Berlinghieri, R., B.L. Trippe, D.R. Burt, R. Giordano, K. Srinivasan, T. Özgökmen, J. Xia, and T. Broderick, 2023. Gaussian Processes at the Helm(holtz): A More Fluid Model for Ocean Currents. In: Proceedings of Machine Learning Research 202, 2113–2163.
Conferences
Rajagopal, E., A.N.S. Babu, T. Ryu, P.J. Haley, Jr., C. Mirabito, and P.F.J. Lermusiaux, 2023. Evaluation of Deep Neural Operator Models toward Ocean Forecasting. In: OCEANS '23 IEEE/MTS Gulf Coast, 25–28 September 2023, in press. doi:10.48550/arXiv.2308.11814
Tahmasebi, B. and S. Jegelka, 2023. The Exact Sample Complexity Gain from Invariances for Kernel Regression. In: Neural Information Processing Systems (NeurIPS) 2023, New Orleans, December 10–16, 2023. doi:10.48550/arXiv.2303.14269
Chandramoorthy, N., A. Loukas, K. Gatmiry, S. Jegelka, 2022. On the Generalization of Learning Algorithms That Do Not Converge. In: Neural Information Processing Systems (NeurIPS) 2022, New Orleans, November 28–December 9, 2022.
Ryu, T., Suresh Babu, A., and Lermusiaux, P., 2022. Neural Closure Model for Dynamic Mode Decomposition Forecasts. In: Model Reduction and Surrogate Modelling (MORE) 2022, Berlin, September 19–23, 2022.
Stephenson, W.T., S. Ghosh, T.D. Nguyen, M. Yurochkin, S.K. Deshpande, and T. Broderick, 2022. Measuring the Robustness of Gaussian Processes to Kernel Choice. Proceedings of Machine Learning Research 151, 3308–3331.
Chuang, C.-Y., Y. Mroueh, K. Greenewald, A. Torralba, and S. Jegelka, 2021. Measuring Generalization with Optimal Transport. In: Neural Information Processing Systems (NeurIPS) 2021, December 6–14, 2021.
Cheng, P., W. Hao, S. Dai, J. Liu, Z. Gan, and L. Carin, 2020. CLUB: A Contrastive Log-ratio Upper Bound of Mutual Information. In: Proceedings of Machine Learning Research 119, 1779–1788.
Garg, V.K., S. Jegelka, and T. Jaakkola, 2020. Generalization and Representational Limits of Graph Neural Networks. In: Proceedings of Machine Learning Research 119, 3419–3430.
Kulkarni, C.S., A. Gupta, and P.F.J. Lermusiaux, 2020. Sparse Regression and Adaptive Feature Generation for the Discovery of Dynamical Systems. In: Darema, F., E. Blasch, S. Ravela, and A. Aved (eds.), Dynamic Data Driven Application Systems. DDDAS 2020. Lecture Notes in Computer Science 12312, 208–216. doi:10.1007/978-3-030-61725-7_25
Zhao, M., Y. Cong, and L. Carin, 2020. On Leveraging Pretrained GANs for Generation with Limited Data. In: Proceedings of Machine Learning Research 119, 11340–11351.