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Motivation

Dynamic Mode Decomposition (DMD) is a data-driven, equation-
free dimensionality reduction algorithm [1, 6, 7, 8, 10] that 
constructs an approximately linear operator for a sequential data 
set. 

DMD can be used as a computationally efficient forward model 
to provide forecasts of the ocean [4, 5, 11, 12]

dx
dt

= f(x, t; μ)
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= 𝒜x

Goal: Learn a neural closure model between 
low-fidelity DMD model and high-fidelity data

Challenges

• Missing dynamics

• Unresolved sub-grid scale processes when DMD Is applied to 

low-fidelity simulations

• Static DMD may be irrelevant over time

• Truncated modes

DMD finds an analogous discrete best-fit  that aims to minimize 
the following 

A

where   and  . X = [x1 x2 ⋯ xk] X′ = [x2 x3 ⋯ xk+1]

| |X′ − AX | |F

Theory

Experiment: 2D Flow Behind a Cylinder

Low-resolution:  
13 x 103

High-resolution: 
 105 x 855

Remarks:

• Low-resolution simulation used to train the low-fidelity DMD model

• High-resolution simulation considered as high-fidelity data for the neural closure model

• Reynold’s number (Re) = 200

• The low-resolution simulation sees a distorted square-shaped cylinder leading to: 


I)  longer recirculation region

II) different vortex shedding frequency when compared to the high-resolution simulation


• We only consider the u-velocity in this example here

∂
∂t

uk( ̂u0, t) = PRk( ̂u( ̂u0, t)) + P∫
t

0
Kk( ̂u(u0, t − s)ds

duk(t)
dt

= Rk(u(t), t)
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Remarks:

• High-fidelity data was down-sampled to 

the low-resolution grid to maintain 
consistent dimensions when calculating 
errors and losses


• Error decreased by 2 orders of magnitudes

• DMD + nCM is able to correct for the 

difference in vortex shedding frequency

Conclusion: Learned a neural closure model based on 
discrete delay differential equations using a low-fidelity 
DMD model

Future Works:

•Generalize further to 3D multivariate inputs and multi-
field predictions

•Demonstrate on realistic ocean test cases

shorturl.at/dPST9

Consider a general, full, nonlinear dynamical model written as 

Upon using the Mori-Zwanzig (MZ) formulation and applying the 
P-projection, it could be rewritten as the following

Low-fidelity Memory

∂ ̂u(t)
∂t

= PR( ̂u(t)) + fRNN( ̂u(t), ̂u(t − τ1), … ̂u(t − τk), t; θ)

Hence for such systems, the closure model only considers the 
non-Markovian memory term, which requires time-lagged state 
information [2, 9]. 

The memory term can be represented using a neural delayed 
differential equations (nDDEs) for a hybrid closure model [5]

Low-fidelity model Neural Closure

The amount of delay to be used also becomes a hyper 
parameter to tune in the nDDEs closure model

The linearity of DMD allows for simple calculation of the 
Jacobian, which is needed for efficient back propagation using 
the adjoint sensitivity method

Follow the link or scan the QR code below 
for a video!
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