

In the present paper, we do not work with differentiable functions, but with discrete
scalar fields sampling a differentiable function at the vertices of a triangulation D.
We therefore rely on Forman’s discrete Morse Theory [11] which generalizes MS
complexes using a combinatorial gradient vector field. In this setting, integral lines
and cells of the MS complex are union of domain simplices (e.g. vertices, edges and
triangles).
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Fig. 1 (a) A scalar function on a rectangular domain with its MS complex. It has six 2-cells and
seventeen 1-cells. The lines of steepest ascent (resp. descent) from the saddle points are shown in
orange (resp. green) (b) a pair of adjacent critical points in gray is removed. As a consequence
a simplified topology is produced with four new 2-cells and three new 1-cells. (c) a function is
reconstructed which MS complex matches the simplified topology (see different isoline pattern)

3.2 Simplification

To explain the simplification of MS complexes, we use the canonical mapping from
a MS complex to an undirected graph which maps 0-cells to nodes and 1-cells to
edges. The 2-cells then correspond to cycles in the graph. The simplification of the
MS complex is obtained by sequentially removing pairs of adjacent nodes in the
graph [5, 13]. The edges of least persistence are removed first [4, 23]. Let fp; qg be
an edge in the graph such that index.q/ D index.p/C 1. Removing the two nodes in
the graph implies the removal of all edges incident to them, thereby creating a cycle
of length strictly larger than four. New edges are then inserted between each node
previously adjacent to p with the same index value than q except q and each node
previously adjacent to q with the same index value than p except p. Each of these
new edges replace three removed edges. These new edge insertions ensure that all
new cycles are of length four and connect one minimum, one saddle, one maximum
and a second saddle. This process is illustrated in Fig. 1a, b with index.p/ D 1,
i.e. when p is a saddle point and q is a maximum. In this case a new edge is
inserted between each saddle point that was adjacent to q and distinct from p, and
the maximum that was adjacent to p and distinct from q.

The previous process is purely combinatorial. It builds a new simplified topology
from the topology of the MS complex, but does not produce a new embedding.
A trivial embedding is obtained by associating to each new edge the union of the
three 1-cells it replaces, and to each new cycle of union of previous 2-cells. But
this trivial embedding does not correspond to a MS complex since there are critical
points along the new 1-cells, as illustrated in Fig. 1b. Therefore a new function has
to be reconstructed from the original function and from the simplified topology
such that the topology of the MS complex of this reconstructed function matches
the simplified topology, as illustrated in Fig. 1c. The function reconstruction is the
subject of the present paper, as explained in the next section.
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3.3 Overview

Our method takes as input an initial discrete scalar field f W D � R
2 ! R, where

D is a planar triangulation. The scalar field values f , also called height values, are
given at the vertices of D. We also take as input the persistence threshold, so that in
the simplified MS complex, the value of least persistence should be larger than the
input threshold. In practice the persistence threshold is specified as a percentage of
the maximum persistence. 0% mean no simplification and 100% means maximum
simplification.

We first use the recent parallel algorithm by Shivashankar et al. [26] to compute
the discrete MS complex of f and to simplify its topology, as explained in Sect. 3.2.
Our method is also working with output from other algorithms [2, 7].

As explained in Sect. 3.2, the simplification of the MS Complex is a purely
combinatorial process which removes critical points and produces a simplified
topology connecting the remaining critical points. And the trivial embedding of this
simplified topology consists in 1-cells and 2-cells inside which the original scalar
field has critical points, as illustrated in Fig. 1b. Therefore we need to reconstruct
a new scalar field whose MS complex matches exactly the simplified topology, i.e.
it should be strictly monotonic along the simplified 1-cells, and should contain no
critical points inside the simplified 2-cells.

In order to reconstruct such a scalar field we proceed in two steps. In the first step
we traverse each 1-cell and compute a smooth uniform quadratic spline which is
C1-continuous, strictly monotonic and approximates the original scalar field values.
This is described in Sect. 4. In the second step we reconstruct a scalar field inside
each 2-cell, which interpolates the four monotonic uniform quadratic splines along
its boundaries and contains no critical points, as explained in Sect. 5. To compute
this scalar field, we first parameterize the domain of the 2-cell into the unit square,
and then compute a monotonic piecewise cubic triangular Bézier surface defined in
the unit square, which interpolates the height values of the uniform quadratic splines
along the edges of the square.

As a consequence our reconstructed scalar field is defined by piecewise polyno-
mial functions along the 1-cells and inside the 2-cells.

4 Monotonic Smoothing of the 1-Cells

The first part of our method consists in reconstructing smooth and strictly monotone
curves along the new 1-cells. Before explaining the details we must point out two
facts. First, the 1-cells of the simplified MS complex in the domain are known to
have a jagged shape prohibiting a smooth surface reconstruction [2, 30]. Second,
it happens often that two 1-cells, having the same maximum as destination but
distinct saddles as origin, merged before the maximum. In the other direction, two
1-cells, having the same minimum as origin and distinct saddles as destination,
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may share the same geometry before getting disconnected. Such merging or
disconnection occur at special vertices called junction points. Figure 3-right shows
two junction points between a minimum and three distinct saddles. These junction
points segment the corresponding 1-cells into several pieces. We first compute new
scalar field values at the junction points, so that subsequent processing may be done
independently on each piece of 1-cells. Then for each piece we compute a piecewise
quadratic uniform B-spline that is smooth, strictly monotonic and approximates the
input scalar field values.

1. Scalar field value at junction points. If we follow a simplified 1-cell with
junction points, the sequence of scalar field values at these junction points is not
strictly monotone. Assigning iteratively a new value by linear interpolation of the
critical end points as proposed in [30] may run in conflicts in case a junction point
is shared by more than two 1-cells. We therefore propose to compute the junction
point values globally by solving the following linear programming problem:

P j Qf .pj/� f .pj/j ! min subject to

max_lower.pj/ � Qf .pj/

Qf .pj/ � min_larger.pj/

where f is the initial scalar field, Qf the unknown value and pj the junction points in
D. max_lower.pj/ (resp. min_larger. pj/) denotes the maximum (resp. minimum)
height value of all junctions and critical points adjacent to pj and are required to
be lower (resp. larger) than Qf . pj/.

The idea is to compute a new function value Qf .pj/ as close as possible to f .pj/

for all junction points, while satisfying the monotonicity requirements along all
1-cells.

2. Monotone reconstruction of the scalar field along 1-cells. We now compute
a monotone piecewise polynomial function along each part of the 1-cells by
applying a monotone B-spline smoothing [19] between two adjacent points
(junction or critical) of the MS complex.

Let .xi/iD0:::n be the n C 1 vertices of a part of a 1-cell in the domain D
between two junction or critical points x0 and xn. Let .ti/iD0:::n be the associated
normalized arc length parameters, so that t0 D 0 < t1 < � � � < tn D 1. New scalar
field values have already been computed in x0 and xn, and we have Qf .x0/ < Qf .xn/.

We now compute a quadratic uniform B-spline function g˛ W Œ0; 1� ! R that
is strictly increasing, and approximates the input scalar field values. Let g˛.t/ DPkC1

iD0 ˛iN2i .t/, where t 2 Œ0; 1�, ˛i 2 R are the control points, 0 D u�2 D u�1 D
u0 < : : : < uk D ukC1 D ukC2 D 1 the uniform knots and N2i the B-spline
basis functions of degree 2 defined on the knot sequence fujgjD�2;:::;kC2. We set
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˛0 D Qf .x0/ and ˛kC1 D Qf .xn/ to ensure endpoint interpolation and compute the
remaining coefficients ˛i, i D 1; : : : ; k as follows:

n�1X
iD1
j f .xi/ � g˛.ti/j ! min subject to (1)

g0̨ .u0/ D 0 (2)

g0̨ .uk/ D 0 (3)

g0̨ .ui/ � 0; i D 1; : : : ; k � 1 (4)

Condition (1) ensures approximation. (2) and (3) ensure zero gradients at the
extremities and finally (4) ensures monotonicity. Figure 2 shows two results with
the same input data but different numbers k of control-points.

As the reconstructed surface, see next section, will be composed of cubic
triangular Bézier patches, we first convert the quadratic B-spline function g˛
into quadratic Bézier curves by repeated knot insertion and then apply a degree
elevation to obtain k cubic Bézier curves. See [8] for more details about Bézier
and B-spline curves. Note that the parameter k represents the number of curve
segments along the spline curve. The higher k the more flexible is the curve and
the better it is able to approximate a point set. In contrary, the smaller k is the
smoother is the resulting curve. In our experiments we choose either k D 4 or
k D 7, see discussion in Sect. 6.

3. Smoothing of 1-cells in the domain. As we aim to reconstruct the simplified MS
complex with piecewise polynomial functions, we further smooth the jagged 1-
cells in the domain by approximating in a least square sense each piece of 1-cell
by a quadratic uniform parametric B-spline curve c.t/ D PkC1

iD0 ciN2i .t/ � R2,
t 2 Œ0; 1� with the same number of segments k and knot vector as for the
monotone height function g˛. Endpoints interpolation (critical points or junction

Fig. 2 Height values (red dots) are approximated by a monotonic quadratic B-spline function (blue
curve). Left: Approximation with k D 4 curve segments. Right: Approximation with k D 12 curve
segments
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Fig. 3 Smoothing of the 1-cells in the domain. (a) original jagged 1-cells. (b) smoothing by
uniform quadratic B-splines. (c) zoom into three 1-cells (green curves) descending from 3 distinct
saddles (green dots) to the same minimum (blue dot). The three 1-cells merge at two junction
points (black dots)

points pi;pj) is enforced by setting c.0/ D pi and c.1/ D pj. After knot insertion
and degree elevation we get again k cubic Bézier curve segments. Figure 3
illustrates this smoothing for a real MS complex. The final monotone smooth
height function can be written as .c.t/; g˛.t//.

5 Monotone Interpolation Inside the 2-Cells

In the previous section we have explained how to compute smooth monotonic
piecewise polynomial functions that approximate the input scalar field values on
each 1-cell of the simplified MS complex.

In this section we go further and described our method for computing for each
2-cell a piecewise polynomial surface that interpolates its boundary 1-cells and has
no interior critical points. The construction is done independently for each 2-cell.
We begin by parameterizing the 2-cell onto the unit square Œ0; 1�2 (Sect. 5.1). Then
a monotonic surface defined in the unit square is computed (Sect. 5.2). Combining
the monotone surface and the parameterization, a monotone reconstruction of the
2-cell is computed, which interpolates the 1-cells, has the 0-cells as critical points
and no other critical points.

5.1 Parametrization of a 2-Cell

A 2-cell is a closed connected subdomain˝ � D � R
2 bounded by four pieces of 1-

cells. We need to parameterize˝ in the unit square before computing the monotonic
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interpolant in the next section. In other words, a diffeomorphism ˚ W ˝ ! Œ0; 1�2

needs to be defined. Such a diffeomorphism maps functions without critical points
on the unit square to functions without critical points on ˝ . If F is a function
without critical points on the unit square, then Qf D F ı ˚ W ˝ ! R is a
function without critical points on ˝ . We compute the parameterization ˚ using
the following procedure.

First, we sample points on @˝ by evaluating all Bézier curves bounding ˝ at
a fixed number c of parameter values. Usually, we set c D 5. Then, a conforming
Delaunay triangulation is computed which has all boundary points as constraints.
The number of inserted points in the interior of˝ depends on the expected triangle
quality. We set the triangle quality parameter so that the size of inner triangles is
similar to the average sample point distance on the boundary. We use the CGAL [3]
library to compute the triangulation.

A parameter value .u; v/ 2 Œ0; 1�2 is computed for each vertex of the triangulation
as follows. First, the boundary curves are mapped to the border of the unit square
by associating the critical points (resp. junction points) with the corners of the
square: the minimum is mapped to the parameter .0; 0/, the maximum to .1; 1/
and the two saddle points to the remaining corners. In some cases @˝ does not
contain the minimum or the maximum of the 2-cell because the boundary 1-
cells merge, as illustrated in the right image of Fig. 3. In these cases, we map
to the corner .0; 0/ (resp. .1; 1/) the junction point that is closest to the missing
minimum (resp. maximum) along @˝ . Between each corner along @˝ , we assign
the parameter that was used to sample the boundary Bézier curves. Then Floater’s
Mean Value Coordinates [10] algorithm is applied to compute a parameterization
of the triangulation of ˝ in the unit-square, constrained by the parameter values on
@˝ . The parameterization process is illustrated in Fig. 4.

Fig. 4 (a) Boundary of a 2-cell, the red point is a maximum, the blue point is a minimum and the
two green points are saddles. (b) triangulation of the 2-cell. (c) parameterization of the 2-cell
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5.2 Monotonic Scalar Field on the Unit Square

In Sect. 4 we have computed smooth 1-cells and new scalar field values strictly
increasing along these 1-cells. In the previous section we have parameterized each
2-cell in the unit square. This parameterization maps the boundary 1-cells to the
edges of the unit square. We now explain how to compute a scalar field on the unit
square that interpolates the given increasing scalar field values on the edges of the
domain and that has no critical point in the interior of the domain.

We apply techniques from [1], where an algorithm is developed for interpolating
a grid of scalar values by a monotonic C1-continuous piecewise cubic triangular
Bézier surface. The interpolant of [1] is uniquely defined by interpolated scalar
values and by two partial derivatives at the vertices of a uniform grid. Sufficient
conditions on the interpolated values and the partial derivatives are derived to ensure
that the interpolant has no interior critical points. More precisely, the interpolated
values are supposed to be strictly increasing along the diagonals of the grid.
Moreover if no partial derivative is known, then [1] provides an algorithm that
computes partial derivative values leading to a monotonic interpolant.

The monotone interpolant [1] is applied as follows. If there is one or more
junction points along one of the boundary 1-cells, the other 1-cells are subdivided,1

so that the same number of cubic Bézier curves is used in the four 1-cells. We
initialize a uniform grid that has in each direction a number of edges equals to the
number of cubic Bézier curves. Along the boundaries of the grid, we prescribe the
end-points of the cubic Bézier curves computed in Sect. 4 and the first derivative
of these cubic Bézier curves at their end-points. To compute the scalar values to be
interpolated at the interior points of the grid, a Laplace equation with the boundary
values as constraints is solved. In almost all cases the resulting values are strictly
increasing along the grid diagonals. If not, we interpolate linearly the scalar values
along the diagonal. Then, the interior partial derivatives are computed by using the
results of [1]. In the end, we get a piecewise cubic triangular Bézier function that
has no interior critical points, and that interpolates the strictly increasing 1-cells
computed in Sect. 4. Such an interpolant is shown in Fig. 5a. Its reparameterization
in the 2-cell domain, as explained in Sect. 5.1, is shown in Fig. 5b.

There is a particular case, called pouch cells which occurs when the two saddle
points are merged. To handle this type of cells as well, we adapt our reconstruction
process by only changing the parameterization step.

1Subdivision of Bézier curves cuts them into several Bézier curves defining exactly the same curve
[8].
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Fig. 5 (a) Colormap of the piecewise cubic scalar field in the unit square. It has no critical points
as can be seen from the isolines. (b) the same scalar field after reparameterization in the 2-cell
domain

6 Results

We have implemented our algorithm and tested it on three types of functions. All the
experiments were performed on a machine with an Intel Xeon W3520 CPU which
provides 8 GB RAM. The MS complexes of the input function and its simplified
versions were computed with [26] and preprocessed as explained in Sect. 3.3. We
visualize the initial and reconstructed functions with color contour plots (linear color
scale) augmented with a regularly sampled set of isolines. The MS complexes are
visualized with the ascending (red curves) and descending 1-cells (green curves)
together with the critical points, i.e. saddles (green dots), maxima (red dots) and
minima (blue dots).

The first example is a hand-made scalar data set that has been created using
Shepard’s scattered data interpolation method [24]. Given a set of N randomly cho-
sen position and function values fxiI fig, the method computes a function F�.x/ DPN

kD0 fkkx � xik��=PN
jD0 kx � xjk�� such that F.xi/ D fi with zero-gradients at

the input points when � > 1. Our so-called Shepard data set has then been built
by taking randomly 50 data points and values and by evaluating F2 on a 250�250
regular grid. The resulting function has at least these 50 extrema. A simplification
of 25% is applied and the resulting MS complex reconstructed. Figure 6 shows the
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Fig. 6 Applying our algorithm on a synthetic example that has been generated using Shepard’s
scattered data interpolation. We tested our algorithm with two different values of k (number of
Bézier curves per 1-cell, grid size of Bézier patches). In both cases our method reconstructs a
piecewise smooth scalar field that exactly obeys the topological structure of the MS complex. (a)
Initial function, (b) initial MS complex, (c) simplified MS complex, (d) smoothed MS complex
with k D 4 Bézier curves per 1-cell, (e) reconstruction, (f) reconstruction, (g) smoothed MS
complex with k D 7 Bézier curves per 1-cell, (h) reconstruction (k D 4), (i) reconstruction (k D 7)

initial function (a) and its MS complex (b). A 25% simplification is applied (c). The
middle and bottom line of Fig. 6 show two different reconstructions of the same
simplified MS complex. They differ in the number k of curve segments composing
each piece of the 1-cells (see Sect. 4).
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Table 1 Measured performances and model statistics

Model MSC 1-cells 2-cells

time II #�

simplif. Delaunay time III Bézier

#faces #V level #CP #2-cells k time Ia +param. geometry patches

Shepard 124,002 62,500 25% 25 22 4 0,13 8,43 1,15 6672

25% 25 22 7 0,13 8,80 0,39 19,024

MtRainier 280,296 140,913 2% 69 53 7 0,31 9,64 2,16 43,300

Trigo 19,602 10,000 0% 31 24 7 0,03 2,11 0,11 6240
aTime I is the computation time for smoothing and reconstruction of 1-cells

The role of k is twofold. On one hand it governs the smoothness and flexibility
of the curves. The smaller k is, the smoother are the curves; but a higher value gives
more flexibility to the curves and thus better approximates the height values. On the
other hand, the number of Sibson patches is equal (or sometimes proportional) to
k2 per 2-cell. The middle row shows a reconstruction with k D 4, the bottom row
with k D 7. The first step of our algorithm is shown in (d) and (g), where the jagged
1-cells of the simplified MS complex are smoothed by parametric B-spline curves in
the plane, and monotone B-spline height functions that best approximate the initial
scalar field along the 1-cells. The final reconstructions are shown in (e,f) and (h,i).
Even though there is no much difference visible in the final reconstruction contour
plots, it can be observed in the 1-cells reconstructions that the curves in the plane
have less undulations for k D 4 in (d), but that the boundary 1-cells are less well
approximated compared to k D 7 in (g), see the green curves at the bottom left and
top right corners.

The model statistics and computation times are listed in Table 1. As expected, re-
parameterization is the most costfull step. Triangulating the domain of each 2-cell
followed by a parameterization takes 95% of the total computation time. It follows
further that the influence of k on the computation time is neglectable, even though
the number of Sibson patches is proportional to k2.

In the second example is a real terrain data set of the Mont Rainier.2 It consists
of 140148 vertices defining a 458� 306 grid. This data set is more complex in the
sense that the initial function is not smooth and has critical points that are not well
distributed over the domain. Figure 7 shows the initial function (a), its MS complex
(b) with 1931 critical points. After 2% simplification, the MS complex (c) has 69
critical points. Figure 7d, e, f show the reconstruction with the smoothed 1-cells and
final function.

2http://data.geocomm.com/catalog/.

http://data.geocomm.com/catalog/
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Fig. 7 The terrain data set of Mt Rainier (a) has 1931 critical points (b). The simplified MS
complex with 69 critical points is reconstructed. (a) Initial function, (b) initial MS complex, (c)
simplified MS complex, (d) smoothed MS complex, (e) reconstruction, (f) reconstruction

The last data set is sampled on a 100�100 grid from the mathematical function
a � sin.x=a/ � sin.y=a/ with a D 10.
The function has 31 critical points in the domain Œ�49; 50�2. Here we did not
compute any simplification (0%), but we applied our algorithm to reconstruct a
function from the initial MS complex, see Fig. 8.
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Fig. 8 Reconstruction of data sampled from sin.x/ 	 sin.y/. The original data set (a) has been
reconstructed (d, e) without topological simplification. (a) Initial function, (b) MS complex, (c)
smooth MS complex, (d) reconstruction, (e) reconstruction

7 Conclusion

This paper experienced for the first time the use of geometric modeling techniques
to MS complex reconstruction. The main contribution is the application of a
shape preserving spline surface. In particular we approximate the jagged 1-cells on
the complex with smooth B-splines. We introduce a C1 monotone Sibson spline
interpolant and combine it with a reparameterization to reconstruct the 2-cells
individually. The resulting surface obeys completely the given MS complex. The
fact to provide an explicit closed form representation of the reconstructed function
may be an advantage when follow-up evaluations of the function and any higher
order derivatives are required. The independence of the present method of the mesh
or grid on which the initial function is defined on may also be advantageous in case
where the grid size is very large.

Beside these achievements we noticed several limitations of our method. First,
the lack of existing C1 reparameterisation techniques makes our resulting surface
being only piecewise C0 continuous at the end. Recent techniques in isogeometric
analysis, where the problem of parameterizing a domain defined by boundary
curves is also a central concern, enable to parameterize an arbitrary domain up to
some restriction using C1 splines [9, 21, 31]. However, none of these techniques
can actually deal with arbitrary domains as they occur in MS complexes. A
C1 parameterization method for arbitrary domains would improve the general
smoothness of our results. We could then develop the Sibson interpolant further
to reach globally C1 reconstructions.
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Second, regarding computation times, the parameterization step seems to be
the bottleneck of the presented method. As the reconstruction of the 2-cells is
done independently for each 2-cell, the algorithm could be parallelized to improve
this part of the method. We believe however, that it would be more efficient to
overcome the parameterization step completely and to work directly on the domain.
The triangular spline approximation approach in [21] could be a further avenue to
explore in the future.

Acknowledgements This research was partially funded by the ERC advanced grant EXPRES-
SIVE (no. 291184).

References

1. Allemand-Giorgis, L., Bonneau, G.P., Hahmann, S., Vivodtzev, F.: Piecewise polynomial
monotonic interpolation of 2D gridded data. In: Bennett, J., Vivodtzev, F., Pascucci, V.
(eds.) Topological and Statistical Methods for Complex Data: Tackling Large-Scale, High-
Dimensional, and Multivariate Data Spaces, pp. 73–91. Springer, Berlin/Heidelberg (2015)

2. Bremer, P.T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A topological hierarchy for functions
on triangulated surfaces. IEEE Trans. Vis. Comput. Graph. 10(4), 385–396 (2004)

3. CGAL: Computational Geometry Algorithms Library (2017). http://cgal.org
4. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification.

In: FOCS, pp. 454–463. IEEE Computer Society (2000)
5. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for piecewise

linear 2-manifolds. In: Symposium on Computational Geometry, pp. 70–79. ACM (2001)
6. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification.

Discret. Comput. Geom. 28(4), 511–533 (2002)
7. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse-Smale complexes for piece-

wise linear 2-manifolds. Discret. & Computat. Geom. 30(1), 87–107 (2003)
8. Farin, G.E.: Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide.

Academic, San Diego (1997)
9. Farin, G.E., Hansford, D.: Discrete Coons patches. Comput. Aided Geom. Des. 16(7), 691–700

(1999)
10. Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)
11. Forman, R.: A user’s guide to discrete morse theory. In: Proceedings of the 2001 International

Conference on Formal Power Series and Algebraic Combinatorics. Advances in Applied
Mathematics, special volume, p. 48 (2001)

12. Günther, D., Jacobson, A., Reininghaus, J., Seidel, H., Sorkine-Hornung, O., Weinkauf, T.:
Fast and memory-efficient topological denoising of 2D and 3D scalar fields. IEEE Trans. Vis.
Comput. Graph. 20(12), 2585–2594 (2014)

13. Gyulassy, A.: Combinatorial construction of Morse-Smale complexes for data analysis and
visualization. Ph.D. Thesis, University of California, Davis (2008)

14. Gyulassy, A., Natarajan, V., Pascucci, V., Bremer, P., Hamann, B.: A topological approach to
simplification of three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 12(4),
474–484 (2006)

15. Gyulassy, A., Natarajan, V., Pascucci, V., Hamann, B.: Efficient computation of Morse-Smale
complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 13(6),
1440–1447 (2007)

16. Gyulassy, A., Bremer, P., Hamann, B., Pascucci, V.: A practical approach to Morse-Smale
complex computation: scalability and generality. IEEE Trans. Vis. Comput. Graph. 14(6),
1619–1626 (2008)

http://cgal.org


168 L. Allemand-Giorgis et al.

17. Gyulassy, A., Bremer, P., Pascucci, V.: Computing Morse-Smale complexes with accurate
geometry. IEEE Trans. Vis. Comput. Graph. 18(12), 2014–2022 (2012)

18. Gyulassy, A., Kotava, N., Kim, M., Hansen, C.D., Hagen, H., Pascucci, V.: Direct feature
visualization using Morse-Smale complexes. IEEE Trans. Vis. Comput. Graph. 18(9), 1549–
1562 (2012)

19. He, X., Shi, P.: Monotone B-spline smoothing. J. Am. Stat. Assoc. 93(442), 643–650 (1998)
20. Jacobson, A., Weinkauf, T., Sorkine, O.: Smooth shape-aware functions with controlled

extrema. Comput. Graph. Forum 31(5), 1577–1586 (2012)
21. Jaxon, N., Qian, X.: Isogeometric analysis on triangulations. Comput. Aided Des. 46, 45–57

(2014)
22. Morse, M.: The Calculus of Variations in the Large, vol. 18. American Mathematical Society,

Providence (1934)
23. Robins, V.: Computational topology at multiple resolutions: foundations and applications to

fractals and dynamics. Ph.D. Thesis, University of Colorado, Boulder (2000)
24. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In:

Proceedings of Symposium on Geometry Processing, pp. 517–524. ACM, New York (1968)
25. Shivashankar, N., Natarajan, V.: Parallel computation of 3D Morse-Smale complexes. Comput.

Graph. Forum 31(3), 965–974 (2012)
26. Shivashankar, N., Maadasamy, S., Natarajan, V.: Parallel computation of 2D Morse-Smale

complexes. IEEE Trans. Vis. Comput. Graph. 18(10), 1757–1770 (2012)
27. Smale, S.: On gradient dynamical systems. Ann. Math. 74(1), 199–206 (1961)
28. Tierny, J., Günther, D., Pascucci, V.: Optimal general simplification of scalar fields on

surfaces. In: Bennett, J., Vivodtzev, F., Pascucci, V. (eds.) Topological and Statistical Methods
for Complex Data: Tackling Large-Scale, High-Dimensional, and Multivariate Data Spaces,
pp. 57–71. Springer, Berlin/Heidelberg (2015)

29. Tierny, J., Pascucci, V.: Generalized topological simplification of scalar fields on surfaces.
IEEE Trans. Vis. Comput. Graph. 18(12), 2005–2013 (2012)

30. Weinkauf, T., Gingold, Y.I., Sorkine, O.: Topology-based smoothing of 2D scalar fields with
C1-continuity. Comput. Graph. Forum 29(3), 1221–1230 (2010)

31. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Parameterization of computational domain in
isogeometric analysis: methods and comparison. Comput. Methods Appl. Mech. Eng. 200(23),
2021–2031 (2011)



Part IV
Vector and Tensor Field Topology



Topological Extraction of Escape Maps
in Divergence-Free Vector Fields

Ronald Peikert, Gustavo Machado, and Filip Sadlo

Abstract An escape map is the partial mapping from seed points to exit points
of streamlines in a bounded domain. The escape map is piecewise continuous, and
a topological segmentation of the domain boundary yields the regions and curve
segments on which it is continuous. Escape maps have recently been introduced in
the context of studying the connectivity of coronal holes. Computation of escape
maps faces the problem of exponentially diverging streamlines, where standard
adaptive streamsurface methods can fail. As a tool to detect such places and to
guide escape map computation, a technique based on isoclines has recently been
proposed (Machado et al., IEEE Trans. Vis. Comput. Graph. 20(12):2604–2613,
2014). We show in this paper that, in the case of a divergence-free vector field,
boundary switch connectors can be used as a purely topological alternative, which
to the best of our knowledge is the first practical application of boundary switch
connectors. We provide a systematic approach to the topological segmentation of
3D domain boundaries for divergence-free vector fields. Finally, we explore an
alternative approach based on streamtubes and targeted at robustness in escape
map computation. Simulation results as well as a synthetic vector field are used
for validation.

1 Introduction

In a static vector field v.x/ on a domain D � R
n (n D 2; 3), the streamline ˚.x; t/

is a function of the seed point x and the integration time t. Its value is either a point
in D, or undefined if the streamline leaves the domain in time less than t. Keeping
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the integration time fixed leads to the flow map, ˚ W D! D, which is a partial map
because the streamline function can be undefined at .x; t/.

In analogy to the flow map, we can define the escape map �C W @D ! @D as a
partial map from the domain boundary to itself. The integration time is the smallest
positive t for which ˚.x; t/ is a point on @D. We find it advantageous not to require
that the streamline exits the domain at this point, even though the term “escape
map” would suggest it. The streamline can also just be tangent to the boundary and
stay within the domain. The map �� is analogous, but takes the negative time with
smallest absolute value.

The escape maps are piecewise continuous, and it is an interesting goal to find
the maximal subsets of @D on which they are continuous. We will refer to such
a partitioning, caused by the discontinuities of �C and ��, as the topological
segmentation of @D. Its segments can be points, curve segments, or (for n D 3)
two-dimensional regions. Having segmented @D, the escape map can now be also
understood as a mapping from the set of segments to itself, which is again a partial
map. The set of segments is usually finite, especially if v.x/ is given in discretized
form.

In a practical escape map problem [12], an additional partitioning of @D into
regions @D1; @D2; : : : may be specified (e.g., “map regions”, “escape regions”). In
that case, the segmentation has to be refined, such that all segments are either
fully contained in the interior, the exterior, or the boundary of any @Di. The
typical question “What is

�
�C.@D1/ [ ��.@D1/

� \ @D2?” can then be answered
by determining a subset of the set of segments.

The theoretic background of our problem is vector field topology (VFT) [6, 10,
15]. A systematic analysis of VFT in 3D was done by Asimov [2], discussing
in particular 1D and 2D manifolds of saddles and saddle-type periodic orbits.
Invariant tori, not mentioned by Asimov, can also be part of a 3D segmentation,
but will not be relevant for us, as they cannot intersect the domain boundary.
VFT as a tool for visualizing magnetic fields has been studied by Cai et al. [4],
focusing on saddle connectors and on chaotic fields. An extension of VFT for
representing dipoles in magnetic fields has recently been derived by Bachthaler
et al. [3]. We will assume that the magnetic field contains no dipoles within the
computational domain, therefore first-order VFT will be sufficient for our purpose.
VFT on bounded domains has been studied by de Leeuw and van Liere [5] and
Scheuermann et al. [17] in 2D and by Weinkauf et al. [20] in 3D, who analyzed
the manifolds of boundary switch curves. Given this background, our task roughly
consist of segmenting the bounded 3D vector field, intersecting it with the boundary,
and exhaustively applying the maps�˙. We show that such a segmentation contains
elements of a relatively small number of types, at least in our chosen setting of
divergence-free fields.
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2 Escape Maps in Divergence-Free Vector Fields

A first, coarse segmentation is given by the sign of the normal component of v.x/
on @D. At outflow regions of @D, where v.x/ has an outward normal component,
the map �C is undefined, while at inflow regions, �� is undefined. The remaining
parts of @D, where the flow is tangential, are particularly interesting. If we exclude
structurally unstable degeneracies, then the normal component on @D has non-
degenerate zero contours. By this, there are no critical points on @D, and the flow
is tangential only on boundary switch points (if n D 2) or boundary switch curves
(BSCs) (if n D 3). BSCs consist of outbound segments, where both �C and �� are
undefined, and inbound segments, where both of them are defined [20]. On the inout
points between such segments, the flow direction crosses the BSC. On these points
exactly one of the two escape maps is defined.

For the full segmentation, the topology of v.x/ in the interior has to be
considered, too. To make discussion simpler, we will only consider the three-
dimensional case and focus our interest on a combined segmentation for both �C
and ��. Since, at each point of @D, at least one of the escape maps is undefined,
except for points on a BSC, we will use the symbol � to denote the existing one.

In addition, we will restrict ourselves to divergence-free vector fields, which
simplifies a number of things. Firstly, on @D the escape map cannot be undefined in
regions, but only on curve segments and points. This is because open subregions of
inflow or outflow regions have a nonzero flux through @D, and in a divergence-
free field this flux is conserved. Secondly, there are neither sinks/sources nor
attracting/repelling periodic orbits, so we are left with saddles and saddle-type
periodic orbits, as far as topological features in the interior are concerned. Invariant
tori, which could normally also act as attractors and thereby contribute to the
topological segmentation, cannot do this in a divergence-free field (as can be seen
again with the flux argument). Thirdly, by excluding degeneracies, we can assure
that special streamlines such as boundary switch connectors or 1D manifolds of
saddles always reach @D and that special streamsurfaces such as those seeded at
BSCs reach @D with exceptions being just a finite number of isolated points.

2.1 Escape Maps from Streamline Sampling

A naive method would be to sample @D with streamlines and check where they
intersect the domain again. Since in the divergence-free vector field only a null set
of streamlines will stagnate in the interior, this method will give a good picture of
the escape map in terms of its appearance, though not its topology.

For demonstration on a practical example, we will use in the following the
coronal holes simulation data [16]. The data are given on a domain that is confined
by two concentric spheres. Hence, the boundary consists naturally of two parts
@D1 and @D2, and as they are spheres, no region boundaries are introduced by the
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(a) (b)

Fig. 1 Boundary segmentation for Coronal Holes data sets (spherical coordinate plots). Inflow
and outflow regions are shown in two different gray shades. Inbound BSCs are shown as black
curves. (a) Inner boundary (r D 1:0). (b) Outer boundary (r D 2:5)

Fig. 2 Escape map from regularly seeded streamlines. Red regions are “escape regions” (connect-
ing to the outer sphere)

partitioning. In the time step shown in Fig. 1, the BSCs on the outer boundary are
rather simple, consisting of just two connected components, and are inbound BSCs
up to a tiny segment (in the upper right corner). We will use the same time step,
named Carrington rotation 2128, throughout this paper.

Figure 2 shows the regions of Fig. 1b mapped onto the inner sphere by �˙.
Especially the thin structures (which are of particular interest in the underlying
research project) are poorly captured by this approach. They can be better resolved
by seeding more streamlines, but finally, the exact connectivity of the regions cannot
be derived from such images. Antiochos [1] conjectured that disconnected regions
cannot exist within a single inflow or outflow region.
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2.2 Escape Maps from Full Topological Segmentation

Given the definition of the escape map in the previous section, a straightforward
method is to first compute the full topological segmentation of D, and then find
all pairs of segments that map onto each other under either �Cor ��. This
requires the extraction of the full set of critical points and periodic orbits, which
may be too much of an effort, e.g., if either an “escape boundary” or a “map
boundary” [12] has been specified that is a relatively small subset @Di of @D.
Furthermore, streamsurface tracing can be numerically challenging, which can
make this approach unpractical.

2.3 Our Streamtube-Based Approach

We propose a method that is inspired by the sampling approach, but that is
topological. Instead of an unorganized set of streamlines, we will use the BSCs
as seed curves. BSCs separate inflow from outflow regions and therefore generate
streamtubes that enclose sets of streamlines growing in the same direction. We use
the term streamtube for streamsurfaces with closed seed curves, to be distinguished
from stream polygons [18] sometimes also called streamtubes. If the BSCs consist
of n simply-connected closed curves, there are 2n streamtubes to be traced, because
from each such curve we can integrate in backward or forward time. We call these
the stable and unstable manifolds (Ws and Wu), respectively, in analogy to the
(un)stable manifolds of saddle points. Tracing these streamtubes will not give the
final result (the escape map of a specified set of regions), but it is an essential first
step.

If applied to our main example, where there are just two closed curves on
the outer boundary, there are four streamtubes to be traced, and the result as
seen on the inner boundary is shown in Fig. 3. BSCs are zero-level isolines of
the normal velocity component, and are therefore closed lines. Assuming trilinear
interpolation, exact BSCs (consisting of hyperbola segments) are easily found using
the Asymptotic Decider method [13].

As seed points we used the points given by the isoline method plus additional
points on the exact isoline, as long as the distance between neighbors at either end
of the streamlines exceeds a given threshold. For the discontinuities (shown as the
fine lines in Fig. 3) this means that the seed interval is iteratively reduced down to
machine precision.1

1We used 80-bit long double arithmetic.
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Fig. 3 BSCs of the outer sphere (black lines in Fig. 1b) mapped under �˙ to the inner sphere.
Light red lines mark discontinuities of the map

The mapped BSCs in Fig. 3 reveal more detail than the regions in Fig. 2, and they
seem to consist of chains of closed curves. At many places the mapped BSCs (red
lines) seem to fully enclose a region and then jump (as a pair of coinciding light
red lines) to the next such region. At this stage, two problems still exist. Firstly, the
discontinuities could be overestimated, because machine precision is not sufficient
to resolve a gap. An illustrative example for this phenomenon is given in Sect. 3.
This would mean that the correct region extends beyond what the red lines suggest.
Secondly, some of the regions are not yet fully enclosed by curve segments.

There are two possible reasons for discontinuities in the escape map of a BSC.
The first one is that in the sequence of streamlines, a streamline can be tangential
to @D, which is a cause for an abrupt change of topological behavior, see Fig. 4. In
this case, the streamline must have hit another BSC, which also means that it is a
boundary switch connector [20].

The second reason for a discontinuity is a branching that happened because either
a saddle point or a saddle-type periodic orbit has been hit. In this case, the 2D
(un)stable manifold of the saddle, or one of the 2D manifolds of the periodic orbit,
must intersect the seed curve. Similar to the case of the saddle connector [19] and
the boundary switch connector, which are intersections of manifolds of two saddles
or two BSCs, respectively, we have here the intersecting manifolds of one BSC and
one saddle. As a working term, we will refer to this as a mixed connector. This can
be seen in Fig. 5. On the entire “trace” of the saddle (the green curve including points
P and Q), the escape map is undefined, because streamlines converge to the saddle
point. This means that the (black) BSC is punctured into open curve segments which
map to disjoint (red) curves. However, points infinitesimally close to the saddle trace
are mapped to points infinitesimally close to one end of the saddle’s 1D manifolds.
By including these limit points, we could also say that closed curves are mapped to
pairs of closed curves.
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Fig. 4 First kind of discontinuity of a mapped BSC. The (red solid) curve hits another BSC and
“jumps” over an inflow region. Color coding of point types 1=10: black boxes/diamonds, 2=20:
magenta boxes/diamonds, 3=30: cyan boxes/diamonds, 4: green boxes. (a) Sketch of two BSCs
whose manifolds intersect in a (magenta) boundary switch connector. (b) Real data, close-up on
inner sphere. Inbound BSCs (black), BSCs mapped from outer (red) and inner (blue) boundary.
Light colors are used to indicate discontinuities

Fig. 5 Second kind of discontinuity of a mapped BSC. The mapped BSC (red solid curve) consists
of two parts, each of it converging to an endpoint of a 1D manifold (green boxes). P and Q are
endpoints of mixed connectors, and the mapped P (cyan diamond) is an endpoint of the saddle
trace (green curve). (a) Sketch of a BSC whose manifold intersects that of a saddle S in a (cyan)
mixed connector. (b) Real data, close-up on inner sphere

We can recapitulate that the (un)stable manifolds of BSC can hit another BSC
or a saddle point, which causes discontinuities in their “traces” on @D. A similar
statement can be made for the other type of 2D manifolds occurring in topological
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Table 1 Possible segment types in topological boundary segmentation

Curve segment Possible endpoints

A Inbound BSC 1 Inout point

segment 2 Endpoint of boundary switch connector

3 Endpoint of mixed connector

B Mapped inbound 4 Endpoint of saddle’s 1D manifold

BSC segment 1’ Mapped inout point (under �˙ , only one is defined)

2’ Mapped type 2 point (under the �˙ not mapping to a
type 2 point)

3’ Mapped type 3 point (under �˙, only one is defined)

2 Endpoint of boundary switch connector

C Saddle trace 3 Endpoint of mixed connector

segmenta 3’ Mapped type 3 point

4 Endpoint of saddle’s 1D manifold
aIntersection of 2D (un)stable manifolds of saddles or saddle-type periodic orbits with @D

segmentations, namely (un)stable manifolds of saddles (or saddle-type periodic
orbits). Such a manifold can also hit a BSC and lead to a discontinuous curve on
@D. An example can be seen in Fig. 5a, where the (green) saddle trace “jumps”
from point P to point ��.P/, and it also appears in Fig. 5b (fine green line).
The remaining case is a stable 2D manifold of a saddle intersecting the unstable
2D manifold of another saddle. Their intersection curve, the saddle connector,
cannot intersect @D. However, another property of this configuration is that all 1D
manifolds of the two saddles act as limit curves of the 2D manifolds of the other
saddle. On @D this means that the saddle traces end at the endpoint of the 1D
manifolds.

To summarize, the regions of the topological segmentation of @D can be bounded
by the three types of curve segments and the seven types of points listed in Table 1.

2.4 Escape Map Computation

The steps of our method can now be briefly described. We exclude the case of
saddle-type periodic orbits, which we did not encounter in our examples.

1. Extract all saddle points and compute only their 1D manifolds. Endpoints are
part of the segmentation. They can either attach to a curve segment later or can
otherwise puncture the surrounding region.

2. Compute the BSCs on @D and identify their inbound and outbound segments.
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3. Trace streamtubes (represented as linked lists of streamlines) seeded at BSCs
(represented as sets of simply-connected closed curves). At outbound portions of
the seed curve, integration stops immediately, but these are needed to maintain
the closed front curve. Additional streamlines are inserted (i.e., seeded at
correctly interpolated points on the seed curve) as long as gaps remain at either
end of the streamtube.

4. Mark all places on BSCs where seeding had to be refined to the maximum as
endpoints of either a boundary switch connector or a mixed connector.

5. Locate the places where streamlines seeded at points from step 4 abruptly
diverge. At BSCs the location is easily found, because one of the two diverging
streamlines exits D nearby. Also saddle points should be easy to identify, given
the precomputed list of saddle points and reasonably precise arithmetic, because
streamlines attain a speed minimum near the saddle point. In our two examples,
no ambiguities arose in this step.

6. At locations found on BSCs, compute the boundary switch connector (for details
see below). Attach its two endpoints to the corresponding curve segments. Map
each endpoint with its second �˙ and attach also the resulting points.

7. At saddle points found in step 5, compute the mixed connector (for details see
below), and use its endpoint for puncturing the seed curve. Attach endpoints of
1D manifolds to the corresponding curve.

8. Check for all remaining saddles whether the ends of their 1D manifolds lie
inside one of the seed curves. In such a case, and unless the other end point
lies inside the same seed curve,2 the trace of the 2D manifold must be computed,
too. This trace is then a closed curve lying inside the streamtube. The inside of
the trace must be subtracted from the region that is mapped by the streamtube.
Two examples of such closed saddle traces can be seen in Fig. 6 (shown as green
curves).

With the exception of those required in step 8, it is not necessary to compute
2D manifolds of saddles, unless a full segmentation is desired (Figs. 6, 7). If, as
in our main example, only escape maps of inflow and outflow regions are needed,
complete extraction of the saddles’ 2D manifolds is not required.

Most of the above steps are numerically unproblematic, as these require at most
the solution of ODEs. Only steps 6 and 7 are more challenging. While endpoints of
the two types of connectors are known from steps 4 and 5, it is not trivial to actually
compute the connector. The connector is needed for verification of step 5, which is
basically just a proximity-based matching. The problem is ill-posed because these
streamlines intersect @D tangentially, and it is also difficult to exactly hit a saddle
point with a shooting approach. Our solution for the boundary switch connector is
to integrate from both endpoints and then verify that the two curves coincide in the

2This rule is taken from [12].
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Fig. 6 Full segmentation of the inner boundary .r D 1:0/. Color scheme as in Fig. 4

Fig. 7 Full segmentation of the outer boundary .r D 2:5/

interior of D. This worked well, even in the synthetic example in Sect. 3, where the
direct numerical approach failed completely.

A second problem in steps 6 and 7 is attaching the found endpoints to the
corresponding curves (mapped BSCs or saddle traces). Due to exponentially
diverging streamlines, gaps can exist, where no more samples can be created by
refining the seed curve. In Figs. 6 and 7 such gaps exist but are too small to be seen.
In our synthetic example, a large gap occurs (see Fig. 8) between the upper endpoints
of the (red) streamlines and the endpoint of the boundary switch connector (a point
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lying on the black BSC, labeled B0 in Fig. 9. A way to create additional samples
is to track the discontinuity by integrating streamlines backward. A pair of such
streamlines seeded at both sides of the predicted curve (at sufficient distance) keep
staying on different sides of the BSC’s or saddle’s 2D manifold, and so their two
endpoints will reflect the discontinuity. Iterative bisection of the distance between
the two seed points then results in a point of the curve.

3 Challenges in Streamsurface Tracing

In order to study a pattern observed in an application (coronal holes), we use the
following synthetic divergence-free vector field.

v D
0
@ u.x; y; z/
v.x; y; z/
w.x; y; z/

1
A D

0
@ z� .ay/2

c
x

1
A

with good parameter choices of a D 1
4

and c D 1
5
. For c ¤ 0, the field has neither

critical points nor periodic orbits. Domain boundaries are the two parallel planes
z D ˙1. If a finite domain is desired, boundaries x D ˙W and y D ˙L may be
used in addition, for some large enough values of W and L, such as W D 3 and
L D 6.

The idea of this synthetic field is to move a 2D saddle along a parabola such that
it enters the top boundary (at the point 0;� 1a ; 1) and leaves it again (at 0; 1a ; 1/. The
2D saddle lies in the xz-plane and has its separatrices in the diagonal. The constant
speed c along the y axis is small enough, such that the flow is determined mostly
by the saddle, especially at the domain boundaries. On the other hand, it is large
enough to guarantee a non-stiff ODE.3

While there exists neither a critical point nor a periodic orbit in D, the observed
pattern of streamlines (Fig. 8a) resembles the one of a saddle-type periodic orbit.
This so-called streamsurface bifurcation consists of two streamsurfaces intersecting
in a bifurcation line [7, 11, 15]. Streamlines of one streamsurface converge expo-
nentially to the bifurcation line, while those of the other diverge exponentially from
it. In our example, the bifurcation line can be analytically calculated4 resulting in
the streamline z D .ay/2 C 2.ac/2; x D 2a2cy. The two associated streamsurfaces
are obtained by seeding in the vicinity to this curve. Figure 9 shows that this pair of
streamsurfaces provides a good approximation of the escape map.

We will show now that the escape map can be expressed in terms of VFT, despite
the fact that VFT cannot express the bifurcation line, which is mainly responsible

3The constant speed in y direction can be made more generic by adding a tiny linear term. Then a
saddle point exists far outside of the domain.
4See “Appendix: Analytic Derivations for the Synthetic Example” for a derivation.
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Fig. 8 Synthetic vector field. Point labels are as in Fig. 9. (a) Overview of the vector field. (b)
Manifolds computed from BSC and from bifurcation line. The deviation is visible in the two
red surfaces, which almost coincide, except near points B and D. (c) Deviation of bifurcation
line (yellow) from boundary switch connector (magenta). Also shown: inbound BSC (black), 2D
saddles in xz-slices (gray). (d) Gap between red and gray (or blue and green) streamlines not
resolvable within machine precision

for the shape of the escape map. In our field containing neither critical points
nor periodic orbits, all topological structure must be due to the BSCs. The most
interesting BSC is of course the one that divides the top boundary into an inflow
region (x < 0) and an outflow region (x > 0). A closer inspection of this line reveals
that it consists of an outbound segment at jyj < 1

a and two inbound segments at
jyj > 1

a . Only inbound segments of BSCs can generate 2D manifolds inside D
and thus potentially solve our problem. At first sight it seems now that these BSC
segments generate manifolds which also reside mainly in the two outer regions
jyj > 1

a . The manifolds observed in the inner region jyj < 1
a would then have to

be generated by some other BSC. There are other BSCs on @D, but they can be
shown to have no effect on the streamline behavior near our region of interest. Also



Topological Extraction of Escape Maps in Divergence-Free Vector Fields 183

Fig. 9 The region colored in red is the return region (the region mapped to itself by the escape
map � . The BSC is AA0, but its center part CC0 is an outbound segment. �˙ maps the segments
AB and A0B0 to remote parts of @D, while the small remaining segments are mapped to the large
curves bounding the return region: �C.BC/ D _

B0C and ��.B0C0/ D _
BC0. The bifurcation line

has exit points at D and D0, hence the return region derived from it would erroneously end at these
points, i.e., not extend to B and B0

the boundary of the top face has to be considered, but it has no effect either. Coming
back to the BSC (x D 0; jyj > 1

a ; z D 1) it turns out that a small piece of it in fact
generates the rather large manifolds in question.

These exponentially diverging streamlines make streamsurface integration diffi-
cult,5 as is shown in Fig. 8d. Even though in our simple vector field, streamlines can
be calculated analytically, machine precision does not suffice to resolve values on
the BSC near the point y D �c�p.1=a/2 � c2, which for our choice of parameters
is � 1

5
.1 C p399/ 
 �4:195. Figure 8d shows the result for 64-bit floating point

arithmetic. The gap is reduced to about 20% its size if 80-bit arithmetic is used.
This, as a side remark, disproves the quite common practice of parametrizing a
streamsurface with the parameter of the seed curve. In order to compute the missing
streamlines in between, one would either need arbitrary precision arithmetic or a
different type of adaptivity than simply refining the sampling on the seed curve.
However, refinement schemes such as Hultquist’s method [8] are not an option
either. This is illustrated by Fig. 8c, where the boundary switch connector and the
bifurcation line (red and yellow streamlines) significantly differ at their two end
points, but approach each other to the small distance of 
 1:63 � 10�10 when they
intersect the z-axis. Any attempt to start integration at this point on the boundary
switch connector would erroneously lead to the endpoint of the bifurcation line.
Correct results are obtained by two-sided streamline integration as described in
Sect. 2.4.

5We are faced with a stiff problem in the sense that reducing the step size does not help. ODEs
in both examples are not stiff, and adaptive RK4 is sufficient. Comparison of double and long
double calculations shows that the former are accurate and just leave a wider unresolved gap.
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4 Conclusions

Our proposed method is limited to divergence-free vector fields. We assume that
streamline integration does neither stagnate at a sink or source nor converge to a
periodic orbit. If data are not “sufficiently divergence-free”, and in particular contain
such sink/source-type features, a divergence-cleaning step must be done beforehand.
Furthermore, in the presence of chaos or just strong spiraling at focus saddle points
or periodic orbits, the geometric complexity of the mapped regions can be too much
to be correctly captured by our technique.

We considered the case of saddle-type periodic orbits only in the theoretic
analysis, but not in the implemented method. In general, finding periodic orbits
is a difficult task. A bounding technique [21] and scalar indicators [9] have been
proposed for steering the search. We did not encounter periodic orbits in our
examples, but we can assume that our exhaustive seed curve refinement would
provide reasonably good detection also of periodic orbits. Thus the search aspect
is less important, and our method of choice would be to sample a Poincaré section
at the found location of diverging streamlines and get the periodic orbit as its fixed
point [14]. The details on how to get the correct segments of their traces and use
them for maintaining closed streamtubes would be a subject of future research.

Appendix: Analytic Derivations for the Synthetic Example

By solving ODEs analytically, streamlines can be shown to have the parametric
representation

y.t/ D y0 C ct

x.t/ D .x0 � 2a2cy0/ cosh.t/C .z0 � a2.2c2 C y20// sinh.t/C 2a2cy.t/
z.t/ D .x0 � 2a2cy0/ sinh.t/C .z0 � a2.2c2 C y20// cosh.t/C a2y.t/2 C 2a2c2:

An explicit form for the bifurcation line is obtained by choosing initial conditions
such that all exponential terms (i.e., the hyperbolic functions) vanish, giving the
locally slowest streamline in both forward and backward direction. It is the parabola

x.y/ D 2 a2cy; z.y/ D 2 a2c2 C a2y2;

which has its lowest point at

.0; 0; 2a2c2/:
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The boundary switch connector cannot be easily given in explicit form. It can be
represented as the streamline seeded at the point

.0; 0; 2 a2c2 � �a2c2 �	2 C 2 	 C 2� � 1� e�	 /;

where 	 is the solution near 20:97498436 of

�
	2

2
C 1 � 1

2a2c2

�
tanh .	/ D 	:

The two curves differ significantly at their two exit points (in the plane z D 1), but
approach each other to the small distance of 
 1:63 � 10�10 when they intersect
the z-axis. A precise version of this value has been computed using a precision
of 100 decimal digits, and seeding forward and backward (analytically computed!)
streamlines from this point reach the exit points with an error of less than 10�70.
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Compute and Visualize Discontinuity Among
Neighboring Integral Curves of 2D Vector Fields

Lei Zhang, Robert S. Laramee, David Thompson, Adrian Sescu,
and Guoning Chen

Abstract This paper studies the discontinuity in the behavior of neighboring
integral curves. The discontinuity is measured by a number of selected attributes
of integral curves. A variety of attribute fields are defined. The attribute value at
any given spatio-temporal point in these fields is assigned by the attribute of the
integral curve that passes through this point. This encodes the global behavior
of integral curves into a number of scalar fields in an Eulerian fashion, which
differs from the previous pathline attribute approach that focuses on the discrete
representation of individual pathlines. With this representation, the discontinuity
of the integral curve behavior now corresponds to locations in the derived fields
where the attribute values have sharp gradients. We show that based on the selected
attributes, the extracted discontinuity from the corresponding attribute fields may
relate to a number of flow features, such as LCS, vortices, and cusp-like seeding
curves. In addition, we study the correlations among different attributes via their
pairwise scatter plots. We also study the behavior of the combined attribute fields
to understand the spatial correlation that cannot be revealed by the scatter plots.
Finally, we integrate our attribute field computation and their discontinuity detection
into an interactive system to guide the exploration of various 2D flows.

1 Introduction

Vector field analysis is a ubiquitous approach that is employed to study a wide range
of dynamical systems for applications such as automobile and aircraft engineering,
climate study, and earthquake engineering, among others. There is a large body of
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work on generating reduced representations to aid the understanding of complex and
large-scale flow data sets, by classifying integral curves based on their individual
attributes. These methods typically first classify the integral curves into different
clusters based on a similarity measure [9], then compute representative curves for
each cluster [24]. Due to the discrete representation of these methods, there is no
guarantee that important flow features will be captured.

In this paper, we introduce a number of attribute fields that encode global
behaviors of the individual integral curves measured by certain geometric and
physical properties. The scalar attribute value at each spatio-temporal position is
derived from the attribute value of the integral curve that passes through it. With this
Eulerian representation, spatio-temporal positions correlated by the same integral
curves will have similar attribute values, while those neighboring points traversed
by integral curves that possess different behavior will have different attribute values.
Figure 1 provides a number of example attribute fields. The 1D plots (Fig. 1 right)
show the attribute values along the seeding line segments (i.e., the red segments
in Fig. 1 left). They exhibit some cliff-like sharp changes (highlighted by the blue
arrows), which correspond to certain discontinuities in the corresponding attribute
field. This discontinuity may be closely related to certain flow features, such as flow
separation, as shown in Fig. 1a.

We consider a number of scalar attributes as discussed by Pobitzer et al. [12]
and Shi et al. [18]. To study the correlation between the attribute fields generated
from these attributes, we compute their pairwise scatter plots (Fig. 5). Our results
indicate that some attribute fields are highly correlated. Therefore, the set of attribute
fields can be reduced. This echoes the results presented by Pobitzer et al. [12].

Fig. 1 The illustration of the relation between the attribute field and a number of well-known flow
features, including the flow separation (a) and vortices (b). The left column shows the vector fields
illustrated by streamlines, the middle column shows the rotation field, while right column shows the
plots of the rotation field of the streamlines intersecting with given seeding line segments (shown
in red). Note that the discontinuities (sharp gradients) in the rotation field indicate the flow features
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More importantly, we find that the magnitude of the gradient of the attribute field
that measures the rate of change between neighboring positions exhibits strong
correlation with the FTLE fields of the same flows. This coincides with the results
reported by Shi et al. [17]. Furthermore, we compute a super attribute field that
combines multiple attribute fields to study their spatial correlation. That is, we
see whether two attribute fields have similar configurations (e.g., local extrema,
ascending and descending trends) at the same spatial positions.

Finally, we integrate the attribute field computation and the discontinuity detec-
tion into an interactive system to support the exploration of various flow behavior
via the visualization of the discontinuity structure of a chosen attribute field or
the derived super attribute field. We have applied our framework to a number of
synthetic and real-world 2D vector fields to demonstrate its utility.

2 Related Work

There is a large body of literature on the analysis and visualization of flow data.
Interested readers are encouraged to refer to recent surveys [4, 11] that provide
systematic classifications of various analysis and visualization techniques.

Among many vector field analysis techniques, vector field topology is a powerful
tool that provides a flow segmentation strategy based on the origin and destination
of individual streamlines. Since its introduction to the visualization community [7],
vector field topology has received extensive attention for the identification of
different topological features [2, 19, 23]. Recently, Morse decomposition [3] and
combinatorial vector field topology [13] have also been introduced for a more
stable construction and representation of vector field topology. The theory and
computation of vector field topology does not apply to unsteady flows. Users
typically opt for the identification of Lagrangian Coherent structures (LCS), i.e.,
curves (2D) or surfaces (3D) in the domain across which the flux is negligible, as an
alternative. LCS can be extracted as the ridges of the Finite Time LyapunovExponent
(FTLE) of the flow [5, 16]. Similar to these conventional flow structure analysis
techniques, our method also aims to reveal certain flow structures that indicate
the boundaries of individual flow regions with different behaviors as described by
specific integral curve attributes.

Salzbrunn and Scheuermann introduced streamline predicates that classify
streamlines by interrogating them as they pass through certain user-specified fea-
tures, e.g., vortices [14]. Later, this approach was extended to classify pathlines [15].
At the same time, Shi et al. presented a data exploration system to study different
characteristics of pathlines based on their various attributes [18]. Pobitzer et al.
demonstrated how to choose a representative set of pathline attributes for flow
data exploration based on a statistics-based dimension reduction method [12].
McLoughlin et al. [10] introduced the streamline signature, based on a set of curve-
based attributes, to guide the effective seeding of 3D streamlines. In contrast to the
above described integral curve classification and selection techniques that treat the
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individual integral curves as discrete units, our method derives a number of scalar
fields throughout the entire flow domain to encode the global behaviors of integral
curves. This allows us to study the discontinuity in the behaviors of neighboring
integral curves via some well-established edge detection techniques, such as the
Canny edge detector [1] and a discrete gradient operator.

3 Vector Field Background and Trajectory Attributes

Consider a 2-manifold M � R
2. A vector field can be expressed as an ordinary

differential equation (ODE) Px D V.x; t/ or a map ' W R �M ! R
2. There are a

number of curve descriptors that depict different aspects of the translational property
in vector fields.

• A streamline is a solution to the initial value problem of the ODE system confined
to a given time t0: xt0 .t/ D p0 C

R t
t0
V.x.�/I t0/d�.

• Pathlines are the paths of the massless particles released in the flow domain at a
given time t0: x.t/ D p0 C

R t
t0
V.x.�/I �/d�.

• A streakline, Qs.t/, is the connection of the current positions of the particles, pti.t/,
that are released from position p0 at consecutive time ti.

There are a number of features in steady flows, V.x/, that are of interest. A point
x0 is a fixed point (or singularity) if V.x0/ D 0, and a trajectory is a periodic
orbit if it is closed. Hyperbolic fixed points, periodic orbits and their connectivity
define the vector field topology [2]. Vortices are another important flow feature
that is of interest to domain experts. There is no unified definition for vortices.
Informally, a vortex is a region where the flow particles are rotating around a
common axis (reduced to a point in 2D). In this work, we consider streamlines
with larger winding angles than a user-specified threshold, say 2� , to be within
vortices. In unsteady flows, topology is not well-defined. One typically looks for
certain coherent structures that correspond to structures in the flow that are present
for a relatively long time. The LCS, i.e., the ridges of the FTLE field, is one such
coherent structure [5]. Another feature is singularity path that depicts the trajectory
of a singularity in an unsteady flow [21].

3.1 Attribute Fields

Consider an integral curve, C , starting from a given spatio-temporal point .x; t0/,
the attribute field value at this point is computed as:

F .x; t0/ D F .C .x/jt0CT
t0

/ (1)
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where C .x/jt0CT
t0 denotes an integral curve, i.e., either a streamline, a pathline, or a

streakline starting at time t0 with an integral time window Œt0; t0CT�. F .�/ indicates
certain attribute of interest of C . Note that, for the rest of the paper, we consider only
forward integration of the integral curves. Backward integration can be considered
similarly. In practice, an integral curve C is represented by N integration points Pi

and .N � 1/ line segments .Pi;PiC1/. We then define a number of attribute fields
based on Eq. (1) using the integral curves attributes discussed in the work [12, 18].

The attribute fields we investigated in this paper with their abbreviation are
rotation field ˚ , length field Ł, average particle velocity field avgV , non straight
velocity field nsV , relative start end distance field seDist, average direction field
avgDir, acceleration acce, curl, Hunt’s Q and �2 [12]. Figure 3 illustrates a
number of attribute fields derived from the Double Gyre flow [16]. Specifically,
the rotation field ˚ describes the accumulated winding angle changes along the

integral curves, which is defined as˚C DPN�1
iD1 d�i, where d�i D .†.����!PiPiC1;

�!
X /�

†.����!Pi�1Pi;
�!
X // 2 .��; �� represents the angle difference between two consecutive

line segments.
�!
X is the X axis of the XY Cartesian space. d�i > 0 if the vector

field at Pi is rotating counter-clockwise with respect to the vector field at Pi�1,
while d�i < 0 if the rotation is clockwise. Figure 1 shows a number of example
˚ fields. The computation of the other attribute fields can be performed using a
similar accumulation process based on their definitions [10, 16].

3.1.1 2D and 3D Attribute Fields

If the attribute field is computed based on streamlines, it is a 2D field. Figure 4b
shows the rotation field of a synthetic steady flow based on streamlines. To
visualize the attribute fields, we utilize a blue-white-red color coding scheme with
blue corresponding to negative values and red for positive values. Pathlines or
streaklines-based attribute fields are 3D fields. That is, given any spatio-temporal
position .x; t0/, its attribute value is determined by the pathline (or streakline)
starting from this position and following the forward flow direction (Eq. (1)).
Figure 2 (upper) shows a volume rendering of the pathline-based ˚ field of the
Double Gyre flow [16] within the time range Œ0; 10�. For the rest of the paper, we
focus on the behaviors of the attribute fields at specific time steps, i.e., the cross
sections of the 3D field (Fig. 2 (bottom)). Figure 3 shows a number of attribute
fields of the Double Gyre flow. Note that the average direction field avgDir (Fig. 3b)
measures the angle between the vector pointing from the starting point to the end
point of an integral curve and the X axis. The range of the avgDir field is Œ0; 2�/.
The pathline tracing starts at t D 0 with an integral time window size T D 10.
Figure 3e shows a ˚ field computed based on the streaklines. Figure 3f shows the
˚ field obtained using the backwardly traced pathlines.
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Fig. 2 The volume rendering (upper) of the pathline-based ˚ field of the Double Gyre flow. The
bottom shows one slice at t D 5

Fig. 3 Illustration of a number of attribute fields derived from the Double Gyre flow and their
detected edges. (a)–(d) show the attribute fields ˚ , Ł, avgDir and acceration, avgDir computed
from pathlines, respectively. (e) is the rotation field ˚ from streaklines. (f) is the rotation field ˚
from pathlines using backward integration. The parameters of Canny edge detector are 
 D 2:0,
˛ D 0:3, ˇ D 0:8
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3.2 Discontinuity in Attribute Fields

3.2.1 Discontinuity Extraction

As shown in Fig. 1, the attribute fields may contain discontinuities that correspond
to the sharp gradients in the integral curve behavior. These discontinuities in the
attribute fields are similar to the edges in a digital image. The gradient of the
attribute field may be able to locate these discontinuities (Fig. 4f), but may require
non-intuitive thresholds to reveal the salient ridges. Therefore, we opt for the more
robust Canny edge detector [1] to locate this discontinuity in the attribute fields,
which can be converted into 2D images. The Canny edge detector has three input
parameters: 
—the standard deviation of the Gaussian smoothing filter, ˛—the low
threshold and ˇ—the high threshold. The lower row of images in Fig. 3 shows the
detected edges from the corresponding attribute fields of the Double Gyre flow. Note
that for the average direction field avgDir, the field values of the two neighboring
pathlines may be (or be close to) 0 and 2� respectively, as highlighted with the
arrows in Fig. 3b. But it does not indicate the discontinuity because they are in the
same (or be close to) direction. Therefore, this case is filtered out in the Canny edge
detector.

3.2.2 Relation to Flow Features

Steady Flow Features Many discontinuities (i.e., edges identified by the edge
detector) of these attribute fields share characteristics with certain well-known flow
features. For example, Fig. 4 compares the discontinuity structure of the rotation
field ˚ of a synthetic steady flow to its topology (Fig. 4a), which is illustrated
via a set of integral curves that end or start from saddles, i.e., separatrices—a
special type of streamline. The ˚ field is not continuous across the separatrices
if the accumulation is performed using an infinite time window. This is because
an arbitrarily small perturbation in the direction other than the flow direction will
result in another integral curve with a length much different from the separatrix,

Fig. 4 Discontinuity detection on a ˚ field derived from a synthetic steady flow using the Canny
edge detector with different combinations of parameters. (a) The differential topology with LIC as
the background; (b) ˚ field; ((c)–(e)) Detected edges with different parameters of the Canny edge
detector: (c)—
 D 3:0 ˛ D 0:3 ˇ D 0:8, (d)—
 D 3:0 ˛ D 0:6 ˇ D 0:8, (e)—
 D 3:0 ˛ D
0:3 ˇ D 0:86; (f) the gradient of ˚ field
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making the ˚ field accumulated using Eq. (1) discontinuous at separatrices. With
different parameters, different levels of detail of the discontinuity in the ˚ field can
be revealed (Fig. 4c–e). Figure 4f shows the gradient of the ˚ field, which does not
provide a clean discontinuity structure.

LCS Lagrangian Coherent Structures (LCS) are defined as the ridges of the
corresponding FTLE field. It indicates the regions of the domain with relatively
large separation. Compared to LCS, it appears that the edges detected from all the
attribute fields of the Double Gyre flow encode at least part of this information.
This is also true for the other data sets that we have investigated (i.e., Figs. 10 and
11). The discontinuity may be observed at the ridges of transportation, i.e., LCS
due to a similar reason to the separatrices in steady flow. A pathline seeded on the
ridges may have behaviors different from its neighboring pathlines caused by the
separation, leading to the discontinuity in the attribute fields.

Cusp Seeding Curves The cusp seeding curve has been discussed in [22] to reduce
self-intersecting pathlines in the pathline placement. These cusp seeding curves of
the Double Gyre flow can be identified from the discontinuities in the rotation field
˚ as shown in Fig. 3a. This cusp-like behavior in pathlines is caused by the abrupt
change in the pathline direction, i.e., almost angle of � difference between the
previous and current directions, which is in turn caused by the intersection of the
pathlines with the paths of singularities.

Singularity Path Singularity paths reveal the trajectories of fixed points in an
unsteady flow. Among all the attribute fields studied, only the ˚ field computed
based on streaklines encodes such information. See Fig. 3e for an example where the
paths of the two vortices of the Double Gyre flow are revealed by the edges detected
from the streakline-based ˚ field. This is because singularity paths will induce
the cusp-like behavior in pathlines (Fig. 12), also discussed in [22]. This cusp-like
behavior corresponds to a large local angle change, which in turn leads to a large
change, i.e., discontinuity in the ˚ field. In addition, the temporal behavior, i.e., the
translation of the singularities can only be captured by measuring the attributes of
particles released at the same position at consecutive times, i.e., streaklines.

4 Correlation Among Different Attribute Fields

Considering the large number of attributes that can be used to describe various flow
behaviors, it will be interesting to see how their corresponding attribute fields are
correlated. In this section, we study their correlation using two approaches, i.e., a
correlation study via their pairwise scatter plots and a spatial correlation study via
combinations of attribute fields.
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4.1 Correlation Study via Pairwise Scatter Plots

There are different attributes that can be used to characterize the behaviors of
integral curves, as discussed in [12]. To understand how well they correlate with
one another, we construct a scatter plot matrix based on the Double Gyre flow, as
shown in Fig.5. Each of the entries of this matrix shows a scatter plot with two
attributes as its X and Y axes. Based on this matrix, we find the following useful
relations.

Length Field Ł vs. Average Particle Velocity Field avgV These two attributes
show a strong linear relationship (entry highlighted by the purple box in the matrix).
This is because the arc-length of each integral curve is equal to the sum of the
velocity magnitude, multiplied by the integration step-size, measured along this
curve.

˚ vs. Curl vs. �2 vs. Q These four attributes are also closely related, as they
all measure the accumulation of the amount of local flow rotation along integral
curves. While Q value is always negative, the other attributes can be both positive
and negative. The patterns shown in the plots w:r:t Q (i.e., row Q) are generally
very clear with little noise, which indicates Q could be a good attribute to be
considered for this data set. All the plots w:r:t ˚ (row˚) and curl (row curl) exhibit
certain symmetric patterns. Between these two, the plots associated with ˚ tend
to reveal cleaner patterns with less noise. This indicates that ˚ field may be an

Fig. 5 The scatter plot matrix of different attribute fields of the Double Gyre flow. Note that the
scatter plots associated with FTLE shows the correlation among the magnitude of the gradient of
the individual attribute fields with the FTLE field
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important attribute field that encodes different flow information for subsequent data
exploration.

FTLE vs. the Gradient of the Attribute Field The strong correlation between
the gradient of the attribute fields with the FTLE field is illustrated in scatter plots
(row FTLE), as both the FTLE field and the gradient operator measure the amount
of change between neighboring positions. In fact it supports the discussion of the
relation between the discontinuity in the attribute fields and the FTLE structure
in Sect. 3.2.2 and the results of [17], i.e., the transportation structure of certain
materials (e.g., some flow attributes) matches closely with the FTLE structure.

Acceleration Field aace vs. Other Attribute Fields The scatter plots of the
acceleration field, which is computed by integrating the acceleration magnitude
along a set pathlines, and the remaining attribute fields (raw acce) generally display
clear patterns. In particular, when the value of the acce field is small, the other
attributes tend to be small. When the value of the acce field is increasing and
becomes sufficiently large, the other attribute values tend to large values as well.
This is consistent with the knowledge that the acceleration, a result of the external
force based on Newton Second Law, is the source of many different flow behaviors,
such as flow separation and rotation. However, this relation is not true between acce
and �2 or Q. That is, the smaller the acce value, the larger the absolute values of �2
and Q. This in fact matches the result of the work [8] that utilizes the local minima
of the acceleration field to detect vortex cores.

Note that all the above discussions are based on the experiments with the Double
Gyre flow. In the future, we plan to further validate them with other flow datasets.

4.2 Spatial Correlation via Combined Attribute Fields

To study the spatial correlation of different attribute fields, i.e., whether they
have local maxima or minima at similar locations, or whether they have similar
discontinuities at the same location, we need to perform certain spatial correlation
analysis. This information cannot be easily obtained from the above scatter plots.
Therefore, in the following we combine certain attribute fields of interest to define a
super attribute field. We hope to obtain information about the spatial correlation of
the selected attribute fields by studying the behavior of their combined field. Figure 6
provides some simple 1D examples to illustrate the logic behind the strategy of
combined attribute field. If the selected attribute fields have similar behaviors (Fig. 6
upper left), the combined attribute field amplifies the similar behaviors (Fig. 6 upper
right). While if selected attribute fields have different behaviors (Fig. 6 bottom left),
the combined attribute weakens this difference. Here we combine only two attribute
fields at a time, as combining more than two fields will complicate the study of their
pairwise correlation.

Another reason we opt for the study of the combined attribute fields is to
understand the behavior of the discontinuities in different attribute fields. To achieve
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Fig. 6 The combined attribute field may strengthen the difference if the selected attributes have
similar spatial behavior (upper) and vice versa (bottom)

that, one can simply overlap the detected edges from different attribute fields,
as shown in Fig. 7a. However, the detected edges from the individual fields are
independent of each other. With this simple overlapping, it is difficult to know
whether their corresponding attribute fields have similar behavior or not (i.e., both
are descending, or one is descending while the other is ascending) at the locations
that exhibit sharp change. This information may be revealed in the combined
attribute field.

Assume Fi; i D 1; 2; : : : ; n represent the attribute fields introduced in Sect. 3.1.
We study three combination strategies to compute a super attribute field Fcom.

Linear combination is defined as Fcom D Fi C Fj, where Fi and Fj are
selected attribute fields from the attribute fields pool. However, if one of the selected
attribute fields has a much larger value range, the super field will be dominated by
this attribute field. Figure 7b is the result of combined super field from the rotation
field ˚ (Œ�11:73; 11:73�) and the length field Ł (Œ0:; 2:8�), which shows mostly the
features of the rotation field.

Weighted combination is employed to address the issue of the simple combi-
nation. Here, Fcom D ˛cFi C ˇcFj, where ˛ C ˇ D 1 and satisfies 0 � ˛ �
1; 0 � ˇ � 1. cFi and cFj are the normalized values of the attribute field Fi and
Fj, respectively. Figure 8a shows the super fields computed using the weighted
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Fig. 7 (a) Overlap of edges in ˚ (yellow) and Ł (purple) fields; (b) simple combination of ˚ and
Ł fields

Fig. 8 Illustration of weighted combination of ˚ and avgDir field. (a) Combined attribute field;
(b) edges detected from the super field. The dark gray curves on top are stable edges that do not
change with weights. The weights of ˚ and avgDir from let to right are ˛1 D 0:1, ˛2 D 0:9;
˛1 D 0:5, ˛2 D 0:5; ˛1 D 0:9, ˛2 D 0:1, respectively. The parameters of Canny edge detector are

 D 1:0, ˛ D 0:3, ˇ D 0:8

combination of the˚ and avgDir fields of the Double Gyre flow, with the weight for
the˚ field being 0:1; 0:5, and 0:9, respectively. With this weighted combination, we
can further identify the discontinuity structure in the super field that is non-sensitive
to the choices of weights. That is, no matter what weight combination is selected,
the derived super field always contains this discontinuity, which is composed of
stable edges. Figure 8b shows these stable edges as gray curves super-imposed onto
the edges extracted from the corresponding super field. In this example, nine super
fields, in which the weight of the ˚ field is ˛1 D 0:1; 0:2; : : : ; 0:9, respectively,
were generated to identify the stable edge.
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Different from stable edges, the common edges indicate those edges that are
exhibited by most of the attribute fields, as shown in Fig. 10c. Complementary to
the common edges, the unique edges only arise in certain attribute fields. The arrow
in Fig. 8b highlights the unique edges only possessed by the avgDir field and the
rotation field respectively.

5 System Overview and Implementation

Figure 9 shows the framework of our attribute fields based flow structure explo-
ration. This framework consists of two main processes.

Precomputation Given the input vector field, we first compute integral curves
from the sampled positions forwardly and backwardly with a user-specified time
window T. The integral curves are stored as a series of spatio-temporal points. We
then compute the local attributes at each spatio-temporal point along the integral
curves. The attributes of these integral curves are accumulated from the local
attributes and assigned to their corresponding starting points. This step can be pre-
processed.

Interaction With the above pre-computed results, the user can choose to inspect
the flow structure revealed by the discontinuities of a single attribute field of interest.
Changing the parameters of the Canny edge detector reveals different levels of
details of the structure (Fig. 4b–d). The user can also choose from the list of the
available attribute fields and the desired combination scheme to compute a super
attribute field to study the correlation and combination of different attribute fields.
Again, the Canny edge detector can be applied to reveal the discontinuity structure
in the obtained super field (Figs. 7 and 8).

Fig. 9 Pipeline of attribute fields computation and the discontinuity detection. Attribute fields are
pre-computed, while the discontinuity is detected in real time during the interactions
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6 Results and Applications

We have applied our attribute field based analysis and exploration framework to a
number of synthetic and real-world 2D vector fields. The cost of pre-computation of
attribute fields depends on the resolution of the spatio-temporal domain and the time
window of integral curve integration. Pathline-based attribute field computation
requires 10–32 s for the data sets considered in this paper, while streakline-based
attribute field computation requires about 4–15 min. All processing times are
measured on a PC with an Intel Core i7-3537U CPU and 8 GB RAM.

The first example is the Double Gyre flow with a spatial resolution of 256� 128,
which has been shown earlier. For the second example, we consider a dynamical
system defined by the forced-damped Duffing oscillator [6] with the constant spatial
divergence operator �0.25, which is a non-area-preserving. We choose a spatial
resolution of 800 � 600 and a time window T D 5. The attribute fields of the
system and the corresponding detected edges are shown in Fig. 10a. The detected
edges from each attribute field encode the LCS information. Figure 10c upper shows
a super field generated from an equally weighted combination of all six attribute
fields. Figure 10c bottom illustrates the detected common edges.

Another example is a simulation of a 2D unsteady flow behind a square cylinder
with a Reynolds number of 160 [20]. We use a spatial resolution of 400 � 50 to
compute the attribute fields. The time window for this data set is 3. Figure 11 shows
the attribute fields and the corresponding detected edges. While the edges detected
in all of the attribute fields encode at least part of the LCS of the flow, the non
straight velocity field nsV (Fig. 11b) also reveals the swirling behavior of the flow
clearly.

Our approach has the potential to reveal the cusps in the spatial projection of
pathlines and streaklines [22]. Figure 12a shows the spatial projection of a set
of pathlines seeded on the cusp seeding curve detected from the ˚ field, while
Fig. 12b are streaklines seeded on the singularity path extracted from a streakline-
based ˚ field. Both the pathlines and streaklines show cusp-like characteristics.
Interestingly, the locations of cusp-like characteristic on the sample pathlines reveal
the singularity path (the green dashed line in Fig. 12a), while those on streaklines
indicate the cusp seeding curve (the green dashed curve in Fig. 12b). This attribute

Fig. 10 Results of the forced-damped Duffing system. (a)–(b) ˚ and avgDir fields and their
detected edges.The parameters of Canny edge detector are 
 D 1:8, ˛ D 0:3, ˇ D 0:9. (c) A
super field using the equally weighted combination of ˚ , avgDir, L, nsV and seDist
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Fig. 11 Attribute fields of the flow behind cylinder and detected edges. (a) avgV field; (b) nsV
field; (c) Ł field; (d) FTLE and LCS. The parameters of Canny edge detector are 
 D 1:0, ˛ D 0:3,
ˇ D 0:8

Fig. 12 Pathline and streakline seeding. (a) Pathlines seeded on the cusp seeding curve. (b)
Streaklines seeded on the singularity path

field based discontinuity extraction can be valuable for a variety of applications,
such as pathline and streakline placement [22], flow domain segmentation and flow
pattern search, which we will explore in future work.

7 Conclusion

In this paper, we introduce a number of derived fields to encode various attributes
of the integral curves. In this way, the discontinuity of the behavior between
neighboring integral curves can be studied. We show that this discontinuity may
be closely related to a number of flow features. We also study different strategies
to combine individual attribute fields to form a super attribute field to study the
spatial correlation of the attribute fields. We integrate the attribute field computation
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and the discontinuity extraction into an interactive visualization system to aid the
exploration of flow structure. In the future, we plan to extend this work to handle
higher-dimensional vector fields. We also plan to have an in-depth investigation on
the rigorous description between the relation of the discontinuity in these attribute
fields and those well-defined flow features.

Acknowledgements We thank Jackie Chen, Mathew Maltude, Tino Weinkauf for the data. This
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Decomposition of Vector Fields Beyond
Problems of First Order and Their Applications

Wieland Reich, Mario Hlawitschka, and Gerik Scheuermann

Abstract In our paper, we discuss generalized vector field decompositions that
mainly have been derived from the classical Helmholtz-Hodge-decomposition. The
ability to decompose a field into a kernel and a rest respectively to an arbitrary
vector-valued linear differential operator allows us to construct decompositions of
either toroidal flows or flows obeying differential equations of second (or even
fractional) order and a rest. The algorithm is based on the fast Fourier transform and
guarantees a rapid processing and an implementation that can be directly derived
from the spectral simplifications concerning differentiation used in mathematics.

1 Introduction

Vector field decompositions build an important branch in the topology-based
and non-topology-based methods of visualization of flows in many sciences, but
particular in physics and hydrodynamics. A widely used form is the Helmholtz-
Hodge-decomposition, which can be interpreted as the best possible approximation
by a field of divergence-free and curl-free nature. Even though there are plenty of
existing algorithms with many different characteristics, most of them are rigid in the
sense that they only allow an analysis respectively to the operator r.

In our paper, we extend the technique to a broader class of decompositions,
which are able to deal with a larger amount of applications, where the classical
Helmholtz-Hodge decomposition would give only very limited insight into the
structural patterns of the underlying dynamical system. For that purpose, we make
use of the Fourier transform of vector fields, which has the nice property to simplify
the Helmholtz-Hodge-decomposition to an orthogonal decomposition. Inside the
spectral domain we are able to construct a decomposition axis that is equivalent to
a more (or less) restrictive operator than r is in the spatial domain.
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In Sect. 3, we are discussing the basics of the spectral variant of the Helmholtz-
Hodge decomposition and our ideas for generalizations. The results are presented
in Sect. 4 and the paper finishes with a conclusion and a list of open problems in
Sect. 5.

2 Related Work

Both the works of Tong et al. [21] and of Polthier and Preuss [16] propose a
Helmholtz-Hodge-decomposition on vector fields, that relies on the computation
of the curl-free and divergence-free parts by a variational approach. Petronetto et al.
present a meshless algorithm in [15].

Stam [20] uses a method which is based on the discrete Fourier transform to
filter the mass-conserving part of particle movement in his fluid solver that has
its theoretical foundation in the Semi-Langrangian scheme. Of all the publications
mentioned in this section, it has to be seen as that of most relevance and most
influence to our work. A survey on Helmholtz-Hodge-decompositions was recently
published by Bhatia et al. [1].

In the history of flow visualization, numerous other vector field decompositions
had proven their worth. Luchtenburg et al. [13] uses a Proper Orthogonal decom-
position (POD), while Wiebel et al. [24] refine the classical Galilei-transform to a
localized flow. Knight and Mallinson [11] compute dual stream functions, which
is a decomposition of an incompressible flow into a cross-product of two gradient
fields.

All of the named methods were designed to perform on vector fields. However,
there also exist important techniques for second order tensors, such as the asymmet-
ric tensor decomposition by Zhang et al. [25] and the polar decomposition, which is,
when applied to the Jacobian of a flow map, the principle of detecting Lagrangian
coherent structures in the work of Haller [7].

Like in the work from Reddy and Chatterji [17], the Fourier transform used by
us is the basis of a huge number of filtering and registration processes in image
processing. The generalization of scalar-valued data to Clifford-numbers by Ebling
and Scheuermann [3] showed that linear and shift-invariant filters can be directly
carried forward to vector fields using a Clifford-convolution.

A general overview on flow visualization is given in [22]. More details for using
the Fourier transform to simplify partial differential equations can be found in [4].
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3 Mathematical Foundations

3.1 The Helmholtz-Hodge-Decomposition

The Fundamental Theorem of Vector Calculus states that any sufficiently smooth1

vector field v on an unbounded domain that decays in its norm faster than 1=r as
r!1 can be written as the superposition of a curl-free and divergence-free vector
field

v D �r˚ C r � A: (1)

In the past decades, many attempts were made to design fitting algorithms to
perform the Helmholtz-Hodge-Decomposition on discrete vector fields on bounded
domains. A survey on these methods can be found in [1]. Widely used techniques
are iterative solvers for the potentials ˚ and A, which are demanding the Neumann
boundary condition [16], stating that the curl-free part has to be perpendicular to
the boundary everywhere, while the divergence-free part is parallel. The residual
of those operations, which can be described as v � r � A C r˚ , is considered
to be the harmonic rest, which is curl-free and divergence-free at the same time.
Recent publications [2] present novel boundary conditions which allow an improved
and more natural approach to the interaction of all decomposition parts with the
boundary.

Nevertheless and similarly to Stam [20], our paper can be regarded as a
contribution to variations of Helmholtz-Hodge-Decompositions that are executed
not on necessarily differentiable, but square-integrable functions. The two main
reasons are:

• Square-integrable functions can be Fourier-transformed, and therefore provide a
very easy way to perform a differentiation and decomposition in the spectral
domain, allowing to replace r by any other vector-valued linear position-
independent differential operator, even by operators that cannot be expressed in
a closed form in the spatial domain.

• The algorithm in this paper benefits highly from the extreme speed of the most
up-to-date libraries [5, 6] for performing a fast Fourier transform (FFT). The
algorithm often needs to be tested using many different parameter configurations,
which makes speed a prime importance.

The disadvantage of the FFT is that it allows only a few types of possible boundary
conditions, which are either periodic (the dataset repeats itself infinitesimally times
in each spatial dimension), or, which can be seen as a special case, rapidly decaying.
However, there are possible workarounds like continuating the data beyond the
boundary to a rapidly decaying function, minimizing artifacts that would occur due
to the rapid change of the field and its derivatives.

1In general, a two times continuously differentiable vector field is sufficient, as these are the partial
derivatives of the highest order occurring in the proof.
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Further, spectral differentiation can be sensitive to high frequency noise. but we
rarely did experience that as being a problem in our experiments, since the spectrum
of vector fields associated with fluid flows is generally composed of low frequencies,
with the exception of highly turbulent regions.

3.2 The Spectral Helmholtz-Hodge-Decomposition

A useful tool in mathematics and physics for solving linear partial differential
equations with constant coefficients is the Fourier transform, as it provides a
simplification to an algebraic equation [4]. Further, it reduces a convolution to a
pure multiplication and it therefore plays a substantial role in signal- and image
processing [17].

If we consider a scalar square-integrable function f .x/ and its Fourier transform

Of .k/ D
Z 1
�1

f .x/e�2� ikxdx; (2)

then its spatial derivative can be computed in the spectral domain by

2�ik � Of .k/: (3)

Similarly, if we have a square-integrable vector field v.x1; x2; x3/ and its Fourier
transform Ov.k1; k2; k3/, then its Jacobian matrix in the spectral domain is of the form

2�i �
0
@ k1 � Ov1 k2 � Ov1 k3 � Ov1
k1 � Ov2 k2 � Ov2 k3 � Ov2
k1 � Ov3 k2 � Ov3 k3 � Ov3

1
A : (4)

Moreover, the transforms of divergence and curl of v can be expressed as

< 2�i
�!
k ; Ov.�!k / > and 2�i

�!
k � Ov.�!k / (5)

with
�!
k being .k1; k2; k3/T .

Comparable to [3], we consider the Fourier transform of a three-dimensional vec-
tor field as three independent real transforms of a scalar-valued three-dimensional
function. These partial derivatives in the spectral domain do always exist, even if
the original vector field is not differentiable everywhere.

If we decompose Ov.k1; k2; k3/ into a field, which is parallel to the wave-vector
�!
k

by calculating

Ovk D< Ov;
�!
k

jj�!k jj
> �
�!
k

jj�!k jj
(6)
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and a perpendicular part

Ov? D Ov � Ovk; (7)

then we get

< 2�i
�!
k ; Ov? >D 0 and 2�i

�!
k � Ovk D 0: (8)

Due to the linearity of the Fourier transform, we can transform both parts back into
the spatial domain and obtain a uniquely determined decomposition into a curl-
free and divergence-free field. There is no harmonic part, because Ov satisfies both

equations at the same time only for position
�!
k D .0; 0; 0/T , which is a zero set in the

context of square-integrable fields. A property that will get lost in the discretization
later on. However, the constructive character of the proof allows us to implement
the formulas almost directly in Sect. 3.4.

Readers interested in a deeper-going discussion of the Hodge-Decomposition in
the spectral domain might also have a look in Littlejohn’s notes [12]. The resulting
field components of Ov are denoted as longitudinal and transversal parts in his texts.
Figure 1 illustrates the decomposition results of the simple synthetic vector field
which is generated by the polar differential equations r0 D sin�r and ' 0 D 1 and
contains a periodic orbit on each circle in the plane having the radius of a natural
number. The analytic decomposition of that vector field can simply be calculated by
setting one of these equations to zero.

3.3 The Generalized Spectral Decomposition

The question arises whether we can replace the operator r (respectively 2�i
�!
k ) by

a differential operator L �r (respectively 2�iL ��!k ) and still obtain a mathematically
valid and practically meaningful decomposition. For the scope of this paper, we will
restrict ourselves on differential operators with constant coefficients, i.e., L will be
a 3 � 3 -matrix with constant entries.

3.3.1 Differential Operators of First Order

Generalizing formula (1) leads to a decomposition of the field v respectively to an
operator L by

v D vkernel C vrest; (9)

with < L � r; vkernel >D 0 and .L � r/ � vrest D 0 everywhere.
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Fig. 1 (a) Visualizing the synthetic field defined by r0 D sin�r and '0 D 1 using a LIC [19],
(b) from left to right: the analytic divergence-free part, the FFT-based divergence-free part, the
divergence-free part using the method of Tong et al. [21], (c) the irrotational parts in the same
order, the FFT-based method preserves the symmetric structures better than a decomposition with
orthonal/parallel boundary conditions

The existence and uniqueness of that decomposition for square-integrable func-
tions follows directly from the proof in the last section, we just have to replace the

axis of the orthogonal decomposition in the spectral domain by L � �!k . It is easy
to see that if L is the identity matrix, we will get the classical Helmholtz-Hodge-
decomposition.
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Consider the divergence-free vortex field

v.x1; x2; x3/ D
0
@�x2x1

1

1
A ; (10)

as another example which has trivial Helmholtz-Hodge-decomposition.
However, it is possible to further characterize the field by its scalar products with

the operators

0
B@

0

� @
@x3
@
@x2

1
CA ;

0
B@

@
@x3
0

� @
@x1

1
CA ; and

0
B@
� @
@x2
@
@x1
0

1
CA : (11)

Only the third vector-valued operator leads to a non-vanishing component vrest.
The associated linear operators L that transform r are

0
@0 0 0

0 0 �1
0 1 0

1
A ;

0
@ 0 0 1

0 0 0

�1 0 0

1
A ; and

0
@0 �1 01 0 0

0 0 0

1
A : (12)

It could be insufficient to only examine the field with respect to these operator
triplets, which are aligned to the basis of the Euclidian space and, like in this special
case, are just a projection of the curl of the underlying vector field v. A simple
solution to that shortcoming is to multiply the matrix L with another matrix, e.g., a
rotational operator, that generates a coordinate transform.

3.3.2 Differential Operators of Second Order

One might argue that decompositions with respect to first order operators can be
easily achieved by any of the already existing algorithms performing a Helmholtz-
Hodge-decomposition, since the identity

0 D< L � r; v >D< r;LT � v > (13)

holds. Consequently, we just need to multiply the field with the transposed matrix
LT and perform a Helmholtz-Hodge-decomposition on the result. There are two
reasons why we do not recommend that. First of all, it is not clear how the matrix-
multiplication affects boundary conditions that are more sophisticated or restrictive
than a periodic or rapidly decaying vector field. Moreover, one would lose the
already gained foundation to bring a much broader variety of differential operators
into the concept, e.g., those of second order.
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For the latter intention, we need to express the vector-valued differential opera-
tors

0
BB@

@2

@x21
@2

@x22
@2

@x23

1
CCA (14)

and

0
B@

@2

@x2@x3
@2

@x1@x3
@2

@x1@x2

1
CA : (15)

in the spectral domain, which leads, when allowing first order terms as well, to the
decomposition axis

L1 � 2�i
0
@ k1
k2
k3

1
A � L2 � 4�2

0
@ k21
k22
k23

1
A � L3 � 4�2

0
@ k2k3
k1k3
k1k2

1
A ; (16)

where L1, L2 and L3 are matrices with constant real values, that might represent
a transform of spatial coordinates. As a side note, the factor 2�i can be left out
in the decomposition axis for the first order equations, because it vanishes in the
normalization process. For the equations of mixed order, it is essential because it
gives both terms the proper weighting.

A more challenging case appears when the vector field has to be decomposed by
a PDE that cannot be expressed by the inner or outer product with a single vector,
e.g., consider the classical case of r � .r � v/. The expression of this term in the
spectral domain has the symmetric form

� 4�2 �
0
@�k

2
2 � k23 k1k2 k1k3
k1k2 �k21 � k23 k2k3
k1k3 k2k3 �k21 � k22

1
A � Ov; (17)

which means that, if we want to “split” the part w from a vector field v, that fulfills
r � .r � w/ D 0, we need to remove three components from all vectors in the
spectral domain with each component being defined by a (normalized) row of that
matrix.
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3.3.3 Fractional Differentials

Fractional differentials have not been very common in the analysis of vector fields
for visualization issues so far. The main idea for a scalar function f is to find a linear
operator T so that

T˛. f .x// D @

@x
f .x/ (18)

is fulfilled for a given real number ˛. On the basis of difference quotients or linear
approximations of functions, this seems like an impossible task and it is not clear
whether these operators do exist at all.

However, for a square-integrable function f .x/ with a known Fourier transform
Of .k/, it follows directly that in the case ˛ D 2:0

T. Of .k// D p2�ik � Of .k/ (19)

is a solution.
Similarly, one can define fractional divergence and fractional curl, and the cor-

responding decomposition would be performed respectively to the decomposition
axis

0
@ k˛1
k˛2
k˛3

1
A : (20)

Fractional divergence and fractional curl have a substantial role in studying fluids
in porous media as to be seen in Sect. 4.2. More details in the theory of fractional
derivatives are given in [14].

3.4 Differentiation of Discrete Data with the Fast Fourier
Transform

Our Fourier transforms have always been carried out by the fftw3-library [5], which
did an excellent service regarding the computational times. Even on discrete vector
fields with several millions of data points, all necessary operations (forward and
backward transform for every component of the 3D vector field) were computed in
less than a minute. An alternative GPU-based method is also available [6].

While the algorithm-pipeline consisting of a forward transform, an orthogonal
decomposition relative to a vector class as in given in (16), and a backward
transform has already been clearly pointed out, there are still some inherent
differences between the continuous and the discrete Fourier transform.
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The coordinate system is not centered in the discrete spectral domain (aliasing
phenomenon) so we have to shift all ki by number of sample points of the
corresponding dimension i. We strongly recommend to an inexperienced user to
read Johnson’s technical report “Notes on FFT-based differentiation” [10] for further
details.

Moreover, the harmonic part of the classical Helmholtz-Hodge-decomposition is

no longer a zero set. In spectral domain it is the value of OvŒ�!k � for
�!
k D Œ0; 0; 0�T ,

which is the only vector being perpendicular and parallel at the same time to
any other vector. Nevertheless, we always assign that value, which represents the
average of the field in the spectral domain, to the vkernel-part, as we would not want
to loose an incompressible fluid’s mean direction, by the best approximation to a
divergence-free field. In Fig. 2 is shown how rigid the harmonic part of the FFT-
based algorithm is, when we exclude it as sole third part, because it cannot contain
a fixed point of saddle nature as the method by Bhatia et al. [2].

4 Applications

4.1 Toroidal Magnetic Fields

The flow induced by a vector field on (or inside) a torus can develop an immense
amount of different structures. First, there are possible irrotational types, e.g., the
gradient of the height field. Further, there might be an infinite number of closed
streamlines, e.g., the variational field of a small ring moving along the torus. At
last, even a chaotic behaviour is possible, e.g. streamlines intersecting a Poincaré-
section-plane [9] will never do it at the same location.

Sanderson et al. analyze the magnetic field of a toroidal fusion reactor in
[18] by an integration-based technique. Due to the fact that magnetic fields are
naturally divergence-free, applying a classical Helmholtz-Hodge-decomposition to
such a dataset seems pointless. However, the flow can still be decomposed into
two rotational parts, a so called Toroidal-Polodial-decomposition. This is where
the generalized spectral decomposition comes into the game. We had chosen the
differential operator @v1

@x2
� @v2

@x1
instead of r for a torus located in the x1-x2-plane and

obtained two perfectly orthogonal vector fields, both having a non-trivial rotational
structure, which is illustrated in Fig. 3.

Eventually both parts of the movement can be analyzed and filtered separately
and the spectral decomposition can be the foundation for useful tools for the
visualization of magnetic fields as occurring in the publication by Sanderson
et al. [18].
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Fig. 2 (a) A planar
incompressible
CFD-simulation, (b) the
divergence-free part (left) and
harmonic part (right)
computed in the spectral
domain, (c) the
divergence-free part (left) and
harmonic part (right)
computed by the method of
Tong et al. [21], (d) the
divergence-free part (left) and
harmonic part (right)
computed by the method of
Bhatia et al. [2]
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Fig. 3 An invariant torus in a 3D-flow with chaotic behavior on its surface: (a) blue streamlines
started on the surface of the torus, (b) green streamlines on the toroidal part vkernel, (c) red
streamlines on the poloidal part vrest

4.2 Flow Through Porous Media

In their recent text about groundwater hydrology [23] Wheatcraft and Meerschaert
are developing the theory that a flux through a porous medium does not need to
obey the classical mass conservation laws. Instead they suggest the improvement,
that, instead of a divergence of zero, a fractional divergence of zero is a more
appropriate model. Therefore, the degree of the fractional derivatives used describes
the heterogeneity of the medium.

Consequently, it would be of great interest to analyze not only the best possible
approximation of fluid flow data by divergence-free vector fields (which is part
of the classical Helmholtz-Hodge-decomposition), but also by fields of vanishing
fractional divergence. With the methods proposed in our paper it is easily put in
execution.

In Fig. 4 we analyzed the influence of the parameter ˛ when computing a field
of free fractional divergence. Vector fields of vanishing fractional divergence are
extremely similar in their visual appearance as classic divergence-free fields and
can often not be distinguished from them without a closer look at their derivatives. It
also seems to be a relation between the magnitude of the vectors and the areas where
the classic divergence (˛ D 0) differs most from zero. However, it is remarkable,
that the mean value of the classic divergence in all three parts was extremely close to
zero (�3:7�10�7;�3:6�10�7 and�3:9�10�7). The regions of non-zero divergence
cancel each other out and are also often found pairwise. After all, groundwater flow
still carries many properties of incompressible flows.
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Fig. 4 A planar
CFD-simulation, (a) The
magnitude of the vectors, (b)
approximation by field of
fractional divergence with
˛ D 0:8, (c) approximation
by a divergence-free field
with ˛ D 1:0, (d)
approximation by field of
fractional divergence with
˛ D 1:2, all subfigures from
(b) to (d) are accompanied by
the color mappings of the
classic divergence
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5 Conclusion and Future Work

We presented a novel, more general approach to decomposing vector fields in the
spectral domain and showed that the classical Helmholtz-Hodge-decomposition is a
special case of the method. At the same time, the result is exactly the homogeneous
solution of a partial differential equation, which creates a stronger relationship to
mathematics than the manual filter design in [3], which is simply a multichannel-
extension of the convolution from image processing.

Moreover, all decompositions of first order have been demystified by Eq. (13),
while the gate to a much broader variety of decomposition types, e.g., those of
fractional order, has been opened.

As the algorithm depends on an orthogonal decomposition and a FFT only, it
is very convincing regarding the computational times. The limitations of the FFT-
based method is clearly the lack of a user-given boundary condition, as the algorithm
treats the domain as having no spatial boundaries and the data is getting repeated
along each coordinate axis. On the other hand, the FFT-based method excels the
accuracy of the other methods if the data contains mainly periodic or symmetric
features. The limited possible configurations of boundary conditions associated with
the FFT might be engaged by finding improved localized variants of the algorithm,
such as wavelets [8]. That could also be the key to include position-dependent
operators in the equations, such as helicity density or acceleration.

Acknowledgements We like to thank Steven Schlegel for his help in creating the images. We
also thank Harsh Bhatia providing results of his decomposition of our datasets and the fruitful
discussion.
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Maximum Number of Degenerate Curves
in 3D Linear Tensor Fields

Yue Zhang, Yu-Jong Tzeng, and Eugene Zhang

Abstract 3D symmetric tensor fields have a wide range of applications in science
and engineering. The topology of a symmetric tensor field, which consists of
degenerate curves, can provide critical insights into the behaviors of the tensor
fields. Existing methods to extract degenerate curves make some assumptions of
the maximum number of degenerate curves in a cell without validating this bound.
In this paper, we study the maximum number of degenerate curves in a linear tensor
field to contribute to accurate and efficient extraction methods.

1 Introduction

3D symmetric tensor fields have a wide range of applications, such as solid and fluid
mechanics, medical imaging, and computer graphics. The topology of 3D tensor
fields consists of degenerate tensors (with repeating eigenvalues), which in 3D form
curves. Robust extraction and analysis of degenerate curves can play a key role in
domain applications.

Existing methods for degenerate curve extraction usually detect the intersection
points between the degenerate curves and the boundary faces of each cell in the
mesh representing the field. Such an approach assumes that every degenerate curve
intersecting a cell must also intersect its boundary. Moreover, it is usually although
implicitly assumed that there is only one intersection point per cell face as described
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in [6] and [8]. It is not clear whether these assumptions are indeed correct. Some
approaches perform subdivision on the cell faces to look for additional degenerate
curve intersection points; however, it is not clear when the subdivision should stop,
and where the subdivision should occur in the cell faces.

All of the above issues are due to a lack of understanding in the maximum
number of degenerate curves that can occur inside a cell. Given an interpolation
scheme inside a cell, the problems can be stated as follows:

1. Given a polynomial tensor field, how many degenerate curves are in the field?
2. Is it possible for a degenerate curve of a polynomial tensor field to form a loop

that is bounded?
3. Is it possible that two degenerate curves of the same type (linear/planar) can

intersect?

The answers to the above questions are key to robust and efficient extraction of
tensor field topology. In this paper, we focus on the simplest setting, i.e., when the
tensor field is linear. We show that in this case there are at least one and at most
four degenerate curves in the field. Moreover, up to one degenerate loop can occur,
although it is not a structurally stable case. Furthermore, two degenerate curves can
intersect at a triple-degenerate point, although, again, this is a structurally unstable
case.

2 Previous Work

There has been much work on the topic of 2D and 3D tensor fields for medical
imaging and scientific visualization. We refer the readers to the recent survey by
Kratz et al. [5]. Here we only refer to the research most relevant to this chapter.

Delmarcelle and Hesselink [1, 2] introduce the topology of 2D symmetric tensor
fields as well as conduct some preliminary studies on 3D symmetric tensors in the
context of flow analysis. Hesselink et al. later extend this work to 3D symmetric
tensor fields [4] and study the degeneracies in such fields. Zheng et al. [7] point out
that triple degeneracy, i.e., a tensor with three equal eigenvalues, are not structurally
stable features. They further show that double degeneracies, i.e., tensors with only
two equal eigenvalues, form lines in the domain. In this work and subsequent
research [8], they provide a number of degenerate curve extraction methods based
on the analysis of the discriminant function of the tensor field. Tricoche et al. [6]
convert the problem of extracting degenerate curves in a 3D tensor field to that of
finding the ridge and valley lines of an invariant of the tensor field, thus leading to a
more robust extraction algorithm. Both of these methods assume that any degenerate
curve that intersects a cell must intersect its boundary. In this paper we show that
even for a linear tensor field, it is possible to have a degenerate loop which can
completely stay inside a cell and two degenerate curves of the same linear/planar
types can intersect at a double degenerate point (although these cases are structurally
unstable).
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3 Background on Symmetric Tensors and Tensor Fields

In this section we review the most relevant background on tensors and tensor fields.
A 3D (symmetric) tensor T has three real-valued eigenvalues: �1 � �2 � �3.

A tensor is degenerate if there are repeating eigenvalues. There are two types of
degenerate tensors, corresponding to three repeating eigenvalues (triple degenerate)
and two repeating eigenvalues (double degenerate), respectively. The discriminant
of a tensor is defined as

Q
1�i<j�3.�i � �j/2. A tensor is degenerate if and only if its

discriminant is zero. An alternative way to describe a degenerate tensor is through
its eigenvalues and eigenvectors as follows: T D .�n��r/eeTC�rI where �n is the
non-repeating eigenvalue of T, �r the repeating eigenvalue, and e a unit eigenvector
corresponding to �n. Note that this representation is unique up to the orientation
of e. There are two types of double degenerate tensors: (1) linear (�n D �1 and
�r D �2 D �3) and (2) planar (�n D �3 and �r D �1 D �2).

The trace of a tensor T D .tij/ is trace.T/ D P3
iD1 �i. T can be uniquely

decomposed as D C A where D D trace.T/
3

I (I is the three-dimensional identity
matrix) and A D T � D. The deviator A is a traceless tensor, i.e., trace.A/ D 0.
Note that T is degenerate if and only if A is degenerate. Consequently, it is sufficient
to study the set of traceless tensors, which is closed under matrix addition and scalar
multiplication.

A tensor field is a tensor-valued function over some domain ˝ � R
3. The

topology of a tensor field is defined as the set of degenerate points, i.e., points in the
domain where the tensor field becomes degenerate.

There are three types of degenerate points, triple degenerate, linear degenerate,
and planar degenerate. Zheng et al. [8] point out that while triple degeneracies
can exist, they are structurally unstable, i.e., can disappear under arbitrarily small
perturbations. In contrast, linear and planar degenerate points are structurally stable,
i.e., they persist under small enough perturbations in the tensor field. Moreover,
under structural stable conditions such points form curves, along which the tensor
field is either always linear degenerate or always planar degenerate. While it is
possible that linear and planar degenerate points form surfaces and volumes as
well as be isolated points, such scenarios do not persist under arbitrarily small
perturbation in the field, i.e., structurally unstable.

A degenerate curve can be extracted by finding the zeroth levelset of the
discriminant function [7]. In one such approach, degenerate points are first found
on the faces of the cells in the mesh on which the tensor data is represented. Given a
face, one starts with a random point in the plane containing the face and perform the
Newton-Raphson method on the discriminant function. Once all degenerate points
are found on the faces of the cells, they are connected by straight line segments
that approximate the degenerate curves between these points. The tangent to the
degenerate curves at the points on the faces are used to remove ambiguity in how
these points are connected. In a more refined approach, numerical integration is used
to actually trace out the segments between degenerate points on the faces.
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Degenerate curves can also be extracted with the realization that they are a subset
of the crease lines of an invariant function of the tensor field [6]. A point p0 is a ridge
point of a scalar function f if 5f.p0/ � e2 D 5f.p0/ � e3 D 0 where e2 and e3 are
the eigenvectors corresponding to negative eigenvalues �2 � �3 of the Hessian of f.
A valley point p0 satisfies that5f.p0/ � e1 D 5f.p0/ � e2 D 0 where e1 and e2 are
the eigenvectors corresponding to positive eigenvalues �1 � �2 of the Hessian of f.
A crease line can then be extracted using the well-known Marching Cubes method.

4 3D Linear Symmetric Tensor Fields

A 3D symmetric, traceless linear tensor field has following form LT.x; y; z/ D T0C
xTxC yTyC zTz where T0, Tx, Ty, and Tz are symmetric, traceless matrices. We now
consider the problem of determining the maximum number of degenerate curves in
a 3D linear tensor field.

4.1 Homogenous Linear Tensor Fields

We first consider the case when T0 D 0. Under the assumption, LT.�x;�y;�z/ D
�LT.x; y; z/ and .0; 0; 0/ is a triple degenerate point. Furthermore, a point .x; y; z/ is
degenerate if and only if .kx; ky; kz/ is also degenerate for any k ¤ 0. Moreover, if
.x; y; z/ is a linear degenerate point, then .kx; ky; kz/ is a linear degenerate point for
k > 0 and a planar degenerate point for k < 0.

The above results indicate that if a point p D .x; y; z/ is a degenerate point,
then any point on the ray emanating from the origin and containing p is also
a degenerate point. Moreover, the linear/planar classification along the ray does
not change. In contrast, the ray in the opposite direction from the origin has the
opposite linear/planar classification. Figure 1 (left) shows this. The origin is a triple
degenerate point, colored in gray. Yellow curves consist of linear degenerate points
and green curves consist of planar degenerate points. Note that the results shown in
Fig. 1 (left and middle) are based on degenerate curve extraction method of Zheng
et al. [8].

A fundamental question is how many such degenerate ray pairs exist given a
linear tensor field where T0 D 0. This is equivalent to the following question. Given
3�3 traceless, symmetric matrices Tx, Ty, and Tz, how many solutions exist such that
xTxCyTyCzTz is degenerate? We first note that the set of all traceless and symmetric

tensors with configuration

0
@t11 t12 t13
t12 t22 t23
t13 t23 �t11 � t22

1
A form a five dimensional linear space
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Fig. 1 Two pairs of 3D linear tensor fields. The ones on the left are homogeneous tensor fields,
i.e., zero T0. The fields in the middle have a non-zero T0 component. The colored curves are the
degenerate curves: yellow for linear degenerate tensors, and green for planar degenerate tensors.
Notice that degenerate curves are straight lines (i.e., rays) in homogeneous tensor fields (left),
which intersect at the origin, a triple degenerate point. The corresponding non-homogeneous tensor
fields (middle) have the same number of degenerate curves as the homogeneous ones. Moreover,
the asymptote limit points of the degenerate curves are the same as the corresponding points in
the homogeneous ones (see the corresponding labels). However, the degenerate curves in non-
homogeneous tensor fields do not intersect at the origin. It is interesting to note that the union of all
degenerate points in the structurally stable, non-homogeneous case (middle) can be parameterized
by an ellipse minus the red points (right). More details on this can be found in Sect. 4.2

T spanned by the basis T11 D
0
@1 0 0

0 0 0

0 0 �1

1
A, T22 D

0
@0 0 0

0 1 0

0 0 �1

1
A, T12 D

0
@0 1 01 0 0

0 0 0

1
A,

T13 D
0
@0 0 10 0 0

1 0 0

1
A, and T23 D

0
@0 0 00 0 1

0 1 0

1
A. Any tensor in this space can be expressed as

t11T11Ct22T22Ct12T12Ct13T13Ct23T23 for some t11; t12; t13; t22; t23 2 R. Note that the
subspace spanned by Tx, Ty, and Tz can be of zero, one, two, and three-dimensional
space in the set of 3D symmetric, traceless tensors.
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In the zero-dimensional space, we have Tx D Ty D Tz D 0. The tensor field is
triply degenerate everywhere in the domain. This case is structurally unstable.

In the one-dimensional case, without loss of generality assume that LT.x; y; z/ D
.xC kyC lz/Tx for some k; l 2 R. If Tx is degenerate, then LT.x; y; z/ is degenerate
everywhere, i.e., the set of degenerate points for the whole volume. When Tx is
non-degenerate, then LT.x; y; z/ is non-degenerate everywhere except on the plane
xC kyC lz D 0, where it is triply degenerate. Neither case is structurally stable.

In the two-dimensional case, without loss of generality assume that LT.x; y; z/ D
.x C kz/Tx C .y C lz/Ty for some k; l 2 R. In this case, the tensor field is triply
degenerate on the intersection of the planes x C kz D 0 and y C lz D 0. Recall
that this is unstable. In addition, if there exists m; n 2 R such that mTx C nTy is
degenerate, it is straightforward to verify that LT.x; y; z/ is also degenerate for the
plane n.x C kz/ D m.y C lz/. This is still a structurally unstable case since the
degenerate points should form curves [7].

We now focus on the last case, i.e., Tx, Ty, and Tz are linearly independent. Note
that the tensor field LT.x; y; z/ leads to an injective map LT W R3 ! T. The image of
this map, U D fxTxC yTyC zTzjx; y; z 2 Rg, is a linear three-dimensional subspace
of T. Furthermore, LT is an isomorphism between R

3 and U. Consequently, LT is
also an isomorphism between the set of degenerate points of LT.x; y; z/ and U

T
D

where D � T is the set of all degenerate tensors. This isomorphism allows us to
reformulate the problem of finding .x; y; z/ 2 R

3 such that xTx C yTy C zTz is
degenerate to the problem of finding the intersections of U and D.

Recall that U is a three-dimensional (codimension-two) subspace of T, i.e.,
there exist two linear, homogeneous functions F0 and G0 of tij’s such that any
element in U can be expressed as t11T11 C t22T22 C t12T12 C t13T13 C t23T23
such that F0.t11; t22; t12; t13; t23/ D G0.t11; t22; t12; t13; t23/ D 0. Note that
F0.kt11; kt22; kt12; kt13; kt23/ D kF0.t11; t22; t12; t13; t23/ and G0.kt11; kt22; kt12;
kt13; kt23/ D kG0.t11; t22; t12; t13; t23/ as both are homogenous polynomials.
Moreover, F0 and G0 are linearly independent.

In contrast, D is a non-linear subspace of T consisting of tensors of the following

format k

0
@˛ˇ
�

1
A�˛ ˇ �� � k

3
I for some k 2 R and some unit vector

�
˛ ˇ �

�
. This is

equivalent to k

0
@˛

2 � 1
3

˛ˇ ˛�

˛ˇ ˇ2 � 1
3

ˇ�

˛� ˇ� �2 � 1
3

1
A where ˛2Cˇ2C �2 D 1. Note that when

k > 0, the tensor T is linear, i.e., one repeating negative eigenvalue and one positive
eigenvalue. When k < 0, T is planar, i.e., one repeating positive eigenvalue and one
negative eigenvalue.
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A degenerate tensor in U therefore must satisfy

F0

�
˛2 � 1

3
; ˇ2 � 1

3
; ˛ˇ; ˛�; ˇ�

�
D 0 (1)

G0

�
˛2 � 1

3
; ˇ2 � 1

3
; ˛ˇ; ˛�; ˇ�

�
D 0 (2)

˛2 C ˇ2 C �2 D 1 (3)

which is equivalent to

F0

�
2˛2 � ˇ2 � �2

3
;
2ˇ2 � ˛2 � �2

3
; ˛ˇ; ˛�; ˇ�

�
D 0 (4)

G0

�
2˛2 � ˇ2 � �2

3
;
2ˇ2 � ˛2 � �2

3
; ˛ˇ; ˛�; ˇ�

�
D 0 (5)

˛2 C ˇ2 C �2 D 1 (6)

We define f0.˛; ˇ; �/DF0
�
2˛2�ˇ2��2

3
;
2ˇ2�˛2��2

3
; ˛ˇ; ˛�; ˇ�

�
and g0.˛; ˇ; �/ D

G0
�
2˛2�ˇ2��2

3
;
2ˇ2�˛2��2

3
; ˛ˇ; ˛�; ˇ�

�
. Both f0 and g0 are homogeneous quadratic

polynomials of ˛, ˇ and � . Determining the number of rays is equivalent to
finding the solutions to f0.˛; ˇ; �/ D g0.˛; ˇ; �/ D 0 on the unit sphere
˛2 C ˇ2 C �2 D 1 since each solution corresponds to a degenerate ray. Notice
that if .˛; ˇ; �/ is a solution to the aforementioned system, so is .�˛;�ˇ;��/;
however, both solutions correspond to the same degenerate tensor. To remove
this double-counting of solutions, we simply consider the solutions to the system
f0.˛; ˇ; �/ D g0.˛; ˇ; �/ D 0 on RP2, the two-dimensional real projective space.

To make our analysis more complete, we instead consider finding solutions in the
space CP2, the two-dimensional complex projective space. This can be answered by
the following version of Bézout’s theorem from algebraic geometry [3].

Theorem 1 Let f0 and g0 be two homogeneous polynomials in three variables of
degree d and e, respectively. Let Cf and Cg be the curves defined by f0 D 0 and
g0 D 0 in the complex projective space CP2. Assume that Cf and Cg do not have
any common component, then they intersect at exactly d � e points in CP2, counted
with multiplicity.

According to Bézout’s theorem, there are two scenarios: (1) f0.˛; ˇ; �/ and
g0.˛; ˇ; �/ have a common non-constant component, or (2) f0.˛; ˇ; �/ and
g0.˛; ˇ; �/ do not have a common non-constant component.

In the first case, both f0.˛; ˇ; �/ and g0.˛; ˇ; �/ can be factored into the product
of two linear polynomials with possibly complex coefficients. Let f0.˛; ˇ; �/ D
f1.˛; ˇ; �/f2.˛; ˇ; �/ and g0.˛; ˇ; �/ D g1.˛; ˇ; �/g2.˛; ˇ; �/ where f1, f2, g1 and
g2 are homogeneous linear polynomials of ˛, ˇ, and � . Note that f0 and g0 cannot
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have two common components as in that case f0 and g0 become linearly dependent,
thus violating our assumption. Consequently, f0 and g0 can share precisely one
non-constant factor. Without loss of generality, assume that f1 D g1 and f2 and
g2 are linearly independent. Note that f1 D g1, f2 and g2 must all be real-valued
polynomials. Assume that f1 D g1 are complex-valued, then f2 must be the conjugate
of f1 and g2 the conjugate of g1, i.e., f2 and g2 become linearly dependent, again
violating our assumption. Consequently, the solutions to f0 D g0 D 0 consists of a
line (f1 D 0) and one point (the solution to f2 D g2 D 0). By letting k vary, the set
of degenerate points include a plane (derived from the aforementioned line) and a
line (derived from the aforementioned point). This is a structurally unstable case.

In the second scenario, f0 and g0 contain no common factor, and the above
system of equations has four complex roots. This scenario is structurally stable.
Recall that we are only concerned with real-valued solutions. Given that f0 and
g0 are both real-valued quadratic polynomials, complex solutions must appear in
pairs. This implies the following five possibilities: (1) zero real solution, (2) one
repeating real solution, (3) two distinct real solutions, (4) one repeating real solution
and two distinct real solutions and lastly (5) four distinct real solutions. Note that
each solution corresponds to two degenerate rays in the domain of the tensor field.
Consequently, there can be zero, two, four, six, and eight degenerate rays, with the
cases two and six degenerate rays being structurally unstable. Half of the degenerate
rays are linear, while the other half are planar. Note that this bound (eight degenerate
rays or four degenerate lines) is exact (shown in Fig. 1 (2a)).

However, the case of zero degenerate curves is impossible due to the fact that
the tensor field xTx C yTy C zTz is traceless. To see this, we first rewrite f0 and

g0 as f0 D
�
˛ ˇ �

�
Mf0

0
@˛ˇ
�

1
A and g0 D

�
˛ ˇ �

�
Mg0

0
@˛ˇ
�

1
A where Mf0 and Mg0 are

3�3 traceless symmetric matrices. Note that any orthonormal change of basis in the
space of .˛; ˇ; �/ ensure that both matrices after the change of basis remain traceless
and symmetric while one of them becomes diagonal. Without loss of generality, we
will assume that Mf0 is already diagonal.

We now consider two new variables ˛0 D ˛
�

and ˇ0 D ˇ

�
. Recall that F0 and G0

are linear functions of its components, i.e., F0.ka; kb; kc; kd; de/ D kF0.a; b; c; d; e/
and G0.ka; kb; kc; kd; ke/ D kG0.a; b; c; d; e/ for k 2 R. Let k D . 1

�
/2. The above

equations is now

F0.
2˛02 � ˇ02 � 1

3
;
2ˇ02 � ˛02 � 1

3
; ˛0ˇ0; ˛0; ˇ0/ D 0 (7)

G0.
2˛02 � ˇ02 � 1

3
;
2ˇ02 � ˛02 � 1

3
; ˛0ˇ0; ˛0; ˇ0/ D 0 (8)
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They can be written as

�
˛0 ˇ0 1

�
Mf0

0
@˛
0
ˇ0
1

1
A D 0 (9)

�
˛0 ˇ0 1

�
Mg0

0
@˛
0
ˇ0
1

1
A D 0 (10)

where Mf0 D
0
@f11 0 0

0 f22 0

0 0 �f11 � f22

1
A is diagonal and f11 > 0, f22 � 0, and f11 � f22.

The above system (Eqs. (9) and (10)) has the same solutions as

�
˛0 ˇ0 1

�
Mf0

0
@˛
0
ˇ0
1

1
A D 0 (11)

�
˛0 ˇ0 1

�
.Mg0 C sMf0 /

0
@˛
0
ˇ0
1

1
A D 0 (12)

for any s 2 R. Consequently, we can select s such that Eq. (12) has no constant term.

Therefore, we further assume that Mg0 D
0
@g11 g12 g13
g12 �g11 g23
g13 g23 0

1
A, i.e., f11˛02 C f22ˇ02 D

f11 C f22 and g11˛02 C 2g12˛0ˇ0 � g11ˇ02 C 2g13˛0 C 2g23ˇ0 D 0. The former
represents an ellipse, which can degenerate into two parallel lines ˛ D ˙1 when
f22 D 0. The latter is a hyperbola (�g211 � g212 � 0). The origin is on one sheet of
the hyperbola and is also enclosed by the ellipse (or the two lines in the degenerate
case). We can show that there is at least one intersection point between the hyperbola
g0 D 0 and the ellipse f0 D 0, i.e, one degenerate ray pair. If there is one solution,
it must have a multiplicity of two. Figure 1 (1a and 2a) show the cases of two
degenerate curves and four degenerate curves, respectively. It is worth noting that in
the case the ellipse, or the hyperbola, or both curves degenerate into straight lines,
the intersection is still not empty, i.e., there is at least one real solution to the system
and thus a degenerate ray in the original tensor field.
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4.2 Non-homogenous Linear Tensor Fields

We now consider the case when T0 ¤ 0. In this case, LT.x; y; z/ D T0CxTxCyTzC
zTz introduces an affine map from R

3 to T. As with the case of T0 D 0, there are a
number of scenarios to consider.

First, if T0 is in the span of Tx, Ty, and Tz, i.e., there exist m; n; p 2 R such that
T0 D mTxC nTyC pTz, then LT.x; y; z/ D .xCm/TxC .yC n/TyC .zC p/Tz. With
a change of coordinate systems x0 D xC m, y0 D yC n, z0 D zC p, LT.x0; y0; z0/ is
homogeneous and our previous analysis applies.

If T0 is not in the span of Tx, Ty, and Tz, there are four cases: Tx, Ty, and Tz
span a zero, one, two, or three-dimensional space in the set of 3D symmetric,
traceless tensors. Using similar arguments, we can show that the first three cases are
structurally unstable. The last case, when T0, Tx, Ty, and Tz are linearly independent
inside T, is what we are mostly interested in and is the most difficult. Here,
we consider the intersection of the set of degenerate tensors and the space of
U D fT0 C xTx C yTy C zTzjx; y; z 2 Rg inside T.

First, we comment that the set U is still a three-dimensional plane inside T

that does not contain the origin of T. Consequently, U can again be characterized
by two first-degree (inhomogeneous) polynomials F and G of tij’s such that U
consists of tensors of the form t11T11 C t22T22 C t12T12 C t13T13 C t23T23 where
F.t11; t22; t12; t13; t23/ D 0 and G.t11; t22; t12; t13; t23/ D 0. For reasons to be made
clear soon, we still define F0 and G0 to be the polynomials characterizing the
related set U D fxTx C yTy C zTzjx; y; z 2 Rg. Therefore, F0.t11 � t0;11; t22 �
t0;22; t12 � t0;12; t13 � t0;13; t23 � t0;23/ D F.t11; t22; t12; t13; t23/ where T0 D t0;11T11C
t0;22T22 C t0;12T12 C t0;13T13 C t0;23T23. Consequently, F.t11; t22; t12; t13; t23/ D
F0.t11; t22; t12; t13; t23/C�F where �F is derived from T0 and the coefficients of F0.
Similarly, G.t11; t22; t12; t13; t23/ D G0.t11; t22; t12; t13; t23/C�G where �G is derived
from T0 and the coefficients of G0. Note that�F and�G are not zero simultaneously,
for otherwise T0 is in the span of Tx, Ty, and Tz. In addition, the solutions to F D 0
and G D 0 are the same as aF C bG D 0 and cF C dG D 0 where the determinant

of

�
a b
c d

�
¤ 0. Without loss of generality, we assume that �F ¤ 0. Consequently,

we choose G0 D G � �G
�F

F D G0 � �G
�F

F0, which is again homogeneous. Therefore,
from now on we assume that U can be characterized by a homogeneous polynomial
G0 D 0 and an inhomogeneous polynomial F D 0.

Second, U can also be characterized by the solutions to the following equations:

k

0
@˛ˇ
�

1
A�˛ ˇ �� � k

3
I D T0 C xTx C yTy C zTz (13)
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for some k 2 R and some unit vector
�
˛ ˇ �

�
. As before we assume ˛2 C ˇ2 C

�2 D 1. We would like to connect the case of T0 ¤ 0 to that of T0 D 0. This
leads to

k

0
@˛ˇ
�

1
A�˛ ˇ �� � k

3
I � T0 D xTx C yTy C zTz (14)

As in the case of T0 D 0, we can convert F, F0 and G0 to be functions of ˛, ˇ,
and � under the assumption that ˛2Cˇ2C�2 D 1. Let the corresponding functions
be f , f0 and g0, respectively. Both f0 and g0 are homogeneous polynomials whose
corresponding quadratic forms are traceless symmetric matrices Mf0 and Mg0 . In
contrast, Mf , the quadratic form of f D f0 C �F

k .˛
2 C ˇ2 C �2/, is not traceless.

Moreover, f is also a function of k. We are looking for the number of solutions of
f D 0, g0 D 0, and ˛2 C ˇ2 C �2 D 1 for any given k. To see this, we can further
simplify the situation by assuming �F D 1 and finding the proper basis such that

Mg0 has the form

0
@g11 0 0

0 g22 0

0 0 �g11 � g22

1
A where g11 > 0, g22 � 0 and g11 � g22. The

system we are solving is:

f0.˛; ˇ; �/ D �1=k (15)

g11˛
2 C g22ˇ

2 D .g11 C g22/�
2 (16)

˛2 C ˇ2 C �2 D 1 (17)

which is equivalent to

f0.˛; ˇ; �/ D �1=k (18)

.2g11 C g22/˛
2 C .g11 C 2g22/ˇ2 D .g11 C g22/ (19)

˛2 C ˇ2 C �2 D 1 (20)

Fixing k, this is a system of two quadratic equations f D 0 and g0 D 0 in the
complex project plane CP2. However, the number of real solutions is a function of
k. Note that when k D ˙1, f D f0 and there are either two or four real-valued
solutions (counted with multiplicity). When k D 0, there is no real-valued solution
since T0 ¤ 0 and T0, Tx, Ty, and Tz are linearly independent. As k decreases from1
to 0, it is possible some complex-valued solutions become real-valued. A degenerate
loop can form if these two families of solutions at some point become complex-
valued simultaneously. There are two scenarios: (1) g22 > 0, and (2) g22 D 0. We
will discuss them separately, next.

The first case, i.e., g22 > 0, is structurally stable. Furthermore, it is straightfor-
ward to verify that f and g0 have no common factor for any k 2 R. In this case,
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using the Bézout’s theorem we see that there are zero, one, two, three, or four real
solutions for any fixed k. Notice that it is now possible to have zero real solutions
since Mf is not traceless. However, the number of real solutions is a function of k.
This leads to the question exactly how many degenerate curves exist when T0 ¤ 0.

Equation (19) represents an elliptical cylinder and Eq. (20) represents the unit
sphere. Since g22 > 0 their intersection consists of two identical ellipses, corre-
sponding to � > 0 and � < 0, respectively. The projection .˛; ˇ; �/ ! .˛; ˇ/

maps the ellipses to the ellipse described by Eq. (19), which is contained in the
unit circle since 0 < g11Cg22

2g11Cg22
< 1 and 0 < g11Cg22

g11C2g22 < 1. Recall that
�
˛ ˇ �

�
and

��˛ �ˇ ��� lead to the same tensor, we only need to consider one ellipse,
i.e., � > 0. We refer to the ellipse as TC, and here we can use this ellipse to
parameterize the degenerate points in the tensor field. Note that every point on TC
corresponds to f0.˛; ˇ;

p
1 � ˛2 � ˇ2/ D � 1k for some k 2 Œ�1;C1�. Moreover,

every degenerate point is mapped to a point on TC. The map is bijective.
When k D 1, under structurally stable conditions our previous analysis for

the homogeneous case has shown that there are either two or four real solutions
to the system, denoted by pi (i between 1 and the number of solutions) (Fig. 1 (1c
and 2c): red dots). The degenerate curves in the tensor field, i.e., the solutions to
the system when T0 ¤ 0, correspond bijectively to segments between consecutive
dots pi’s. This means that the number of degenerate curves when T0 ¤ 0 is the
same as the number of degenerate curves when T0 D 0 (two opposite degenerate
rays are considered as one degenerate curve). More interestingly, the structurally
stable condition g22 > 0 implies that every segment between pi’s is homeomorphic
to its corresponding degenerate curve via Eq. (13) and the assumption � > 0.
Consequently, it is impossible to have a finite degenerate loop, since segments are
simply connected while loops are not. Consequently, all degenerate curves must end
at1 (Fig. 1).

The second scenario, i.e., g22 D 0, is numerically unstable. In this case, Eq. (19)
becomes 2˛2Cˇ2 D 1, or equivalently ˛2 D �2 since ˛2Cˇ2C�2 D 1. There are
two important observations in this case. First, both .0; 1; 0/ and .0;�1; 0/ are on the
ellipse 2˛2 C ˇ2 D 1 and correspond to the same tensor. These two points divide
the ellipse into the left and right halves. Second, assuming that f0 and g0 have no
common factor, i.e., there are only two or four real solutions in the corresponding
case of T0 D 0 (counting multiplicity), we have the right half of the ellipse satisfying
˛ D � and the left half satisfying ˛ D �� . By Bézout’s theorem, there are at most
two real solutions on each half of the ellipse for f0 D g0 D 0.

Assume that f and g0 do not share any common factor for any k 2 R. In the
case of two real solutions when k D ˙1, they must situate on half of the ellipse
(assume the right half without the loss of generality). Consequently, the left half
of the ellipse including the end points .0; 1; 0/ and .0;�1; 0/ correspond to a loop
since the two end points are mapped to the same p0 D .x; y; z/. Notice that p0 is
also on another degenerate curve connecting the two infinite points corresponding
to the two solutions of f0 D g0 D 0. In this case, k is not constant along the loop.

Otherwise, F D F0 C ˛2Cˇ2C�2
k will share a common factor with ˛2 � �2 D 0.
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Fig. 2 The tensor field in (a) contains a degenerate loop. However, this is a structurally unstable
case as it requires two degenerate curves to intersect. The tensor field in (b) contains two degenerate
curves that intersect at a triple-degenerate point. Again, this is a structurally unstable case. Finally,
the tensor field in (c) also contains a loop, although this is a different case from the one shown
in (a)

Figure 2a shows one such case. In the case of four real solutions, there are two
solutions on each half of the ellipse. In this case, two degenerate curves of the same
type will intersect at a point corresponding to .0; 1; 0/ and .0;�1; 0/while the other
two degenerate curves do not intersect. Note that the intersection point is not triple
degenerate. See Fig. 2b for one such example tensor field.

If f and g0 have a common factor for some k0 2 R (k0 could be1). In this case,
a degenerate loop can occur (Fig. 2c), along which k D k0 is constant. Note that this
is different from the aforementioned case of a degenerate loop where f and g0 share
no common factor for any k. In that case, there is degenerate loop along which k is
not constant.

To summarize, under structurally stable conditions the number of degenerate
curves in a tensor field LT.x; y; z/ D T0 C xTx C yTy C zTz is the same as the field
xTx C yTy C zTz. No degenerate loops exist and no two degenerate curves intersect.
However, the pathological cases can occur under structurally unstable cases, such as
the existence of a degenerate loop or two intersecting degenerate curves. However,
even in those cases the number of degenerate curves for the non-homogeneous case
is the same as that in the homogeneous case.

5 Conclusion

In this paper we address a fundamental question regarding the topology of 3D linear
tensor fields, i.e., the number of degenerate curves in the field. We enumerate all
possible scenarios and show that under structurally stable conditions there are at
least one and at most four degenerate curves in a linear 3D tensor field, all of which
must end in 1. Degenerate loops and intersecting degenerate curves of the same
type can occur, although only under structurally unstable conditions.
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In the future we plan to expand our analysis to polynomial tensor fields.
Furthermore, we plan to study bifurcations in 3D tensor fields.
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Coherent Structures



Hierarchical Watershed Ridges for Visualizing
Lagrangian Coherent Structures

Mingcheng Chen, John C. Hart, and Shawn C. Shadden

Abstract Lagrangian coherent structures provide insight into unsteady fluid flow,
but their construction has posed many challenges. These structures can be character-
ized as ridges of a field, but their local definition utilizes an ambiguous eigenvector
direction that can point in one of two directions, and its ambiguity can lead to noise
and other problems. We overcome these issues with an application of a global ridge
definition, applied using the hierarchical watershed transformation. We show results
on a mathematical flow model and a simulated vascular flow dataset indicating the
watershed method produces less noisy structures.

1 Introduction

The successful visualization of a large complex scientific dataset often relies on
the ability to emphasize structure hidden within it. This is particularly true of flow
datasets that in their most basic form contain a velocity vector at each point in
space, essentially doubling the dimensionality of the dataset, which confounds an
observer’s ability to perceive the data as a whole. Moreover, in unsteady flow appli-
cations, instantaneous rate of change information becomes less directly relevant to
visualize, as the more salient flow information is contained by Lagrangianmeasures
that intrinsically incorporate the integrated flow behavior.

A variety of analysis techniques can simplify a flow dataset by recognizing
and displaying structures representing similar flow characteristics. The recent
and compelling method of Lagrangian coherent structures [11, 20] reveals the
boundaries of regions of shared characteristics for unsteady fluid flow.
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Lagrangian coherent structures can be defined in a variety of different ways
(e.g. [5, 6, 21]), but have been commonly visualized as the ridges of a scalar field,
such as the finite-time Lyapunov exponent (FTLE), indicating the divergence of
neighboring pathlines in a time-varying flow. Ridges are features typically derived
from the second derivatives of the field, and so for common datasets are susceptible
to noise and other issues [17].

A current commonly used approach to extract ridges from datasets are local,
based on a marching cubes fit of the local ridge configuration in a cell from the
FTLE data at the vertices. The local definition of a ridge is often based on a
matrix eigenvector, which only indicates the orientation of a line, but the ambiguity
created by the fact that e and �e are both equally valid eigenvectors can lead to an
orientation ambiguity when detecting the ridge surface numerically. This ambiguity
can manifest as spurious false positives and other noise in the ridge surface extracted
by local methods such as marching ridges often used for LCS extraction [17].

Watershed methods provide a global approach to extract topological structures
from datasets. Sahner et al. [16] describe both a non-global “continuous” watershed
approach that traces ridges as separatrices in the Morse structure, as well as a global
“discrete” watershed transformation, and use the global watershed transformation
to extract vortex and strain skeletal surfaces. We similarly propose and demonstrate
watershed separatrix surface extraction for the visualization of flow structure, but for
LCS instead of vortex/strain skeletal surfaces, and using a hierarchical watershed to
filter out spurious details, to more clearly define the boundaries between neighboring
watersheds as a global sea level rises.

These global watersheds can miss some spurious ridge features and can also
produce small disjoint ridges due to noise and small field undulation. As stated in
Sahner et al. [16], every watershed boundary corresponds to a height ridge or valley,
but they do not necessarily coincide and furthermore ridges and valleys might exist
that lack corresponding watershed boundaries.

This paper specializes the watershed approach for extracting ridges in FTLE
data. We apply a region merging criteria similar to topological persistence that ranks
ridges based on their configuration relative to neighboring ridges and valleys. This
new filtering enabled by a global approach yields improved LCS extraction from
scalar field data and better visualization of unsteady flow structure.

2 Lagrangian Coherent Structures

Let v.x; t/ represent a time-varying velocity function. We denote the flow map
˚.x; t0;T/;which takes x to its new position at time t0CT by integrating the velocity
to trace the point along its trajectory

˚.x; t0;T/ D xC
Z T

0

v.˚.x; t0; t/; t/dt: (1)
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The Cauchy-Green strain tensor is the positive definite matrix

C.x; t0;T/ D
�
@˚.x; t0;T/

@x

	T �
@˚.x; t0;T/

@x

	
; (2)

and measures finite-time strain of infinitesimal line elements in the fluid. The
maximum separation rate is achieved when �x is parallel to the major eigenvector
of C.x; t0;T/. The finite-time Lyapunov exponent (FTLE) measures this maximum
separation rate as

f .x/ D ln�max.C.x; t0;T//
2jTj ; (3)

for points x at a given time t0 over a given time interval T: Lagrangian coherent
structures are often obtained as ridges of FTLE, but their specific definition relies
on the particular definition of “ridge” that is used.

The height ridges of a scalar field f are defined as the points satisfying

@f

@e1
D 0 (4)

@2f

@e21
< 0 (5)

where f is a scalar function and e1 is either the minimum [2] or largest magnitude
[9] eigenvector of the Hessian of f . The C-ridges of a scalar field f are defined
similarly, except e1 is the major eigenvector of the Cauchy-Green tensor (2) [18]
based on “normally hyperbolic” LCS [6]. In this work we do not target hyperbolic
LCS per se, but the more generic FTLE ridge.

Lagrangian coherent structures can be revealed by a continuation method that
tracks the surface from one or more seed points placed at FTLE local maxima [18].
The surface grows from these seed points by integrating a tangent plane orthogonal
to the major eigenvector of the Cauchy-Green tensor. While the algorithm is shown
to be quite efficient, it required at least one seed point on every LCS component,
and multiple seeds on the same component could lead to duplicated surfaces.

LCS can also be revealed through a marching ridges technique [17]. Marching
ridges [4] is a variant of the marching cubes isosurface technique [10] used when
the orientation needed to define the isosurface is inconsistently specified. An
eigenvector e represents an axis, without preference of e or �e: Ridge surfaces
formulated from eigenvectors often must choose one of these two directions e or �e
for each eigenvector e: Marching ridges strives to consistently choose eigenvector
directions to define an orientable isosurface, but can fail especially when sorted
eigenvectors change their order across a single cell.
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LCS can also be extracted as a subset of raw features [12] satisfying

det
�
H0gj : : : jHn�1g

� D 0: (6)

The matrix H is the Hessian of the scalar function f , but can also be interchanged
with the Cauchy-Green tensor. Since (6) does not rely on eigenvectors, raw features
can be extracted as an ordinary isosurface, e.g. using marching cubes, except
where they may contain non-manifold self intersections. These self intersections
can confound the use of raw features to find LCS, as can the numerical instability
of (6).

All of these approaches rely on a local definition of ridges and LCS, which
makes them susceptible to noise and other algorithm specific issues, such as surface
duplication or non-orientability. A global approach would overcome these issues by
defining ridges as region boundaries by growing the regions they bound instead of
tracking the boundaries between regions.

3 Watershed Segmentation

In image processing, “watershed” methods have long been used for image segmen-
tation [14]. These techniques outline the objects depicted in an image by finding
ridges in the image pixel values. For LCS and FTLE ridge extraction, such global
watershed methods can reduce the false positives and non-orientability of previous
local approaches.

A variety of methods can be applied to a scalar field to separate it into watershed1

ridges and regions. A region can be defined as the points that flow to the same local
minimum but this can be inefficient to compute.

It is more efficient to increment a sea-level threshold value from the global min-
imum value to the global maximum value. When this threshold value passes a local
minimum, it creates a region that grows as the threshold increases. Neighboring
regions grow into each other, identifying ridges where they meet.

The Vincent-Soille (V-S) algorithm [22] runs in linear time (proportional to the
number of datapoints), and classifies all of the datapoints in an dataset as either ridge
or region, labeling non-ridge datapoints by the region to which they belong. The V-S
algorithm first bucket sorts the datapoints, then floods each bucket of datapoints in
order from least to greatest. Ridges form when a datapoint in the current bucket has
neighbors belonging to two regions, but the points in the bucket often form thick
regions. Hence a (linear) distance transform is applied to the buckets to compute
the distance from the nearest previously defined region (using a circular queue). In

1The term watershed comes from hydrology, where it denotes a drainage basin region. Some texts
that apply it to dataset analysis incorrectly use it to refer to the ridges separating these basins, and
call the basins “catchment basins.” To avoid confusion, we will refer to ridges that separate regions.
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Fig. 1 Oversegmentation of the LCS of a simple convection cell flow due to variation and noise
in the FTLE field

the computation of this distance transform, datapoints are assigned to their closest
region. If a datapoint is not connected to a closest region, then it forms a new region.
If a datapoint is equidistant to multiple regions, then it is classified as a ridge.

When applied to image segmentation, the watershed method typically overseg-
ments, yielding many small regions. When used in LCS applications this leads
to a distracting number of insignificant ridges due to noise and subtle variation
in the FTLE field, as shown in Fig. 1. Hierarchical watershed methods merge
similar regions to form progressively coarser segmentations and have been useful
for discerning the important features in a dataset.

One method for constructing a watershed hierarchy is the waterfall transforma-
tion [1]. It constructs a graph consisting of nodes representing each ridge segment.
The node’s value is set to the difference between the median values of the two
regions its corresponding ridge separates. Each pair of these nodes is connected
with an edge if their corresponding ridge segments border the same region. Then
the next level higher in this hierarchical watershed is the watershed of these ridge
nodes, using the average ridge value for each node.

Alternatively, regions can be merged based on similarities in their level and/or
the characteristics of the ridge separating them. To provide better control for the
application of LCS extraction, we utilized this region merging approach to filter
unnecessary FTLE ridges.

Our criteria to define a criterion for merging neighboring regions resembles
the notion of topological persistence [3]. The persistence of a topological feature
indicates how robust it is to perturbation. A well-chosen perturbation in the dataset
could remove a ridge, merging the regions it separated into a single region. From
the Morse theory viewpoint, this perturbation would merge a saddle point with the
minimum of one of the regions. The persistence of a ridge is thus the difference
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between the lowest point on the ridge (its saddle point) and the larger of its two
neighboring minima.

We set a persistence threshold and merge regions separated by ridges that do not
meet this threshold. We accelerate this merging with a union-find data structure.

This approach is similar to scale-space hierarchical methods that smooth datasets
before performing the watershed transform, using e.g. Gaussian smoothing [8]. Such
techniques smooth the data with increasing filter widths to produce coarser levels
of the watershed hierarchy. These smoothing operations merge neighboring regions
because they cancel saddle-minima pairs.

4 Polygonization

The implicit function theorem shows that the isosurface of a regular isovalue of an
analytic field function is a manifold. However, the ridges arising from processing
FTLE are not necessarily so, and can include non-manifold junctions that require
special methods for surface extraction [7, 13]. The “crease surfaces” analysis [19]
for example shows that ridge surfaces consist of manifold patches that meet at non-
manifold junctions where the Hessian is degenerate.

We utilize a variation of marching cubes for polygonization of the ridge surfaces.
The watershed transform labels each voxel value with a region, and ridges arise in
cells whose eight corner vertices (where the voxel values are evaluated) lie in two
or more disjoint regions. If a cell’s vertices lie in only two regions, we use ordinary
marching cubes to polygonize the cell.

For cells that straddle three or more regions, we implement a variation of multiple
material marching cubes [23]. For each of the six cell faces, we add a face center
vertex and insert a pair of triangles to separate any edges whose vertices lie in
separate regions. We then add a vertex at the cell center to connect these triangles.
Figure 2 demonstrates the case where all eight cell corners belong to different
regions. There are two cases where a vertex at the voxel face center is not needed,
as shown for the front face of each example in Fig. 3.

Since the cell corners indicate only the region, and not a scalar value, the vertices
used to polygonize a cell are inserted at the center of edges, faces and the cell.
This leads to a blocky cuberille appearance of the resulting surface as shown in
Fig. 4. We remove these distracting visual artifacts through a smoothing process.
We implemented a constrained Laplacian smoothing through conjugate gradient
minimization of the energy functional

E.fxig/ D
X
i

jjxi � xijj2 C �jjxi � x0ijj2 (7)

where xi is the centroid of the vertices neighboring vertex xi and x0i is its original
position in the cuberille polygonization. The parameter � indicates how much the
original position is respected, which we set to 0:01 in our experiments.
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Fig. 2 Polygonization of a cell whose eight corners lie in eight different regions

Fig. 3 Two cases where a vertex is not needed at the center of a cell face, shown for the frontmost
face

The non-manifold surfaces that arise from multiple region marching cubes
require special care for proper smoothing. Branch points whose neighbors may
represent ridges between several different regions can confound the smoothing
process, as shown in Fig. 5(left).

For each vertex, we find the maximum number of faces that share one of its
edges. We limit that vertices neighbors to the ones whose edge is shared by that
maximum number of faces. This process smooths non-manifold junctions well, as
shown in the example of two intersecting spheres shown in Fig. 5(right).
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Fig. 4 Blocky artifacts created from multiple region marching cubes for voxels that only indicate
region number

Fig. 5 Ordinary Laplacian smoothing of non-manifold surfaces creates unsmooth results (left)
which are fixed by limiting the neighborhoods used for Laplacian averaging (right)

This Laplacian smoothing approach differs from the one used for multiple
material marching cubes (M3C) [23]. Our approach smooths vertices even when
they are shared by more than two surfaces, whereas M3C smoothing leaves such
vertices stationary. Our approach also does not require additional information that
M3C uses, such as which materials are adjacent to a given vertex.
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5 Results

We compared the watershed approach to marching ridges on two datasets. The first
is an Arnold-Beltrami-Childress (ABC) flow, shown in Fig. 6. The ABC flow dataset
yields an FTLE field over a 2013 voxel array with values ranging from 0.0643 to
0.512.

Figure 7 compares the Lagrangian coherent structures extracted from the FTLE
field of the ABC Flow dataset. The marching ridges example follows the recom-
mended noise filtering steps [15], including (1) scalar thresholding (remove ridges
with FTLE less than 0.3), (2) least eigenvalue thresholding (remove “flat” ridges
with eigenvalue greater than �1:0), and (3) a threshold on the size of connected
components (removing disjoint components with less than 500K vertices). The
displayed denoised marching ridge result consists of one connected component of
677K vertices, but even with filtering, some noise persists.

The V-S watershed approach yields 797 watershed regions at the lowest level
of the watershed hierarchy, which we merge by removing low persistence ridges
to 103 regions. The resulting mesh, after smoothing, consists of 1.275M faces and
622K vertices. Figure 7 also shows some smoothed stairstep artifacts that reveal
some issues with the merging of watershed regions as discussed further at the end
of the section.

The second dataset we used to compare the watershed approach to marching
ridges is the abdominal aortic aneurysm (AAA) dataset, shown as an FTLE field
in Fig. 8. The AAA dataset is constructed from a pulsatile bloodflow simulation
of a lower aorta, reconstructed as a 4.4M tetrahedral mesh. The FTLE field is a
206�231�261 voxel array, ranging from 0 to 5.29812, using the value�1 indicates
the outside of the aorta.

Figure 8 compares the Lagrangian coherent structures extracted from the FTLE
field of the AAA dataset. The marching ridges example filtered out ridges smaller
than 3.0 (which was the highest setting that prevented holes from forming in the
main connected structures), set an eigenvalue threshold of zero (negative values did
not improve the result) and filtered out all but the largest connected component.
This yielded a mesh of 2.27M faces and 1.29M vertices. As before, the structure is
evident but noise is clearly visible.

The V-S watershed algorithm yields 663 regions, which we merge into 199
regions when the height between neighboring regions differs by 0.05 or less. The
resulting smoothed mesh consists of 1.80M faces and 854K faces.

The time required for the watershed transform, polygonization and smoothing
for the ABC flow and the AAA data is shown in Table 1. The watershed method
produces a voxel region classification on the FTLE field. The AAA FTLE field is
53% larger than that of the ABC flow, and its watershed transform takes 49% longer
to compute. These watershed voxel regions polygonized to produce the number of
vertices listed which follow similar proportions, but the time of the polygonization
was not a significant portion of the total time and so is not listed. The smoothing
time represents a total of 20 smoothing iterations, but takes 68% longer for the larger
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the FTLE Field with Smoothed Watershed Ridges

Smoothed Watershed Ridges with FTLE color and opacity

Fig. 6 The ABC flow, displayed as the FTLE field data (upper left) along with the embedded
ridges extracted by the watershed method (upper right) and the watershed ridges themselves (lower
center)

AAA data, because the polygonized ridges are more complex and their vertices have
a greater number of neighbors.

One of the most exciting aspects of the global watershed approach is that the
regions can be used to coherently color the ridge surfaces, as shown in Fig. 9. The
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segdiRgnihcraM dehsretaW

Fig. 7 Lagrangian coherent structures extracted from FTLE of the ABC Flow dataset using the
marching ridges method v. the watershed method

choice of color can be arbitrary, but is useful to differentiate the LCS surfaces from
each other as they undulate through the flow domain. Such colorings are enabled
by two-sided surface shading, but are unavailable for local ridge definitions (e.g.
marching ridges) that lack identification of these regions.

The main drawback of the watershed approach is that the initial application of the
watershed transformation (before merging) creates significant over-segmentation of
the datasets, resulting in many small watersheds. These small watersheds are merged
when separated by shallow ridges, but sometimes the shallowness, which we use as
the persistence of the ridge, not properly eliminate some shallow ridges even though
this persistence based approach works well for most spurious ridges such as are
shown in Fig. 1.

As shown in Fig. 10, the ridges detected by the hierarchical watershed approach
are largely at the mercy of the fluctuations of the FTLE field. In this example, such
an FTLE fluctuation causes the hierarchical watershed merging to follow the wrong
shorter ridge instead of keeping the correct longer ridge. This wrong shorter ridge
is indeed part of the FTLE field and in fact forms a better defined ridge according
to persistence than does the correct ridge, so further work beyond the persistence
measure used by the hierarchical watershed method is needed to eliminate these last
few pathological cases.
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dehsretaWsegdiRgnihcraM

AAA Lower Aorta FTLE Field

Fig. 8 Lagrangian coherent structures extracted from FTLE (top) of the AAA dataset using the
marching ridges method (lower left) v. the watershed method (lower right)

Table 1 Performance of the watershed method for LCS extraction

Dataset FTLE resolution Watershed Mesh vertices Smoothing

ABC flow 201� 201� 201 34.21 s 1,225,558 36.4 s

Patent 96 206� 231� 261 50.87 s 1,800,230 61.4 s
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ABC Flow AAA

Fig. 9 Lagrangian coherent structures for the ABC flow and Patent 96, displayed using random
colors assigned by regions, as extracted using our hierarchical watershed approach

correct

over-

segmented

incorrectly

merged

Fig. 10 Hierarchical watershed merging can sometimes merge the wrong regions

6 Conclusions and Further Research

While watershed methods commonly appear in the summaries of ridge extraction
methods for Lagrangian coherent structures, they are often dismissed in favor of
local methods such as marching ridges. We have shown that their results are often
much smoother and less noisy than such local approaches, and should be considered
further.
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One of the main shortcomings of the watershed approach is that it does not detect
ridges that end at a minimum. Such an example might be a ridge descending from
the rim to the bottom of a crater. We plan to address such cases with a combination
of local and global combinations, using the local ridge definition evaluated on the
current sea-level coastline front of the V-S watershed method. This combination of
local and global ridge methods could yield the best of both worlds.

We have used a persistence measure as the criterion for hierarchical watershed
method to merge watershed regions based on ridge shallowness. This criterion
works well in many but not all cases, as illustrated in Fig. 10. Further analysis and
experimentation will be needed to explore new merging criteria to better preserve
the important ridges for LCS visualization.

We also plan to work on high performance streaming implementations of the V-
S and other watershed algorithms, updating earlier such work [14], as we as their
applications to larger, out-of-core datasets.
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Finite Time Steady 2D Vector Field Topology

Anke Friederici, Christian Rössl, and Holger Theisel

Abstract Vector Field Topology describes the asymptotic behavior of a flow in
a vector field, i.e., the behavior for an integration time converging to infinity. For
some applications, a segmentation of the flow in areas of similar behavior for
a finite integration time is desired. We introduce an approach for a finite-time
segmentation of a steady 2D vector field which avoids the systematic evaluation
of the flow map in the whole flow domain. Instead, we consider the separatrices
of the topological skeleton and provide them with additional information on how
the separation evolves at each point with ongoing integration time. We analyze this
behavior and its distribution along a separatrix, and we provide a visual encoding for
it. The result is an augmented topological skeleton. We demonstrate the approach
on several artificial and simulated vector fields.

1 Introduction

Vector Field Topology has been established as one of the standard approaches to
visualizing steady vector fields. Its main idea is simple and appealing: separate the
field into regions of similar asymptotic flow behavior. This way, even complex flow
structures can be represented by a low number of graphical primitives. In addition
to this separation, Vector Field Topology has an attractive property in terms of
computation: to get the whole segmentation, it is not necessary to consider every
point in the domain. Instead, only a few points in the domain have to be touched
(critical points, boundary switch points), and a few special stream lines starting
from these points (separatrices) have to be computed.

Several approaches have been proposed to extend Vector Field Topology to
unsteady fields. The main problem for this is that an asymptotic behavior cannot
be analyzed any more: unsteady fields usually allow an integration over a finite time
only. Lagrangian Coherent Structures (LCS) provide such a segmentation of the
field after a finite integration time. The perhaps most prominent example for LCS are
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ridge structures in Finite Time Lyapunov Exponents (FTLE) fields. In general, LCS
computation requires a dense computation of the flow map in the whole domain.

In recent years there are approaches to compute LCS of unsteady fields by
using steady Vector Field Topology [1, 42]. The main idea is to subtract a certain
background flow field (or consider a certain reference frame) and reduce this way
the computation of LCS of an unsteady field to the computation of steady Vector
Field Topology. While these approaches are appealing, they have a fundamental
problem: a segmentation for a finite integration time is computed by considering
the asymptotic behavior of another flow, i.e., by considering an integration time
converging to infinity. In general, integrating a (modified) field until infinity should
not be considered for unsteady fields because it works with information that is not
present in the data.

This paper solves the problem mentioned above: we present an approach to a
finite time flow segmentation in a steady 2D field where we do not have to evaluate
the flow map in the whole domain. (By applying a flow map evaluation everywhere,
the potential advantage of the approaches in [1, 42] is lost; in this case one could do
an LCS analysis of the original field directly without subtracting a certain flow.)
We start with the assumption that the relevant separation takes place along the
separatrices even for a finite integration time. For them, we compute the separation
perpendicular to the flow either in a local or in a discretized global way. The
results are characteristic functions (here called separation functions) which provide
information about the separation along a separatrix. After evaluating these functions
for a finite time and setting them in relation to their behavior when integrating
towards infinity, we provide a simple visual encoding for them. In summary, we
keep the benefits of steady vector field topology, which is stable and well-defined,
while adding a scalar separation quantity.

2 Related Work

Topological methods for 2D vector fields have been introduced to the visualization
community in [10]. Later they were extended to higher order critical points [27],
boundary switch points [2], and closed separatrices [43]. In addition, topological
methods have been applied to simplify [2, 3, 34, 35], smooth [41], compress [16,
17, 32] and construct [31, 39] vector fields. 3D topological feature are considered
in [6, 11, 18, 19, 33, 38]. State-of-the-Art-Reports on topological methods for flow
visualization can be found in [13, 20].

Topological methods can be applied only to steady vector fields because they
require an integration until infinity. For unsteady fields, Lagrangian Coherent Struc-
tures (LCS) have been established to find regions of homogeneous flow behavior.
One of the most prominent approaches for this is the computation of ridge structures
in FTLE fields, as introduced by Haller [7, 9]. To consider spatial separation only,
Pobitzer et al. [21] weighted FTLE values by their angle to the separation direction.
FTLE ridges were proposed for a variety of applications [8, 14, 29, 40]. Shadden
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et al. [28] showed that ridges of FTLE are approximate material structures, i.e.,
they converge to material structures for increasing integration times. This fact was
used in [25, 36] to extract topological structures and in [15] to accelerate the FTLE
computation in 2D flows. Also in the visualization community, different approaches
have been proposed to increase performance, accuracy and usefulness of FTLE as a
visualization tool [4, 5, 23, 24, 26].

In recent years approaches have evolved that aim at finding suitable moving
frames of the underlying coordinate system to study the flow [1, 42]. This way,
finite-time studies of time-dependent fields is lead back to a topological analysis of
a derived steady field. This paper targets towards these approaches: by being able to
analyze the finite-time behavior of steady fields without a dense sampling of the flow
map, we make steady topology an appropriate tool also for a finite-time analysis.

3 The Approach

We start with an argumentation why we restrict the search for separating structures
in steady flows to separatrices, i.e., the separating structures for integration times
converging to infinity.

While it is not formally proven yet that separatrices and separation structures of
LCS methods coincide [22], they behave similarly in general. The FTLE field and
topological skeleton of our most complex dataset is shown in Fig. 1. As can be seen,
the FTLE ridges and separatrices overlap.

(a) FTLE (b) Topological skeleton (c) Combined image

Fig. 1 FTLE field and topological skeleton of the ocean dataset. (a) Maximum of forward and
backward integrated FTLE. (b) Topological skeleton integrated starting from the saddles. (c)
Topological skeleton superimposed on FTLE image. The separatrices coincide with the FTLE
ridges
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Notation

In the following, we consider a 2D steady vector field v. Let J be its Jacobian. We
assume that J is bounded, i.e., kJk does not exceed a certain fixed maximal value in
the whole domain. Furthermore, let �.x; 	/ W R2 � R ! R2 denote the flow map
of v. Then a stream line is a parametric curve �.x; 	/ starting from x. The gradient
of the flow map is denoted r�. Furthermore we use the normalized perpendicular
vector field

w.x/ D 1

jjvjj
�
0 �1
1 0

�
� v.x/ : (1)

Note that w has unit length and is defined for non-critical points only. This is not a
serious restriction because stream lines starting in critical points do not leave them
and are not considered.

The Separation Function for Stream Lines

Given a stream line, we analyze the separation along it. For this we focus on a
separation perpendicular to the flow while removing the separation along the flow.
To consider the separation along the stream line �.x; 	/, we integrate a second
stream line �.x1; 	/ with the starting point

x1 D x C "1 w.x/

Then we consider ".	/ as the distance of �.x1; 	/ to the straight line �.x; 	/ C
� v.�.x; 	// for � 2 R:

".	/ D w.�.x; 	//T.�.x1; 	/ � �.x; 	//:
Figure 2 illustrates this. We define the separation function of the stream line �.x; 	/
as

s.x; 	/ D lim
"1!0

ln
".	/

"1
: (2)

Keeping in mind that

lim
"1!0

�.x1; 	/� �.x; 	/
"1

D r�.x; 	/ � w.x/ ;

(2) can be written as

s.x; 	/ D ln
�

w.�.x; 	//Tr�.x; 	/ � w.x/ � : (3)
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Fig. 2 Configuration for
defining s.x; 	/

Equation (2) already gives a way to numerically compute the separation function:
choosing a sufficiently small "1 for estimating the directional derivative of �, the
term ln ".	/

"1
is an approximation of s. However, its computation depends strongly on

the choice of "1. If "1 is too small, (2) may run into numerical problems. If "1 is too
large, x1 tends to move out of the linear neighborhood of x. Fortunately, there is a
localized version of s which avoids a discretization of the directional derivative of
the flow map:

s.x; 	/ D
Z 	

0

w.�/TJ.�/w.�/ dr (4)

with � D �.x; r/. In order to prove that (3) and (4) are identical, we have to show
that

@

@	

�
ln
�

w.�/Tr� w.x/
�� D .w.�//T � J.�/w.�/

with � D �.x; 	/. This can be shown by a straightforward application of elementary
differentiation rules.

Note that (4) has some similarities to the local FTLE computation in [12]. In fact,
[12] integrates the gradient of the flow map by a repeated matrix multiplication,
leading to the fact that integrated measures can exponentially grow/shrink with
increasing integration time. Contrary, (4) is a repeated addition of scalar values for
the numerical integration.

Also note that s does not necessarily capture the maximal distortion in the
neighborhood of a particle. Instead, it describes the distortion into one particular
direction: perpendicular to the flow direction. For the evaluation of s on separatrices
only, this derivative would generally give a close to maximal distortion.

Properties of the Separation Function We list some properties of s. They can be
shown by considering either (2)–(4).

• s.x; 0/ D 0 (follows from (2) and ".0/ D "1).
• s.x; 	/ grows at most linearly with increasing 	 . (To show this, we have to show

that ds
d	 is bounded. This follows directly from (4) and the boundedness of J.)



258 A. Friederici et al.

• s is additive: s.x; 	1 C 	2/ D s.x; 	1/C s.�.x; 	1/; 	2/ [follows from (4)].
• For two points x, y on the same stream line, their separation functions differ only

by a translation: let y D �.x; 	y/. Then s.y; 	/ D s.x; 	 C 	y/� s.x; 	y/ (follows
from the point above).

• s is inverted under backward integration: s.x; 	/ D �s.�.x; 	/;�	/ [follows
from (4)].

The Separation Function for Separatrices

Up to now, the separation function was defined for an arbitrary streamline. In this
section, we show that the separation function has a special behavior for separatrices
induced by a saddle point. Let x be on a separatrix, i.e., �.x; 	/ converges under
forward integration to a saddle point c for 	 ! 1. Then s.x; 	/ converges to a
linear function for 	 !1:

lim
	!1 s.x; 	/ D a 	 C b.x/ (5)

where the slope a is determined by the Jacobian Jc of v in the saddle point c. Let
�1 < 0 < �2 be the eigenvalues of Jc and e1; e2 be the corresponding normalized
eigenvectors. Then

a D .e?1 /T Jc e?1 (6)

where e?1 is the vector e1 rotated by �
2

that is perpendicular to e1.
Figure 3 gives an illustration. The proofs of (5) and (6) are obtained by in the

following way: since we are interested in the asymptotic behavior around a saddle,
we can consider a linear vector field having a saddle with the desired Jacobian at the
desired locations. Then the flow map and its derivatives can be written in a closed
form, allowing to show (5) and (6) by simple computations.

Fig. 3 Behavior of s.x; 	/ for a separatrix
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The parameter b.x/ can be considered as a measure on how far s is away from its
final linear behavior as 	 ! 1. We will use this parameter for characterizing the
separation. Note that for a particular point x on the separatrix, the computation of
b.x/ is cumbersome because it requires an accurate integration towards the saddle.
In order to get a more stable computation of b.x/, we formulate:

Theorem 1 Given are two points x, y on the same separatrix such that y D
�.x; 	y/. Then

b.y/ D b.x/C s.x; 	y/� a 	y:

The sketch of the proof is in Fig. 4. Theorem 1 provides a way to compute b along
a whole separatrix: given a saddle point c, we start the integration of the separatrix
at a point x0 D c C "0 e1. Note that "0 has to be chosen small enough such that
x0 can be assumed to be in the linear neighborhood of c. This assumption gives
b.x0/ D 0. From this we compute the separatrix by backward integration, i.e., we
consider �.x0; 	/ for 	 2 � �1; 0�. This way we get

b.�.x0; 	// D
(
0 for 	 � 0
s.x0; 	/ � a 	 for 	 < 0

where a is computed as (6). Note that b.x/ does not depend on the location of x as
long as x0 is in the linear neighborhood of the saddle.

Properties and Visualization of b

The number b.x/ for a point x on a separatrix is a measure of how the separation
behaves when x is integrated towards the saddle. It gives a measure of how far

Fig. 4 Sketch for proof of
Theorem 1
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the separation is away from the final asymptotic separation after integrating only
a finite time. In a linear neighborhood of the saddle we have b.x/ D 0: starting
an integration there leads to an exponential separation that is determined by the
eigenvalues of the Jacobian of the saddle. For x in a certain distance of the saddle,
b.x/ is a measure on how far x is from the final exponential separation for shorter
integration time. Note that b.x/ is not a local measure: instead it contains the essence
of the separation behavior for a finite integration time when starting at x.

In order to visualize b, we use the visual metaphor of a wall: instead of a 2D
separating line, we render an extruded 3D surface where its height is connected to
the strength of separation. For this, we introduce as height of the wall:

h.x/ D a ek b.x/

where k > 0 is a degree of freedom for the visualization. This way we have h.x/ D a
in a linear neighborhood of a saddle, denoting the strength of the local separation
at the saddle. The parameter k indicates how strong the height diminishment of the
wall is when b.x/ deviates from 0. A small k gives that the height of the wall reflects
strong deviation of b, a larger k brings the focus on small deviations of b from 0. We
show examples of different choices of k in Sect. 4.

Details and Implementation

We determine critical points and classify saddles in a preprocess using the standard
method [37] implemented in the Amira software [30]. They determine the starting
points of separatrices. The computation of s.x; 	/ requires the numerical solution of
an initial value problem.

We apply a standard Runge-Kutta method in two passes. The first step is a
standard streamline integration that yields a discrete curve representation of �.x; 	/
for starting at a point x0 near a saddle in the initial direction given by some
eigenvector of the Jacobian at the critical point. We use a fourth-order Runge-
Kutta method with step size adaptation that provides the streamline � as a cubic
C1-continuous spline. The second step integrates the projection of the directional
derivative, i.e., we apply the same Runge-Kutta method for the numerical integration
of a scalar field. Finally, b.y/, and thus the height function h.y/, is computed by
evaluating the separation function s.x0; 	/ for x0 and 	y. Note that the evaluation
is backwards in time (see discussion of Theorem 1), i.e., there is no need for a
reparametrization of � or s as both were in fact computed by backward integration.

For visualization, we use standard line integral convolution to provide a global
overview of the vector field v an underlying image. The separatrices are planar
curves in the image. We lift each separatrix by interpreting the values h.x/ as height;
this gives a second curve. We render all curves as tubes and connect the separatrix
and its lifted counterpart by semitransparent surfaces. The critical points are the start
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and end points of curves and are emphasized by cylindrical structures with height h.
Figure 6 shows an example.

4 Results

We compute and visualize the separation function for a number of vector fields.

Simple Example The first vector field is a piecewise linear function on a small
12 � 3 grid. The construction of the dataset is shown in Fig. 5. For each vertex of
the grid, we prescribe a vector such that bilinear interpolation in cells forms source
(left) and saddle (right), and the center region yields a converging flow. The next
Fig. 6 visualizes the separation function as described in the previous section. The
white tubes show the separatrix in the plane and lifted by the height function h, and
all pairs of curve are connected by semitransparent walls. Figure 7a shows the graph
of the separation function s.x; 	/ for the separatrix from the source to the saddle. It
shows, from left to right, that the flow is diverging from the source in the beginning.
Then there is region without separation followed by a region with converging flow.
As the separatrix approaches the saddle, s shows asymptotic behavior of a line. The
graph of h is parametrized over integration time. To visualize the distortion of the
space-time map 	x, Fig. 5 shows positions of equally spaced samples x0; : : : ; x3 of
the separatrix, and Fig. 7a shows the associated times 	vxi .

Figure 7b compares the graphs of the height function h for different values of the
user parameter k.

Random Grid Figure 8b shows results for a vector field generated from bilinear
interpolation of vectors that were randomly chosen at the vertices of a 5 � 5 grid.

Slice of Rayleigh-Bénard Convection Cells Figure 8a visualizes separation for a
vertical slice through a Rayleigh-Bénard convection. The selected region of interest
shows 16 critical points. The vector field is given as samples on a regular 64 � 64
grid, which are interpolated bilinearly.

Fig. 5 Construction of a simple vector field on a 12 � 3 grid with a source and a saddle and a
region of converging flow between. The velocity at the vertices are interpolated bilinearly within
grid cells
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Fig. 6 Visualization of separation function as “height” h. The planar and lifted separatrices are
connected by semitransparent walls

(a) Graph of s(x, τ) (b) Graphs of b and h for varying k

Fig. 7 Behavior of s and h. (a) Graph of separation function s along the separatrix. (b) Graphs
of two height function h for different values of k. Both heights h are a exponential function of b,
which is also shown

(a) Rayleigh-Bénard convection cell dataset (b) Random vector field

Fig. 8 Visualization of two datasets. (a) Vertical slice through a Rayleigh-Bénard convection cell
dataset with 16 critical points. (b) Separation walls for a random vector field interpolated on a 5�5
grid

Slice of an Ocean Simulation Figure 9 shows one slice from a simulation of the
south pacific ocean. One hundred and fifty critical points are present, from which
277 separatrices have been integrated. This number of walls being shown allows for
an overall image of the dataset as well as the analysis of single separating structures.
In the front of Fig. 9a the walls are significantly higher than in the back, while the
separation in the regions further away is so small that no wall is visible. This way,
the highlight is set to the relevant structures with high separation.
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(a) (b)

Fig. 9 Simulated ocean dataset with 150 critical points. (a) Visualization of the full dataset. (b)
Close-up on swirling structures

Figure 9b shows a close-up on the walls of some swirling regions. Their behavior
when moving near the critical point varies: some stay on a constant level, while
others show diminishing separation.

5 Discussion and Limitations

The separation function s depends on the choice of �0, which tells how far x0 D
cC �0e1 is located from the saddle, which in turn determines, how far the separatrix
is integrated forward in time starting from the source. For �0 ! 0we have 	x0 !1.
At the same time we constructed s such that it converges to a linear function as
�.x; 	/ approaches c. The slope of this line decreases for decreasing �0. However,
the exact slope is not of particular interest: All we require is arriving in the region of
asymptotic behavior of s, which is typically achieved for small �0. This is because
we are mainly interested in the behavior of b.x/, which is invariant to the slope of s
(and hence �0) and outside the region of asymptotically linear s.

We don’t visualize b.x/ directly but use an exponential scaling to obtain the
height function h.x/. This scaling introduces the additional parameter k. It steers
the exponential fall-off, which puts emphasis on different ranges of b.

The examples in the previous section range from simple constructed vector field
to one with moderately complex topology. While the proposed method would work
also for more and fairly complex vector fields, the visualization will not “scale”
well. There are two reasons for this. First, the rendering of walls as semitransparent
surface leads to problems with occlusion. This could partially be alleviated by
advanced rendering techniques, e.g., steering transparency, or simply by displaying
height walls only for selected separatrices. The second reason is more fundamental:
Generally, all topology-based visualization methods are known to work well as long
as the topological structure of the data is not too complex. This is the case, e.g., for
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noisy or turbulent vector fields. They typically show a vast number of critical points
and a complex network of separatrices that is not suited for direct visualization. Our
method shares this limitation with other topology-based visualization methods.

5.1 Future Research

As future research, the approach can be extended to 2D steady divergence-free fields
where a separatrix from a saddle re-enters the saddle again. Also, the finite-time
separation of other separating structures such as closed stream lines and boundary
switch curves should be analyzed. The extension to 3D is a challenging problem.
Here, the finite time behavior of separating surfaces has to be studied. By replacing
w in (1) by the normalized surface normal field of the separating surface, all
following computations hold for 3D as well. The actual challenge is the visual
representation of h.x/ since a wall-metaphor is not appropriate in 3D.

Acknowledgements We wish to thank Niklas Röber and Michael Böttinger from the DKRZ for
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Comparing Finite-Time Lyapunov Exponents
in Approximated Vector Fields

Stefan Koch, Sebastian Volke, Gerik Scheuermann, Hans Hagen,
and Mario Hlawitschka

Abstract In the context of fluid mechanics, larger and larger flow fields arise. The
analysis of such fields on current work stations is heavily restricted by memory.
Approximation limits this problem. In this paper, we discuss the impact of vector
field approximation on visualization techniques on the example of Finite-Time
Lyapunov Exponent (FTLE) computations. Thereby, we consider the results of
three different vector field compression approaches and analyze the reliability of
integration results as well as their impact on two different FTLE variants.

1 Introduction

Visualization is one of the most important tools for the investigation of complex flow
fields. Many different visualization approaches have been developed. These include
techniques ranging from the extraction and depiction of specific flow features such
as vortices [11, 12], to the computation of the topological structure of vector
fields [6, 20]. There also exist many methods to cluster vector fields [3, 18] or
compute simplified representations [1, 18]. Their main concern is to allow users
to get a good overview of the overall flow behavior. A detailed summary of
the most common visualization approaches can be found in these state-of-the-art
reports [9, 13, 15].

In order to handle increasingly large and complex simulation results, compres-
sion approaches have been introduced in the past [2, 8, 10, 19]. These algorithms aim
at a dataset size reduction to allow an easier transmission of datasets via networks
and a fast evaluation even on low-end computers. While small-scale flow features
could be lost during compression, large-scale features, as well as the global flow
characteristic, are preserved in most cases.
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Although the previous works provide an evaluation of the quality of their com-
pressed vector fields, they often approach their evaluations differently (cf. Sect. 2.1).
This makes a comparison of the advantages and disadvantages of the different
algorithms difficult. Furthermore, a comprehensive investigation of how vector
field compressions, respectively their corresponding approximation errors, influence
common integration-based visualization techniques has not been conducted, yet.

In this paper, we present a quantitative evaluation of the influence of the approx-
imation errors on streamline integration. Line Integral Convolution (LIC) [17]
images are used to contrast the quality of the approximated flow behavior and
to analyze the spatial distribution of the integration errors. The obtained results
are used to qualitatively discuss the applicability of a common integration-based
visualization methods on compressed vector fields on the example of Finite-Time
Lyapunov Exponent (FTLE). The underlying comparison approach can be used
to characterize the error distribution of the integration results between different
compression techniques.

2 Related Work

The main focus of our work is the comparison of the results of two FTLE variants
on vector fields that were compressed using different techniques. In the following,
we briefly review related work on vector field compression, as well as foundations
of the FTLE computation.

2.1 Vector Field Compression

Most vector field clusterings in literature aim at the computation of simplified
representations of a vector field, rather than to compress its dataset size. Lodha
et al. [10] first extended the clustering approach of Telea and Wijk [18] in order
to compute an error-bounded vector field compression that preserves the main
characteristics of the stationary points.

Later, Theisel et al. [19] introduced a vector field compression algorithm based
on an equivalence relation between topologies: two topological skeletons are
equivalent if they (1) have an identical set of stationary points, including the first
derivative at their positions; (2) have the same set of boundary switch points;
and if (3) all separatrices start or end in the same stationary point, respectively
enter or leave the domain in the same in- or outflow region. They compress the
vector field iteratively by simplifying the underlying grid using edge collapses.
A simplification is allowed only if the topology stays equivalent throughout the
change. Although the topology-aware compression algorithm of Theisel et al. [19]
achieves very high compression rates, it does not provide any error threshold that
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limits the rate of change of the local flow behavior. This can lead to large distortions
in the compressed vector field.

Platis and Theoharis [14] introduced a compression method based on iterative
vertex removal. For this, different metrics are evaluated to limit the domain and
field error, as well as to improve the mesh quality. Dey et al. [2] presented a similar
approach that operates on a Delaunay triangulation and limits the local relative
approximation error in the vector field. In contrast to Theisel et al., their algorithm
does not directly guarantee the preservation of the vector fields topology.

In order to provide an error-bound that retains the main characteristic of the
local flow and additionally preserves the vector field topology as one important
flow feature, Koch et al. [8] presented a compression algorithm that is based on
a region-wise linear approximation of the input field. The maximal approximation
error within each locally linearized region is bounded by an error threshold Emax.

All of these methods have been evaluated both visually and quantitatively. The
visual evaluations include a flow comparison by computing hedgehogs [10, 14],
streamlines [2], LIC [8, 19] and the topological skeleton [2, 8, 10, 19] for the
compressed and original fields. Also the compressed and uncompressed grids are
compared [8, 19] in order to study their quality. The quantitative evaluations involve
compression rates [2, 8, 10, 14, 19] and the distribution of the local approximation
errors in the resulting fields [2, 8, 10, 14]. There are also some brief comparisons
against each other: [19] compares against [10], [2] against [14], and [8] against [19].
However, there is no quantitative evaluation of the impact of the compression on
integration based visualization methods and also no comprehensive comparison
between multiple general approaches. In this paper, we study the integration error
and its visual impact on the example of FTLE images.

2.2 Variants of Finite-Time Lyapunov Exponents

A common visualization approach, which has been investigated in detail in the past
years, is FTLE as presented by Haller [5]. A FTLE field shows the rate of separation,
respectively convergence, of closely neighbored particles over the time. Since its
introduction, the basic FTLE computation was extended, for instances, to compute
the separation of flow from surfaces [4] up to the efficient extraction of separation
surfaces in three-dimensional fields [16].

Besides the common flow-map based FTLE (F-FTLE) computation, we will
use another variant: The Localized Finite-time Lyapunov Exponent (L-FTLE) of
Kasten et al. [7]. It uses a computation along pathlines that only depends on the
first derivative. An important advantage of this FTLE variant is that it is more robust
with respect to noise and, thus, might be well suited for compressed fields.
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3 Data Acquisition

We use different types of compression algorithms for our comparison. We focus on
topology-preserving and error-bounded compression techniques and want study the
influence of these properties on visualizations of the compressed fields. Thereby, we
compare the differently compressed fields against each other as well as against the
original, uncompressed vector field.

Two approaches are applied for this comparison: a quantitative statistical analysis
of the accuracy of streamline integration and a qualitative visual analysis of
visualization results. Both approaches are described in the following.

3.1 Quantitative Analysis of Streamline Integration

The goal of the quantitative analysis is to assess the impact of the compression on
the quality of integrations in the compressed field. This facilitates the comparison to
the original vector field and allows to obtain a quality measure for the compression
technique.

For this evaluation, we compare the deviation of streamlines in the compressed
vector field from streamlines in the original one. A natural concept that allows to
derive the deviation values is the flow map. The flow map stores the end point after
a certain integration time for every position in the field. To assure comparability
between the original and the compressed field, we use the grid points of the original
field as seed positions for both fields. The resulting flow map is stored on the grid
of the original vector field. So, the deviation of streamlines can then be derived as a
scalar field that contains the Euclidean distance of the particle end points between
the two flow maps. The resulting field shows how much the flow behavior differs
locally between the compressed and the uncompressed vector field.

As we are interested in the minimal and maximal deviation, as well as the
distribution of integration errors, we use box plots [21] and histograms to visualize
the flow map differences. Thereby, we can juxtapose the deviation distribution for
multiple integration times. In our examples, we focus on integration times that are
suitable for FTLE computations.

3.2 Qualitative Visual Analysis

For a qualitative comparison of different compression techniques, we compute
LIC images to visually compare the characteristic, topological flow patterns of the
original and compressed fields. Furthermore, to evaluate how well convergent and
divergent flow behavior is preserved, we also compare different FTLE images of the
compressed fields. From the previously computed flow maps, we obtain F-FTLE
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fields in a first step. Here, streamline integration instead of pathline integration is
used, to apply FTLE on steady fields. As a second FTLE variant, we compute the
L-FTLE fields. In contrast to the original implementation of Kasten et al. [7], we do
not use a precomputed and interpolated Jacobian field. We use the constant deriva-
tive that is given for each triangle cell, respectively for each linearly approximated
region.

4 Results

We now discuss the results of the flow map and FTLE computations described in
Sect. 3 on the basis of two real-world datasets: the Kármán vortex street and a two-
dimensional simulation of a jet stream. In the following, we describe the used dataset
and then present the results of (1) a topology-preserving non-error-bounded, (2) an
error-bounded non-topology-preserving, and (3) a topology-preserving and error-
bounded compression algorithm.

4.1 Datasets

4.1.1 Kármán Vortex Street

The Kármán vortex street is a well-known flow pattern that shows the flow
separation from an obstacle. In this dataset, the flow goes around a bar, which is
rotated by 45ı towards the inflow. After passing the obstacle, the flow shows a
characteristic periodic swirling. The original dataset is given on a triangulated grid
with 156,842 cells. Figure 1a, b show a LIC image and the F-FTLE image of this
vector field.

4.1.2 Jet Stream

The Jet Stream dataset shows a flow that enters the domain through a narrow
opening on the left side at a velocity of Mach 0:1. This produces an expansion
of the flow which results in a complex flow behavior with many vortices and small
turbulent flow structures. The original vector field is given on a triangulated grid
with 2,922,912 cells. Figure 1c, d show a LIC image and the F-FTLE image of this
vector field respectively.



272 S. Koch et al.

(a) (b)

(c) (d)

Fig. 1 LIC and F-FTLE images of the uncompressed, original Kármán vortex street (upper row)
and the Jet Stream dataset (bottom row). (a) LIC image of the Kármán vortex street. (b) F-FTLE
(dt D 3:0). (c) LIC image of the Jet Stream. (d) F-FTLE (dt D 4:0)

4.2 Topology-Preserving Compression Without Error-Bounds

As an example for a topology-preserving compression algorithm, we consider the
algorithm of Theisel et al. [19] and achieve very high compression rates of 99:9%
for the Kármán vortex street and 99:6% for the Jet Stream dataset.

First, we quantitatively analyze the integration errors. Figure 2a shows box
plots of the flow map differences for various integration times for the Kármán
vortex street. The errors are distributed mostly uniformly, as can be seen from the
underlying histograms. With increasing integration times the average as well as the
maximal error increases nearly linearly. Given the dimensions of the vector field of
20 by 4, we have a deviation of about 10% of the domain diameter at an integration
time of 3:0. Figure 3a shows the results of the quantitative integration error analysis
on the Jet Stream dataset. This field has a dimension of 25 by 20. Therefore, the
maximal error at an integration time of 4.0 is about 12% of the domain diameter.
However, the overall distribution of the errors is not uniform but concentrated near
the minimum. Three quarters of the data points have an error of below 0.9.

For a qualitative analysis of the compression results, we consider the visual
quality of LIC and F-FTLE images. Despite the high compression rate, both LIC
images in Figs. 2e and 3b show that overall flow patterns are preserved very well.
Especially in the Jet Stream dataset, the singularities, their region of influence as
well as their interaction is clearly visible and the image is very similar to the LIC
image of the uncompressed field (Fig. 1). Only the inflow area in the Jet Stream
dataset is obviously distorted.
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(a) (b)

(c) (d)

(e)

(f)

(g)

(h)

Fig. 2 In order to compare the integration results of the first two compression techniques, we
applied them to the Kármán vortex street. (a), (b) show the histogram of the error values in flow
map differences for multiple integration durations. The box plots mark their quartiles, the plus their
average and the circle their maximal value. (e)–(h) show LIC images and F-FTLE images of the
compressed vector fields. To analyze the distribution of the integration error in the compressed
field for an integration time of 3:0, we added iso-lines to emphasize the upper 25% (blue) and the
upper 5% (red) of all error values in the domain. Please note the different scale of the ordinate of
the shown error plots. Although the areas of the higher approximation error seem to cover large
parts of the domain, the overall error in (f) is much smaller compared to (e)



274 S. Koch et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 3 In order to compare the integration results of the used compression techniques, we applied
them to the Jet Stream dataset. (a), (c), (e) show the histogram of the flow map differences for
multiple integration times. The box plots mark their quartiles, the plus their average and the circle
their maximal value. (b), (d), (f) show the LIC images the compressed vector fields. To analyze
the distribution of the integration error in the compressed field for an integration time of 4:0, we
added iso-lines to emphasize the upper 25% (blue) and the upper 5% (red) of all error values in the
domain
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(a) (b) (c)

Fig. 4 These three images show the F-FTLE results for the Jet Stream dataset. The results were
computed for all compression techniques that are used in this work. An integration time of 4:0
and an error-bound of Emax D 0:1 was used. (a) Topology-preserving. (b) Error-bounded. (c)
Topology-preserving and error-bounded

We see the reason for these good results in the preservation of the topological
skeleton. When interpreting LIC images, the viewer focuses on well known flow
patterns, e.g., laminar or characteristic linear flow in the vicinity of stationary
points. Therefore, the perception of a LIC image is mainly sensitive to the number
and location of the stationary points. As these do not change during compression
because of the algorithm design, the overall quality of the LIC images remains very
good.

Figures 2g and 4a show the F-FTLE images of the Kármán vortex street
and the Jet Stream respectively. In both cases, we see strong artifacts from the
coarse underlying grid. Because Theisel et al. only aim at the construction of a
topologically equivalent compressed vector field, they remove features that are
not represented by the topological skeleton. Thus, the typical flow separation and
convergence of the Kármán vortex street has been removed as it can not be seen in
Fig. 2g. Only close to the bar and the topological skeleton, some features are still
visible, but a distortion is also noticeable in those areas. The F-FTLE results of the
Jet Stream dataset suffers from similar problems. By comparing Figs. 1c and 3b, one
can see that the compression causes a shift of the inlet towards the lower left domain
boundary. Therefore, the F-FTLE image is not only too coarse to see small features
but also shows high FTLE values in regions of nearly stagnating flow in the original
field.

FTLE images show divergence and convergence in the flow and thus are highly
sensitive to deviations in direction and magnitude of the vector field. Topology-
preservation only guarantees a preservation of the overall flow behavior in the
individual basins, but it does not necessarily preserve the course of the streamlines.
High deviations in the flow are still possible without altering the topology. There-
fore, the high compression rate has a significant impact on the quality of FTLE
images.
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4.3 Error-Bounded Compression Without
Topology-Preservation

Since FTLE computation on topology-preserved vector fields is affected by large
artifacts from the underlying coarsened grid, we study the results of the error-
bounded vector fields approximation algorithm that is presented by Koch et al.
in [8]. In order to study only the influence of the error-bound Emax on the vector
field approximation, we removed the topology-preservation from the algorithm.
This approach achieves compression rates of 97:8% for the vortex street and 99:2%
for the Jet Stream dataset that we used in Figs. 2 and 3. An error-bound of 0:1 is
used for the Kármán vortex street, respectively 0:4 for the Jet stream dataset.

Again, we first quantitatively analyze the integration error-based on the flow map
differences in the original and the approximated vector fields. The results in Figs. 2b
and 3c show strong differences to the results of the previous section. On both fields,
the maximal error is only about 1% of the field dimensions. On both fields, we see an
over-linear growth of the maximal error with integration time. However, the average
error grows much slower. When considering the distribution of the error values,
we see that the range of possible errors is dominated by outliers and the majority
of errors have a small magnitude. The associated LIC images (cf. Figs. 2f and 3d)
show that these outliers are concentrated around the main vortices and between the
inflow and the neighbored nearly stagnating flow. We expect only small integration
errors even with higher integration times, though we know that some artifacts will
be present due to the outliers.

The LIC images in Figs. 2f and 3d verify our assumptions. In case of the Kármán
vortex street, the typically swirling flow behind the rotated bar is better preserved
then in Fig. 2e. This is due to the fact that the error-bounded algorithm preserves a
higher number of cells (cf. Fig. 2c, d, which allows a more detailed approximation
of the original field while decreasing the compression rate. In contrast to the simple
flow characteristic of the vortex street, which is well preserved, the approximation
of the Jet Stream shows strong differences. Figure 3d shows that the inflow as well
as the main vortices are correctly approximated. But since the topology is very
sensitive against vector field perturbations, one can clearly see changes of the vector
fields topology. Especially in the lower part of the field, the weaker vortices begin
to vanish at an error threshold of 0:1. So, depending on the chosen error threshold,
the topology can change significantly and LIC images can no longer give reliable
information of the main global flow behavior.

The F-FTLE results in Figs. 2h and 4b are very similar to the corresponding
images of the original fields in Fig. 1. All main features of the original F-FTLE fields
are preserved. Especially in case of the Kármán vortex street, the characteristic flow
separation and attachment behind the obstacle are very well perceptible. This is due
to the fact that the local error threshold limits the allowed magnitude and angle
changes that are introduced by the compression approach. These findings are also
indicated by the small error magnitudes that we find in the flow map differences
(Figs. 2b and 3c). We did not expect this result because vanished saddle and center
points should result in much higher integration errors theoretically. But there are also
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clearly visible artifacts, especially in the case of the Jet Stream. These are probably
caused by the outliers that are visible in the error plots. The position of the artifacts
correspond to the areas of maximal error in the LIC images (Figs. 2f and 3d). These
areas also correspond to the boundaries of the linearly approximated regions that
are used by the algorithm [8], which, by the design of the algorithm, tend to have
the largest errors.

4.4 Error-Bounded Topology-Preserving Compression

As a synthesis from the previous sections, we apply the original approximation
algorithm of [8] to the datasets. This algorithm combines the topology-preservation
approach of Theisel et al. with an error-bound. We achieve compression rates
between 92:3% (for Emax D 0:1) to 94:8% (for Emax D 0:4) for the Kármán
vortex street and compression rates between 99:5% (for Emax D 0:02) to 96:0%
(for Emax D 0:1) for the Jet Stream dataset.

Similar to the error-bounded approach without the topology-preservation, the
error distributions in Fig. 3e show fast increasing error outliers and a slow increasing
average error over integration time. Also the location and the extent of the regions
with the highest error are similar. Thus, the topology-preservation has no further
influence on the error distribution in this case. However, the LIC images clearly
show that all features of Fig. 1c could be preserved. The inflow could be correctly
approximated as well as all topological features. Also the F-FTLE fields in Fig. 4b,
c look nearly the same. This is due to the fact that the same error measure was used,
which locally limits the magnitude and angle differences between the approximated
the original field.

We use this compression method to study FTLE on compressed fields in more
detail. First, we investigate the influence of the integration times. Figure 5 shows
a sequence of F-FTLE results of the Kármán vortex street for different integration
times. Counterintuitively, longer integration times lead to smoother F-FTLE images.
Whereas the highest integration time theoretically leads to the most error-prone
image, these images also contain nearly no visual artifacts of the underlying
coarse region-wise linearly approximated vector field. Compared to that, the smaller
integration times are more precise and lead to a coarser looking result, since shorter
integration times emphasize the transitions between to neighbored linearizations.
Given the overall small integration error, we can still consider the results with high
integration times reliable.

Second, we applied the L-FTLE algorithm to the compressed fields. L-FTLE
is expected to compensate discontinuities at cell or linearly approximated region
boundaries. The results for the Jet Stream dataset are shown in Fig. 6. While
on the original field, L-FTLE leads to sharper images (cf. Figs. 1d and 6c), on
the compressed fields it appears to emphasize artifacts. These outweigh the flow
features, so that the images cannot be interpreted correctly anymore. We assume
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(a) (b)

(c) (d)

Fig. 5 F-FTLE images of the error-bounded, compressed Kármán vortex street (the topology-
preserving and error-bounded algorithm was used with Emax D 0:1) for different integration
lengths. The main flow features can clearly be seen in all four images. However, the result appears
to be much smoother with longer integration times. (a) dt D 0:75. (b) dt D 1:50. (c) dt D 2:25.
(d) dt D 3:00

(a) (b)

(c) (d)

Fig. 6 These two images show a comparison of the L-FTLE results computed on the uncom-
pressed Jet Stream dataset (left) and its error-bound compression (right). The result of the
compressed field clearly shows artifacts of the region-wise approximation. (a) dt D 3:0. (b)
Emax D 0:4; dt D 3:0. (c) dt D 4:0. (d) Emax D 0:1, dt D 4:0

that this is a consequence of the coarse, piece-wise linear vector field approximation,
especially the piece-wise constant Jacobian.

5 Discussion

We found that the two criteria, preservation of topology and a bounded approxima-
tion error, have a different impact on the resulting compressed field with respect to
the achieved compression rate as well as on the preserved flow features. The best
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compression rates can be achieved when no error-bound is used. This is shown
by the results of Theisel et al. [19]. The introduction of an error-bound has a
large negative impact on the compression rate. The worst compression rates were
achieved when fulfilling both criteria.

Depending on the flow features that should be preserved by the compression,
the different compression algorithms have their advantages and disadvantages. In
order to preserve the topology, either the topology has to be preserved explicitly,
or an appropriately small approximation error has to be used (cf. Dey et al. [2]).
When the compressed fields are mainly used for the generation of LIC images, the
preservation of topology seems to be the more important compression criterion. For
non-topological flow features, such as convergence and divergence, a suitable error-
measure should be used, e.g., one that limits the deviation of flow direction.

The integration error that results from the compression not only depends on the
vector field itself but on the design of the particular compression algorithm. Error-
bounded algorithms show a characteristic small number of high error outliers, which
are located at the transitions between the linearly approximated regions.

In every case, the integration error increases with longer integration times,
because the error accumulates along the streamlines. On the other hand, longer
integration times lead to smoother FTLE images with less visual artifacts in our
examples. Since the overall error is higher in these images, they are also less reliable.
Therefore, the integration time is not only one of the most important parameters of
the FTLE computation, here it also controls the trade-off between the visual appeal
of the images and their correctness. As long as the integration error in the flow maps
remains in the scale of the cell resolution, a meaningful preview of the original
dataset can be obtained, as shown in the examples of Sect. 4.4.

6 Conclusion and Future Work

In this work we compared three different vector field compression algorithms
with respect to their applicability in vector field visualization. One method with
an unbounded approximation error results in very high compression rates while
preserving the vector fields topology. The others limit the local vector field
deviation—and also the compression rate—by using a user-defined error threshold.
In particular, we compared the quality of the flow map computation in uncom-
pressed and compressed vector fields as well as the results of FTLE computations.

We showed, that topology-preservation is not sufficient to preserve flow features.
Additionally, a mechanism to control the overall approximation error is needed.
The quality of the integration results as well as the computed FTLE images of
compressed vector fields largely depends on the used error-bounds, respectively the
compression rates. Our results suggest that error-bound and topology-preservation
are orthogonal concepts and establish a design space for compression methods.

For future work, more datasets and vector field compression techniques could
be investigated to extend the comparison of the different algorithm approaches and
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further investigate the design space: An interesting question is, whether there is
a characteristic development of the error distribution with increasing integration
times for a particular compression method and which properties of the method are
causing it. Such research appears to be possible, since we have seen characteristic
error distributions for the individual algorithms. Further, it could be possible to
develop a guideline that helps to decide, which compression techniques can be used
to facilitate certain visualizations or analysis tasks on compressed vector fields.
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Transfer Operator-Based Extraction
of Coherent Features on Surfaces

Kathrin Padberg-Gehle, Sebastian Reuther, Simon Praetorius, and Axel Voigt

Abstract Transfer operator-based approaches have been successfully applied to the
extraction of coherent features in flows. Transfer operators describe the evolution of
densities under the action of the flow. They can be efficiently approximated within a
set-oriented numerical framework and spectral properties of the resulting stochastic
matrices are used to extract finite-time coherent sets. Also finite-time entropy,
a density-based stretching quantity similar to finite-time Lyapunov exponents, is
conveniently approximated by means of the discretized transfer operator. Transfer
operator-based computational methods are purely probabilistic and derivative-free.
Therefore, they can also be applied in settings where derivatives of the flow map
are hardly accessible. In this paper, we summarize the theory and numerics behind
the transfer operator approach and then introduce a straightforward extension, which
allows us to study coherent structures in complex flows on triangulated surfaces. We
illustrate our general computational framework with the well-known periodically
driven double-gyre flow. To demonstrate the applicability of the approach for
complex flows, we consider an approximation of the surface ocean flow, obtained
by a numerical solution of the incompressible surface Navier-Stokes equation in a
complicated geometry on the sphere.

1 Introduction

Transfer operator-based methods within a set-oriented numerical framework have
only recently been recognized as powerful computational tools for analyzing
and quantifying coherent structures and transport processes in time-dependent
dynamical systems.

Of key interest are regions in the phase space of a nonautonomous dynamical
system that remain coherent under the action of the flow. Almost-invariant sets
[2, 6, 8] are spatially fixed regions, while coherent sets [7, 10, 11] move about with
minimal dispersion. Almost-invariant and coherent sets can be efficiently identified
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via Perron-Frobenius operators (transfer operators). Recently, a unified functional
analytic setting for optimal almost-invariant and coherent set constructions has
been developed [10]. Transfer operators are linear Markov operators that can be
approximated within a set-oriented framework [2]. Leading eigenvectors or singular
vectors of the resulting stochastic matrices are heuristically used to determine the
phase space structures of interest.

Transfer operators can also be employed to estimate finite-time expansive
behavior along trajectories in autonomous and nonautonomous dynamical systems.
Finite-time entropy (FTE) captures nonlinear stretching directly from the entropy
growth experienced by a small localized density evolved by the transfer operator.
In other words, FTE measures the increase in uncertainty of a small perturbation
in the initial condition under the action of the flow and thus gives similar results
to finite-time Lyapunov exponent calculations. Within the set-oriented approach an
approximation of the FTE-field is obtained very efficiently and without relying on
derivatives of the flow map. The FTE-concept has been introduced in [9], see also
[18] for related previous work.

In this paper, we will sketch the theory and numerics behind the transfer operator
approach. In addition, we will demonstrate how such probabilistic methods can
be extended to highlight coherent features in complex flows approximated on
unstructured grids. We begin by briefly reviewing the transfer operator framework
in Sect. 2. In Sect. 3 the numerical approximation of such operators within a set-
oriented approach is described and as well as the extension to flows on triangulated
surfaces. The discretized transfer operator is the fundamental tool for the extraction
of coherent sets and transport barriers and we will introduce the respective
approaches. In Sect. 4 we will illustrate these methods in two example systems.
First, we will apply our computational framework to the well-known periodically
driven double-gyre flow. Second, we consider an approximation of the global ocean
surface flow obtained by the numerical solution of the incompressible surface
Navier-Stokes equation in a complex geometry on the sphere [20] and highlight
transport barriers and coherent sets. We will conclude with a short discussion and
outlook in Sect. 5.

2 Nonautonomous Dynamics, Transfer Operators
and Transport

We consider a nonautonomous differential equation

Px D u.x; t/ (1)

with state x 2 M � R
d, time t 2 R and sufficiently smooth right-hand side u

such that the flow map ˚.x; tI 	/ W M � R � R ! M, M � R
d exists; here

	 denotes the flow time and t the initial time. We are interested in extracting
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and visualizing coherent subsets of M, i.e. mobile regions in M that minimally
mix with the surrounding phase space. Coherent structures and their boundaries
provide a time-dependent skeleton of the dynamics, similar to invariant manifolds
of hyperbolic fixed points in autonomous dynamical systems.

Many approaches are based on finite-time Lyapunov exponents

�	.x; t/ D 1

2j	 j log
�
�maxŒDx˚.x; tI 	/>Dx˚.x; tI 	/�

�
: (2)

Ridges in these scalar fields are frequently used to approximate transport barriers in
the flow [14, 22]. This often heuristically applied concept has been recently set on
a sound mathematical basis [15]. Finite-time Lyapunov exponents have also been
successfully used for the Lagrangian visualization of flow structures [12, 13].

Probabilistic approaches aim at a direct extraction of finite-time coherent sets by
solving an optimization problem. To be more precise, one seeks to find pairs of sets
.At;AtC	 / such that


.At;AtC	 / D �.At \ ˚.AtC	 ; t C 	 I �	//
�.At/

(3)

is maximal under some constraints (conservation of mass, robustness with respect to
perturbations). Such constraints are necessary to regularize the essentially ill-posed
optimization problem [7]. Here � is a reference probability measure on M at time t.
Equation (3) measures the proportion of the set At at time t that is mapped to the set
AtC	 at time tC 	 . One seeks to find sets such that AtC	 
 ˚.At; tI 	/. This problem
can be solved by considering the Perron-Frobenius operator Pt;	 W L1.M;m/ !
L1.M;m/ associated with the flow map ˚ , where m denotes Lebesgue measure. The
transfer operator is defined by

Pt;	 f .x/ D f .˚.x; tC 	;�	//
j detD˚.˚.x; tC 	;�	/; t; 	/j (4)

The interpretation is that if f is a density and f .x/ the density value in x at time
t, then Pt;	 f .x/ describes the density value in ˚.x; tI 	/ at time t C 	 induced by
the flow map. In [7, 10] it was shown that maximizing 
 can be described in the
framework of optimizing an inner product involving a compact self-adjoint operator
obtained from Pt;	 . In order to avoid the technical functional analytic description
underlying [7, 10], we will briefly recall the concept of finite-time coherent sets in
the finitary setting in Sect. 3.2. This will be based on a finite-rank approximation of
Pt;	 in terms of a stochastic matrix, which will be introduced in Sect. 3.1 (see also
[11]).

Pt;	 may also be used to derive a stretching measure, termed finite-time entropy
(FTE). It is similar to finite-time Lyapunov exponents and based on the concept of
differential entropy h. f / D � R˝ f log f dm, where˝ is the support of the density f .
Note that on a given domain˝ , the uniform density maximizes h.
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For a given initial condition x0, let f�;x0 WD .1=m.B�.x0///1B�.x0/
denote a uniform

density supported on B�.x0/, a ball of radius � about x0. An �-smoothing operator is
defined by A�f .x/ WD .1=m.B�.x///

R
B�.x/

f dm.
The rate of increase in entropy experienced in the �-neighborhood of x0 over the

time span Œt; t C 	� of the �-perturbed dynamics can now be described by

FTE�.x0; tI 	/ WD 1

j	 j Œh.A�Pt;	 f�;x0 /� h.f�;x0 /�: (5)

Note that FTE� takes high values when the evolved density A�Pt;	 f�;x0 is very spread
out. To be more precise, FTE� measures nonlinear stretching and the resulting
quantity is very much determined by the sum of the positive finite-time Lyapunov
exponents w.r.t x0. Thus, especially in the relevant setting of two-dimensional
divergence-free flows, it can be well compared with finite-time Lyapunov exponents.
In [9] several properties of FTE� and its deterministic limit lim�!0 FTE� have been
derived. In Sect. 3.3 we will outline a very efficient set-oriented approximation of
the FTE-field.

3 Set-Oriented Numerical Framework

We now describe a set-oriented numerical framework for the approximation of the
nonautonomous Perron-Frobenius operator in terms of a transition matrix of a finite-
state Markov chain. The discretized transfer operator is the basis for extracting
coherent sets (Sect. 3.2) and for the computation of FTE-fields (Sect. 3.3). In
Sect. 3.4 we discuss how these approaches easily extend to the case of flows on
a triangulated surface.

3.1 Approximation of Transfer Operator

Following [11], we consider some compact subset X � M and a small neighborhood
Y of ˚.X; tI 	/. Let fB1; : : : ;Bkg be a partition of X, fC1; : : : ;Cng a partition of
Y. The partition elements are typically generalized rectangles, but other settings
are possible. Applying Ulam’s method [23], a finite-rank approximation of Pt;	 W
L1.X;m/! L1.Y;m/ is given via the transition matrix

Pij D m.Bi \ ˚.Cj; tC 	 I �	//
m.Bi/

; i D 1; : : : ; k; j D 1; : : : ; n (6)
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where we drop the t and 	-dependence of P for brevity. In practice the entries Pij of
the transition matrix P are estimated via

Pij 
 #fr W ˚.zi;r; tI 	/ 2 Cjg
R

; (7)

with uniformly distributed sample points zi;r; r D 1; : : : ;R chosen in each partition
element Bi, i D 1; : : : ; k. So Pij describes the conditional probability that a point
chosen at random in Bi will be mapped to Cj under the action of ˚.�; tI 	/. Note that
P is a sparse, row-stochastic matrix and thus all its eigenvalues are contained in the
unit circle.

The interpretation of the P-induced dynamics is that if p � 0 (component-
wise) is a probability vector (

P
i pi D 1), then p0 D pP is the push-forward of p

under the discretized action of ˚.�; tI 	/. Note that the numerical scheme introduces
diffusion—which is also theoretically needed for robust results [7, 10].

3.2 Extracting Finite-Time Coherent Sets

Consider a reference probability measure � on X at time t, which is discretely
represented as a probability vector p with pi D �.Bi/, i D 1; : : : ; k. The image
probability vector on Y at time t C 	 is then simply computed as q D pP. We
assume both p > 0 and q > 0 (component-wise) and form a normalized matrix L
via

Lij D piPij

qj
: (8)

This matrix has the property that 1RkL D 1Rn . In [7, 11] it was shown that (under
some technical assumptions) the problem of finding optimal coherent sets can be
approximated by considering the left eigenvectors w2 2 R

k of LL� and Ow2 2 R
n of

L�L to the second largest eigenvalue �2 < 1. Here L� D P>. Note that these two
eigenvalue problems can be turned into the task of finding leading singular values
and corresponding left and right singular vectors of a sparse matrix (see [11] for the
exact construction), which can be very efficiently computed by iterative schemes
(e.g. svds in MATLAB). The signed vector entries of w2 and Ow2 can be interpreted
as relaxations of indicator functions of the sets At and AtC	 and their complements.
Thus the vector w2 defines fuzzy coherent sets on X, whereas Ow2 represents their
image on Y. Optimal partitions of X and Y into finite-time coherent pairs can be
approximated via a line search in w2 and Ow2 [10, 11], but plotting these vectors will
already give a good visual impression of the location of coherent sets.
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3.3 Set-Oriented Computation of FTE

In the discrete context, densities (which are central to the FTE-construction
in Eq. (5)) are now represented by discrete probability measures �. Thus, the
entropy of a probability vector p with pi D �.Bi/, i D 1; : : : ; k, is sim-
ply H.p/ D �Pn

iD1 pi log pi. Under the assumption that all partition elements
fB1; : : : ;Bkg are of equal volume, let ıi be an k-vector with 1 in ith position and
0 elsewhere. Then the discrete FTE of a partition set Bi is given by

FTE.Bi; tI 	/ D 1

j	 jH.ıiP/ D �
1

j	 j
nX

jD1
Pij logPij: (9)

In case of differing box volumes the equation reads

FTE.Bi; tI 	/ D � 1

j	 j

0
@ nX

jD1
Pij log

Pij

m.Cj/
C logm.Bi/

1
A : (10)

In addition, one may obtain stretching rates for the backward-time dynamics (i.e.
from t C 	 to t) directly from the forward-time computation. For this consider QP 

PtC	;�	 that approximates the backward-time evolution where

QPji D m.Bi \˚.Cj; tC 	 I �	//
m.˚.Cj; tC 	 I �	// D m.Bi/PijPk

iD1m.Bi/Pij

; (11)

i.e. QP is computable directly from P and m.Bi/, i D 1; : : : ; k. We denote the FTE-
field obtained from QP by eFTE.

Note that once the transition matrix P has been computed, FTE-fields (5) can be
very quickly approximated by application of Eqs. (9) or (10). In particular, we do
not require to explicitly push forward probability densities with P. This is in contrast
to the related uncertainty estimation proposed in [19].

3.4 Extension to Flows on Triangulated Surfaces

In order to calculate coherent sets for flows on closed oriented 2-manifolds � , i.e.
surfaces of co-dimension one embedded in R

3, we consider a partition Sh.� / of �
that approximates the surface. We assume that Sh.� / is a conforming triangulation
consisting of triangles, such that

�h WD
[

S2Sh.� /

S � R
3
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forms a polytope, with v 2 � for all vertices v 2 Sh.� /. Additionally, we assume
the surface � to be fixed, so in the construction of the approximate transfer operator
outlined in Sect. 3.1 one only needs to consider a single partition.

The transfer operator Pt;	 W L1.�;m/! L1.�;m/ is approximated via

Pij D m.Si \˚.Sj; tC 	 I �	//
m.Si/

where Si denotes the i-th triangle in the triangulation Sh.� / and m Lebesgue
measure on �h.

The surface � is assumed to be oriented, thus also its approximation �h. This
orientation is given by the local numbering of the vertices vS of the triangles S in
Sh. So one can calculate the outward normal nS to each triangle S 2 Sh.� /, by

OnS WD .vS
1 � vS

0/ � .vS2 � vS0/; nS D OnS

kOnSk2 ;

where the area of the triangle is given by m.S/ D 1
2
kOnSk2.

A simple approach to define a normal in each vertex of �h that approximates the
normal of � in this point is a weighted averaging over normals of adjacent triangles.
Let S .v/ WD fS 2 Sh.� / W v 2 Sg, where v 2 S means that v is a vertex of S. The
vertex normal n.v/ is then given by

n.v/ WD
P

S2S .v/
nS
m.S/P

S2S .v/
1

m.S/

:

In order to approximate the flow map ˚.S; �; �/ that maps points in S to points in
another triangle S0 2 Sh, we first map a point x 2 �h to a point Ox 62 �h and project
Ox back to the polytope.

Let OS WD argmin .dist.Ox; S/ W S 2 Sh/ be the triangle closest to Ox and let

Oy WD argmax
�
kyik2 W yi D Ox � vOSi ; i D 0; 1; 2

�

be the longest edge connecting Ox to the vertices of OS. Then we define the projection
�h W U ! �h, where U is a neighborhood of �h, by

�h.Ox/ WD Ox � nOS.nOS � Oy/ 2 �h:

In order to obtain an approximation ˚h W �h � R � R ! �h for the flow map
˚ W � � R � R! � using the triangulated surface �h and the projection operator
�h, we have to construct a time integration scheme on �h. With stepsize�t one step
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of the Euler scheme followed by projection is given by

O̊h.xt; tI�t/ D �h .xt C�tu.xt; t// ; (12)

for the nonautonomous system Px D u.x; t/, with a given velocity field u and initial
condition x.t/ D xt. We note that the error in the projection step is negligible
compared to the local truncation error of the Euler scheme. The approximate flow
map ˚h.�; t; t C 	/ is then obtained in terms of the respective sequence of Euler
steps O̊h. Let u be only represented by discrete values at the vertices of �h, then
the evaluation of u.x; t/ is given by a linear combination of the vertex values. To
be more precise, let x D �0 vS0 C �1 vS1 C �2 vS2 be the representation of x 2 �h in
barycentric coordinates (with �0 C �1 C �2 D 1), then

u.x; t/ D �0 u.vS
0; t/C �1 u.vS1; t/C �2 u.vS2; t/:

The Euler-based integration scheme described here is only of order one and
should therefore only be seen as a simple means to compute an approximate flow on
a triangulated surface. This will be sufficient for the purpose of demonstrating the
application of the transfer operator approach in Sect. 4.2, where only a modest flow
time is needed. For studies that require higher numerical accuracy and longer flow
times more sophisticated integration schemes should be used.

4 Examples

4.1 Double-Gyre Flow

As a benchmark problem for analysing flow structures, we consider the time-
dependent system of differential equations [8, 22]

Px D ��A sin.�f .x; t// cos.�y/ (13)

Py D �A cos.�f .x; t// sin.�y/
df

dx
.x; t/;

where f .x; t/ D ı sin.!t/x2 C .1 � 2ı sin.!t//x. We choose A D 1, ı D 0:25,
! D 2� and obtain a one-periodic flow. The FTLE fields at t D 0 for flow times
	 D 1 and 	 D 2 are shown in Fig. 1, highlighting parts of the stable manifold of
a hyperbolic periodic orbit on the x-axis. This invariant manifold serves as a major
transport barrier.

For the transfer operator approach we partition the domain M D Œ0; 2�� Œ0; 1� by
n D 32768 D 215 square boxes. We form matrices Pi, i D 1; : : : ; 5 by integrating
with a fourth-order Runge Kutta scheme with constant stepsize h D 0:01 over the
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Fig. 1 FTLE fields on Œ0; 1� and on Œ0; 2� highlight parts of the stable manifold of a hyperbolic
periodic orbit

time intervals Ii D Œ.i � 1/	; i	�, i D 1; : : : ; 5, where 	 D 0:2, using K D 100

uniformly distributed test points per box (inner grid points). The corresponding
algorithms are implemented in the software package GAIO [3]. The product of
matrices Q D P1P2P3P4P5 approximates the transfer operator on the time interval
Œ0; 1�. As the flow is periodic, Q2 does so on Œ0; 2�. Note that we could also have
approximated the transfer operator by forming a matrix directly over the interval
Œ0; 1�. However, again due to the periodicity, the concatenation of matrices allows
us to easily change the intervals under consideration without any additional matrix
approximations (which is the expensive part of the approach). Different FTE-fields
extracted from the transition matrices are shown in Fig. 2 and they compare well
with the FTLE fields in Fig. 1. We obtain the time-reversed FTE-fields (eFTE) by
simple manipulation of the transition matrix according to Eq. (11). These pick up the
unstable manifold emanating from the periodic orbit located on the upper boundary
of M, see second row in Fig. 2.

We can also extract coherent sets via the vectors w2 and Ow2 as described
in Sect. 3.2. Lebesgue measure on M is taken as the reference measure. The
corresponding coherent pairs are shown in Fig. 3. Here, negative and positive entries
indicate the location of the two coherent pairs. Note that they align well with the
transport barriers highlighted by FTLE or FTE.

Finally, we consider the stochastic differential equation (SDE)

dXt D u.Xt; t/dtC ıh.Xt; t/dWt; (14)

with u being the right-hand side of (13), ı D 0:001, h � .1; 0/>, and W denoting a
Wiener process. We impose periodic boundary conditions and integrate the SDE on
Œ0; 1� with an Euler-Maruyama scheme with stepsize h D 0:01. The resulting paths
are then used to set up the transition matrix as before—without any postprocessing.
Again large FTE values are found in the vicinity of the major transport barrier
(Fig. 4).
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Fig. 2 Finite-time entropy fields computed on different intervals take high values in vicinity of
major transport barriers

Fig. 3 Finite-time coherent sets on Œ0; 1� are highlighted by the left and right second singular
vectors w2 and Ow2 of a reweighted transition matrix as described in Sect. 3.2

4.2 Ocean Flow

In [20] we have derived a simple two-dimensional model for fluid motion in the
surface ocean, which is just driven by the Coriolis force. The basis is an incom-
pressible surface Navier-Stokes equation with no-slip boundary conditions along
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Fig. 4 Finite-time entropy field FTE.	; 0; 1/ for the stochastic double gyre flow (14)

the continental borders. A diffuse domain approach [16] is used to describe the
complex geometry on the whole spherical surface. The no-slip boundary condition
is incorporated through a penalty like term. The equations now read

@tuC u � r� uC �n � uC �

�3
.1 � �/u D �r� pC �

�
�R
� uC 2Ku

�
on �

r� � u D 0 on �

with � a two-dimensional surface, u the velocity vector, p the pressure, K the
Gaussian curvature, r� the surface gradient, �R

� the Laplace-de Rham operator
or Hodge-de Rham Laplacian, � D 2! sin � the Coriolis parameter, ! the angular
frequency, � the latitude, n the surface normal, � the viscosity, � a small parameter,
and � a phase-field variable representing the continental and oceanic phases. For
more details—also on the choice of parameters—we refer to e.g. [16, 17, 20].
Following [17], we can derive a convenient vorticity-stream function formulation,
which reads

@t� C J. ; � C �/� �

�3
r� � ..1 � �/r�  / D �.�� � C 2r� � .Kr�  // on �

(15)

��  D � on �

where  denotes the surface stream function, � the surface vorticity, J. ; �/ D
.n�r�  / �r� � the Jacobian and�� the Laplace-Beltrami operator. In the special
case of the two-dimensional x-y-plane as the underlying geometry, the model agrees
very well with common benchmark computations [21] and computations in multiply
connected domains [1]. Note that the velocity field u can be retrieved from the
stream function  by the relation u D r�  � n.

The system (15) is numerically solved using adaptive parametric finite elements
[4, 5, 24]. Within the finite element toolbox AMDiS [24], we use a domain decom-
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position approach and a parallel iterative solver BiCGStab(ell). For all simulations
the unit sphere S2 � R

3 serves as a simple representation of the earth. Moreover, an
initial condition is chosen that includes the typical flow direction in the oceans to the
west near the equator and to the east near the polar circles. The respective analytical
form is given by  0.x/ D 1

10
x3.1 � x23/ with x D .x1; x2; x3/T 2 � D S2 � R

3,
which ignores the appearance of the continental borders. We therefore need an
initialization phase to fulfill the internal boundary conditions.

The stream function that we obtain numerically as a solution of Eq. (15) turns
out to be nearly stationary. For the sake of simplicity, we consider a stationary
velocity field derived from a time average of the stream function for our further
investigations. Figure 5 (top) shows the time averaged stream function in terms of
streamlines as well as the respective flow direction. The major flow structures—
especially in the Indian, Pacific, Atlantic as well as in the Southern Ocean—can be
observed and agree qualitatively with the known global circulation patterns.

To further visualize these major circulation patterns, we make use of the transfer
operator-based approaches introduced in Sects. 2 and 3. As we have an autonomous
velocity field, the coherent structures extracted by means of these methods should
be aligned with streamlines and therefore our simplified setting is particularly suited
for providing a proof of concept. We approximate the flow map numerically using
the explicit Euler scheme (see Eq. (12)) with step size �t D 0:1 and flow time
	 D 50 with respect to the approximated velocity field on the triangulated surface.
The matrix entries Pij are estimated using 105 uniformly distributed test points per
triangle Si 2 Sh and counting how many of them are mapped to Sj 2 Sh, i; j D
1; : : : ; k with k D 50802. Note that the complete triangulation of � consists of
445812 triangles, but most of them are irrelevant for our probabilistic study (e.g.
continents, highly resolved coastlines). We plot both FTE.�; tI 	/ and eFTE.�; tI 	/ see
Fig. 5 (bottom). In fact, the FTE-fields nicely highlight the boundaries of the major
oceans and also the circulation patterns of the Antarctic Circumpolar Current, which
are also clearly visible in the respective plots of the time averaged stream function
(Fig. 5 (top)).

Using the same matrix P from the FTE-study, we can also visualize finite-time
coherent sets. For this, we approximate the leading left eigenvectors wi, i D 2; 3; : : :
of LL� to eigenvalues very close to one, where we take normalized Lebesgue
measure on �h as the reference probability measure and construct L from P as
described in Sect. 3.2.

w2 indicates that the Northern and Southern Pacific make up two coherent
structures (left panel of Fig. 6), w3 looks similar (not shown), whereas w4 (center
panel) suggests a partition of the Atlantic Ocean into two coherent sets with the
sharp boundary apparently nicely aligned both with streamlines and also with FTE-
ridges when compared with Fig. 5 (center). Finally w5 (Fig. 6, right) highlights
a coherent feature in the Indian Ocean, which is also clearly delineated by the
separatrix visible in Fig. 5 (right).
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Fig. 5 Top: streamlines of the time averaged stream function indicate the major circulation
patterns in the simulated ocean flow (from left to right: Pacific, Atlantic and Indian Ocean). Bottom:
FTE is used to visualize the dynamical skeleton of the global ocean. Dark colors mark regions of
high stretching indicating transport barriers. The results show the double-gyre structure in the
Pacific Ocean delineated by regions of high FTE values (left), the circulation in the Indian Ocean
(right), and the two major gyres in the Atlantic Ocean separated by a transport barrier (center)

Fig. 6 Coherent structures in the simulated ocean flow are highlighted by the negative and positive
entries of leading left eigenvectors wi of a stochastic matrix derived from the transition matrix
approximating the transfer operator of the flow map. Left: w2 defines coherent sets in the Pacific
Ocean; center: w4 indicates a clear separation of the Northern and Southern Atlantic Ocean; right:
w5 highlights a coherent feature in the Indian Ocean
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5 Conclusion

In this contribution we have briefly reviewed the transfer operator-based framework
for the analysis of transport phenomena in time-dependent dynamical systems and
the numerical approximation of transfer operators, finite-time coherent sets and
transport barriers. Unlike the frequently used geometric approaches for the extrac-
tion of Lagrangian coherent structures [15], our framework is purely probabilistic
and thus relies neither on smoothness properties of the flow map nor on any distance
measure that might be difficult to approximate in a complex domain. Therefore, the
transfer operator-based computational methods are easily applicable for studying
the dynamical skeleton in flows confined to complicated geometries. In addition
to a numerical study of the well-known double gyre flow, we have illustrated the
strength of our approach in an example of a two-dimensional surface flow on a
sphere S2 � R

3. With our methods we could highlight major circulation patterns of
the global ocean. The spherical surface together with the continental borders give
rise to a complex flow domain. Based on a transition matrix defined with respect
to the triangulation of the surface and a stationary (numerically approximated)
velocity field, we have visualized transport barriers and finite-time coherent sets. As
expected, the extracted structures align well with equilines of the stream function
in the considered autonomous dynamics, demonstrating that our approach returns
meaningful results.

Future work will include the treatment of nonautonomous dynamics on evolving
surfaces as well as the analysis of active fluid flows.
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ADAPT: Adaptive Thresholds for Feature
Extraction

Peer-Timo Bremer

Abstract Threshold-based feature definitions remain one of the most widely used
and most intuitive choice in a wide range of scientific areas. However, it is well
known that in many applications selecting a single optimal threshold is difficult or
even impossible. Common examples of this are quantities with locally exponential
behavior like the scalar dissipation rate in turbulent combustion simulations or
indicator functions, such as, vorticity or delta popular in defining vortices. In
these cases, local thresholds defined, for example, using contour trees can provide
significantly better results, but typically require a data analysis expert to create and
use. We present the ADAPT framework a new open source code that transforms
a given scalar field such that global thresholds in the resulting field correspond to
a variety of local thresholds in the original data. Consequently, the resulting field
can be easily processed using any of the existing tool chains and provides scientists
easy access to a wide variety of more advanced feature definitions. Currently, the
package provides two techniques to define local thresholds: The relevance transform
originally developed for combustion analysis and a model based fit initially designed
to extract eddies in global ocean simulations. Furthermore, it provides an extendable
API to easily add other transforms.

1 Introduction

One of the oldest and most common methods to define features of interest is using
thresholds, for example, to define burning regions of a flame [3] as regions of
high fuel consumption, or vortices in a turbulent flow through vorticity or other
indicators [1, 9, 12, 18]. However, in many areas finding a single global threshold
that performs adequately throughout a given dataset is difficult if not impossible.
A typical example of this is vortex detection as shown in Fig. 1. It shows vortices
extracted from a jet in crossflow [11] using the Q-criterion [6] at various thresholds.
Since the strength of the vortices differs significantly between the shear layer
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Fig. 1 Vortices in a turbulent combustion simulation identified using the Q criterion at different
thresholds. Each image shows an isosurface of Q at the given threshold colored by component
using on of 27 random colors. Clearly there exists no threshold able to extract both the strong
vortices shown on the left as well as the weak ones on the right

vortices in front of the flame and the wake vortices behind, any threshold either
misses the weak vortices entirely or drastically under-segments the strong vortices.
Nevertheless, both types of vortices are equally important to understand the nature
of the flow and the sensitivity of the solution to the choice of threshold has been a
long standing point of critique [12].

Instead, more recently solutions have been proposed that rather than determining
a single threshold allow one to compute thresholds on a per feature, i.e. per local
neighborhood, basis [2, 13]. In particular, using merge trees to encode threshold
based features [2, 3, 13] provides a simple and intuitive framework to define local
thresholds as valid cuts through the tree. This follows a long standing trend of
using topological information to provide more fine grained control over either the
visualization or extraction of features. One of the earliest examples is the use of
contour trees to accelerate the computation of iso-surfaces [19] which exploits the
fact that “cutting” any branch of the contour tree by an isovalue is guaranteed to
result in a single connected component of an iso-surface. While most early work still
focuses on a single threshold and traditional iso-surfaces extraction, Carr et al. [5]
propose to extract only specifically selected contours to create more sophisticated
visualizations, for example, of medical scans. Weber et al. [20] use very similar
ideas to construct localized transfer functions for volume rendering. Schneider et
al. [16] use the locally largest contour to compare scalar fields and later multi-variate
scalar fields [17]. One of the first applications to automatic feature extraction is the
definition of the relevance metric by Mascarenhas et al. [13] which scales a threshold
locally according to the highest local maximum. However, while well known in the
data analysis and visualization community, these techniques, as currently described
in the literature, require not only special tools to compute topological structures
but also special tools to process and/or visualize the results. This has effectively
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prevented these techniques from being used more widely even though substantial
benefits have been demonstrated in various application areas.

This paper presents the ADAPT—ADAPtive Thresholds framework (http://
github.com/scalability-llnl/ADAPT), a light weight, extendable Open Source library
to compute localized thresholds for arbitrary scalar fields. ADAPT exploits the
well known yet rarely used fact that computing various metrics on, for example, a
merge tree can be interpreted as transforming the tree and by extension the original
function values. As will be discussed in more detail in Sect. 2 global thresholds
in the transformed function correspond to local thresholds in the original one,
yet can be extracted and processed with any off-the-shelf analysis software. In
particular, ADAPT provides a fast in-memory merge tree computation for regular
grids and two different examples of transformations: First, an implementation of the
relevance metric [2, 13] as an example for a functional transformation; and Second,
a model based fit using the R2 criterion initially proposed to asses eddies in global
ocean simulations [21]. In both cases the result is a transformed volume in which
traditional iso-surfaces now correspond to local thresholds, i.e. relevance values,
or goodness-of-fit in case of the R2 criterion. Furthermore, the code is kept highly
flexible and could easily be extended to include other transforms and models as
well as other mesh types. We demonstrate the power of this approach using two
examples: the jet in cross flow simulation created using S3D [7] and a global ocean
simulation create by the POP ocean model [14].

2 Threshold-Based Features Using Merge Trees

As mentioned above, ADAPT exploits the fact that any valid cut through a merge
tree corresponds to a segmentation using local thresholds defined as the function
values at which branches of the tree are cut. Here we briefly reiterate the necessary
concepts from scalar topology, define the concept of a valid cut through the tree,
and finally introduce two approaches to define valid cuts.

2.1 Merge Trees

Given a simply connected domain M and a smooth function f W M! R the region
Supf .c/ D f p 2 Mj f . p/ � cg of M with function value greater c is called the
super-level set of c. We call a connected component of a super-level set a super-
contour. The merge tree of f encodes the evolution of the super-contours as c is
swept from1 to �1. Each time c passes a local maxima of f a new super-contour
is created (Fig. 2a) and super-contours merge at selected saddles sometimes referred
to as merge-saddles (Fig. 2b, c). Collectively, this structure is typically represented
as a tree with local maxima forming the leaves, merge saddles the internal nodes,
and the global minimum of f the root (see Fig. 2d) and traditionally the tree is drawn

http://github. com/scalability-llnl/ADAPT
http://github. com/scalability-llnl/ADAPT
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f

(a) (b) (c) (d)

Fig. 2 Merge Trees encode how super-level sets merge as threshold value is swept through the
range top to bottom (a–d). Each time the threshold passes a local maximum a new component on
the super-level set is created which corresponds to a new leaf branch i the corresponding tree (a, b).
As the threshold is lowered the corresponding super-contours grow and merge which corresponds
to new valence three saddles in the tree. By construction, the branches of the tree correspond to
regions in the domain making merge trees ideal to encode threshold based segmentations

Fig. 3 (a) A traditional global threshold corresponds to a horizontal cut in the tree with each
subtree above the threshold representing on feature. (b) Any valid cut through the tree defines a
set of local thresholds and the corresponding segmentation. (c) Given an arbitrary cut, the tree can
be transformed to make this cut a horizontal. The corresponding transformation of the original
function results in a new scalar field in which global iso-surfaces correspond to local thresholds

such that the y-axis represents the function value. As indicated by the colors in the
figures the branches of the tree directly correspond to regions of space which makes
the tree very useful to define segmentations.

In particular, a traditional threshold based segmentation is defined as a horizontal
cut in the tree. More specifically, as shown in Fig. 3a, to define features at any
threshold one cuts the tree at the desired value and then collects all regions of the
resulting subtrees as individual features. However, horizontal cuts are somewhat
limiting. For example, in situations where the length of a branch indicates its
importance, the dark green feature on the left of the tree in Fig. 2d is more significant
than the light green one on the right. However, using horizontal cuts there exists
no threshold to select the dark green feature before the light green one and in
fact the former only appears once the latter has been absorbed by the red feature.
Fortunately, there is no reason to restrict the technique to horizontal cuts. Instead,
it is easy to see that any valid cut will result in a segmentation. In this context
valid is defined as a cut that intersects each path from a leaf to the root at most
once. For example, Fig. 3b shows a such a cut that enables one to simultaneously
select individual features related to each local maximum. Effectively, the cut defines
local thresholds within each branch used to define the local feature or alternatively
a cut creates a set of subtrees corresponding to features. Furthermore, it is easy to
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see how approaches such as persistence-based simplification [5] could be used to
remove noise and artifacts from the tree before defining a cut.

Defining features in terms of cuts through the merge tree now provides a
significant flexibility in adapting segmentations to a particular application. ADAPT
currently provides examples for two classes of cuts: Monotone transforms; and
Model-based fits. The former is typically a functional expression in terms of local
function values while the latter selects subtrees based on how well they represent a
given model of a feature.

2.2 Monotone Transforms

One of the easiest ways to define useful cuts is by using other monotone properties of
super-contours. Monotone transforms in general are very useful as they effectively
define a new tree (see Fig. 3c) in which horizontal cuts correspond to adaptive cuts in
the original tree. Furthermore, the transform of the tree also implies a transformation
of the original function such that iso-surfaces in the transformed volume correspond
to adaptive thresholds according to whatever metric used. For example, some of
the metrics proposed in [5] such as volume or hypervolume naturally define new
functions that select super-contours based on size. More abstract examples are
indicators such as the height of a subtree, i.e. the maximal number of nodes from
the root to any leaf. For example, defining the height of a point p with respect to its
merge tree branch a; b can be defined as:

height.p/ D f .b/� f . p/

f .b/� f .a/
C height.b/;

where the height of a maximum is defined as 0 and each saddle uses the height of
is larger subtree . A cut at height D 1 � � produces the largest super-contours as
defined in [16] and other heights may produce interesting generalizations. Another
option is to re-scale the threshold values. For example, computing the relevance of
a feature has shown to be very effective in a number of scientific application. The
relevance of any point p on the merge tree is defined as

relevance. p/ D 1 � localMax. p/� f . p/

localMax. p/� globalMin
;

where the local maximum of p is the function value of the highest maximum in p’s
subtree. Relevance ranks points according to their relative distance in function space
from the most dominant point in their neighborhood. Note that, this is a monotone
transform in the sense that if two points p and q are on the same path to the root of
the tree then f . p/ < f .q/ implies relevance. p/ < relevance.q/. Relevance has been
used successfully in large scale turbulent combustion to analyzed local extinction
regions [2, 13] and to define vortices [10].
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2.3 Model-Based Fits

Monotone transforms especially those defined through closed form solutions like
relevance are somewhat limited. They must preserve a strong connection to the
original function values which may not contain sufficient information to accurately
define features. Instead, one can directly consider all possible features that could
be defined through super-contours, i.e. through local thresholds. As mentioned
above, each subtree defines a potential feature. Therefore, assuming some metric
to evaluate the quality of a feature one could iterate through all subtrees and
find all features above a given quality threshold. Figure 4 shows an example for
a “sphericalness” metric that uses the ration of principle axis of a least-squares
ellipsoid fit to define how circular a contour is. Note that this selection may contain
nested features as not all combination of subtrees define a valid cut as the selected
subtrees may not be disjunct (Fig. 4b). To avoid this problem it is often useful to
compute the quality of features and then either inflate or deflate the values to create
a monotone transform (Fig. 4c).

Inflating a metric will assign each node in the merge tree the maximum of its
own quality metric and that of its parent while deflating it assigns it the minimum
between its own metric and that of its children. Intuitively, deflating a metric is
a conservative choice and will select features for which all nested features are at
least as good. Since many, especially model based, quality metrics can be unreliable
for small features inflating a metric is often a better choice since it will select the
locally largest feature of a certain quality. Both inflated and deflated metrics by
definition are monotone transforms and thus can be translated into a transformation
of the original function. As discussed in more detail in Sect. 4 model based fits have
recently been used for eddy surveys in global ocean simulations [14, 21] to rank
eddies according to an idea model.
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Fig. 4 A model based transformation according to how circular contours are. (a) The original tree
and corresponding contour plot. (b) The least-squares ellipsoidal fits for each contour and their
“cyclicity” values defined as the rations of the principle axis. (c) The cyclicity metric inflated (left)
and deflated (right) to create a monotone transformation
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3 Software

This section discusses some of the implementation details and design decisions.
Note that the implementation is flexible and expected to change as new features are
added. Therefore, we refer the reader to the code documentation for the most up-to-
date details. ADAPT consists of three interfaces for the input mesh, the merge tree
structure, and the metric used to define adaptive thresholds. Furthermore, it contains
a prototypical merge tree implementation using a variant of the algorithm proposed
by Carr et al. [4].

3.1 Input Mesh

Assuming a monotone interpolation scheme along edges the merge tree computation
relies solely on whether two vertices are connected by a super-contour. Conse-
quently, only the one-skeleton of any mesh is required. Therefore, the input mesh is
simply described as an array of function values of vertices and an iterator that for
each vertex provides the list of neighbors. Currently, ADAPT implements regular,
but potentially curved, grids using a fully connected neighborhood of 8 and 26
neighbors for 2D and 3D respectively.

3.2 Merge Tree Interface

ADAPT implements an index based tree structure in which each node stores a
single pointer to its parent (the next node towards the root) and a single pointer
to one of its children as well as a pointer to a sibling to form a circular list of
siblings. This structure encodes both up (towards the leafs) and down (towards the
root) pointer with a constant memory footprint. Furthermore, each node optionally
stores the list of vertices corresponding to its lower arc. While this can be memory
intensive it is often necessary to efficiently compute model based fits as otherwise
extracting the collection of vertices corresponding to a subtree would require a
potentially costly mesh traversal. Furthermore, for convenience each node stores the
index of its representative the highest maximum within its corresponding subtree.
Representatives are useful, for example, to compute relevance values without a tree
traversal or as a stable means to assign colors to the features as thresholds are
changed.
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3.3 Metric Interface

Currently, there exist two type of metrics: First, functional transforms that require
only the structure of the tree and the local function values; and Model based fits
that require fully populated arcs and are inflated by default. Functional metrics
are evaluated on a per-vertex bases. However, for efficiency reasons model based
fits are typically only computed for nodes of the merge tree and all vertices on
an arc inherit the metric of the upper critical point. One potential problem of
evaluating model based metrics only on nodes in the merge tree are that it introduces
potentially substantial sampling artifacts especially for long arcs. To address the
problem ADAPT provides the ability to refine the merge tree by splitting arcs either
according to their range in function value or the number of vertices to ensure a
sufficient resolution.

3.4 Application

The primary goal of ADAPT is to provide non-experts a simple tool to create
transformed volumes for further processing. Therefore, we provide a command line
tool that accepts a regular grid of up to three dimensions as input and produces
a transformed volume as output. As mentioned above the various command line
options are expected to change and we refer the reader to the online help for the
latest information. As of the submission of this manuscript all options shown in
Table 1 are enabled

The threshold option allows users to simply ignore values below/above a given
value which can provide a substantial speed-up as often large amounts of a volume

Table 1 Command-line options for the adaptive_threshold executable

Option Description

- -input <string> Name of the input file

- -output <string> Name of the output file (defaults to stdout)

- -dim <int><int><int> Dimension of the input grid

- -tree-type <int> [0 (default) j 1] to compute merge or split trees respectively

- -threshold <float> Minimal (merge trees) or maximal (split-trees) function value
considered relevant

- -split-type <string> [length (default) j size] the metric used to split arcs of the tree
until all arcs are shorter, for length, or contain fewer vertices,
for size, than the given threshold

- -split <float> The maximal length or size allowed for an arc

- -metric <string> [relevance (default) j R2] the metric used for the
transformation
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are uninteresting. As discussed above the user can decided to split arcs either to
limit their range or the number of vertices the contain to increase the fidelity of the
R2 criterion.

4 Examples

To demonstrate the utility of ADAPT we present two use cases: Vortex finding in a
turbulent flow; and Model based eddy detection in an ocean simulation.

Figure 6 shows the same simulation of Fig. 1 at a relevance threshold of 0.8. To
this end we transformed the original Q field for the entire 1399� 1080� 1100 grid,
loaded the result into Paraview [8] and colored the 0.8 isosurfaces by component
using 27 randomly assigned colors. Clearly, the relevance is able to extract a
vastly greater number of well formed vortices than the global thresholds including
the extremely weak vortices on the side and below the flame as well as the
very strong vortices in front of it. Note that, in practice, not all the extracted
features are necessarily useful as the transformation also enhances very minor local
fluctuations. However, these are typically filtered, for example, by size or by setting
an appropriate global cut-off or are simply ignored as part of the expected noise
and artifacts in the statistics, i.e. see Fig. 9a in [2]. Even considering these artifacts
we have found ADAPT to provide a significant advantage as dealing with a small
number of undesired features tends to be preferable over the inability to extract all
features of interest. Figure 5 shows the results on a subsampled subset of this data
which is included in the source distribution as example. The results of Fig. 5d were
produced using the following command line:

adaptive_threshold --i jicf_Q_400x350x200.raw
--dim 400 350 200
--threshold 1
--metric relevance

Figure 7 shows isolines at various global thresholds of the Okubo-Weiss criterion
of a global ocean simulation. The Okubo-Weiss criterion is the default indicator
for eddies in ocean simulations and habitually used, for example, to compute
surveys of all eddies. Note that low values of Okubo-Weiss indicate eddies with
the theoretically ideal threshold of 0. Similar to the vortex case, low thresholds
produce few very strong eddies but miss a large number of weaker ones. However,
higher thresholds produce very large numbers of misshapen eddies caused by shear
and other artifacts that are false positive detections. Furthermore, individual eddies
start merging into larger false structures. Instead, we compute the (inflated) R2

goodness-of-fit of all potential eddies with respect to a well respected model of an
ideal eddy [21]. Figure 8 shows the example data provided with the distribution
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Fig. 5 Vortices in a subsampled subset of the turbulent combustion simulation of Figs. 1 and 6 for
Q threshold 0.1 (a), 1 (b), and 10 (c) respectively and for a relevance of 0.8 (d)

which is the surface slice of a large scale POP simulation performed at Los
Alamos National Laboratory [14, 15]. The results of Fig. 8 were produced using
the following command line:

adaptive_threshold --i ../../data/OkuboWeiss_03_01.raw
--dim 3600 2400 1
--threshold -0.001
--metric R2
--split-type size
--split 50
--tree-type 1
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Fig. 6 Vortices in the turbulent combustion simulation of Fig. 1 at relevance 0.8 from the side
(top) and a zoomed in view of the front (bottom). Both images show isosurfaces at 0.8 colored by
component and randomly assigned one of 27 colors

Figure 7a–c shows various Okubo-Weiss thresholds with similar artifacts to the
combustion simulation above. Figure 8 shows a model based threshold of 0.9, i.e. all
local eddies that fit the model with a coefficient of determination of 0.9 or greater.
As expected, the model based threshold is able of extracting significantly more well-
formed eddies as compared to a global Okubo-Weiss threshold.
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Fig. 7 Eddies on the surface of a global ocean simulation. The images show connected compo-
nents of Okubo-Weiss thresholds randomly colored using 27 colors at -1 (top), -0.5 (middle), and
-0.1 (bottom)
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Fig. 8 Eddies on the surface of a global ocean simulation at Okubo-Weiss threshold of -0.01 (top)
and extracted at a coefficient of determination threshold of 0.9 (bottom). The well-formed eddies
from the top figure are all found including both the strong eddies in the Gulfstream as well as much
weaker ones further south yet few of the erroneous ones are flagged

5 Summary

We have presented the ADAPT—ADAPtive Thresholds framework to allow non-
experts easy access to some of the more advanced feature definitions developed
by the data analysis and visualization community. In particular, ADAPT provides
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a simple and efficient tool to transform a given scalar field according to various
metrics such that the resulting transformed scalar represents a potentially highly
advanced feature definition (e.g. a model based fit) yet can be easily processed
using common visualization tools. In the future, we plan to extent the framework
to include additional meshes as well as new metrics and other features.
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Efficient Software for Programmable Visual
Analysis Using Morse-Smale Complexes

Nithin Shivashankar and Vijay Natarajan

Abstract The Morse-Smale complex is a topological data structure that represents
the behavior of the gradient of an input scalar field. Recent years have witnessed a
significant number of applications that use this data structure for visualization and
analysis of data from various scientific domains. However, these applications have
required significant expertise in the implementation of algorithms. This potentially
makes such analysis inaccessible to a large audience. In this paper we present
open source software modules for the computation, analysis, and visualization
of scientific data using the Morse-Smale complex. The modules, named pymstri
and pyms3d, are intended for domains represented using 2D triangle meshes and
3D structured grids respectively. The software is designed to significantly reduce
the effort required to use Morse-Smale complex based analysis. Also, the soft-
ware leverages modern multi-core CPU and GPU architectures for computational
efficiency. We demonstrate the usefulness via a case study to visually analyze
and interactively segment the eye of the Hurricane Isabel simulation dataset. In
particular, we highlight the ability to couple the visual analysis and the computation
with ParaView, a popular general purpose visualization tool. The code is available
at the project website http://vgl.csa.iisc.ac.in/mscomplex.

1 Introduction

In recent years, topological methods have gained wide popularity for scientific data
analysis. In particular, gradient based analysis and the Morse-Smale complexes
have been extensively applied for a multitude of data-analysis and visualization
tasks [8, 15, 16, 20, 28, 30, 40]. A key reason for the success of Morse-Smale
complex based analysis is that it enables a translation from scalar function data
into topology and gradient based features. It is therefore no surprise that a lot of
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recent work has focused on various aspects of the Morse-Smale complex such as
its efficient computation [14, 21, 32, 34, 37, 38], feature directed visualization [22],
user defined feature preservation [23, 24], etc. In most of the above applications
of the Morse-Smale complex, the software implementations are not open source.
Also, the software is often developed as standalone a executable that does not easily
interface with other large software tools.

Related Work Morse-Smale complexes were first introduced for the analysis
of dynamical systems by Smale [39]. The first computational algorithms were
described by Edelsbrunner et al. [12] and Bremer et al. [6], where the definition
of the 2D Morse-Smale was extended to triangulated domains resulting in the
Quasi-Morse-Smale complex. Other methods that develop this notion for 3D are
available in the literature [11, 17–19]. In recent years, many algorithms based on
Forman’s [13] discrete Morse theory have become popular [14, 21, 34, 37, 38]. A
primary reason for this is the combinatorial robustness of these algorithms, which
greatly simplifies implementation effort. However, to the best of our knowledge,
source code implementation of these methods are only available for Sousbie
et al. [40]. A crucial aspect in Morse-Smale complex based analysis is in its
topological simplification and subsequent analysis. Edelsbrunner et al. describe the
notion of topological persistence [10] and its application to Morse-Smale complex
simplification in 2D [12]. Most of the implementations described in the above
literature describe some form of simplification using persistence. However, in many
applications [15, 20, 40] successful feature identification requires simplification
using other sources of data as well as domain specific criteria. In these cases
the effort needed to apply the analysis is dependent on the ease with which one
interfaces with the Morse-Smale complex data-structure. More generally, source
code implementation for Reeb graphs [9] contour trees [7] and persistent homology
[2, 3] have become available over the years. These packages are most readily usable
as standalone packages, though most offer access to their internal data structures
only in their native programming language. Python [41], being particularly suited
for high level scripting operations, is very often available as the de-facto scripting
interface in a many large software tools. A primary reason for this is that Python is
a mature interpreted language which allows for easy runtime loading/unloading of
modules. A few examples of tools that offer Python interfaces include Pymol [35],
VMD [26], Chimera [33], ParaView [25], VTK [36], Blender [4].

Contributions In this paper, we describe a Python-scriptable Morse-Smale com-
plex computation and analysis package. The package consists of two modules,
named pyms3d and pymstri, which contain implementations for 3D structured grids
and 2D triangle meshes. The modules implement efficient algorithms for Morse-
Smale complex computation [34, 37, 38] and hierarchical feature analysis [6, 22].
Furthermore, the implementations leverage the OpenCL and OpenMP frameworks
for parallel computation. Access to the combinatorial structure and geometric
elements of the Morse-Smale complex are granted through a Python interface.
We demonstrate the usefulness of the software via a case study. We interactively
segment the Hurricane Isabel Dataset [42] to highlight the interactivity and the
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ease of use. The pyms3d module is used to develop a programmable filter which
is loadable in ParaView [25]. The extracted features may be changed and updated
from within the ParaView runtime environment to drive interactive feature based
visual analysis. This case study is demonstrated via a video hosted at https://youtu.
be/UX1q9gI2DEk.

2 Background

In this section, we introduce the necessary background relevant to the definition of
the Morse-Smale (MS) complex.

Morse Theory and the MS Complex Morse theory studies critical points of
smooth scalar functions defined on manifolds [29]. Given a smooth scalar function
f W Rn ! R, its critical points are points where the gradient, the vector of first

order partial derivatives rf .x/ D
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.x/; @f
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, is identical to zero.

A critical point is non-degenerate if the Hessian, the matrix of second order partial
derivatives, is non-singular. The function f is said to be Morse if all its critical
points are non-degenerate. The index of a critical point is the number of negative
eigenvalues of the Hessian matrix. An integral line is a maximal curve in R

n whose
tangent at every point is collinear with the gradient of f at that point. The limit points
of integral lines, t! ˙1, are the critical points of f .

The set of all integral lines that share a common source (destination) p, is called
the ascendingmanifold (descendingmanifold) of p. TheMorse-Smale (MS) complex
is a partition of the domain into cells formed by the collection of integral lines that
share a common source and a common destination. The combinatorial structure is a
graph, where the nodes are critical points and edges are arcs between them if there
is an integral line that connects them and their indices differ by one.

Discrete Morse Theory Forman [13] introduced discrete Morse theory to study
the topology of cell complexes. A d-cell ˛d is a topological space homeomorphic to
a d-ball Bd D fx 2 R

d W jxj � 1g. Lower dimensional d-cells include vertices,
edges, triangles/quads, and tetrahera/cubes. A cell complex K is a collection of
cells where the set of cells incident on the boundary of a cell are also in K, and
two cells intersect only along a single common boundary cell. Examples of cell
complexes include 2D triangle meshes and 3D cubical complexes (see Fig. 2a, b).
A function f W K ! R is said to be a discrete Morse function if for all d-cells
˛ in K, there exists no more than one incident higher dimensional cell ˇ so that
f .˛/ � f .ˇ/, and no more than one incident lower dimensional cell � exists so that
f .�/ � f .˛/. A pairing between two incident d-dC1 cells, ˛-ˇ, so that f .˛/ � f .ˇ/
is called a discrete vector. A V-path is a sequence of unique d-dC1 discrete vectors,
˛d0 ; ˇ

dC1
0 ; ˛d1 ; ˇ

dC1
1 ; : : : ; ˛dr ; ˇ

dC1
r ; ˛drC1, so that every d C 1 cell is incident on the

next d-cell. A discrete gradient field is a collection of V-paths without any non-
trivial loops. Acyclic V-paths correspond to the notion of integral lines of Morse

https://youtu.be/UX1q9gI2DEk
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functions. A cell that is not paired is called a critical cell and is analogous to the
notion of a critical point. Ascending/descending manifolds and the combinatorial
structure are similarly defined for discrete Morse functions. Figure 2c shows an
example of the combinatorial structure of the Morse-Smale complex defined on a
cell complex using discrete Morse theory.

Topological Cancellation and the Hierarchical MS Complex A topological
cancellation is a process of removal of a pair of index i � i C 1 critical points p-q
that are singularly connected in the combinatorial structure [12]. The combinatorial
structure is modified so that all other index i C 1 critical points connected to p
are connected to all other index i critical points connected to q. The ascending
(descending) manifold of p (q) is merged with the ascending (descending) manifolds
of all other i (i C 1) critical points connected to q (p). Topological persistence
[12] measures the importance of a pair of critical points. Pairs of critical points
are canceled in increasing order of its persistence. As one iteratively applies
the above operations to simplify the MS complex, each application results in a
new combinatorial and geometric version of the MS complex. This sequence of
MS complex versions is referred to as the hierarchical MS complex, where each
version is indexed by its position in the sequence. Selecting appropriate versions for
feature analysis is often challenging and thus it is desirable to try multiple versions
before selecting one. Figure 1 shows an example of a Morse-Smale complex along
with two cancellations applied to it to generate a hierarchical MS complex with
three versions in the sequence.

Fig. 1 (left) The combinatorial structure of the Morse-Smale complex of a function with three
maxima. The critical points are shown as spheres, blue for minima, yellow for saddles, and red
for maxima. The arcs are shown as gray tubes. (right) Two cancellation operations applied to the
Morse-Smale complex eliminate two maximum saddle pairs connected to the central maximum.
Each cancellation operations re-routes arcs from the maxima connected to the canceled saddle to
the saddles connected to the canceled maximum. The two cancellations result in two successive
versions of the Morse-Smale. This sequence of versions is referred to as the hierarchical Morse-
Smale complex



Efficient Software for Programmable Visual Analysis Using Morse-Smale Complexes 321

3 Data Representation and Algorithms

We now describe the data structures and algorithms that are implemented in the
software package. We first describe how the data over 2D surfaces and 3D grids are
represented. Next, we describe the data structure used for the Morse-Smale com-
plex. Finally, we briefly describe the discrete Morse-Smale complex computation
algorithm and the construction of the Hierarchical Morse-Smale complexes.

3.1 Data Representation

Cells of the underlying domain are represented using unique identifiers. This is
relevant when querying the geometry of the Morse-Smale complex. The data
representation of the Morse-Smale complex is common to both pymstri and pyms3d.
This is relevant for analysis of the combinatorial structure of the Morse-Smale
complex.

2D Surfaces in Pymstri In the implementation of pymstri, a triangle mesh
representing the surface is stored using the edge-facet data structure [27]. Triangle
meshes are assumed to be available as a set of vertices and a set of triangles where
each triangle specifies three indices into the list of vertices.

3D Structured Grids The structured 3D grid domain is interpreted as a cubical
cell complex whose cells are vertices, edges, quads, and cubes. The cells of the
domain are implicitly represented using the Cartesian coordinates of their centroids
as identifiers. Each cell is uniquely identified using a tuple with three integers.
We scale the coordinates by two so that the interleaving cells, namely edges,
faces, and cubes, also obtain integral coordinate values at their centroids. Queries
for facets/cofacets are therefore implicitly computed taking into consideration the
boundary conditions imposed by the grid. These queries use integer arithmetic
instead of floating point arithmetic as a consequence of the scaling described above.
The center panel in Fig. 2b shows a simple structured grid interpreted as a cubical
complex.

Morse-Smale Complex Representation The Morse-Smale complex is repre-
sented as a graph whose nodes represent critical points of the Morse-Smale complex
and edges represent arcs. Let M denote the Morse-Smale complex. Each critical
point is identified by a unique integer identifier. M stores per-vertex information
such as the function and index of the critical point. The adjacencies between critical
points are maintained in a pair of lists, one for the ascending and one for the
descending adjacencies. In 2D, each list consists of a list critical point identifiers.
In 2D, each critical point may be incident upon another via at most two arcs. In 3D,
however, there may be arbitrarily more. Hence, each entry in the list comprises of
a tuple, where the first value identifies the incidence relation, and the second value
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Fig. 2 Data representation. (a) In 2D triangle complexes, each cell in the complex is identified by
a unique integer ID. (b) A 3D structured grid is interpreted as a cubical complex. Each cell in the
complex is uniquely identified by the centroid of its Cartesian coordinate scaled by two. (c) The
Morse-Smale complex is represented as a graph whose nodes are critical points and arcs are edges
between them. Each critical point is given a unique integer identifier. For each critical point, the
lists asc and des contain the ID’s of the ascending and descending critical points connected to it.
Similarly, for each critical point, the lists asc_geom and des_geom contain the cell identifiers of
ascending and descending cells from the underlying domain, [shown in (a)]

identifies the multiplicity. The ascending and descending geometry of each critical
point is maintained in a pair of lists. Each list consists of a list of cell identifiers
which identify cells of the underlying domain. The right panel in Fig. 2c shows a
simple Morse-Smale complex representation with the adjacency and geometry data.

3.2 Algorithms

For computing the discrete gradient field, we use the algorithm by Robins et al. for
pymstri as it results in the fewest spurious critical points. For pyms3d, we use the
algorithm by Shivashankar et al. [37] as it is implementable in massively parallel
architectures using GPUs. Though it results in more spurious critical points, the
trade-off is acceptable in terms of the efficiency offered by GPUs. We use the
algorithms described by Shivashankar et al. [37] for efficient traversal of the gradient
field on the CPU and GPU. A full performance evaluation of the above algorithm
for 2D and 3D structured grids is available by Shivashankar et al. [37, 38]. For
the hierarchical Morse-Smale complex, we directly implement the cancellation and
anti-cancellation operations described by Bremer et al. [6]. Cancellations may be
scheduled based on topological persistence [10]. Alternatively, cancellations may be
specified explicitly and performed sequentially via the Python interface. To traverse
the combinatorial structure of the hierarchical Morse-Smale complex, the list of
cancellation pairs are stored and the cancellation / anti-cancellation operations are
repeatedly applied using this list to obtain the desired level in the hierarchy. We
employ the merge_dag [22] data structure for efficient geometry queries from the
hierarchical Morse-Smale complex.
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4 Design and Implementation

In this section, we briefly discuss design and implementation issues of the above
data structures. The above described algorithms are implemented using C++. The
code is extensively parallelized to exploit multi-core CPUs when available. This
is done using the OpenMP framework, which has the advantage of requiring only
compiler directives to concisely indicate shared memory parallel loops and sections.
The discrete gradient algorithm as well as gradient field traversals for extrema in
pyms3d are implemented using the OpenCL framework. The implementation selects
the GPU when available. If a GPU is unavailable, it runs the OpenCL code on the
CPU.

The C++ implementations are made available as Python modules using the
Boost Python framework [1]. Both modules expose a Python class representing the
Morse-Smale complex. The implementation makes extensive use of the NumPy [31]
module to enable efficient passing of data arrays from C++ runtime objects to the
Python environment. This module is easily available in most Python installations
and its C++ bindings are made available by the Boost NumPy project [5]. Table 1
shows a subset of methods that are exposed to the Python Interface along with a
brief description.

The implementations allow for computation of the Morse-Smale complex,
querying for the combinatorial structure, querying for the ascending and descending
manifolds of the critical points, generating a hierarchy (either by persistence or by
a user defined sequence using the cancel_pair call), and querying the combinatorial
and geometric structures at different levels of the hierarchy.

We now discuss the functions listed in Table 1. The interface can be broadly
classified into three groups, namely computation functions, simplification, and
query functions. The first two groups primarily alter the state of the Morse-Smale
complex. Therefore, they involve minimal overhead in terms of interfacing with
Python as they simply reroute the calls to C++ implementation. The third group
generally involves data copying overheads via the Boost NumPy [31] array API.
The first group comprises of the computation functions that compute the Morse-
Smale complex and collect the geometry associated with its critical points. The
calls to compute_bin, compute_arr and compute_off, detailed in Table 1, compute
the combinatorial Morse-Smale complex. In many applications, either the combi-
natorial structure suffices or the geometry is desired after some pre-simplification.
The call to collect_geom collects the Morse-Smale complex geometry at the current
hierarchical version. Optionally, the user may choose to only collect the ascending
or descending geometry of critical points with a given index.

The second group of functions may be used to simplify the Morse-Smale
complex. The primary function here is the cancel_pair routine which cancels
a given pair of critical points as long as the cancellation is permissible. Each
cancellation results in a new hierarchical version of the Morse-Smale complex. Due
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Table 1 A subset of the methods available to an mscomplex object created by the modules
pyms3d and pymstri

Method Brief description

compute_off( f ) Computes the mscomplex of a triangle mesh and scalar
function given in a file f

compute_bin( f ,s) Computes the mscomplex of a structured grid. Scalar
function is given as 32-bit floating point binary file f in
fortran order. Grid size is given in the tuple s

compute_arr(a) Compute the mscomplex of a structured grid. Scalar
function is given as 3d NumPy array a. Internally, data is
converted to single precision (32-bit) floating point
values

collect_geom([d,dir]) Collects the [(dir D) Ascending/Descending] geometry
of all [d-] critical points in the current hierarchical
version

get_hversion(n) / set_hversion(n) Gets/Sets the hierarchical version of the Morse-Smale
complex

cancel_pair(p,q) Cancels a pair of singularly connected unpaired critical
points p and q

simplify_pers(t) Simplifies the Morse-Smale complex upto persistence
threshold t

cps([d]) Returns a list of ids of active critical points [with index d]

des(i) /asc(i) Returns a list of descending/ascending critical points
connected to i

des_geom(i,[n]) / asc_geom(i,[n]) Returns descending/ascending manifold of the critical
point i [in the nth hierarchical version]

get_primal_points(),
get_dual_points()

Returns the coordinates of 0-dimensional cells of the
primal/dual cell complex

cp_func(i), cp_index(i), etc. Returns the per-critical point information such as the
function value, pair

get_hversion_pers(t) Returns hierarchy version number where pairs with
persistence t are eliminated

save( f )/load( f ) Save/load all data to/from file f

Optional arguments to the methods are shown indicated in square braces (Œ: : :�)

to the popularity of the persistence hierarchy, the call to simplify_pers is provided
to generate a persistence hierarchy so that arcs with a specified threshold are
simplified. This call may also be supplied with a number of extrema that are desired
to be retained. After some simplification, one may obtain the earlier versions of the
Morse-Smale complex using set_hversion. For instance, one may obtain the Morse-
Smale complex prior to two simplifications by using the call msc.set_hversion(msc.
get_hversion()-2).
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1 import pyms3d, numpy
2
3 X,Y,Z = (500,500,100)
4 msc = pyms3d.mscomplex() # Create the object.
5 msc.compute_bin("Speed03.bin",(X,Y,Z)) # Compute from bin
6 file.
7 msc.simplify_pers(thresh=0.05) # Simplify.
8 msc.collect_geom(1,0) # Collect the asc geom
9 # of 0 index cps.

10 ids = numpy.empty([X*Y*Z],numpy.int32) # Array to hold ids.
11 for m in msc.cps(0): # For each minima m,
12 ids[msc.asc_geom(m)] = m # set id’s of vert’s
13 # in asc of m to m.
14 setattr(pyms3d,"msc",msc) # cache the object.
15
16 # pass the ids array to ParaView (Code omitted for brevity).

Listing 1 Code for segmenting the Isabel dataset using the pyms3d module

The third group of functions involve providing data pertaining to the Morse-
Smale complex via the NumPy [31] array module. This is designed as a copy only
mechanism for two reasons. First, NumPy is a very popular scientific computation
API which eases further computations and interfacing with other tools, such as Par-
aView’s Python API (see Listing 1 for example). Second, the memory management
is eased by relinquishing the returned array objects to the Python runtime as opposed
to maintaining the same in the C++ runtime. The list of critical points in the current
hierarchical version, optionally of a given index d, may be obtained as an array of
integer identifiers via the call to cps([d]). The list of ascending/descending critical
points connected to a given critical point i may be obtained by the asc(i)/des(i) calls.
In 3D, each entry in the returned list is a pair, where the first is the ID and the second
is the multiplicity of the connection. In 2D, multiple entries are simply repeated
as the multiplicity is at most two. The ascending/descending manifold of a given
critical point i may be obtained using the asc_geom(i)/des_geom(i) calls. For a given
critical point of index d, these methods return an array containing d-cells of gradient
pairs that originate/terminate at i. By default, this set is constructed for the current
hierarchical version of the Morse-Smale complex object. The ascending/descending
manifold may also be obtained at a given hierarchical version n without altering
the current hierarchical version by using the merge_dag data-structure. Note that
non-empty geometry can only be returned if a prior call to collect_geom was made
at a hierarchical version lower than n. For pyms3d, each cell is represented by a
tuple of indices. In the case of ascending manifolds of 1-saddles and 2-saddles,
the indices index into a list of vertex coordinates, which may be obtained by the
call to get_primal_points. Analogously, for ascending manifolds of saddles, the
indices index into a list of cube coordinates obtained via the call to get_dual_points.
For minima, as their ascending manifolds form a partition on the set of vertices,
the indices index into the list of vertex coordinates. Analogously, for maxima, the
indices index into a list of cube coordinate, i.e. the cube centroids. For pymstri,
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an analogous output form is supported. Additionally, the indices discussed above
respect the ordering of triangles and vertices given as the input to the computation.
Other utility functions to query per-critical point information, such as the index and
function value of critical points, as well as save/load the computed data from/to the
file-system are also available.

5 Case Study: Interactive Visual Feature Analysis

In this section, we present a case study, where the Morse-Smale complex based
analysis is coupled with the ParaView [25] visualization package. ParaView offers
a Python programmable interface to its visualization pipeline. We apply the
Morse-Smale complex to perform hierarchical segmentation of a simulation of the
hurricane Isabel. Hurricane Isabel was a hurricane that struck the coast of Florida,
USA, in September 2003. The simulation dataset was made available by Wang et
al., for the 2004 IEEE Visalization contest [42]. The simulation is available as 32-
bit floating point values on a 500 � 500 � 100 3D structured grid. This dataset is
well understood in visualization literature and therefore helps illustrate the ease of
feature analysis and visualization using the software. We begin by simply computing
the Morse-Smale complex of the wind-speed field. Listing 1 shows code to generate
the segmentation data using pyms3d. Figure 3 shows the volume segmentation using
a persistence threshold of 0:05.

Fig. 3 Segmenting the wind speed field in 3rd time-step of the Isabel simulation. (a) A volume
visualization of the wind speed field. The eye is distinctly discernible as a low wind speed region
enveloped by high wind speed regions. The height field representing the land and sea regions with
appropriate colors is shown. (b), (c), (d), and (e) Segmentation of the scalar field at four equally
spaced z-slices using a persistence threshold of 0:05, generated using Listing 1. The distinctive
structure of the eye is retained in the lower z-slices (b) and (c), which is less discernible in the
higher slices (d) and (e)
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1 import pyms3d, numpy
2
3 msc = getattr(pyms3d,"msc") # get the cached msc object.
4
5 if not hasattr(pyms3d,"eye"): # if ’eye’ is not in cache
6 msc.simplify_pers(nmin=2) # simplify until 2 minima
7 survive
8 m1,m2 = msc.cps(0) # get the 2 minima
9 msc.simplifiy_pers(nmin=1) # simplify the penultimate

10 minimum
11 m, = msc.cps(0) # get the surviving minimum
12 e = (m1 if m == m2 else m2) # the required minimum is the
13 other
14 setattr(pyms3d,"eye",e) # cache the crit. pt. id of eye.
15
16 e = getattr(pyms3d,"eye") # get crit. pt. id of eye
17
18 v = msc.get_hversion_pers(thresh=0.018) # change hier.
19 version
20 msc.set_hversion(v)
21
22 ag = msc.asc_geom(e) # id’s of verts in e’s asc mfold
23
24 fns = numpy.fromfile("Speed03.bin",numpy.float32) #read
25 scalars
26
27 ag_fn = fns[ag] # save func. values at eye
28 fns[:] = -1 # set value everywhere to -1
29 fns[ag] = ag_fn # set scalar value only at eye.
30
31 # pass the fns array to ParaView (Code omitted for brevity).

Listing 2 Code for extracting the id of the minimum representing the eye of the hurricane from
the Morse-Smale complex object computed and cached in Listing 1. The corresponding ascending
manifold region is segmented and the scalar values within this region is volume rendered in Fig. 3

Next, we identify the highest finite-persistent minimum and segment its corre-
sponding ascending manifold. This is done by simplifying using persistence till only
two minima remain. Further simplification eliminates the desired minimum. Since
the object is cached during runtime, it may be retrieved without re-computation for
these operations as shown in Listing 2. Using the minimum representing the eye,
the function value restricted to the ascending manifold of the desired minimum is
generated.

The above listings are demonstrated in a video hosted at
https://youtu.be/UX1q9gI2DEk, where they are plugged into ParaView’s pro-

grammable filter. In particular, changes to the persistence threshold to visualize the
eye at different hierarchical versions is demonstrated. These modifications are made
at runtime and the visualization updates occur interactively. The video demonstrates
the execution of the above listings on a HP xw8600 workstation with 8 CPU cores,
8GB RAM, and Nvidia 260 GPU that has 895MB VRAM. The time taken to

https://youtu.be/UX1q9gI2DEk
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compute the Morse-Smale complex and generate the visualization using Listing 1
is approximately 30 s. The time to update the visualizations using Listing 2 is under
1 second. A more detailed study of the performance of the efficient computation
algorithms is presented by Shivashankar et al. [37, 38].

Due to the efficient computation, as well as the interactive visual analysis,
Listing 2 was used for multiple time steps. Figure 4 shows the wind-speed restricted
to the eye using this simultaneous visualization setup. The transfer function is
chosen to highlight the low speeds within the eye.

We observe the performance of a few of the crucial methods over 50 executions
of Listing 1. The mean execution time of compute_bin with OpenCL on the GPU
is 12.99 s (std1=0.1 s). The same method deployed on the 8-core CPU has a mean
execution time of 52.31 s (std=0.916 s). For both invocations time taken for the call
to transition from Python to the C++ runtime had a mean of 2:28�10�3 s (std=1:17�
10�4 s). The transition time for other function calls had similar timings and hence
we do not consider it to be a performance issue. The call to collect_geom has a mean
time of 1.45 s (std=0.082 s) with the GPU deployment and 3.06 (std=0.052 s) with
the CPU deployment. The total time taken for all calls to asc_geom in Listing 1 had
a mean of 0.46 s (std=0.013 s) over 50 executions. The method has three steps. First,
the geometry representing the ascending manifold at a given hierarchy is computed
using the merge_dag. Second, the data is converted from cell identifiers to vertex
indices. Third, a NumPy array is allocated, the data is copied to it, and returned.
The mean (and variance) for each of the above steps is 0.34 s (std=0.0027), 0.12 s

Fig. 4 Visualizations of multiple time-steps of the eye of the Isabel simulation segmented using
the Listing 2. Due to the efficient implementation of computation and filtering, the above Listings
can be used for multiple time-steps in the same instance of ParaView for interactive visual
identification of appropriate persistence thresholds

1The standard deviation is abbreviated as std.
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(std=0.0113), and 0.0013 s (std= 4:65�10�5). From the above timings, we conclude
that both the Python call transfer overhead as well as data copy overheads are
negligible compared to the method timings. Also, the comparison of the CPU and
GPU timings reaffirm the earlier experimental results [37, 38].

We also profile the memory usage of Listing 1 using both the CPU and GPU
deployments. We super-sample the dataset using bilinear interpolation to generate
a sequence of datasets, where the number of points along each dimension are
increased by 10%, 20%, upto 100%. In the CPU deployment on the machine
described above, we observe that the maximum physical memory used is 6 GB
for a 1000 � 1000 � 200 sized version of the dataset. In the GPU deployment, as
there is no virtual memory provision, we observe failures in memory allocation for
a dataset sized 550 � 550 � 110. For this dataset, we require a byte buffer of size
1099� 1099� 219 (252MB) to store the gradient information of all cells. The GPU
device used does not allow individual buffer sizes beyond 224MB, even though the
GPU has a 895MB VRAM. A detailed analysis of this experiment is available in the
project website.

6 Conclusions

In this paper, we have presented an efficient implementation of Morse-Smale
complex based algorithms for visual analysis. We demonstrated its versatility as
a computation and a visual analysis tool by plugging into ParaView to generate
visualizations of the Hurricane Isabel dataset. This implementation includes state
of the art algorithms for computation of Morse-Smale complexes as well as
implementations of algorithms for hierarchical analysis.
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Physical Systems, Indian Institute of Science.
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Notes on the Distributed Computation of Merge
Trees on CW-Complexes

Aaditya G. Landge, Peer-Timo Bremer, Attila Gyulassy, and Valerio Pascucci

Abstract Merge trees are topological structures that record changes in super-level
set topology of a scalar function. They encapsulate a wide range of threshold based
features which can be extracted for analysis and visualization. Several distributed
and parallel algorithms for computing merge trees have been proposed in the past,
but they are restricted to simplicial complexes or regular grids. In this paper,
we present an algorithm for the distributed computation of merge trees on CW-
complexes. The conditions on the CW-complex required for the computation of the
merge tree are discussed alongside a proof of correctness.

1 Introduction

Analysis and visualization are crucial components in gaining scientific insight from
scientific simulations. In this regard, topological techniques have been successful
at extracting features of interest from scientific datasets [2, 15]. Topological
structures, such as merge trees, are combinatorial in nature and encode level-set
based features of a scalar function. They enable threshold-based feature extrac-
tion and can be represented compactly, making them suitable for post process
exploratory analysis. The continuous increase in computational resources available
to scientists performing simulations of complex scientific phenomenon is leading
to a corresponding increase in the size and complexity of data being generated.
Concurrently, compute architectures are gradually moving towards multi-core and
large scale distributed environments. In this scenario, its important to design and
develop parallel topological analysis algorithms and techniques that can harness the
parallelism provided by these massively parallel resources.
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Previously, several efficient serial [3, 5], and streaming algorithms [2, 12] have
been presented for topological constructs. The first parallel algorithm for computing
contour trees has been proposed by Pascucci et al. [11]. Subsequently, [6, 7, 9, 10]
introduced techniques to compute contour or merge trees more efficiently at
scale. All the above algorithms have been developed for simplicial complexes or
rectilinear 2 or 3-d grids. But there are several scientific phenomenon [4, 13] that
are modelled using meshes like structured/unstructured curvilinear meshes, finite
element zoo meshes [14], adaptive mesh refinement(AMR) meshes [1], etc. For
these types of meshes, its non-trivial and potentially costly to convert a mesh into
a simplicial complex. However, the majority of such meshes can be represent as
regularCW-complexes. Hence, there is a strong motivation to extend the topological
analysis algorithms to handle CW-complexes. In this work, we present a distributed
algorithm for computing the merge tree on a regular CW-complex. Furthermore, we
present a proof of correctness for this approach, and apply our result to validate the
previous algorithms.

2 Background

We briefly review some basic concepts from algebraic topology, and refer the reader
to Massey [8] for further reading. Let there be a space M � R

d, which is represented
using a d-dimensional, finite, regular CW-complex , Kd, such that a k-cell is an
open k-ball, 0 � k � d. In computational science, a continuous Morse function
F W M ! R, is typically discretized by assigning values to 0-cells(vertices) and
interpolating the function within every k-cell to obtain a function f W K ! R, such
that each vertex is associated with a distinct function value and the interpolation
scheme ensures f is C0 on Kd with simple critical points. For example, in the cases
when K is a simplicial complex or a 3d-rectilinear grid, the interpolation schemes
that could be used are linear and trilinear respectively.

Let there be a k-dimensional cell, ˛k 2 K; k � d. Then the closure of ˛, denoted
as ˛, is the cell ˛ and the limit points of ˛. Thus, the boundary of ˛, denoted as @˛,
is given by @˛ D ˛n˛. If another cell, ˇm 2 K; k < m � d such that ˛ � ˇ, then
˛k is the face of ˇm, denoted as ˛ 
 ˇ.

Definition 1 The level set, lc, of f at a value c 2 R is the set of points in the
domain of f such that lc D f�1.c/. A connected component of the level set is called
a contour.

Definition 2 The super-level set, Lc, of f is the set of points in the domain of f with
value in f greater than c 2 R and is given as Lc D f�1Œc;1/.
Definition 3 Given a super-level set, Lc, of f having n connected components
denoted as fC1;C2; : : : ;Cng, then Lc D [Ci for i D 1 : : : n and Ci\Cj D ; .i ¤ j/.
We define an equivalence relation ‘�’ on K such that two points x; y 2 K are related
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if f .x/ D f . y/ D c and x; y 2 Ci i.e. belong to the same level-set and the same super-
level component of Lc. Then the quotient space, K= �, is the merge tree of f on K,
denoted as MT.K/. The many-to-one map, � W K ! K= �, maps points from K

onto a point in the merge tree.

Intuitively, the merge tree encodes the evolution of the frontiers of connected
components of the super-level set of f on K. The merge tree is composed of nodes
and arcs. The nodes represent the critical points that create, merge, or destroy super-
level set components which are the maxima - leaves in the tree, saddles - interior
nodes and the global minimum - the root of the tree respectively. Sometimes, the
merge tree is augmented with valence-2 nodes, which are non-critical nodes that do
not correspond to any change in the super-level set topology. We call these nodes
regular nodes. In this paper, we assume without loss of generality that K is simply-
connected. In the case when K is not connected, we would obtain a forest of merge
trees where each tree corresponds to a connected component of the domain.

3 Computing Merge Trees on CW-Complexes

Our technique is based on the divide and conquer strategy where a merge tree is
computed for each partition of the domain. These trees are then joined to form the
merge tree of the domain. In this section, we first describe the domain decomposition
used by the divide and conquer strategy. The strategy is then expressed as a recursive
algorithm followed by the necessary modifications to adapt it to a distributed setting.

3.1 Domain Decomposition

In order to apply a divide and conquer strategy we partition the domain K into a
finite number of patches.

Definition 4 A patch, P, is a d-dimensional sub-complex of K, where P is
composed of a set of d-cells along with their boundaries, i.e. let P 	 K such that if
˛d 2 P, then ˇ 2 P iff ˇ � ˛d .

Definition 5 The patch-boundary, @P, of P is the intersection of P with the closure
of KnP. Thus @P D .KnP/\ P.

Definition 6 The domain-decomposition of K is given as a union of finite number
of patches given as K D [Pi; 0 < i � n such that for any two patches Pi;Pj 2 K,
.Pin@Pi/ \ .Pjn@Pj/ D ;; i ¤ j.

Definition 7 Let there be patches, P;Q 2 K. Then P and Q are neighbors if
P \ Q ¤ ;. The boundary components, @iP, of P are the intersections of P with
each of its neighbors, Qi. Thus, the boundary components of P are @iP D P \ Qi.
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We denote the set of all @iP asb@P. Since P and Qi are neighbors, each P \ Qi is
also a boundary component of each neighbor Qi.

Definition 8 A patch hierarchy consists of levels, h D 0; : : : ; hmax, where h D 0 is
the finest level and h D hmax is the coarsest level. Each level is a complex of patches
such that patch at level h, denoted as Ph is the union of patches at level h� 1. Thus,
Ph D [ Ph�1

i ; 0 < i � n. At the finest level, h D 0, a patch, P0 is a d-dimensional
cell, ˛d 2 Kd along with its boundary, @˛d . Thus, P0 D ˛d [ @˛d D ˛d .

One may consider the hierarchy as a tree where each node is a patch. The leaves
are patches composed of a single d-dimensional cell and the interior nodes are
patches composed of the union of the children. We do not enforce any restriction
on the neighborhoods of the children.

3.2 Joining Merge Trees

Given two neighboring patches, P;Q 2 K, we can compute their respective merge
trees MT.P/ and MT.Q/ and glue them in a specific way to obtain the merge tree of
the union, P [ Q. We call this the join operation. But to perform the join, we have
to preserve the connectivity of the super-level set components that expand into the
neighboring patch. This information is provided by points on the shared boundary
P \ Q and one can achieve the join by adding all these points into the merge trees of
the patches as noncritical, regular nodes. These can then be used in the join to form
the merge tree of P [ Q. But as there are infinitely many points on the boundary this
approach is not feasible. Instead, we can restrict the number of noncritical points
from the boundary by only adding the boundary maxima as regular nodes to the
merge trees.

Definition 9 The maxima of f , when f is restricted to every boundary component
of a patch, P, are known as the boundary maxima of P.

Once we have the merge tree along with the boundary maxima, we can now join
trees from neighboring patches along these nodes. Before we look at the details of
the join, let us define the inputs to this operator.

Definition 10 Let P 2 K be a patch and letb@S be a set of boundary components.
The augmented merge tree, AMT.P; b@S/, is the merge tree of f restricted to the
patch, P, augmented with the boundary maxima of all boundary components,b@S.

The JoinMT./ routine described in Algorithm 1 performs this operation on a set
of merge trees. It assembles the resulting tree from the arcs and nodes of input trees
by introducing each arc, along with its end nodes, in a descending order based on
the function value of the lower node. Each time an arc, .u; v/, bounded by nodes u
and v, f .u/ > f .v/, is introduced, it gives rise to one of the following cases in the
tree being constructed, T:
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1. u; v … T then arc .u; v/ does not attach to any of the existing arcs but gets
added as a disjoint arc in T—this represents the creation of a new super-level
set component

2. u 2 T; v … T and u has no descendants, then we attach .u; v/ to u as a
descendant—this represents the growth of an existing super-level set component
by addition of the region represented by .u; v/

3. u 2 T; v … T and u has descendants with the lowest descendant being u0, then
we attach v as a descendant of u0 by introducing an arc .u0; v/—this means that
the super-level set component containing u has already grown till u0, so grow it
further till v.

4. v 2 T; u … T, then we attach .u; v/ to v making v a saddle—this represents
creation of a super-level set component that merges with another super-level set
component at v. Note that since we are adding arcs in the descending order based
on the function value of the lower node, v will not have any descendants present
in T.

5. u; v 2 T and v is not a descendant of u, then we add the arc between the
lowest descendant of u, given by u0, and v—this represents merging of super-
level components

6. u; v 2 T and v is a descendant of u, then we discard the arc .u; v/—this mean
that the region of the super-level set component represented by .u; v/ is already
present in the domain.

The above discussed process can be achieved by a union-find like traversal of the
sorted nodes as seen in Algorithm 1. The sorting of the nodes is performed in linear
time as the input AMTs would have their nodes in sorted order. The Find.u;AMT/
routine returns the lowest descendant of u in AMT and adds u if it is not present in
AMT. This is implemented as a union-find data structure and has amortized constant
running time. The number of edges for a given node is constant and hence the
Algorithm 1 has a linear run time complexity given by the number of nodes in the
input AMTs (Fig. 1).

Algorithm 1: Join(AMT(. . . ))
Data: Array of AMTs for individual patches
Result: AMT of the union of patches
AMT = [];
Nodes[] = Sorted list of the union of vertices from input AMTs in decreasing order of
function value;
for All nodes v in Nodes do

for Arcs .u; v/ in input AMTs do
u0 D Find.u;AMT/; // If u not in AMT, add and return u
v0 D Find.v;AMT/; // If v not in AMT, add and return v

if u0 ¤ v0 then
AddArc(u0 ; v0);

return AMT;
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Fig. 1 Examples for case 3 (left), case 4 (middle), and case 5 (right) from the above description

Definition 11 Given two augmented merge trees, AMT.P; b@P/ and AMT.Q; b@Q/,
the join operator, .C/, joins them along the boundary maxima of P \ Q to form
AMT.P [ Q; b@P [b@Q/.
Theorem 1 AMT.P; b@P/C AMT.Q; b@Q/ D AMT.P [ Q; b@P [b@Q/.
Proof From Definition 3 of a merge tree, a point x 2 P [ Q is mapped to a point
on AMT.P [ Q; b@P [b@Q/ under the map �. If x lies on the arc .u; v/, where
f .u/ > f .v/, we say that x has the label u. We now have to show that the join
operator on AMT.P; b@P/ and AMT.Q; b@Q/ produces the same set of labels for
points in P[Q as produced by AMT.P[Q; b@P[b@Q/. If the points have the correct
labels, we have the correct connectivity of arcs under the join operation.

Let us assume that the correct label for a point x 2 P [ Q is u. Then x lies on an
arc .u; v/ 2 AMT.P [Q; b@P [b@Q/. Now, there are two cases,

1. x; u 2 P. In this case, u must be the label of x in AMT.P; b@P/. Let us assume
that the join operation assigns a label w to x. This is possible only if w 2 QnP.
Now, if w is to be the label of x, we should have f .u/ > f .w/ > f .x/ and they
must lie on the same super-level set component. This implies that the u and w
must have a common ancestor. In this case, the join operation ensures that u;w
and x lie on the same path to the root. Thus, w should be the label of x, but that
contradicts our assumption that u is the correct label, hence, our assumption that
the join operation assigns w as the label is false.

2. x 2 P and u 2 QnP. Then before the join lets assume that x had a label w
in AMT.P; b@P/. Now, if u is the label of x, then f .w/ > f .u/ > f .x/ and u
and x must be on the same super-level set component. But as x has a label w in
AMT.P; b@P/ implies that x andw are also on the same super-level set component.
This implies that w and u have a common ancestor. This is possible only if all
them lie on the same path from the ancestor to the root. If u;w are on the same
path the algorithm will assign the label u to x since f .w/ > f .u/ thereby assigning
the correct label.

Thus, the join operator always maintains the correct labels and hence generates the
correct AMT.P [Q; b@P [b@Q/. ut

The resulting tree from the join contains valence two nodes from P \ Q that are
no longer required. On the other hand, we need to retain the boundary maxima of
the boundary components of the union of patches, P[Q. The boundary maxima of
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the components of @.P [ Q/ are already present in the joined tree. The following
lemma proves this claim.

Lemma 1 Given two neighboring patches P;Q 2 K and their augmented merge
trees AMT.P; b@P/ and AMT.Q; b@Q/, then the join of these trees contains the
boundary maxima ofb@.P [ Q/.

Proof AMT.P; b@P/ and AMT.Q; b@Q/ contain the boundary maxima ofb@P andb@Q
respectively and the join operation does not remove any nodes from the participating
trees while creating the resulting tree. Thus, AMT.P; b@P/ C AMT.Q; b@Q/ D
AMT.P [ Q;b@P [b@Q/ contains the boundary maxima ofb@.P [ Q/. ut

3.3 Obtaining the Boundary Maxima and Pruning
the Merge Tree

Definition 12 The Bmax.b@P/ operator takes a patch and returns the boundary
maxima for each boundary component,b@P, of P.

The function GetBoundaryMax.P; h/ returns the list of boundary maxima for the
patch P at level h. This call takes help of the BuildMT./ routine that generates a
merge tree for a patch. We shall define this routine in detail later in this section.
As the merge tree by definition preserves all the maxima of a function on a given
domain, we obtain the boundary maxima by computing the merge tree of each
boundary component of P and extract the maxima from the respective trees. Since,
we do not know the function interpolation scheme on K, we take help of an oracle
as defined below to obtain the merge tree of a cell in the CW-complex.

Definition 13 Let ˛k 2 Kd; 0 � k � d, be a k-dimensional cell. The oracle, given
as OracleMT. f ; ˛/, returns the merge tree, denoted as MT.˛/ of the cell and its
boundary i.e. ˛ [ @˛.

A similar approach of using an oracle was taken in [11], but the authors did not
include the boundary maxima of the cell in their computation which can result in an
incorrect join.

As we have seen in Theorem 1 that the boundary maxima are required in
order to perform the correct join operation so we must include them in the merge
tree returned by the oracle. Since, K is a regular CW-complex, the boundary
components,b@˛, are .d � k/-dimension sub-complexes where 1 � k � d. To obtain
the boundary maxima ofb@˛, we make use of the oracle to give us the merge trees of
individual cells inb@˛. We can then extract the maxima from these trees.

The GetMaxFromMT./ is a trivial routine that returns the maxima nodes from a
merge tree. Algorithm 2 describes the GetBoundaryMax.P; h/ function. As long as
the BuildMT./ and the OracleMT generate the correct merge tree this routine shall
identify the correct boundary maxima.
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Algorithm 2: GetBoundaryMax(P, h)
Data: Patch, P, and level, h, in the hierarchy
Result: Array with references to maxima, max[]
for all patch-boundary components @iPh 2 P do

if h > h0 then
MT = BuildMT(@iPh, h);
max[. . . ] = GetMaxFromMT(MT); // Returns maxima from MT

else
for all cells ˛j in @iPh do

MT = OracleMT(˛j);
max[. . . ] = GetMaxFromMT(MT); // Returns maxima from MT

return max[. . . ];

The max need to be relabeled in AMT.P [Q;b@P [b@Q/. The following operator
performs this operation.

Definition 14 The mark boundary max operator, M.AMT.P; b@S/; Bmax.b@R//,
such that b@R 	 b@S, returns the AMT.P; b@R/, with the boundary max of all
components ofb@R marked as boundary.

The MarkBoundary./ routine performs the above operation. It first traverses the
tree and unmarks all the nodes. It then finds the boundary maxima in the tree and
marks them as boundary. This results in a tree that has only the boundary maxima
marked as boundary.

Finally, we need to remove the redundant valence two or regular nodes that are
not boundary. These are no longer required as they are not critical and do not lie on
the boundary. We remove them from tree using the following operator.

Definition 15 The prune operator,P.AMT/, removes the regular nodes that are not
on the boundary from the AMT.

This is a trivial operation and can be performed by simply traversing the tree and
deleting the regular nodes that are not boundary.

3.4 Recursive Computation

Now that the above operations have been defined, the merge tree for the entire
domain K can be built in a recursive fashion. We compute the merge tree for every
patch at the finest level in the patch hierarchy, h D 0, and join them using the
join operator, find the boundary maxima of the union of the patches using the Bmax

operator, mark them using the M operator and finally prune the tree using the P

operator to form the merge tree of a patch at the next coarser level, h D 1. We
perform this operation recursively till we have obtained the merge tree of the final
level, h D hmax. The recursive solution is given in the following theorem.
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Theorem 2 Given a patch, Ph 2 Kd at level h, the AMT.Ph; b@Ph/ is given by,

AMT.Ph; b@Ph/ D P
˚
M

� nX

iD0
AMT.Ph�1

i ; b@Ph�1
i /

�
; Bmax.b@Ph/

��
, where

nX
iD0

AMT.Ph�1
i ; b@Ph�1

i / D AMT.Ph�1
0 ; b@Ph�1

0 /C � � � C AMT.Ph�1
n ; b@Ph�1

n /

i.e. the join of all the merge trees of patches at level, h � 1, within the patch Ph.

Proof This can be proved using induction. At h D 0, the patch, P0 D ˛d [ @˛d , is
a d-cell and its boundary. We make use of the oracle to obtain MT.˛/. By using the
Bmax operator onb@˛ we can obtain the boundary maxima, which can be added to
MT.˛/ to give us AMT.P0;b@P0/.

At h D k, let Pk D [Pk�1
i ; 0 � i � n. Lets assume that

AMT.Pk; b@Pk/ D P
˚
M

� nX

iD0
AMT.Pk�1

i ; b@Pk�1
i /

�
; Bmax.b@Pk/

��
(1)

At h D k C 1, let PkC1 D [Pk
j ; 0 � j � m. Now, since we can compute

AMT.Pk
j ;
b@Pk

j / using Eq. (1) and join them to get,

nX
jD0

AMT.Pk
j ;
b@Pk

j / D AMT.[Pk
j ; [b@Pk

j / D AMT.PkC1; [b@Pk
j / (2)

From (2), we have obtained the AMT of the union of patches, [Ph
i D PkC1,

that contains the boundary maxima of the union of the boundaries, [ .b@Pk
i /. But

we need the boundary maxima of components of the boundary of the union i.e.b@.[Pk
j / Db@.PkC1/, which need to be marked in AMT.PkC1; [b@Pk

j /. The boundary

max is obtained from Bmax.b@Pk/. These can then be marked by using the M operator
followed by a prune giving,

P
˚
M


AMT.Pk; [b@Pk�1

i /; Bmax.b@Pk/
�� D AMT.PkC1; b@PkC1/ (3)

Thus; AMT.PkC1; b@PkC1/ D P
˚
M

� nX

jD0
AMT.Pk

j ;
b@Pk

j /
�
;Bmax.b@PkC1/

��
(4)

ut
The function BuildMT.P; h/, described in Algorithm 3, where P is a patch or

patch-boundary component and h is the level in the hierarchy shows the recursive
construction. The merge tree for all patches within a higher level patch are computed
and joined. The boundary maxima are computed and marked followed by pruning
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the tree. This is done recursively. Note that at the base level of the recursion the
patch is a single d-cell. The oracle returns the merge tree of the cell but we still need
to explicitly add the boundary maxima for the cell. Hence, we make the extra call to
GetBoundaryMax./ and MarkBoundary./ within the else after we have invoked the
oracle. At the end of the recursive computation, the BuildMT./ routine computes
the AMT.K; b@K/. We can easily delete the boundary nodes to obtain the MT.K/.

Algorithm 3: BuildMT(P, h)
Data: Patch, P, and level, h, in the hierarchy
Result: MT.P/
for all patches Ph�1

i 2 P do
if h > 0 then

MT[i] = BuildMT(Ph�1
i , h� 1);

else
MT[i] = OracleMT(Ph

i );
max[. . . ] = GetBoundaryMax(Ph

i , h);
MarkBoundary(MT[i], max[. . . ]);

if h > 0 then
MT = Join(MT[. . . ]);

max[] = GetBoundaryMax(P, h);
MarkBoundary(MT, max[. . . ]);
Prune(MT);
return MT.P/;

3.5 Distributed Computation

In the above section, we have shown that we can compute the merge tree of a domain
K by decomposing K into a hierarchy of patch levels and recursively computing
the tree on each level. In the distributed scenario, we unroll the recursion so as to
perform the computation of every patch on to an individual compute resource. This
results into a patch containing multiple d-cells being allocated to every compute
resource. The information between patches is exchanged using a message passing
interface. The merge tree of K can be computed by joining the merge trees from
the distributed patches in a successive join hierarchy corresponding to the patch
hierarchy, until the merge tree of the whole domain, denoted as the global tree, is
computed.

The computation of the global tree, by simply unrolling the recursive algorithm is
not an efficient distributed solution as it involves communicating entire intermediate
merge trees by every patch incurring heavy communication costs. At the same time,
the computation is highly load imbalanced as fewer compute resources are in use
as one approaches higher levels in the hierarchy. This technique has been used by
Pascucci et al. [11] for computing merge trees of 3d regular grids. A more efficient
strategy is used by Morozov and Weber [9], Landge et al. [6] where the global tree is
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distributed where each patch maintaining only the part of the global tree pertaining
to that patch, referred as local merge tree. Here we extend the technique from [6]
to d-dimensional, finite, regular CW-complexes and present its proof of correctness.
This proof can be extended to all other existing parallel merge tree computation
approaches like [9, 11].

Definition 16 Let P and S be d-dimensional sub-complexes of K. The local merge
tree, LT.K; P; b@S/, of f on the domain K, local to the patch P with respect to the
boundary of S 	 K is given by:

– the arcs and/or nodes of MT.K/ that contain at least one point corresponding to
the image of point/s in P under the map �;

– the upper and lower nodes of the above arcs;
– these arcs and/or nodes are augmented with the maxima of f when f is restricted

to individual boundary-components,b@S, of S.

Given a domain decomposition of K into patches Pi, our goal is to compute the
LT.K; Pi; b@K/ for each Pi 2 K. By Definition 16, MT.K/ can be easily obtained
once we have the individual LT.K; Pi; b@K/.

In order to compute the LT.K; Pi; b@K/, we start by computing the
LT.Pi; Pi; b@Pi/, for each patch. We compute these using the recursive algorithm
from Sect. 3.4 by invoking the BuildMT.Pi; h D 1/ for each of the patch. Now
instead of joining these trees with neighboring patches, we can modify the algorithm
to reduce the communication cost of the distributed computation.

Definition 17 Given an arc with end nodes .u; v/ in a merge tree, we say that u
is the parent of v if f .u/ > f .v/. Given a patch P 	 S 	 R 2 K and having
LT.R; P; b@S/, the boundary merge tree, denoted as BT.R; P; b@S/, is the set
of nodes and arcs that lie on the monotonic descending paths from the parents of
the boundary maxima of components of b@S to the root in LT.R; P; b@S/. Thus,
BT.R; P; b@S/ 	 LT.S; P; b@S/.
Theorem 3 Given patches P;Q 2 K such that P \ Q ¤ ;. The nodes and arcs of
LT.P; P; b@P/ that are not part of BT.P; P; b@P/ remain unchanged in

LT.P [Q; P [ Q; b@.P [ Q//.

Proof We refer the reader to [9] for the proof. As the components of the super-level
sets that reside entirely in PnQ and are not connected to the boundary, they cannot
be affected by the join operation. ut

The following operator extracts the boundary merge tree from a given merge tree
augmented with boundary maxima of boundary components.

Definition 18 Given a local merge tree, LT.P; P; b@S/ or a boundary merge tree,
BT.P; P; b@S/, the extract boundary operator, E, with respect to b@R, extracts
the boundary merge tree, BT.P; P; b@R/, whereb@R 	 b@S from LT.P; P; b@S/ or
BT.P; P; b@S/. Thus, E.LT.P; P;b@S/;b@R/ D BT.P; P; b@R/.
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The boundary merge trees can be easily extracted by traversing the tree from the
leaves, identifying the boundary maxima and selecting the nodes and arcs from the
parents of these maxima till the root of the tree.

3.5.1 Join Hierarchy of Boundary Trees

As the nodes and arcs that lie in the interior of a patch do not change after a join,
this implies that only the BT is affected by the join. We exploit this property by
joining only the boundary trees of patches to form boundary trees of patches at the
next level. These in turn are joined successively creating a hierarchy of join stages.

Theorem 4 Given the boundary merge trees of two patches P and Q as
BT.P; P; b@P/ and BT.Q; Q; b@Q/ then,

BT.P; P; b@P/C BT.Q; Q; b@Q/ D BT.P [ Q; P [ Q; b@P [b@Q/
Proof Let RP D LT.P; P; b@P/ n BT.P; P; b@P/,
RQ D LT.Q; Q; b@Q/ n BT.Q; Q; b@Q/,
R D LT.P [ Q; P [ Q; b@P [b@Q/ n BT.P [ Q; P [ Q; b@P [b@Q/

From Theorem 3,
RP and RQ remain unchanged in the join LT.P; P; b@P/C LT.Q; Q; b@Q/. Thus,

LT.P; P; b@P/C LT.Q; Q; b@Q/ D RP [ RQ [ .BT.P; P; b@P/C BT.Q; Q; b@Q//
Also, LT.P; P; b@P/C LT.Q; Q; b@Q/ D LT.P [Q; P [ Q; b@P [b@Q/
The boundary maxima in the above join remain unchanged as the join operation

does not give rise to new maxima or does not alter the existing boundary maxima.
Thus, BT.P [ Q; P [ Q; b@P [b@Q/ contains all boundary maxima fromb@P andb@Q. This implies, R D RP [ RQ. Hence, BT.P; P; b@P/ C BT.Q; Q; b@Q/ D
BT.P [ Q; P [ Q; b@P [b@Q/ ut

After every join stage, the resulting tree is used by the patches to update their LTs
with respect to the grown boundary. We refer to this as the localization described in
the next section. After this the BTs are pruned and the BT for the next level patches
are extracted. These are used by the next stage of the merge. As we consider K to
have no boundary, BT.K; K; b@K/ is empty. An example of this process is shown
in Fig. 2.

3.5.2 Localization of Merge Trees to Patches

After every join stage of the BTs, the resulting boundary trees are joined with cor-
responding patches to obtain the LTs. This way a patch can obtain the connectivity
information of its super-level set components that grow into neighboring patches by
using the boundary trees of its neighbors.



Notes on the Distributed Computation of Merge Trees on CW-Complexes 345

LT (P0
0,P0

0, P0
0 ) LT (P1

0,P1
0, P1

0 ) LT (P2
0,P2

0, P2
0 ) LT (P3

0,P3
0, P3

0 )

BT (P0
0,P0

0, P0
0 ) BT (P1

0,P1
0, P1

0 ) BT (P2
0,P2

0, P2
0 ) BT (P3

0,P3
0, P3

0 )

BT (P0
0 P1

0,P0
0 P1

0, P0
0 P1

0 ) BT (P2
0 P3

0,P2
0 P3

0, P2
0 P3

0 )

BT (P0
1,P0

1, P0
1) BT (P1

1,P1
1, P1

1)

BT (P0
1 P1

1,P0
1 P1

1, P0
1 P1

1)

BT (P0
2,P0

2, P0
2 )

(h = 0) (h = 0)

(h =1) (h =1)

(h = 2)

+ +

+

Localization Stage 1 

Localization Stage 2 

Fig. 2 An overview of the distributed computation for a domain consisting of four patches at level
h D 0, two patches at level h D 1, and the whole domain at h D 2

Theorem 5 Given neighboring patches P;Q 2 K, then
LT.P [ Q; P; b@.P [ Q// 	 LT.P; P; b@P/C BT.Q; Q; b@Q/.
Proof We know from Definition 11 that
LT.P; P; b@P/C LT.Q; Q; b@Q/ D LT.P [Q; P [ Q; b@P [b@Q/.
We also know from Theorem 3 that the arcs that lie entirely in the interior of
Q do not get affected by the join. So, only BDT.Q; Q; b@Q/ which contains
all the connectivity information participates in the join. Thus, LT.P; P; @P/ C
BT.Q; Q; b@Q/ 	 LT.P [ Q; P [ Q; b@P [b@Q/.
Now, by definition of LT, LT.P[Q; P; b@.P[Q// 	 LT.P[Q; P[Q; b@P[b@Q//
and contains all arcs local to P along with the correct connectivity with the arcs from
BT.Q; Q; b@Q/.
Thus, LT.P [Q; P; b@.P [ Q// 	 LT.P; P; b@P/C BT.Q; Q; b@Q/. ut

From the resulting tree of LT.P; P; b@P/C BT.Q; Q; b@Q/, we have to mark the
boundary maxima of the componentsb@.P[Q/ and prune the regular nodes. Let the
tree obtained after marking the boundary maxima and prune operations be T. But
T ¤ LT.P[Q; P; b@.P[Q// as T might contain arcs from Q that do not correspond
to any point in P and hence cannot be in LT.P [ Q; P; b@.P [ Q//. To obtain the
LT.P [ Q; P; b@.P [ Q// from T we restrict it to P in the following way

– Let X is the set of nodes in T that correspond to the image of points in P under
the map �. Let m 2 X be the node with the minimum value in X. Let Y be all
nodes and arcs that lie on monotonic descending paths from X to m

– We now add arcs, .u; v/; f .u/ > f .v/, along with the end nodes to Y such that
u … Y; v 2 Y.

– Lastly, we add an arc, .m; v/; f .m/ > f .v/ to Y, if it exists, such that m 2 X is the
node with the minimum function value in X and v … Y.

The tree Y is the LT.P [ Q; P; b@.P [ Q//. After every join stage we carry out this
localization to obtain LT.K; P; b@K/.
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3.5.3 Time Complexity Analysis of the Distributed Merge Tree
Computation

Let us assume that K has n cells distributed over p processors. Also, let us assume
the patch hierarchy to be a k-way hierarchy, where k low level patches combine to
form a higher level patch. Assume the oracle of a cell with v vertices on average
generates a tree with m nodes in t time. We expect the output trees to be sorted so
t is at least O.v � log.v//. However, if v is bounded, i.e. for regular grids, t will be
constant. Thus, generating the merge trees for all of the CW-cells on each processor
is O.t �n=p/ and assuming a linear merge of the trees the time to construct the level 0
trees is O..tCm/ � n=p/. The additional steps to identify boundary maxima, extract
the boundary tree, etc. are all linear in the size of the tree and thus do not add to the
overall complexity. For known mesh types one could substitute any of the existing
algorithms.

The expected size of a boundary tree is proportional to the size of the boundary.
Assuming we merge spatially coherent patches, i.e. blocks of a regular grid or
groups creates from a mesh partitioning scheme, the boundary trees of level
0 are expected to be of size O..n=p/

2
3 /. The merge on level 1 will thus take

O..n=p/
2
3 � k � log.k// with the additional log k factor corresponding to the priority

queue needed during the merge. The resulting tree will be of size O..k � n=p/ 23 /.
Thus the expected total time for all merges of all levels will be

O

0
@k � log.k/

�
n

p

� 2
3

�
logk p�1X
iD0

k
2i
3

1
A D O

 
k � log.k/

�
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3

� . p
2
3 � 1/
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!

D O
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2
3 � 1/

!
:

The localization step, which is derived from the join operator, occurs after every
join operation in the hierarchy and is linear in the number nodes of the participating
local tree and boundary tree. Furthermore, it is performed in parallel by each of the
processor and hence does not add to the time complexity.

Complexity-wise the behavior for increasing mesh sizes is therefore dominated
by the potentially O..n=p/2/ behavior of the initial local compute, in case m is of
order O.n=p/. In practice, this cost turns out to be negligible and the behavior is
dominated by the number of merges and the increasing size of the boundary trees.
Note, that in this respect the size of the boundary tree is a conservative estimate as
the global domain boundaries actually do not contribute to the size of the boundary
trees.
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4 Conclusion

Topological analysis techniques have been extensively used to analyze and visualize
data generated by scientific simulations. But the growing compute power and
enormity of data has created a need for scalable distributed algorithms. Furthermore,
scientific simulations are moving towards using more sophisticated meshes in place
of regular grids. For example, adaptive mesh refinement meshes are being adopted
by various large scale scientific simulations.

In this paper, we have presented a distributed algorithm for computing merge
trees on regular CW-complexes, which provides a theoretical foundation for com-
puting merge trees for various types of meshes. We rely on an oracle to provide the
merge tree of a single cell within a mesh and state the conditions and requirements
from the oracle. Hence, as long as the oracle satisfies those conditions, the merge
tree can be computed using the presented algorithm for any type of meshes that are
regular CW-complexes.
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Computing Invariants of Knotted Graphs Given
by Sequences of Points in 3-Dimensional Space

Vitaliy Kurlin

Abstract We design a fast algorithm for computing the fundamental group of the
complement to any knotted polygonal graph in 3-space. A polygonal graph consists
of straight segments and is given by sequences of vertices along edge-paths. This
polygonal model is motivated by protein backbones described in the Protein Data
Bank by 3D positions of atoms. Our KGG algorithm simplifies a knotted graph
and computes a short presentation of the Knotted Graph Group containing powerful
invariants for classifying graphs up to isotopy. We use only a reduced plane diagram
without building a large complex representing the complement of a graph in 3-space.

1 Introduction: Our Motivations, Key Concepts
and Problems

This research is on the interface between knot theory, algebraic topology, homolog-
ical algebra and computational geometry. Our main motivation is the application
of topological and algebraic methods to recognizing knotted structures in 3-
dimensional geometric graphs of long molecules such as protein backbones.

Backbones of Proteins are Polygonal Curves in 3-Space A protein is a large
molecule containing a big number of amino acid residues. The primary structure
or the backbone of a protein is the linear sequence of its amino acids. More than
100K proteins have been tabulated in the Protein Data Bank http://www.rcsb.org/
pdb, which is a large database of pdb files. The pdb file of a single protein contains
noisy coordinates .x; y; z/ of all atoms that are linearly ordered in the backbone.

A natural way to model a protein is to assume that each atom is a point in 3-
dimensional Euclidean space R

3, while every chemical bond between atoms is a
straight line segment between corresponding points. In general, a polygonal curve
with vertices p1; : : : ; pm 2 R

3 is the union of line segments connecting each point
pi�1 with pi for i D 2; : : : ;m. In addition, if p0 D pm, we get a closed curve in R

3.
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Fig. 1 Knotted polygonal graphs (trefoil, Hopf link, Hopf graph) and open trefoil with vertices
v0 D .�2;�2; 1/, v1 D .2; 2;�1/, v2 D .2;�1; 0/, v3 D .�2;�1; 0/, v4 D .�2; 2; 2/, v5 D
.2;�2;�1/ in R

3 and crossings c0 D .�1;�1/, c1 D .0; 0/, c2 D .1;�1/ in the .x; y/-plane R
2

Definition 1 A polygonal knotted graph is any embedded graph K � R
3 consisting

of finitely many straight line segments with pairwisely disjoint interiors. The
number n of line segments in K is called the length of the polygonal graph K � R

3.

The degree of a vertex v in a graph K is the number deg v of edges attached to
v, and a loop is counted twice. Vertices with deg ¤ 2 are essential. An edge-path
of K is a polygonal chain with essential vertices at two endpoints and only non-
essential vertices of degree 2 between them. The open trefoil in Fig. 1 is the edge-
path with four non-essential vertices v1; v2; v3; v4 between two essential vertices
v0; v5 of degree 1. In practice, a polygonal graph K in 3-space is represented in a
computer memory as

• an unordered list of points .x; y; z/ corresponding to all essential vertices of K;
• a sequence of points .x; y; z/ at non-essential vertices along every edge-path

of K. The edge-path of the trefoil K in Fig. 1 is represented by the sequence
v1; v2; v3; v4.

If the graph K is a circle, then K � R
3 is a knot. If K is a disjoint union of several

circles, then K � R
3 is a link. Knotted graphs are usually studied up to isotopy that

is a continuous deformation of R3 moving one graph to another, see Definition 3.

Recognition Problem for Protein Backbones and Knotted Graphs in 3-Space
To distinguish different knots or graphs K � R

3 up to isotopy, mathematicians
construct knot invariants that should take the same value on all knots isotopic to
each other. If such an invariant has different values on two knots, these knots are
different.

The simplest non-trivial invariant is the number of connected components of a
graphK � R

3, which is preserved under any continuous deformation of R3. Hence a
knot is not equivalent to a link consisting of at least two circles. However, this simple
invariant can not distinguish any knots, so more powerful invariants are needed. A
knot invariant can be called complete if it distinguishes all knots up to isotopy.

The complement R3 � K of a knotted graph is 3-dimensional and contains more
information about the isotopy class of K in the ambient space R

3 than the 1-
dimensional graphK itself. The oldest invariant of a knotK � R

3 is the fundamental
group of the knot complement R3 � K. Briefly, this group describes algebraic
properties of closed loops that go around K in R

3 and can be continuously deformed
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without intersectingK, see Definition 6. The Alexander polynomial of K is a simpler
invariant that can be extracted from the fundamental group [2]. We highlight the
advantages of the fundamental group over combinatorial invariants of knots.

• The group �1.R3 � K/ is defined for any graph K � R
3, not only for knots, and

is an almost complete invariant of the isotopy class of K, see Theorems 7–9.
• Many invariants of knots K � R

3 are introduced in terms of a plane diagram,
which is a projection of K to R

2 with only double crossings. These invariants are
often computed in time exponential with respect to the number of crossings.

• Despite the group �1.R3�K/ is non-abelian, it leads to numerous abelian invari-
ants that distinguish all prime knots with up to 11 crossings, see Theorem 12,
using practically efficient algorithms from the HAP package of GAP [3].

Contributions of the Current Work to Recognizing Knotted Graphs Our input
is any knotted polygonal graph K, which is motivated by real-life knotted structures.
Our preferred invariant is the fundamental group �1.R3 �K/ and is justified above.
Our main result (Theorem 2 below) is a robust algorithm for a guaranteed fast
computation of this almost complete invariant for arbitrary knotted graphs K � R

3.

Theorem 2 Given any polygonal graph K � R
3 of a length n, our KGG algorithm

first simplifies K to a small diagram with c crossings in time O.n2/ and then writes
a short presentation of the Knotted Graph Group �1.R3 � K/ in time O.c/.

The KGG algorithm and a proof of Theorem 2 are presented in Sect. 4. We
highlight the improvements over the related past work, see more details in Sect. 3.

• We work with a Gauss code of a knotted graph K � R
3 without modelling the

complement R3�K by a cubical complex at a fixed resolution as in [1] and speed
up the running time from seconds to milliseconds on a similar laptop, see Table 3.

• The fundamental group �1.R
3 � K/ is more powerful than the Alexander

polynomial, which was used for recognising knotted proteins in the KnotProt
[6].

• We substantially extend the KMT algorithm [9, 18], which smooths polygonal
curves, to a simplification of any polygonal graph K � R

3. Our implementation
handles round-off errors much better than the state-of-the-art version in [8].

The KGG algorithm can fit well in a future version of the Homological Algebra
Programming package (HAP) of GAP: Groups, Algorithms, Programming [3].
Moreover, the KGG algorithm can be used for connecting the Rosetta software
(predicting protein structures as geometric graphs in 3-space) with the state-of-the-
art recognition algorithm of trivial knots at http://www.javaview.de/services/knots.

This knot recognition is based on 3-page embeddings whose full theory was
already extended to knotted graphs in R

3 [10]. Gauss codes of knotted proteins
produced by the KGG algorithm in this paper can be the input for the linear time
algorithm [12] drawing 3-page embeddings of graphs. Hence we can visualize
knotted proteins in a 3-page book (a union of three half-planes with the same
boundary line).

http://www.javaview.de/services/knots
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2 Background on Topological Invariants of Knotted Graphs

Knot Theory: Equivalences and Plane Diagrams of Knotted Graphs A home-
omorphism is a bijection f W X ! Y such that both f ; f�1 are continuous. It is
convenient to consider knots and graphs in the compact sphere S3, which is obtained
from R

3 by adding a point at infinity, so S3 � fany pointg 
 R
3 are homeomorphic.

Definition 3 Two knotted graphs K;K0 � S3 are called equivalent if there is a
homeomorphism f W S3 ! S3 taking K to K0, so f .K/ D K0. The graphs K;K0 � S3

are ambiently isotopic if the above homeomorphism also preserves an orientation
of S3 or, equivalently, there is an ambient isotopy that is a continuous family of
homeomorphisms ft W S3! S3, t 2 Œ0; 1�, such that f0 D id on S3 and f1.K/ D K0.

The two mirror images of a trefoil are equivalent, but not isotopic, see a short
proof in [4]. A knot K � S3 is trivial (or the unknot) if K is isotopic to a round
circle. The main problem in knot theory is to classify knots and more general knotted
graphs up to equivalence or ambient isotopy from Definition 3. A plane diagram of
a knotted graph K � S3 is the image of K under a projection to a horizontal plane
R
2 in a general position having only transversal intersections (double crossings).
At each crossing we specify a short arc that crosses over another arc, see Fig. 1.

The natural visual complexity of the isotopy class of a knotted graph K � R
3 is the

minimum number of crossings over all plane diagrams representing the graph K.

Knot Recognition: Reidemeister Moves and Gauss Codes of Graphs For the
KGG algorithm in Sect. 4, we use the Reidemeister move R1 from generalized
Reidemeister’s Theorem 4 below saying that any isotopy of knotted graphs in R

3

can be realized by a finite sequence of moves on plane diagrams in Fig. 2.

Theorem 4 ([7]) Two plane diagrams represent isotopic knotted graphs in 3-space
R
3 if and only if the diagrams can be obtained from each other by an isotopy in (a

continuous deformation of) R2 and finitely many Reidemeister moves in Fig. 2. (The
move R5 is only for rigid graphs, the move R50 is only for non-rigid graphs.)

Fig. 2 Reidemeister moves on plane diagrams of knotted graphs, see Theorem 4
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Fig. 3 Plane diagrams with directed edge-paths and labeled crossings illustrating Definition 5

The move R4 in Fig. 2 is for a vertex of degree 4 and similarly works for other
degrees. The move R5 turns a small neighborhood of a vertex upside down. So a
cyclic order of edges at vertices is preserved by R5. The move R50 can reorder all
edges at a vertex. Theorem 4 includes all symmetric images of moves in Fig. 2.

As described in [11], we shall encode a diagram of a knotted graph K � R
3 by a

simple Gauss code, which will be later converted into a presentation of the Knotted
Graph Group �1.R3 � K/. If a graph K contains a circle S1 that is disjoint with the
rest of the graph, then one of degree 2 vertices on S1 will be essential so that the
circle can be formally considered as an edge-path from this vertex to itself.

Definition 5 Let D � R
2 be a plane diagram of a knotted graph K with only

double crossings and essential vertices A;B;C; : : : of degree not equal to 2. We fix
directions of all edge-paths in K and arbitrarily label all crossings of D by 1; 2; : : : ; l.
The Gauss code of D consists of all words WAB associated to directed edge-paths
AB of K from one essential vertex A to another essential vertex B as follows, see
Fig. 3:

• WAB starts with A, finishes with B and has the labels of all crossings in AB;
• if the edge-path AB goes under another edge-path of the graph K at a double

crossing i, then we add the negative sign in front of the label i in the word WAB.

The neighbors (vertices or crossings) of each vertex A are clockwisely ordered in
R
2, so the Gauss code specifies a cyclic order of all words starting or finishing at A.

The trefoils in Fig. 3 have codes .1;�3; 2;�1; 3;�2/ and .2;�3; 1;�2; 3;�1/,
which are defined up to cyclic permutations. The Hopf link has the Gauss code
consisting of two words .1;�2/ and .�1; 2/. The Hopf graph has the Gauss code
consisting of three words corresponding to the three edges: .A;B/, .A;�1; 2;A/,
.B; 1;�2;B/.
The Fundamental Group and Abelian Invariants of a Graph Complement in S3

Definition 6 Let X � R
3 be a path-connected subset, so any two points in X can

be connected by a continuous path within X. A closed loop at a base point p 2
X is a continuous map f W Œ0; 1� ! X with f .0/ D p D f .1/. Two such loops
f0; f1 W Œ0; 1� ! X are path-homotopic if they can be connected by a continuous
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Fig. 4 A connected sum K#K0 of two trefoils K and K0 is well-defined up to ambient isotopy in
R
3

Table 1 Exact numbers of prime non-trivial knots from http://www.indiana.edu/~knotinfo

Number of crossings �6 7 8 9 10 11 12 �12
Knot isotopy classes 7 7 21 49 165 552 2176 2977

family of loops ft W Œ0; 1� ! X, t 2 Œ0; 1�, always passing through the base point
p D ft.0/ D ft.1/ for t 2 Œ0; 1�. The fundamental group �1.X; p/ is the group of all
path-homotopy classes of closed loops in X. The product of two loops is obtained
by going along the first loop (starting and finishing at the base point p), then along
the second loop.

A connected sum K#K0 of knots K;K0 is obtained by removing two short open
arcs a � K, a0 � K0 and by joining the resulting four endpoints to form a larger
knot .K � a/[ .K0 � a0/, see Fig. 4. The isotopy class of K#K0 depends only on the
isotopy classes of K;K0, not on a choice of a; a0. A knot not isotopic to a connected
sum of non-trivial knots is called prime. Any knot uniquely decomposes into a
connected sum of prime knots (up to permutations), hence only prime knots are
classified (Table 1).

Theorems 7 and 8 imply that �1.S3 � K/ is a complete invariant for all prime
knots. So �1.S3 � K/ and its abelian invariants can be used for recognizing knots.
For a knotted graph K � S3, let N.K/ be a small open neighborhood of the graph
K. For instance, this neighbourhood can be the open "-offset K" D [p2KB.pI "/
consisting of open balls with a small radius " > 0 and centers at all points p 2 K.
The complement S3 � N.K/ is a compact 3-manifold whose boundary is @N.K/.

Theorem 7 ([5, Theorem 1]) Two knots K;K0 � R
3 are equivalent if and only if

there is a homeomorphism between their complements S3 � N.K/ 
 S3 � N.K0/.
Two knots K;L � R

3 are ambiently isotopic if and only if there is an orientation-
preserving homeomorphism between their complements S3 � N.K/ 
 S3 � N.K0/.

Theorem 8 ([20]) If prime knots K;K0 � S3 have isomorphic groups�1.S3�K/ Š
�1.S3 � K0/, then their complements are homeomorphic: S3 � K 
 S3 � K0.

http://www.indiana.edu/~knotinfo
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The Knotted Graph Group �1.S3�K/ is almost a complete invariant in the sense
that a peripheral structure of �1.S3 � K/ should be also preserved under a group
isomorphism. Peripheral structures are completely characterised for links in [13].

We will assume that a knotted graph K � S3 (if disconnected) is not splittable,
namelyK is not equivalent to a graph whose components are located in disjoint balls
in S3. The complement of any splittable graph K contains a sphere S2 � S3 � N.K/
separating components of K, so S3 � N.K/ can be simplified by cutting S2. The
complement of any non-splittable graph can not be simplified in this way. In this
case any S2 � S3�N.K/ is called incompressible and S3�N.K/ is called irreducible.

A cycle C � K in a knotted graph K � S3 is trivial if the knot C in C[ .S3 �K/
is trivial, namely C bounds a topological disk D2 in S3 � K. If a knotted graph K
has a trivial cycle C, we can compress the complement S3�N.K/ along the disk D2

spanning C, so S3 � N.K/ can be simplified by cutting D2. The complement of K
without trivial cycles can not be simplified in this way. In this case @.S3 � N.K// is
called incompressible and S3 � N.K/ is called boundary-irreducible.

Theorem 9 ([19, Corollary 6.5]) For two non-splittable knotted graphs K;K0 �
S3 without trivial cycles, let � W �1.S3�N.K//! �1.S3�N.K0// be an isomorphism
that descends to an isomorphism�1.@.S3�N.K///! �1.@.S3�N.K0///. Then there
is a homeomorphism S3 � N.K/ 
 S3 � N.K0/ inducing the isomorphism �.

Theorems 7 and 9 imply that K;K0 are equivalent. So the Knotted Graph Group
�1.S3 � K/ is an almost complete invariant (complete with a peripheral structure).

Theorem 10 Any finitely generated abelian group Z is isomorphic to a direct sum
of cyclic groups Zr ˚ Zq1 ˚ � � � ˚ Zql , where r � 0 is the rank and q1; : : : ; ql are
powers of primes. The numbers r; q1; : : : ; ql are called the abelian invariants of the
group Z and are uniquely determined by Z up to a permutation of indices q1; : : : ; ql.

The above classification theorem says that any finitely generated abelian group
can be completely described by its abelian invariants (a set of integers) and leads to
numerous abelian invariants below that can be extracted from a non-abelian group
G and efficiently computed by GAP if G has a short enough presentation [3].

Definition 11 The index of a subgroup H in a group G is the number of disjoint
cosets gH D fgh j g 2 G; h 2 Hg that fill the group G. The abelianization of
H is the quotient H=ŒH;H� over the commutator subgroup ŒH;H� generated by all
Œa; b� D aba�1b�1, a; b 2 H. The abelian invariants of a non-abelian group G are
the abelian invariants of H=ŒH;H� over all subgroups H � G up to a certain index.

3 Past Work on Computing Invariants of Knotted Proteins

Standard KMT Algorithm for Shortening a Knotted Protein Backbone The
KMT algorithm is named after Koniaris and Muthukumar [9] and Taylor [18],
though their methods are different. Taylor [18] actually suggested how to smooth



356 V. Kurlin

Fig. 5 Left: removing vertex B when4ABC is empty. Right: ABCDE splits into three tetrahedra

a protein backbone. Namely, each vertex B with two neighbours A;C is iteratively
replaced by the center of the triangle 4ABC, which visually smooths an original
polygonal curve K. The standard KMT algorithm simply shortens K replacing the
chain ABC by the single edge AC when the isotopy class of K is preserved.

We discuss the implementation of the KMT algorithm [8] used in the Rosetta
program predicting structures of proteins at https://www.rosettacommons.org. One
orders all degree 2 vertices v1; : : : ; vl according to the distance between their only
neighbors A;C. Then the triangle 4ABC based on a shortest segment AC is likely
to be small and will probably not intersect any edge of K, see Fig. 5.

To check a potential intersection of4ABC with another edge DE, the plane ABC
is intersected with the infinite line through DE. Finding an exact intersection point
P requires divisions and leads to floating point errors, especially when DE is almost
parallel to the plane ABC. Then three angles †APB, †APC, †BPC are computed
by using the arccos function, which also quickly accumulates computational errors.

Now the pointP is inside the triangle4ABC if and only if the sum of three angles
is 2� D †APBC†APCC†BPC. In practice, for points P inside4ABC, the above
sum is only close to 2� , so the width of 3�10�4 is used to handle round off errors.

In Sect. 4 we extend KMT to the KGG (Knotted Graph Group) algorithm using
only additions and multiplications without evaluations of complicated functions. We
have checked that our algorithm correctly runs on similar protein backbones from
the PDB database with the much smaller error of only 10�10, see Sect. 5.

Alexander Polynomial of Knotted Proteins in KnotProt [6] The knot recog-
nition of polygonal graphs K � R

3 in the largest database KnotProt of knotted
proteins is based on the Alexander polynomial [2, Sect. 8.3], which is a polynomial
invariant of the fundamental group �1.R3 �K/. Historically, there were no efficient
algorithms to compare non-abelian groups up to isomorphism, hence a cubic
computational time for the Alexander polynomial was acceptable. Moreover, the
Alexander polynomial indeed classifies all knots with up to eight crossings.

However, the Alexander polynomial attains only 550 different values on 801
prime non-trivial knots (without mirror images) up to 11 crossings. So we feel
that the time has come for more powerful invariants, especially due to the efficient
algorithms in GAP [3]. The following experimental result by Brendel et al. [1]

https://www.rosettacommons.org
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demonstrates the power of the fundamental group for a practical classification of
knots.

Theorem 12 ([1, Theorem 2]) The abelianizations of subgroups with an index up
to 6 in the fundamental group �1.R3�K/ distinguish all 801 prime non-trivial knots
(up to mirror image) with plane diagrams having up to 11 crossings.

Best methods for enumerating knots are based on triangulations of knot comple-
ments with a hyperbolic metric, which is not adapted yet for knotted graphs.

Discrete Morse Theory for Computing the Fundamental Group of a Complex
Brendel et al. [1] suggested a general algorithm for computing the fundamental
group of any regular cell complex. The algorithm uses a discrete Morse theory and
is practically fast, though the theoretical complexity was hard to determine.

A protein backbone was modelled by a cubical knot K � R
3, which is a union

of small cubes at a fixed manually chosen resolution. For instance, the complement
of the protein backbone 1V2X with joined endpoints in R

3 was represented as a
cubical complex C with 5,674,743 cells. This 3-dimensional complexC is deformed
through several stages to a regular 2-dimensional complex C000 with 30,743 cells.
The time for computing the knot group of 1V2X is about 35 s [1, Sect. 5], while our
KGG algorithm takes 67 ms on a similar laptop, see Table 2.

Here are the key differences between our new approach and past work [1, 6, 8].

• The KMT algorithm only shortens a linear chain, while our KGG algorithm
simplifies any knotted graphK and computes�1.R3�K/, which is more powerful
than the Alexander polynomial used for recognizing knotted proteins in [6].

• Our KGG algorithm avoids evaluations of complicated functions and better
handles floating point errors than KMT, also using the Reidemeister move R1
for extra reductions in the overall size of a knotted polygonal graph K � R

3.

Table 2 Reduction in the number of vertices and crossings by the KMT and KGG algorithms

PDB
code

Original
#vertices

Original
#crossings

Reduced
#vertices

Reduced
#crossings

Knot
type

KMT time
in seconds

KGG time
in seconds

1yrl 1875 1144 37 43 41 0:82 0:81

4n2x 1788 1033 81 211 61 1:05 1:01

1qmg 2049 1455 44 71 41 1:03 1:02

3wj8 1788 972 79 180 61 1:08 1:07

4d67 6548 5485 97 301 ? 14:45 14:12

4uwa 13;296 17;288 99 391 ? 59:79 57:05

4ujc 11;938 10;180 217 731 ? 61:77 59:91

4uwe 13;288 25;449 114 686 ? 61:48 61:05

4ujd 11;938 10;565 212 755 ? 72:42 70:27

4ug0 11;675 10;073 206 617 ? 81:59 78:23
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• We compute a simple presentation of the fundamental group �1.R3 � K/ by
working with only a given knotted polygonal graph K � R

3 without modelling
the complement R3�K as a large cubical complex at a fixed resolution as in [1].

4 KGG Algorithm for Computing the Knotted Graph Group

The input is a knotted polygonal graph K � R
3 given by sequences of vertices along

edge-paths. The output is a presentation of the Knotted Graph Group �1.R3 � K/
with generators and relations. Here is a high-level description of all the stages.

1. In a given graph K � R
3, identify all non-essential vertices that can be removed

keeping the isotopy class of K after computing only five 3-by-3 determinants.
2. For a simplified graph K0 � R

3, find all crossings in a plane diagram ofK0. Going
along K0, compute the Gauss code using the found crossings in the plane diagram
of K0. Apply the Reidemeister move R1 for a further reduction if possible.

3. Turn a Gauss code into a presentation of the fundamental group �1.R3 � K/
whose abelian invariants can be calculated using efficient algorithms of GAP.

Stage 1: Robust Algorithm for Shortening a Polygonal Graph Each degree 2
vertex B of a graph K has two neighbours, say A;C. We process all non-essential
vertices B in the increasing order of jACj. In comparison with the KMT algorithm,
we much more robustly check if the interior of the triangle4ABC meets any edges
of K.

For any edge DE with endpoints D;E … fA;B;Cg, first we check if D;E are
on different sides of the plane ABC. It is enough to compute the signed volumes
of the tetrahedra ABCD and ABCE, see Fig. 5. The volume VABCD is proportional
(with factor 1

6
) to the 3-by-3 determinant whose columns are formed by the three

coordinates of the three vectors
�!
AB;
�!
AC;
�!
AD. The points D;E are on different sides

of the plane ABC if and only if the signed volumes VABCD and VABCE have opposite
signs.

If the edge DE intersects the plane ABC, we should check whether the intersec-
tion is inside the triangle4ABC. Here is a simple geometric criterion: the edge DE
meets the triangle 4ABC if and only if the three tetrahedra ABDE, ACDE, BCDE
in Fig. 5 cover the union of the tetrahedra ABCD and ABCE without any overlap.

Such a geometric splitting is equivalent to the following algebraic identity
between unsigned volumes: jVABCDj C jVABCEj D jVABDEj C jVACDEj C jVBCDEj.
Hence it remains to compute only three more 3-by-3 determinants for the quadruples
ABDE, ACDE, BCDE. All computations involve only basic additions and multipli-
cations.

Stage 2: Computing a Gauss Code of a Reduced Plane Diagram of K Let K �
R
3 be a simplified polygonal graph obtained by all possible shortenings at Stage 1

above. Now we simply project K0 to the .x; y/-plane R
2 finding all intersections

between straight edges in the projection of K0. If the plane diagram of K0 is not in
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a general position, we slightly perturb its vertices to guarantee that we have only
double crossings, because we are interested only in the isotopy class of K0 � R

3.
This stage requires a quadratic time O.m2/ in the length m of the simplified graph

K0, because we check all potential pairwise intersections of non-adjacent edges.
In experiments on protein backbones in Sect. 5, the chain K0 is much shorter than
the original backbone K, hence this stage is fast enough in practice. For each edge
Œvi; viC1� of K0, we build a list of crossings with other edges Œvj; vjC1�. We keep this
list of crossings in order from the vertex vi to viC1. Apart from the actual coordinates
.x; y/ of a crossing, we also note the corresponding indices i; j and the heights zi; zj
of the points in the intersecting edges above the crossing .x; y/.

After completing these ordered lists over all edges, we can go along each edge-
path of K0 and assign a correct label to every crossing, because we can recognize if a
crossing has been passed before. Since we kept actual heights zi; zj at each crossing,
we can add negative signs to all undercrossings as needed by Definition 5.

Finally, if a Gauss code contains a consecutive pair of labels .l;�l/ or .�l; l/, the
plane diagram contains a small loop that can be easily removed by the Reidemeister
move R1 in Fig. 2. Assume that this crossing .x; y/ in the move R1 is formed by
(projections of) edges Œvi; viC1� and Œvj; vjC1� for i C 1 < j. Then we can shorten
these edges by continuously moving the endpoints viC1 and vj towards the points
(at the heights zi; zj, respectively) that project exactly to the crossing .x; y/ in R

2.
The chain of edges from viC1 to vj does not cross any other edges by our choice

of the crossing in the move R1 and can be replaced by the single vertical edge from
.x; y; zi/ to .x; y; zj/. This extra simplification can potentially make a few triangles
on three consecutive vertices empty. Hence we can check if the simplifications from
Stage 1 are possible for a few triangles related to the vertices vi; viC1; vj; vjC1.

Stage 3: Writing a Wirtinger Presentation for the Fundamental Group We
remind how to write down a presentation of the group �1.R3 � K/ by using a plane
diagram D of a knotted graph K � R

3, see more details in [2, Sect. 6.1].
We arbitrarily orient all edge-paths of K, though our choice will not affect

�1.R
3�K/. We fix a base point p 2 R

3 at infinity, say at the point .0; 0; z/ for a large
coordinate z > 0. If we cut all essential vertices (of degree at least 3) and crossings
(in lower edges), the diagram D splits into several oriented arcs a1; : : : ; am. In the
3rd picture of Fig. 6 these arcs in D contain the following vertices and crossings:

a1 D Œv0; c1; c2�; a2D Œc2; v1; v2; c3; c1�; a3D Œc1; v3; v4; c2; c3�; a4D Œc3; v5�:

We associate to every resulting arc ai a generator xi 2 �1.R3�K/. Each generator
xi can be represented by a closed loop Qxi that goes from the base point p to a point
near the arc ai along a path �i, makes a loop around the oriented arc ai and then
goes back to the base point p along �i in the opposite direction. In the 2nd and 3rd
pictures of Fig. 6 we show each long loop Qxi only by a short arrow under ai. Each
short arrow is labelled by the generator xi 2 �1.R3 � K/ represented by the loop Qxi.
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At each a crossing, two consecutive arcs aj; ajC1 share the same endpoint c and
another arc ai crosses over c, see the 2nd picture of Fig. 6. To this crossing we
associate the relation xixjx�1i D xjC1 saying that the loop QxjC1 around ajC1 can be
obtained by going first along Qxi, then along Qxj and along the reversed loop Qxi �1.

If we join two vertices of degree 1 away from the rest of the diagram, the
initial and final generators are equal, e.g. x1 D x4 in the 3rd picture of Fig. 6. The
crossings c1; c2; c3 in the same picture have the associated relations x1x2x�11 D x3
and x�13 x1x3 D x2 and x2x4x�12 D x3, respectively. Together with x1 D x4, the 4
relations reduce to the short presentation hx1; x2 j x1x2x1 D x2x1x2i of the trefoil
group.

If a vertex v has attached arcs a1; : : : ; al, then write the relation x"11 : : : x
"l
l D 1,

where "i D C1 for arcs ai coming to v and "i D �1 for arcs ai going out of v. The
vertex v in the 1st picture of Fig. 6 has the associated relation xixjx�1k D 1.

Any closed loop in the complement R3 � K easily decomposes into a product of
loops Qxi around arcs a1; : : : ; am. However, it is a non-trivial theorem that the simple
relations above define the fundamental group �1.R3 � K/, see [2, Sect. 6.3].

We can convert a Gauss code of a plane diagram of K into a Wirtinger
presentation of �1.R3 � K/ as follows. The above arcs ai between successive
undercrossings in the plane diagramD correspond to subsequences between vertices
and negative labels in the Gauss code of D. For each negative label .�j/, we
know two subsequences that meet at .�j/ and also we can find the ith subsequence
containing the positive label j, so we can write the corresponding relation xixjx�1i D
xjC1.

For each vertex v of deg � 3, we can find subsequences in the code that start or
finish with the symbol v and write the product of corresponding generators (if the
subsequence starts with v) or their inverses (if the subsequence finishes with v).

Proof of Theorem 2. At Stage 1 of the KGG algorithm in Sect. 4, for each degree 2
vertex B of a polygonal graph K � R

3, we compute the distance between the two
neighbours A;C of B in total time O.n/, where n is the length of K. We sort all
degree 2 vertices B 2 K by the increasing distances AC in time O.n log n/.

Fig. 6 Left: generators around a vertex and crossing. Right: four generators for four arcs in a
diagram
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Starting with a vertex B with a shortest segment AC, we check if the 3-chain ABC
can be replaced by the single edge AC, which requires five 3-by-3 determinants for
every other edge DE of K. If 4ABC doesn’t meet all edges DE, we remove B and
update the sorted distances AC in time O.log n/. The time of Stage 1 is O.n2/.

At Stage 2 we check all pairwise intersections of m � n projected edges in the
simplified graph K0 � R

3, which requires O.m2/ time. Stage 3 is linear in the length
of a Gauss code which has c D O.m2/ crossings. Hence the total time is O.n2/. ut

5 Experimental Results: Recognizing Knots in Protein
Backbones

Table 2 shows how the numbers of vertices and crossings of a protein backbone K
are reduced by Stage 1 of the KGG algorithm from Sect. 4. The knot types are 0
(unknot), 31 (trefoil knot), 41 (figure-eight knot) and 61 (Stevedore’s knot).

The classical KMT algorithm for a polygonal chain of n edges has the running
time O.n2/. The time to compute the Alexander polynomial of a knotted graph with
k crossings is O.k3/, where k D O.m2/ for a simplified graph of a length m.

Recall that the backbone of a protein is a polygonal chain of carbon atoms
ordered as in a given PDB file. We linearly extend terminal edges of a backbone
and join them away from all other vertices to get a closed knot. Table 2 shows the
numbers of vertices and crossing after reductions by the KGG algorithm. In some
cases the KMT algorithm outputs a few more crossings. because the Reidemeister
move R1 wasn’t used. In all cases the KGG algorithm is faster despite these extra
moves.

The last six rows in Table 2 are for longest proteins from PDB. Even simplified
backbones are too long and we hope to determine their knot types in the future.

The KGG algorithm can be extended to visualize knotted proteins using 3-page
embeddings [12, 14] and to compute abelian invariants of the Knotted Graph Group
using GAP [3, Sect. 47.15]. The C++ code is at author’s website http://kurlin.org.
Table 3 shows Gauss codes obtained at Stage 3 of the KGG algorithm.

Table 3 Knot types and Gauss codes of the reduced backbones of knotted proteins from PDB

Knot type and Knot type and Gauss
Original Gauss code Original code after reduction

PDB code #crossings after KGG PDB code #crossings by KGG

1v2x 39 31 (1 -2 3 -1 2 -3) 3nou 304 41 (-1 2 3 -4 5 1 -2 -5 4 -3)

3oil 102 31 (1 -2 3 -1 2 -3) 3not 300 41 (-1 2 3 -4 5 1 -2 -5 4 -3)

http://kurlin.org
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6 Conclusions, Discussion and Open Problems for Future
Work

We have designed a new easy-to-implement KGG algorithm in Sect. 4 to compute
the Knotted Graph Group �1.R3 � K/ for any polygonal graph K � R

3 given by
a sequence of points in R

3. The experimental results in Sect. 5 confirm substantial
reductions in the complexity of knotted backbones. Our approach strikes right in the
middle of a wide range of topological objects. Namely, the KGG algorithm works
for arbitrary knotted graphs, which are more general than knots or links and runs
faster than memory expensive methods designed for regular 2D complexes [1].

A theta-curve is a knotted graph � � R
3 with two vertices joined by three

edges as in the Greek character � . The enumeration of theta-curves with up to seven
crossings was manually completed [17] by analyzing the Alexander polynomial and
three knots obtained from � � R

3 by removing one of three edges. That is why
we believe that abelian invariants of the quickly computable Knotted Graph Group
�1.R

3 � K/ can be enough for enumerating more complicated theta-curves and
general graphs.

Our robust computation of the fundamental group �1.R3 � K/ for any knotted
graph K � R

3 opens the following new possibilities for further research.

• Automatically enumerate all isotopy classes of knotted graphs K � R
3 with a

few essential vertices and up to a maximum possible number of crossings. A
good starting point is to check the manual classification of theta-curves in [17].

• Build distributions for isotopy classes of large random knots modelled as in [16],
when the Alexander polynomial can be too weak to distinguish different knots.

• Study the persistence and stability of abelian invariants similarly to the persis-
tence of the group �1.R3 � K/ in a filtration of knot neighborhoods from [15].
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