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Abstract
Given sparse observations of buoy velocities,
oceanographers are interested in reconstructing
ocean currents away from the buoys and identify-
ing divergences in a current vector field. As a first
and modular step, we focus on the time-stationary
case – for instance, by restricting to short time
periods. Since we expect current velocity to be a
continuous but highly non-linear function of spa-
tial location, Gaussian processes (GPs) offer an
attractive model. But we show that applying a
GP with a standard stationary kernel directly to
buoy data can struggle at both current reconstruc-
tion and divergence identification, due to some
physically unrealistic prior assumptions. To better
reflect known physical properties of currents, we
propose to instead put a standard stationary ker-
nel on the divergence and curl-free components
of a vector field obtained through a Helmholtz
decomposition. We show that, because this de-
composition relates to the original vector field just
via mixed partial derivatives, we can still perform
inference given the original data with only a small
constant multiple of additional computational ex-
pense. We illustrate the benefits of our method
with theory and experiments on synthetic and real
ocean data.

1. Introduction
Ocean currents are key to the global distribution of water,
heat, and nutrients. To better understand ocean currents,
scientists are interested in two tasks: (1) reconstructing
ocean currents at different locations and (2) identifying di-
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vergences in the current vector field. Reconstructing ocean
currents accurately can facilitate weather forecasting, mar-
itime navigation, and forecasting of oil spill dispersion. And
current divergences are important to identify since they are
responsible for the transport of biomass, carbon, and nutri-
ents – with implications for ecosystem management, climate,
and the fishing industry (D’Asaro et al., 2018). With these
tasks in mind, researchers release and track GPS-tagged
buoys in the ocean (Özgökmen, 2012; D’Asaro et al., 2017).

It remains to choose an appropriate method to reconstruct
currents and their divergences from buoy data. Gonçalves
et al. (2019) and Lodise et al. (2020) proposed modeling
buoy velocities in the latitude and longitude directions ac-
cording to independent Gaussian processes (GPs) with stan-
dard spatiotemporal kernels (e.g., squared exponential ker-
nels). In our work, we focus on the spatial aspects of this
task and assume the velocity field is stationary in time. Even
under this simplification, an independent spatial GP prior
on the velocities is a natural choice due to its ability to han-
dle the sparsity of buoy observations on the ocean surface
and its assumption that currents vary continuously but in a
nonlinear fashion. We call such a model the velocity GP.

However, in what follows, we show that there remains sub-
stantial room for improvement. In simulated cases where
we have access to ground truth, we observe that the velocity
GP approach can fail to complete vortices or fail to connect
currents when buoys are observed sparsely. And while we
show how to derive divergence estimates for the velocity
GP, we also find that these estimates often fail to capture the
true divergence when it is known in simulations or real data.

To address these issues, we propose to more directly model
known behaviors from fluid dynamics. Scientists know
that the motion of a volume element of a continuous fluid
medium in two dimensions consists of (i) expansion or con-
traction in two orthogonal directions, (ii) rotation about an
instantaneous axis, and (iii) translation. A Helmholtz decom-
position (Bhatia et al., 2013; Arfken & Weber, 1999) from
fluid dynamics lets us decompose the vector field of ocean
currents into a divergent component (or curl-free, measur-
ing expansion, contraction, and translation) and a rotational
component (or divergence-free, measuring rotation).1

1The divergent component is called curl-free and the rotational
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By contrast to the standard approach, we model the diver-
gent and rotational components (rather than the velocity
components) with independent GP priors. The resulting
Helmholtz GP prior offers several conceptual advantages.
For one, oceanographers expect the two components to
have substantially different magnitudes and length scales;
it is straightforward to encode these differences with a
Helmholtz GP. By contrast, we prove that the velocity GP
implies an a priori belief that the divergent and rotational
components have the same magnitude. Second, we expect
correlation between the longitudinal and latitudinal com-
ponents of a current, which the Helmholtz GP exhibits –
and the velocity GP lacks by construction. Finally, the
Helmholtz GP is agnostic to the (arbitrary) choice of refer-
ence frame, while the velocity GP is not necessarily.

We demonstrate that the Helmholtz GP is amenable to prac-
tical inference. Since (i) the Helmholtz decomposition is
based on partial (mixed) derivatives, and (ii) the derivative
of a GP is a GP, we show that our prior choice implies a
tractable GP prior on the current itself. Therefore, we can
still perform inference given the original data with no ex-
tra approximation. And our method suffers no increase in
computational complexity relative to the velocity GP.

Finally, we demonstrate the superior performance of
the Helmholtz GP at the current-reconstruction task and
divergence-estimation task (as well as vorticity estima-
tion) in a variety of experiments on simulated and real
data. Code is available at https://github.com/
renatoberlinghieri/Helmholtz-GP.

Related work. The Helmholtz decomposition has been used
for visualization and physical interpretation of an oceano-
graphic field (Rocha et al., 2016; Zhang et al., 2018; 2019;
Han & Huang, 2020; Bühler et al., 2014; Caballero et al.,
2020). But these methods assume the velocity vector field is
known on a grid whereas our goal is to reconstruct the vector
field from sparse observations. Prior work in atmospheric
statistics used a Helmholtz decomposition to perform re-
gression on the residuals of a physical model (Daley, 1985;
Hollingsworth & Lönnberg, 1986); this approach would
give the same mean prediction2 as the Helmholtz GP if the
same covariance function were used. However, to estimate
the covariance function, the authors rely on a series repre-
sentation and binning procedure; without hand-tuning that
depends on the data and physics of the system (e.g., for
determining the number of coefficients), this procedure can
result in covariance functions that are not positive definite.

component is called divergence-free because their curl and diver-
gence are zero everywhere, respectively. See Proposition B.5.

2Here and throughout, we use the word prediction in the ma-
chine learning sense; it describes the task of making informed
guesses about unseen data points using a trained model and need
not imply looking forward in time.

Researchers have developed GP kernels to capture curl- or
divergence-free fields (Narcowich & Ward, 1994; Lowitzsch,
2002; Fuselier, 2007; Macêdo & Castro, 2010; Alvarez et al.,
2012). Macêdo & Castro (2010) propose using convex com-
binations of such kernels. However, these works do not pro-
pose methods for recovering the weighting of the two com-
ponents and do not empirically test recovery of the compo-
nents when the weighting is unknown – the case of interest
in the oceans problem. Wahlström et al. (2013); Wahlström
(2015); Solin et al. (2018) use curl- and divergence-free
kernels for electromagnetic fields. Wahlström (2015) pro-
poses independent GP priors on the terms in a Helmholtz
decomposition. But the authors assume direct access to
noisy observations of each of the divergence-free and curl-
free components separately – whereas we aim to recover
the individual components from noisy observations of their
sum. Moreover, Wahlström (2015) constrains the two com-
ponents to have the same prior magnitudes and length scales,
but these quantities can be expected to vary substantially
between components in ocean currents. Finally, Greydanus
& Sosanya (2022) extended Hamiltonian Neural Networks
(Greydanus et al., 2019) to model both curl- and divergence-
free dynamics simultaneously. Although the prediction prob-
lem is similar, the authors test their method only on low-
resolution data available on a dense grid. In our experiments
on (sparse) buoy data in Section 5 and Appendix I, we find
that their method often produces predictions that are less
accurate and less physically plausible.

In sum, then, it is not clear from existing work that diver-
gence and vorticity can be usefully or practically recovered
when observations come from a general (noisy) vector field
that is neither curl- nor divergence-free. Moreover, there is
no existing guidance on how to use a Helmholtz GP in prac-
tice for identifying divergences or making predictions from
such noisy vector-field observations, and no information is
available on how a Helmholtz GP compares to a velocity
GP on these tasks – either empirically or theoretically. We
discuss related work further in Appendix A.

2. Background
In what follows, we first describe the problem setup. Then
we establish necessary notation and concepts from the
Helmholtz decomposition and Gaussian processes.

Problem Statement. We consider a dataset D of M obser-
vations, {(xm,ym)}Mm=1. Here xm = (x

(1)
m , x

(2)
m )⊤ ∈ R2

represents the location of a buoy, typically a longitude
and latitude pair. We treat xm as a column vector. And
ym = (y

(1)
m , y

(2)
m )⊤ ∈ R2 gives the corresponding longitu-

dinal and latitudinal velocities of the buoy (the drifter trace).
For m ∈ {1, . . . ,M}, we consider ym as a sparse noisy
observation of a 2-dimensional vector field, F : R2 → R2,
mapping spatial locations into longitudinal and latitudinal
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velocities, F (xm) = (F (1)(xm), F (2)(xm))⊤. We assume
that the velocity field is stationary in time, and so F is not a
function of time. Our primary goals are (1) prediction of the
field F at new locations, not observed in the training data,
and (2) estimation of the divergence, itself a function of
location and which we define next as part of the Helmholtz
decomposition. Secondarily, we are interested in recovering
vorticity, another functional of F described below.

The Helmholtz Decomposition. The motion of a volume
element of a fluid, such as the ocean, can be decomposed
into a divergent velocity and a rotational velocity.

Definition 2.1 (Helmholtz decomposition, Bhatia et al.,
2013). A twice continuously differentiable and compactly
supported vector field F : R2 → R2 can be expressed as the
sum of the gradient of a scalar potential Φ : R2 → R, called
the potential function, and the vorticity operator of another
scalar potential Ψ : R2 → R, called the stream function:

F︸︷︷︸
ocean flow

= gradΦ︸ ︷︷ ︸
divergent velocity

+ rotΨ︸ ︷︷ ︸
rotational velocity

(1)

where

gradΦ:=

[
∂Φ/∂x(1)

∂Φ/∂x(2)

]
and rotΨ:=

[
∂Ψ/∂x(2)

−∂Ψ/∂x(1)

]
. (2)

The divergence of F (denoted δ) and the vorticity of F
(denoted ζ) are

δ :=div(F ) :=
∂F (1)

∂x(1)
+

∂F (2)

∂x(2)
=

∂2Φ

∂2x(1)
+

∂2Φ

∂2x(2)
(3)

ζ :=curl(F ) :=
∂F (1)

∂x(2)
− ∂F (2)

∂x(1)
=

∂2Ψ

∂2x(2)
+

∂2Ψ

∂2x(1)
. (4)

In Equation (3), div(F ) depends only on Φ because
div(rotΨ) = 0. In other words, the rotational velocity
is divergence-free. Similarly, in Equation (4), curl(F ) de-
pends only on Ψ because curl(gradΦ)) = 0. In other
words, the divergent velocity is curl-free. We review the
grad, rot, div, and curl operators – and explore the equa-
tions above in more detail – in Appendix B. We summarize
the various terms in Table 1. In Appendix C, we present
a graphical illustration of a Helmholtz decomposition of a
selected vector field, and we further discuss the importance
of divergence and vorticity within ocean currents.

Bayesian Approach and Gaussian Process Prior. In what
follows, we will take a Bayesian approach to inferring F . In
particular, we assume a likelihood, or noise model, relating
the observed buoy velocities to the field F :

ym=F (xm) + ϵm, ϵm
ind∼N (0, σ2

obsI2), 1≤m≤M, (5)

for some σ2
obs > 0 and independent (ind∼) noise across obser-

vations. Here and throughout, we use Ip ∈ Rp×p to denote

Table 1. Terms and notation around the divergence and vorticity.

Φ potential function
gradΦ divergent velocity

δ = div(gradΦ) divergence
Ψ stream function

rotΨ rotational velocity
ζ = curl(rotΨ) vorticity

the identity matrix in p dimensions. We use 0 to denote the
zero element in any vector space.

Before defining our prior, we review Gaussian processes
(GPs). Let x,x′ ∈ R2 represent two input vectors. As-
sume that we want to model a P -dimensional function
G : R2 → RP , G(x) = (G(1)(x), . . . , G(P )(x))⊤. A P -
output GP on covariate space R2 is determined by a mean
function µ : R2 → RP , µ(x) = (µ(1)(x), . . . , µ(P )(x))⊤,
and a positive definite kernel function k : R2×R2 → RP×P .
We use k(x,x′)i,j to denote the (i, j)th output of k(x,x′).
We say that G is GP distributed and write G ∼ GP(µ, k)
if for any N ∈ N, for any (x1, . . . ,xN ) ∈ R2×N , and
for any vector of indices (p1, . . . , pN ) ∈ {1, . . . , P}N ,
(G(pn)(xn))

N
n=1 is an N -dimensional Gaussian random

variable with mean vector (µ(pn)(xn))
N
n=1 and covariance

matrix with (i, j)th entry k(xi,xj)pi,pj
. See Alvarez et al.

(2012) for a review of multi-output GPs.

Velocity Gaussian Process. In spatial data analysis, com-
monly µ is chosen to be identically 0. And a conventional
choice for k would be an isotropic kernel3 separately in each
output dimension. That is, for any x,x′ ∈ R2,

kvel(x,x
′) =

[
k(1)(x,x′) 0

0 k(2)(x,x′)

]
. (6)

where k(1) and k(2) are isotropic kernels. We call this choice
the velocity GP to emphasize that the independent priors are
directly on the observed velocities. A standard kernel choice
for k(i), i ∈ {1, 2}, is the squared exponential kernel,

k
(i)
SE (x,x

′) = σ2
i exp

(
− 1

2∥x− x′∥22/ℓ2i
)
. (7)

The velocity GP with squared exponential kernels for each
component (henceforth, the SE-velocity GP) has four hy-
perparameters: for i ∈ {1, 2}, the signal variance σ2

i > 0
determines the variation of function values from their mean
in the ith output dimension, and ℓi > 0 controls the length
scale on which the function varies.

3We say a kernel k is isotropic if there exists some κ : R+ → R
such that for any x and x′ in R2, k(x,x′) = κ(∥x− x′∥).
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3. Gaussian Processes at the Helm(holtz)
Instead of putting separate GP priors with isotropic kernels
on the two components of F as in the velocity GP, we
propose to put separate GP priors with isotropic kernels on
the Helmholtz scalar potentials Φ and Ψ. In this section,
we describe our model and how to retrieve the quantities
of interest from it. In the next section, we describe its
conceptual strengths over the velocity GP, which we see
empirically in Section 5.

Our Helmholtz GP prior. To form our new Helmholtz
GP prior, we put independent GP priors on the Helmholtz
stream and potential functions:

Φ ∼ GP(0, kΦ) and Ψ ∼ GP(0, kΨ), (8)

where we take kΦ and kΨ to be isotropic kernels. When
these kernels are chosen to be squared exponentials (Equa-
tion (7)), we call our model the SE-Helmholtz GP. The
SE-Helmholtz GP has four parameters: ℓΦ and σ2

Φ for kΦ,
and ℓΨ and σ2

Ψ for kΨ. We could use any two kernels such
that sample paths of the resulting GPs are almost surely con-
tinuously differentiable (so that F in Equation (1) is well-
defined and continuous). Generally, we will want to be able
to consider divergences and vorticities of the implied pro-
cess, which will require sample paths of the implied process
to be at least twice-continuously differentiable. For the latter
condition to hold, it is sufficient for kΦ(0,x) and kΨ(0,x)
to have continuous mixed partial derivatives up to order five;
see Lindgren (2012, Theorem 2.09 & Section 7.2).

First, we check that our prior yields a GP prior over the
vector field F .
Proposition 3.1. Let F be an ocean current vector field de-
fined by potential and stream functions that are independent
and distributed as Φ ∼ GP(0, kΦ) and Ψ ∼ GP(0, kΨ),
where kΦ and kΨ are such that Φ and Ψ have almost surely
continuously differentiable sample paths. Then

F = gradΦ + rotΨ ∼ GP(0, kHelm), (9)

where, for x,x′ ∈ R2, i, j ∈ 1, 2, kHelm(x,x
′)i,j is equal

to

∂2kΦ(x,x
′)

∂x(i)∂(x′)(j)
+ (−1)1{i ̸=j} ∂2kΨ(x,x

′)

∂x(3−i)∂(x′)(3−j)
. (10)

Our proof in Appendix E relies on two observations: (i)
the Helmholtz decomposition is based on partial (mixed)
derivatives and (ii) the derivative of a GP is a GP; see,
e.g., Rasmussen & Williams (2005, Chapter 9.4), and Adler
(1981, Theorem 2.2.2).

Making predictions. To make predictions using our
Helmholtz GP, we need to choose the hyperparameter val-
ues and then evaluate the posterior distribution of the ocean
current given those hyperparameters.

We choose the GP hyperparameters by maximizing the
log marginal likelihood of the training data. To write
that marginal likelihood, we let Xtr ∈ R2×M be the ma-
trix with mth column equal to xm. We define Ytr =

(y
(1)
1 , . . . ,y

(1)
M ,y

(2)
1 , . . . ,y

(2)
M )⊤ ∈ R2M . We extend the

definition of the mean and kernel function to allow for ar-
bitrary finite collections of inputs. In particular, for X =
(x1, . . . ,xN ) ∈ R2×N and X′ = (x′

1, . . . ,x
′
N ′) ∈ R2×N ′

,

µ(X) =

(
µ(1)(X)
µ(2)(X)

)
and (11)

k(X,X′) =

(
k(X,X′)1,1 k(X,X′)1,2
k(X,X′)2,1 k(X,X′)2,2

)
(12)

where (a) for i ∈ {1, 2}, n ∈ {1, . . . , N}, µ(i)(X) is an
N -dimensional column vector with nth entry µ(i)(xn), and
(b) for i, j ∈ {1, 2}, n ∈ {1, . . . , N}, n′ ∈ {1, . . . , N ′},
k(X,X′)i,j is an N × N ′ matrix with (n, n′)th entry
k(xn,x

′
n′)i,j . With this notation, we denote the covari-

ance of the training data with itself, under the full model
including noise, as Ktrtr = k(Xtr,Xtr) + σ2

obsI2M . Then
the log marginal likelihood is

log p(Ytr | Xtr) = logN (Ytr; 0,Ktrtr)

= −1

2
YT

trK
−1
trtrYtr −

1

2
log |Ktrtr| −

2M

2
log 2π,

(13)

where | · | takes the determinant of its matrix argument. We
provide details of our optimization procedure in Section 5.

With hyperparameter values in hand, we form probabilistic
predictions using the posterior of the GP. In particular, the
posterior mean forms our prediction at a new set of points,
and the posterior covariance encapsulates our uncertainty.

Consider N new (test) locations at which we would
like to predict the current. We gather them in
Xte ∈ R2×N , with nth column equal to x⋆

n. We
denote the covariance of various training and test-
ing combinations as: Ktetr = k(Xte,Xtr) and
Ktete = k(Xte,Xte). Then a posteriori after ob-
serving the training data D, the 2N -long vector
(F (1)(x⋆

1), . . . , F
(1)(x⋆

N ), . . . , F (2)(x⋆
1) . . . , F

(2)(x⋆
N ))⊤

describing the current at the test locations has a normal
distribution with mean and covariance

µF |D = KtetrK
−1
trtrYtr, (14)

KF |D = Ktete −KtetrK
−1
trtrK

⊤
tetr. (15)

For more details, see Rasmussen & Williams (2005, Section
2.2). Note that these formulas can be used to evaluate poste-
rior moments of the velocity field for either the Helmholtz
GP (setting k = kHelm) or the velocity GP (with k = kvel).

Recovering divergence and vorticity. We next show how
to recover the posterior distributions on the divergence and
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vorticity scalar fields given a posterior on the current field F .
We can estimate divergence and vorticity at any location by
using the posterior mean at that point, and we can report un-
certainty with the posterior variance. Note that our formulas
recover divergence and vorticity for either our Helmholtz
GP or the velocity GP.

Proposition 3.2. Let F ∼ GP(µ, k) be a two-output Gaus-
sian process with almost surely continuously differentiable
sample paths. Then, for x,x′ ∈ R2,

δ = divF ∼ GP(divµ, kδ) (16)

ζ = curlF ∼ GP(curlµ, kζ) (17)

where

kδ(x,x′) =
∑

(i,j)∈{1,2}2

∂2k(x,x′)i,j
∂x(i)∂x(j)

(18)

kζ(x,x′)=
∑

(i,j)∈{1,2}2

(−1)i+j ∂2k(x,x′)i,j
∂x(3−i)∂x(3−j)

. (19)

We provide the proof for Proposition 3.2 in Appendix F.

Computational Cost. Since the latitude and longitude out-
puts are correlated under the Helmholtz GP, it generally
has a higher computational cost than the velocity GP. We
establish that the extra cost is no worse than a small factor.

Proposition 3.3. Take M training data points. Let Cvel(M)
and Chelm(M) be the computational costs for evaluating
the log marginal likelihood (Equation (13)) via Cholesky
or QR factorization algorithms for the velocity GP and
Helmholtz GP, respectively. If we assume worst-case scaling
for these algorithms, limM→∞ Chelm(M)/Cvel(M) ≤ 4.

The cost of computing the log marginal likelihood is domi-
nated by the cost of solving the linear system K−1

trtrYtr and
computing the log determinant |Ktrtr|. Both of these costs
in turn arise primarily from the cost of factorizing Ktrtr. Let
CF(s) be the cost of factorizing a square matrix with s rows
with Cholesky or QR factorization. Due to the two (corre-
lated) outputs, the cost of the Helmholtz GP is dominated by
CF(2M). In the velocity GP, the two outputs are uncorre-
lated and can be handled separately, so the cost is dominated
by 2CF(M). Therefore, limM→∞ Chelm(M)/Cvel(M) ≤
CF(2M)/(2CF(M)). When factorizing the matrix costs
CF(s) ∼ csp for p ∈ (0, 3], c > 0, the result follows by
Equation (26). Standard Cholesky and QR factorization
algorithms satisfy the condition with p = 3 in the worst
case (Golub & Van Loan, 2013, p. 164, 249).

In Appendix G we provide similar computational results for
the task of prediction and discuss nuances of how any of
these results may change in the presence of special structure.

4. Advantages of the Helmholtz prior
We next describe three key advantages of the Helmholtz
GP prior over the velocity GP prior: (1) more physically
realistic prior assumptions reflecting the relative magnitude
and length scales of the divergence and vorticity, (2) more
physically realistic correlation of the longitudinal and latitu-
dinal velocities of current at any point, and (3) equivariance
to reference frame.

Prior magnitude of the divergence and vorticity. In real
ocean flows, except at small-scale frontal features, the diver-
gence is known a priori to have both a substantively different
magnitude and different length scale relative to the vorticity
(Barkan et al., 2019). In what follows, we argue that the
Helmholtz GP is able to capture the relative contributions
of divergence and vorticity directly in the prior – whereas
the velocity GP does not have this direct control.

On the magnitude side, the divergence is known to con-
tribute much less to the current than the vorticity contributes.
If we consider a SE-Helmholtz GP, the signal variance hy-
perparameters σ2

Φ and σ2
Ψ control the magnitude of Φ and

Ψ; as a direct consequence of the linearity of the diver-
gence δ and vorticity ζ in Φ and Ψ (Equations (3) and (4)),
the marginal variances of δ and ζ scale linearly with σ2

Φ

and σ2
Ψ, respectively. The model can therefore directly and

separately control the magnitude of the rotational and diver-
gence components. A similar argument can be applied to
more general Helmholtz GPs with parameters controlling
the magnitude of Φ and Ψ.

By contrast, the velocity GP provides no such control. In
fact, for any isotropic choice of k(1) and k(2) we show that
the resulting velocity GP must assume the same variance on
the divergence and vorticity in the prior.

Proposition 4.1. Let k(1) and k(2) be isotropic kernels
with inputs x,x′ ∈ R2. Take F (1) ∼ GP(0, k(1)) and
F (2) ∼ GP(0, k(2)) independent. Suppose k(1) and k(2)

are such that F (1), F (2) have almost surely continuously dif-
ferentiable sample paths. Let δ and ζ be defined as in Equa-
tions (3) and (4). Then for any x,Var[δ(x)] = Var[ζ(x)].

The proof of Proposition 4.1 appears in Appendix H.1.

Prior length scales of the divergence and vorticity. The
divergence and vorticity are also known to operate on very
different length scales in real ocean flows. Vorticity op-
erates over long length scales, whereas divergence tends
to be more localized. Similarly to the argument above,
the Helmholtz GP allows control over the length scale in
each of its components, which directly control the length
scale of the divergence and vorticity. In particular, if
kΦ(x,x

′) = κ(∥x − x′∥/ℓ), for some κ : R+ → R,
then kδ(x,x′) = ℓ−4η(∥x − x′∥/ℓ) for another function
η : R+ → R that does not depend on ℓ; see Appendix H.2.
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Table 2. Green identifies the lowest RMSE. Dark green indicates the RMSE is at least two times smaller than the next best model.

VELOCITY F DIVERGENCE δ VORTICITY ζ

HELM VEL D-HNN HELM VEL D-HNN HELM VEL D-HNN

VORTEX 0.24 0.72 0.54 0.0 0.22 0.87 0.77 1.05 1.03
SMALL DIVERGENCE 1.11 1.25 0.67 2.62 1.45 4.14 0.0 1.07 0.31

MEDIUM DIVERGENCE 0.17 0.19 0.55 0.39 0.33 1.32 0.05 0.12 0.38
BIG DIVERGENCE 0.04 0.10 0.19 0.05 0.12 0.27 0.00 0.10 0.11

DUFFING W/ SMALL DIVERGENCE 0.96 2.05 2.14 0.94 0.95 1.89 1.40 2.28 2.64
DUFFING W/ MEDIUM DIVERGENCE 0.19 0.60 1.65 0.14 0.50 1.15 0.24 0.26 2.39

DUFFING W/ BIG DIVERGENCE 0.41 0.22 1.63 0.08 0.17 1.10 0.48 0.16 2.41

By contrast, the velocity GP requires setting the length
scales of its priors in tandem, and it is unclear how to con-
trol the length scales of the divergence and vorticity.

Correlations between longitudinal and latitudinal
current components. Ocean flows have correlation
between longitudinal and latitudinal velocities at single
locations and across different locations. For instance,
within a vortex, the longitudinal velocity at six o’clock
(relative to the center of the vortex) coincides with a zero
latitudinal velocity at that same location, and also with a
non-zero latitudinal velocity at three o’clock. Likewise,
the occurrence of divergence at a given point induces a
latitudinal velocity at six o’clock (with no longitudinal
velocity), as well as a non-zero longitudinal velocity at
three o’clock (with no latitudinal velocity). By modeling
the divergence and vorticity directly, the Helmholtz prior
induces correlation between the longitudinal and latitudinal
components, which is absent in the velocity GP prior.

Equivariance to reference frame. We now show the
Helmholtz GP is agnostic to the choice of reference frame
defined by longitude and latitude, but the velocity GP is not.
Proposition 4.2. Let µF|D(Xte,Xtr,Ytr) denote the
Helmholtz GP posterior mean for training data Xtr,Ytr

and test coordinates Xte, and let R be an operator rotating
coordinates and velocities about (0, 0). Then

µF|D(RXte, RXtr, RYtr)=RµF|D(Xte,Xtr,Ytr). (20)

Proposition 4.2 formalizes that it is equivalent to either (1)
rotate the data and then predict using the Helmholtz GP or
(2) predict using the Helmholtz GP and rotate the prediction.
The proof of Proposition 4.2 is given in Appendix H.3.

The equivariance property in Proposition 4.2 need not hold
in general for velocity GP priors.
Proposition 4.3. For isotropic component kernels and zero
prior mean, the velocity GP is reference-frame equivariant
if and only if the kernels for each component are equal.

See Appendix H.4 for the proof. Intuitively, if the kernels are
equal, both the prior and likelihood (and therefore the entire

model) are isotropic, and so there is no special reference
frame. For intuition in the other direction, consider the
following counterexample. Let F (1) ∼ GP(0, k(1)) for
some non-identically zero isotropic k(1). And F (2) = 0, a
trivial isotropic prior. Take any data Xtr, Ytr, Xte, and a
positive (counterclockwise) 90◦ rotation. Due to the trivial
prior in the second coordinate, the posterior in the second
coordinate has mean µ

(2)
F|D(Xte,Xtr,Ytr) = 0. If we rotate

the data first, the posterior in the second coordinate is still
zero, and generally the posterior in the first coordinate will
be nontrivial. But if we first compute the posterior and then
rotate the mean, the posterior in the first coordinate will now
be zero instead, and the posterior in the second coordinate
will be nonzero. Therefore, the equality in Equation (20)
will not hold for this velocity GP.

5. Experimental Results
We next empirically compare the SE-Helmholtz GP and
SE-velocity GP. We find that the SE-Helmholtz GP yields
better current predictions as well as better divergence (and
vorticity) identification, across a variety of simulated and
real data sets. We also compare to dissipative Hamiltonian
neural networks (D-HNNs) (Greydanus & Sosanya, 2022)
in Table 2 and Appendix I but find that the GP methods
generally perform better.

Data. The real datasets we use consist of drifter traces of
GPS-tagged buoys in the ocean. While oceanographers have
some knowledge that allows a rough assessment of the real
data, only in simulations do we have access to ground truth
currents, divergences, and vorticities. Therefore, we run a
variety of simulations with current vector fields reflecting
known common ocean behaviors. We simulate buoy trajec-
tories by initializing buoys at a starting point and allowing
the current field to drive their motion. See Appendix I for
more details of our setup in each specific simulation.

Performance. In what follows, we emphasize visual com-
parisons both because the distinctions between methods are
generally clear and because it is illuminating to visually
pick out behaviors of interest. We also provide root mean
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Figure 1. First column: ground truth predictions (upper) and divergence (lower). Second column: current predictions. Third column:
divergence estimates. Fourth column: posterior divergence z-values.

squared error (RMSE) comparisons in Table 2. However, we
note that the RMSE can be expected to vary as one changes
either the ocean area or the densities (or more generally
locations) of test points, and both of these choices must
always be somewhat arbitrary.

Algorithmic details. In our comparisons, each full model
including an SE-Helmholtz GP prior or an SE-velocity GP
prior has five hyperparameters: σ2

Φ, ℓΦ, σ2
Ψ, ℓΨ, σ2

obs and
ℓ1, σ

2
1 , ℓ2, σ

2
2 , σ

2
obs, respectively. In each case, we fit the

log of the hyperparameters by maximizing the marginal
likelihood using Adam (Kingma & Ba, 2015). We opti-
mize in the log-scale and then exponentiate the optimal
values to ensure positivity of the hyperparameters. We run
each experiment until the log marginal likelihood changes
by less than 10−4, which occurs in fewer than 2000 itera-
tions for all experiments. With the exception of the GLAD
data (which presents special difficulties that we describe in
Appendix I.3), we found that results were not sensitive to
initialization. To train the D-HNN, we ran the code from
Greydanus & Sosanya (2022). More algorithmic details are
provided individually for each experiment in Appendix I.

5.1. Simulated experiments

We focus on simulations of key ocean behaviors of inter-
est to oceanographers: vortices, concentrated divergences,
and combinations thereof. As a summary across simu-
lation experiments in Table 2, we see that – for predic-
tions, divergence estimates, and vorticity estimates – the
SE-Helmholtz GP is most accurate by RMSE on a majority
of tasks, often by a substantial factor. We next examine indi-
vidual experiments more closely; all simulated experiments
are described in detail in Appendix I.1.

Vortex with zero divergence. First, we consider a vor-
tex with no divergence. The SE-Helmholtz GP is better at
predicting the current and identifying the lack of divergence.

In a vortex, water particles rotate around a central point.
The black arrows in the upper left plot of Figure 1 show the
ground-truth vector field at test points, with longitude on the
horizontal axis and latitude on the vertical axis. Red arrows
show our simulated buoy trajectories, which we give to all
methods as training data. See Appendix I.1.1 for additional
details of the setup and results.

The second column in Figure 1 shows predictions from the
SE-Helmholtz GP (upper) and SE-velocity GP (lower) at
the test points. The red arrows are still the training data.
Despite having access to data only from one side of the
vortex, the SE-Helmholtz GP is able to reconstruct the full
vortex. The SE-velocity GP is not.

The ground truth divergence is identically 0 throughout the
domain and depicted in the lower left plot. The third column
shows divergence estimates from the SE-Helmholtz GP (up-
per) and SE-velocity GP (lower) on the same color scale.
The fourth column helps us understand if either posterior
is reporting a nonzero divergence. In particular, for each
point we plot a “z-value”: precisely, the posterior mean at
that point divided by the posterior standard deviation. One
might, for instance, conclude that a method has detected
a nonzero divergence if the magnitude of the z-value is
greater than 1. From the third column, we conclude that
the SE-Helmholtz GP estimate of the divergence is closer
to the ground truth of zero than the SE-velocity GP. From
the fourth column, we see that neither method concludes
nonzero divergence, but the SE-Helmholtz GP posterior is
more concentrated near zero.
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Figure 2. First column: ground truth predictions (upper) and divergence (lower). Second column: current predictions. Third column:
divergence estimates. Fourth column: posterior divergence z-values.

Duffing oscillator with areas of concentrated divergence.
We next simulate a classic example called a Duffing oscil-
lator, and we add two areas of divergence; the ground truth
current appears in the upper left plot of Figure 2, and the
ground truth divergence appears in the lower left. The simu-
lated buoy trajectories appear in red. See Appendix I.1.4 for
further details on setup and results.

We see in the second column that the SE-Helmholtz GP
(upper) is largely able to reconstruct the two vortices in the
Duffing oscillator (upper left), though it struggles with the
upper right current. By contrast, the SE-velocity GP does
not connect the currents continuously across the two sides of
the space, in disagreement with conservation of momentum.

Again, the third column depicts divergence estimates from
both methods, and the fourth column depicts z-values. In
this case, both methods accurately recover the two ar-
eas of divergence. In Appendix I.1.4 and Figures 10
to 12, we experiment with smaller and larger areas of di-
vergence with the Duffing oscillator. In Appendix I.1.3,
we isolate areas of divergence without the Duffing oscil-
lator. Across the six experiments involving regions of di-
vergence, the SE-Helmholtz GP typically outperforms the
SE-velocity GP in detecting these regions – often by a sub-
stantial margin, as shown in Table 2. In these same ex-
periments, the SE-Helmholtz GP similarly outperforms the
SE-velocity GP at predicting the velocity field.

A note on vorticity. Although we have not focused on
vorticity estimation in the main text, generally we find su-
perior performance on this task from the SE-Helmholtz GP
relative to the SE-velocity GP (and D-HNNs), similar to
divergence estimation. See the righthand side of Table 2
for an RMSE comparison, and see Appendix I for a visual

comparison. For example, the SE-Helmholtz GP can pre-
dict zero vorticity when there is no vorticity, whereas the
SE-velocity GP and D-HNN fail in this task (Figures 7 to 9).

5.2. Real-data experiments

Although ground truth currents and divergences are not avail-
able for real data, we can still assess performance against
oceanographers’ expert knowledge.

LASER data. The LAgrangian Submesoscale ExpeRiment
(D’Asaro et al., 2017) was performed in the Gulf of Mex-
ico in 2016. The full dataset spans two winter months and
more than 1000 buoys; see Appendix I.2 for details. We
focus on a particular spatial area and 2-hour time span in
which oceanographers expect to see a particular conver-
gent front. Time information within this range is discarded.
We are left with 19 buoys. When recorded spatial coor-
dinates overlap across data points, we observe that both
the SE-Helmholtz GP and the SE-velocity GP treat all data
as noise. While this issue merits further investigation and
model development, for now we downsample across time to
form the final data sets here.

The left column of Figure 3 shows the current predictions
using the SE-Helmholtz GP (upper) and SE-velocity GP
(lower). Red arrows show the observed buoy data, with
55 total observations across all buoys. The black arrows
show the current posterior means at test locations. The two
sets of predictions are qualitatively very similar.

The second column shows the divergence predictions for the
SE-Helmholtz GP (upper) and SE-velocity GP (lower); the
third column shows the z-values for the respective posterior
distributions. The SE-Helmholtz GP predicts a negative di-
vergence area (light blue diagonal) that agrees with the area
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Figure 3. First column: current predictions. Second column: divergence estimates. Third column: posterior divergence z-values.

where oceanographers expect a convergent front. By con-
trast, the SE-velocity GP does not identify any divergence.

We find that the discrepancy between the SE-Helmholtz GP
and the SE-velocity GP observed in Figure 3 depends on the
amount of data. When we double the amount of data from
that in Figure 3 (by downsampling less), we find that both
methods are able to recover the same convergent front; see
Appendix I.2 and Figure 14. This finding then also corrobo-
rates that the convergent front in fact does exist and looks
like the posterior detection by the SE-Helmholtz GP in Fig-
ure 3. In that way, the finding further lends support to the
superior performance of the SE-Helmholtz GP in Figure 3.

GLAD data. The Grand Lagrangian Deployment (GLAD)
experiment (Özgökmen, 2012) was conducted near the
Deepwater Horizon site and Louisiana coast in July 2012.
The full dataset consists of over 300 buoys. Unlike the win-
ter LASER data, the summer GLAD data faces additional
challenges from regular oscillations due to wind (rather than
current); see Appendix I.3 for more details. Rather than ac-
count for these oscillations, for the moment we ameliorate
their effect by downsampling considerably both in time and
across buoys. We are left with 85 observations.

The current predictions between the SE-Helmholtz GP and
SE-velocity GP are generally quite similar (Figures 15
and 16). Although in this case we do not have any ground
truth from oceanographers in advance, some features of
the SE-Helmholtz GP prediction seem more realistic from
physical intuition: namely, the downturn in the lower left
region of the plot and the vortex in the upper left region
of the plot. We also note that the SE-Helmholtz GP and
SE-velocity GP predict substantially different divergences:
respectively, zero and nonzero.

To check that our SE-Helmholtz GP method is computation-

ally reasonable, we run on a larger subset of the GLAD data
with 1200 data points. We find that it takes less than 10
minutes to optimize the hyperparameters, form predictions,
and estimate the divergences at the test points.

6. Discussion and Future Work
We have demonstrated the conceptual and empirical ad-
vantages of our Helmholtz GP relative to the velocity GP.
A number of challenges remain. While we have focused
on the purely spatial case for modularity, in general we
expect currents to change over time, and it remains to ex-
tend our method to the spatiotemporal case – which we be-
lieve should be straightforward. Moreover, Gonçalves et al.
(2019); Lodise et al. (2020) used more complex kernels with
two length scales per dimension in their spatiotemporal ex-
tension of the velocity GP. From known ocean dynamics, we
expect that in fact two length scales would be appropriate
in the Helmholtz GP for modeling the vorticity – but unnec-
essary for the divergence. While our independent Gaussian
noise model is standard in spatiotemporal modeling – and
shared by Gonçalves et al. (2019); Lodise et al. (2020) – our
real-data experimentation suggests that a better noise model
might account for short-term wind oscillations and other
noise patterns distinctive to oceans.
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A. Related Work
In what follows, we present related work in more detail. We first describe in more detail the differences between our work
and that of Gonçalves et al. (2019); Lodise et al. (2020). Then we discuss why we chose to put our priors on the Helmholtz
decomposition, rather than an alternative decomposition.

Velocity GP vs. the GP of Gonçalves et al. (2019); Lodise et al. (2020). Gonçalves et al. (2020); Lodise et al. (2020)
used many of the components of the velocity GP that we describe in the main text, but their prior was substantially more
complex than the velocity GP. Like the velocity GP, they focused on a GP prior with a squared exponential covariance
function. Unlike the velocity GP as described in the main text here, their squared exponential prior included not only terms
in each of the longitude and latitude directions, but also a term in the time direction. Each term has its own length scale. As a
second principle difference, their covariance was in fact a sum of two such squared exponential kernels – introducing a total
of 6 length scales (one for longitude, latitude, and time in each of the two kernels), 2 signal variances, and a single noise
variance. They mention also trying 3 kernels (instead of 2), but it appears all their results were reported for 2 kernels. We
have here tried to take a modular approach to examine the squared exponential prior on its own, so our velocity GP should
not be seen as a direct reflection of the performance of the Gonçalves et al. (2019); Lodise et al. (2020) covariance function.
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Why we focused on the Helmholtz decomposition. The Helmholtz decomposition is a widely recognized dynamically
significant method for dissecting the oceanic velocity field. An alternative – albeit related – decomposition that sees frequent
use is the Geostrophic-Ageostrophic (G-Ag hereinafter) decomposition (Vallis, 2017), which relies on the dominance of
geostrophic balance at large spatial and time scales in the ocean. Though not directly related to our current work here, we
discuss it briefly to provide a holistic oceanographic context to our choice of the Helmholtz decomposition. The Helmholtz
decomposition is defined through exact linear operators into velocity components that are orthogonal complements and can
be separated easily, allowing priors to be placed on the underlying potentials; the G-Ag decomposition, however, can be
derived only by first eliminating the Ageostrophic flow (which represents faster, smaller scales) through an ad hoc time
smoothing of drifter velocities using a multi-day filter. The G-Ag components are notably not orthogonal complements and
consequently have to be separately estimated through a velocity GP, leading to a more complex modeling pipeline with
additional physical hyperparameters (like the smoothing time) that are not easily determined. While there is a measure of
correspondence between the geostrophic and rotational components, and the ageostrophic and divergent components, the
lack of precision in defining the G-Ag components makes the Helmholtz a natural modeling pathway. Recent oceanographic
studies (Barkan et al., 2019; Srinivasan et al., 2023) showing that the Helmholtz decomposition is directly relevant to the
dynamics of oceanic components at smaller spatial scales of around O(1 km) offer further justification for our present choice.

B. Divergence, Gradient, and Curl Operators in 2D
In this section we provide some background for the Helmholtz decomposition in 2D. In the first part, we provide definitions
for grad,div, curl, and rot operators. In Proposition B.5 we then characterize a property of vector fields obtained combining
these operators.

Consider a scalar-valued differentiable function f : R2 → R. The gradient of f is the vector-valued function ∇f whose
value at point x is the vector whose components are the partial derivatives of f at x. Formally,

grad f(x) :=

[
∂f(x)
∂x(1)

∂f(x)
∂x(2)

]
= i

∂f(x)
∂x(1)

+ j
∂f(x)
∂x(2)

where i and j are the standard unit vectors in the direction of the x(1) and x(2) coordinates. From this rewriting, one can
note that taking the gradient of a function is equivalent to taking a vector operator ∇, called del:

∇ = i
∂

∂x(1)
+ j

∂

∂x(2)
≡
(

∂

∂x(1)
,

∂

∂x(2)

)
Using this operator, two operations on vector fields can be defined.
Definition B.1. Let A ⊂ R2 be an open subset and let F : A → R2 be a vector field. The divergence of F is the scalar
function divF : A → R, defined by

divF (x) := (∇ · F )(x) =
∂F (1)

∂x(1)
+

∂F (2)

∂x(2)

Definition B.2. Let A ⊂ R2 be an open subset and let F : A → R2 be a vector field. The curl of F is the scalar function
curlF : A → R, defined by

curlF (x) :=
∂F (1)

∂x(2)
− ∂F (2)

∂x(1)

Note that this curl definition follows directly from the definition of curl in three dimensions, where this quantity describes
infinitesimal circulation.

In the 3D world, curl and divergence are enough to characterize the Helmholtz decomposition. For the 2D version, however,
we need to characterize an additional operator - which we call rot operator - that plays the role of the standard curl operator
in the 3D version. In 2D, the rot formally requires the introduction of a third unit vector, k that is orthogonal to the plane
containing, i and j.
Definition B.3. Let f : R2 → R be a scalar field. The rot of f is the vector field k ×∇f, defined by

rot f(x) ≡ k ×∇f =

[ ∂f
∂x(2)

−∂f
∂x(1)

]
= i

∂f

∂x(2)
− j

∂f

∂x(1)

13
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where i and j represents, respectively, the standard unit vectors in the direction of the x(1) and x(2) coordinates; k is the
unit vector orthogonal to the plane containing i and j satisfying the identities, k × j = −i and k × i = j.

Thus the rot operator can be thought of as a π/2 rotation of the grad operator. The precise reason why we need the
introduction of a separate rot operator in 2D is because of a hidden peculiarity that the stream function, Ψ is actually
the only non-zero component of a 3D vector potential field, A(x), but that non-zero component is along the k direction,
A ≡ (0, 0,Ψ(x)); equivalently A = Ψk. Given this observation, it can be shown that ∇3D ×A = k×∇Ψ, where ∇3D is
the direct 3D extension of the 2D ∇ operator defined above. The ideas of gradient, divergence, rot, and curl lead to the
following characterization of vector fields.

Definition B.4. A vector field F : A → R2 is called rotation-free (or curl-free) if the curl is zero, curlF = 0, and it is called
incompressible (or divergence-free) if the divergence is zero, divF = 0.

Proposition B.5. Let f be a scalar field and C2 the class of functions whose second derivatives exist and are continuous.

1. If f is C2, then curl(grad f) = 0. Every gradient of a scalar field is rotation free.

2. If f is C2, then div(rot f) = 0. Every rot transformation of a scalar field is incompressible.

Proof. For (1), we have the following:

curl(grad f) = curl

[
∂f(x)
∂x(1)

∂f(x)
∂x(2)

]
=

∂f(x)/∂x(1)

∂x(2)
− ∂f(x)/∂x(2)

∂x(1)
= 0.

For (2):

div(rot f) = div

[
∂f(x)
∂x(2)

−∂f(x)
∂x(1)

]
=

∂f(x)/∂x(2)

∂x(1)
+

−∂f(x)/∂x(1)

∂x(2)
= 0.

For more material on vector calculus, we refer the reader to Arfken & Weber (1999).

C. Helmholtz Decomposition in the Ocean
In what follows we relate the Helmholtz decomposition to ocean currents. In the first part, we provide intuition of how
divergence and vorticity are significant in the context of oceanography. Next, in Figure 4, we present a visual representation
of the Helmholtz decomposition and highlight the relevant aspects.

The divergence and vorticity of the ocean flow are relevant for oceanographic studies. Divergence characterizes fronts
– small structures with spatial scales on the order of 0.1-10 km and temporal scales on the order of 1-100h. These are
associated with strong vertical motions comprised of a narrow and intense downwelling (flow into the ocean from the
surface) and broad, diffuse upwelling (flow from depths to the surface). The strong downwelling regions play a crucial role
in air-sea fluxes (including uptake of gases into the ocean) and for biological productivity, since floating particles in the
ocean (that include plankton and algae) are concentrated at these fronts. On the other hand, vorticity characterizes eddies,
larger structures that usually evolve over a long timescale. These account for kinetic energy in the ocean, which makes them
a crucial part of global balances of energy, momentum, heat, salt, and chemical constituents (such as carbon dioxide).

In Figure 4 we provide visual intuition on how the Helmholtz theorem decomposes a vector field (ocean flow) into a
divergent velocity field and a rotation velocity field. In this plot, one can see that from the divergence we can read areas of
downwelling/sink (arrows pointing inwards to a single point) and upwelling/source (arrows pointing outwards from a single
point). The vorticity, instead, characterizes rotational elements of the vector field, e.g., vortices/eddies in our ocean setting.

D. Optimal Interpolation vs. Gaussian Processes
Optimal interpolation is a powerful and widely used technique for the analysis of atmospheric data. The technique is
only optimal under strong assumptions, and is therefore instead often referred to as statistical interpolation (Daley, 1993).

14
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Figure 4. Helmholtz decomposition of vector field F . Left: original vector field F . Top-right: divergence component of Helmholtz
decomposition of F . Bottom-right: vorticity component of Helmholtz decomposition of F .

We formulate the statistical interpolation algorithm following Daley (1993, Section 4.2). We are interested in modeling
a variable y = f(x), where x represent the 2D spatial coordinates of a point. For simplicity, assume f : R2 → R is a
univariate function. The multivariate statistical interpolation algorithm is very similar. See Chapter 5 in Daley (1993).

We have some locations xk, k ∈ 1, . . . ,K, where we observe the variable of interest directly, fO(xk), and some other
locations xi, i ∈ 1, . . . , I , where we want to infer (interpolate) the value of the function of interest, fA(xi). Moreover, there
might be some background knowledge about this function (e.g. a climate model providing a first guess), that we denote by
fB(xk) and fB(xi). We assume a linear relationship between the observations and the function we want to model (note
that this does not imply the modeled function is linear in the spatial locations). Then

fA(xi) = fB(xi) +

K∑
i=1

Wik(fO(xk)− fB(xk)) (21)

where K is the number of locations where we observe the variable of interest, and Wik is the weight given to the residual
fO(xk)− fB(xk) when interpolating at xi. Finally, let the true value of the function at points xi and xk be fT (xi) and
fT (xk), respectively.

Define W̄i to be the column vector of length K of weights, B̄i the column vector of length K whose elements are
E[(fB(xk) − fT (xk))(fB(xi) − fT (xi))], and B and O the background and observation error covariance matrices,
respectively. That is, for k, l ∈ {1, . . . ,K},

Bk,l = E[(fB(xk)− fT (xk))(fB(xl)− fT (xl))],

Ok,l = E[(fO(xk)− fT (xk))(fO(xl)− fT (xl))].

Then, assuming that (i) the background and the observations are unbiased and (ii) that the correlation between background
and observation error is zero, with some algebra it can be shown that the optimal weights satisfy

[B +O]W̄i = B̄i

We refer the reader to Section 4.2 in Daley (1993) for details on this derivation. This is the same as applying a least square
approach on the residuals obtained by subtracting the background model estimates from the observations.

Now assume that we do not have any background knowledge (fB(xi) = fB(xk) = 0) and we do not know the ground truth.
Instead, we model it with a Gaussian process with zero mean and covariance function K̃, fT ∼ GP(0, K̃). Assuming that
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the model is well-specified and the observation noise is σ2
obs, we have

B̄i,k = E(fT (xi), fT (xk)) = K̃(xi,xk)

Bk,l = E(fT (xk), fT (xl)) = K̃(x,x)k,l

Ok,l = E(fO(xk)− fT (xk), fO(xl)− fT (xl)) = σ2
obs

where by K̃(x,x) we mean the I × I matrix formed by evaluating the K̃ on all pairs of observed locations. So the optimal
weights are

W̄ℓ,k =

I∑
i=1

[K̃(x,x) + σ2
obsI]

−1
ℓ,i K̃(xi,xk),

These weights lead to exactly the same predictions as when doing standard Gaussian process regression. Therefore, we
can see Gaussian process regression as a specific case of statistical interpolation, where we do not include any background
knowledge (corresponding to a zero mean prior), and we do not have access to the ground truth function. We then choose a
covariance function that encodes physical intuition of how the underlying system behaves, and estimate parameters from
data (for example, by maximum likelihood). Daley (1993, Section 4.3) provides a detailed discussion of the choice of
covariance functions in the oceanographic and atmospheric literature.

E. Helmholtz Gaussian Process Prior
In this section, we state and prove Proposition 3.1 from the main text.

Proposition 3.1. Let F be an ocean current vector field defined by potential and stream functions that are independent
and distributed as Φ ∼ GP(0, kΦ) and Ψ ∼ GP(0, kΨ), where kΦ and kΨ are such that Φ and Ψ have almost surely
continuously differentiable sample paths. Then

F = gradΦ + rotΨ ∼ GP(0, kHelm), (9)

where, for x,x′ ∈ R2, i, j ∈ 1, 2, kHelm(x,x
′)i,j is equal to

∂2kΦ(x,x
′)

∂x(i)∂(x′)(j)
+ (−1)1{i ̸=j} ∂2kΨ(x,x

′)

∂x(3−i)∂(x′)(3−j)
. (10)

Proof. We obtain the result in two steps. First, we argue that under the assumptions of the proposition, F is distributed as a
Gaussian process and so may be characterized through its mean and covariance function. Second, we show F has mean
zero, and the proposed covariance kernel.

To see that F is a Gaussian process, observe that it is the sum of linear transformations of two independent Gaussian
processes. This follows from the fact that grad and rot are linear operators on any vector space of differentiable functions,
and because kΦ and kΨ are chosen to have almost surely continuously differentiable sample paths. Therefore, gradΦ and
rotΨ are two independent GPs, and so F is a Gaussian process as well.

We next turn to the mean and covariance functions. By linearity of expectation,

E[F ] = E [gradΦ] + E [curlΨ]

= gradEΦ+ curlEΨ
= 0,

where the last line follows from the assumption that Φ and Ψ both have mean 0 everywhere. It remains to calculate the
covariance function. Since Φ and Ψ are assumed independent we compute the covariance as the sum of covariances for
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gradΦ and curlΨ. Consider two points x and x′.

Cov [(gradΦ)(x), (gradΦ)(x′)] = Cov

[(
∂Φ(x)
∂x(1)

∂Φ(x)
∂x(2)

)
,

(
∂Φ(x′)
∂(x′)(1)

∂Φ(x′)
∂(x′)(2)

)]

=

Cov (∂Φ(x)
∂x(1) ,

∂Φ(x′)
∂(x′)(1)

)
Cov

(
∂Φ(x)
∂x(1) ,

∂Φ(x′)
∂(x′)(2)

)
Cov

(
∂Φ(x)
∂x(2) ,

∂Φ(x′)
∂(x′)(1)

)
Cov

(
∂Φ(x)
∂x(2) ,

∂Φ(x′)
∂(x′)(2)

)

=


∂2kΦ(x,x

′)

∂x(1)∂(x′)(1)
∂2kΦ(x,x

′)

∂x(1)∂(x′)(2)

∂2kΦ(x,x
′)

∂x(2)∂(x′)(1)
∂2kΦ(x,x

′)

∂x(2)∂(x′)(2)
,


where exchange of integration and differentiation to obtain the final matrix is permissible by the almost surely continuously
differentiable sample paths assumption.

Similarly,

Cov [(rotΨ)(x), (rotΨ))(x′)] = Cov

[(
∂Ψ(x)
∂x(2)

−∂Ψ(x)
∂x(1)

)
,

(
∂Ψ(x′)
∂(x′)(2)

− ∂Ψ(x′)
∂(x′)(1)

)]

=

 Cov
(

∂Ψ(x)
∂x(2) ,

∂Ψ(x′)
∂(x′)(2)

)
Cov

(
∂Ψ(x)
∂x(2) ,− ∂Ψ(x′)

∂(x′)(1)

)
Cov

(
−∂Ψ(x)

∂x(1) ,
∂Ψ(x′)
∂(x′)(2)

)
Cov

(
∂Ψ(x)
∂x(1) ,

∂Ψ(x′)
∂(x′)(1)

) 

=


∂2kΨ(x,x

′)

∂x(2)∂(x′)(2)
− ∂2kΨ(x,x

′)

∂x(2)∂(x′)(1)

− ∂2kΨ(x,x
′)

∂x(1)∂(x′)(2)
∂2kΨ(x,x

′)

∂x(1)∂(x′)(1)

 .

The desired expression for kHelm is obtained by taking the sum of these two matrices.

F. Divergence and Vorticity of A Gaussian Process
In this section, we state and prove Proposition 3.2 from the main text.

Proposition 3.2. Let F ∼ GP(µ, k) be a two-output Gaussian process with almost surely continuously differentiable
sample paths. Then, for x,x′ ∈ R2,

δ = divF ∼ GP(divµ, kδ) (16)

ζ = curlF ∼ GP(curlµ, kζ) (17)

where

kδ(x,x′) =
∑

(i,j)∈{1,2}2

∂2k(x,x′)i,j
∂x(i)∂x(j)

(18)

kζ(x,x′)=
∑

(i,j)∈{1,2}2

(−1)i+j ∂2k(x,x′)i,j
∂x(3−i)∂x(3−j)

. (19)

Proof. By the assumption that the sample paths are almost surely continuously differentiable, divF and curlF are well-
defined. Since the image of a Gaussian process under a linear transformation is a Gaussian processes both divF and curlF
are Gaussian processes. It remains to compute the moments. The expectation can be calculated via linearity,

E(divF ) = div(EF ) = div µ, (22)
E(curlF ) = curl(EF ) = curlµ. (23)
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We next turn to the covariance. Define the centered process G = F − µ. By Equation (22) and Equation (23), divG and
curlG are centered Gaussian processes with the covariance functions kδ and kζ respectively.

Consider two points x,x′ ∈ R2. Unpacking the definition of div,

kδ(x,x′) = E
[(

∂G(1)(x)

∂x(1)
+

∂G(2)(x)

∂x(2)

)(
∂G(1)(x′)

∂(x′)(1)
+

∂G(2)(x′)

∂(x′)(2)

)]
=

∑
(i,j)∈{1,2}2

E
[
∂G(i)(x)

∂x(i)

∂G(j)(x′)

∂(x′)(j)

]

=
∑

(i,j)∈{1,2}2

∂2k(x,x′)i,j
∂x(i)∂(x′)(j)

,

where exchange of integration and differentiation in the final line is permissible given that the sample paths are almost surely
continuously differentiable. Similarly,

kζ(x,x′) = E
[(

∂G(1)(x)

∂x(2)
− ∂G(2)(x)

∂x(1)

)(
∂G(1)(x′)

∂(x′)(2)
− ∂G(2)(x′)

∂(x′)(1)

)]
=

∑
(i,j)∈{1,2}2

(−1)i+jE
[
∂G(i)(x)

∂x(3−i)

∂G(j)(x′)

∂(x′)(3−j)

]

==
∑

(i,j)∈{1,2}2

(−1)i+j ∂2k(x,x′)i,j
∂x(3−i)∂(x′)(3−j)

.

G. Computational Costs for evaluating Helmholtz GP Posterior
In this section, we provide a bound for the cost of computing velocity predictions using the Helmholtz GP. We also discuss
in more detail the assumption of using a Cholesky factorization or QR decomposition.
Proposition G.1. Suppose we have observed M training data points and would like to predict the current at N new
(test) locations. Assume we use a Cholesky or QR factorization, together with solving the system of equations with
back-substitution. Let Cvel(M,N) be the total worst-case4 computational cost for evaluating both the posterior mean
(Equation (14)) and covariance (Equation (15)) for the velocity GP. Let and Chelm(M,N) be the analogous total cost for
the Helmholtz GP. Then

lim
M,N→∞

Chelm(M,N)/Cvel(M,N) ≤ 4 (24)

where M and N can tend to infinity at arbitrary, independent rates.

Proof. Recall that the posterior mean and covariance can be obtained by solving KtetrK
−1
trtrYtr and computing Ktete −

KtetrK
−1
trtrK

⊤
tetr, respectively Equations (14) and (15). To compute the mean we (A) compute a Cholesky (or QR)

factorization of a 2M × 2M matrix, (B) perform a back-solve of a 2M dimensional system of equations, and (C) compute
N 2M -dimensional inner products. To compute the covariance we (D) compute a Cholesky (or QR) factorization of
a 2M × 2M matrix, (E) perform a back-solve of N distinct 2M dimensional systems of equations, (F) compute an
(2N × 2M)× (2M × 2N) matrix-multiplication, and (G) subtract 2N × 2N matrices.

We first argue that it suffices to consider steps A and D separately from the remaining steps. In particular, for non-negative
numbers {ai}Ii=1 and {bi}Ii=1, we observe that ∑I

i=1 ai∑I
i=1 bi

≤ max
ai
bi
. (25)

4As in the main text, we assume that the computation incurs the worst-case cost of a Cholesky factorization or QR decomposition. If
the matrices involved have special structure, the cost might be much less than the worst-case.
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For our purposes, let a1 be the cost of steps A and D in the Helmholtz GP computation, and let a2 be the cost of steps B, C,
E, F, and G in the Helmholtz GP computation. Analogously, define b1 and b2 for the velocity GP computation. The proof
of Proposition 3.3 already showed that a1/b1 is asymptotically bounded above by 4. By Equation (25), then, it suffices to
separately check a2/b2.

Next, we will use the following observation to focus on the asymptotically dominant terms of a2 and b2, respectively.
Consider some index n → ∞. For rn ∼ sn and tn ∼ un with all terms bounded away from zero,

rn
sn

∼ tn
un

. (26)

Among steps B, C, E, F, and G, the dominant costs are due to performing the triangular back-substitution (step E) and the
matrix-matrix multiplication (step F) used to compute the covariance. We can again consider these two steps separately due
to Equation (25).

First consider back-substitution. Given a t (square) lower triangular system of equations of dimension s, the cost of solving
this system with back-substitution is ∼ ts2 floating-point operations (Golub & Van Loan, 2013, Section 3.1.2). When
evaluating posteriors with the Helmholtz GP, we have Ktetr of shape 2N × 2M and Ktrtr = LL⊤ (or QR) of shape
2M × 2M . So back-substitution in the case of the Helmholtz GP incurs cost (in floating point operations) ∼ 8NM2. For
the velocity GP, we can exploit the fact that the two outputs are uncorrelated and can be handled separately, so the cost
of back-substitution is ∼ 4NM2. Therefore, and again using Equation (26), the ratio of the costs of the back-substitution
algorithm is asymptotically 2.

Once back-substitution has been performed, matrix-multiplication must be performed. Using textbook matrix-multiplication
leads to the same considerations as back-substitution.

In all the steps used to compute the posterior moments, we see that the cost of the Helmholtz GP is not (asymptotically)
more than 4 times the cost of the velocity GP, and the result follows.

Simplifying structure. In Propositions 3.3 and G.1, we have made the assumption that users are solving a linear system or
computing a log determinant with a general and standard choice, such as a Cholesky factorization or QR decomposition. We
expect essentially the same result to hold for any other general method for computing these quantities. However, if there is
special structure that can be used to solve the linear system or compute the log determinant more efficiently, that might
change the bounds we have found here. Conversely, we are immediately aware of special structure that we can expect to
always apply in the application to modeling current. And any such structure would likely also require special algorithmic
development and coding.

H. Benefits of the Helmholtz GP: additional information and supplemental proofs
In what follows, we provide additional information on the benefits of using the Helmholtz GP. In Appendix H.1 we state and
prove Proposition 4.1, showing how with independent velocity priors we obtain equal marginal variances for vorticity and
divergence. In Appendix H.2 we provide more intuition on the result that length scales are conserved across kΦ vs. kδ and
across kΨ vs. kζ . Finally, in Appendix H.3 we state and prove Proposition 4.2 about the equivariance of Helmholtz GP
predictions.

H.1. Equality of marginal variances of vorticity and divergence with independent velocity priors

Proposition 4.1. Let k(1) and k(2) be isotropic kernels with inputs x,x′ ∈ R2. Take F (1) ∼ GP(0, k(1)) and F (2) ∼
GP(0, k(2)) independent. Suppose k(1) and k(2) are such that F (1), F (2) have almost surely continuously differentiable
sample paths. Let δ and ζ be defined as in Equations (3) and (4). Then for any x,Var[δ(x)] = Var[ζ(x)].

Proof. Because k(1) and k(2) are assumed to be isotropic we may write for any x,x′ ∈ R2

k(1)(x,x′) = κ1(∥x− x′∥2) and k(2)(x,x′) = κ2(∥x− x′∥2)

for some κ1, κ2 : R+ → R. Because isotropy implies stationarity, it suffices to consider the variance at any a single point,
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and so we consider x = x′ = (0, 0). By assumption, we have

F ∼ GP
((

0
0

)
,

(
k(1) 0
0 k(2)

))
By Proposition 3.2, the induced divergence and vorticity are Gaussian processes with mean 0 and covariances

kδ(x,x′) =
∂2k(1)(x,x′)

∂x(1)∂(x′)(1)
+

∂2k(2)(x,x′)

∂x(2)∂(x′)(2)

kζ(x,x′) =
∂2k(1)(x,x′)

∂x(2)∂(x′)(2)
+

∂2k(2)(x,x′)

∂x(1)∂(x′)(1)

respectively.

Then, we can compute the variance at x = x′ = (0, 0) by

Var[δ(0, 0)] =
∂2k(1)(x,x′)

∂x(1)∂(x′)(1)

∣∣
x=0,x′=0

+
∂2k(2)(x,x′)

∂x(2)∂(x′)(2)

∣∣
x=0,x′=0

=
∂2κ1(∥x− x′∥2)
∂x(1)∂(x′)(1)

∣∣
x=0,x′=0

+
∂2κ2(∥x− x′∥2)
∂x(2)∂(x′)(2)

∣∣
x=0,x′=0

=
∂

∂x(1)
(−2κ′

1(∥x∥2)x(1))
∣∣
x=0

+
∂

∂x(2)
(−2κ′

2(∥x∥2)x(2))
∣∣
x=0

= −2(κ′′
1(0) + κ′′

2(0))

Consequently, we have that for any x ∈ R2, Var[δ(x)] = −2(κ′
1(0) + κ′

2(0)).

The computation is similar for the vorticity. We have that

Var[ζ(0, 0)] =
∂2k((1)(x,x′)

∂x(2)∂(x′)(2)

∣∣
x=0,x′=0

+
∂2k((2)(x,x′)

∂x(1)∂(x′)(1)

∣∣
x=0,x′=0

=
∂2κ1(∥x− x′∥2)
∂x(2)∂(x′)(2)

∣∣
x=0,x′=0

+
∂2κ2(∥x− x′∥2)
∂x(1)∂(x′)(1)

∣∣
x=0,x′=0

=
∂

∂x(2)
(−2κ′

1(∥x∥2)x(1))
∣∣
x=0

+
∂

∂x(1)
(−2κ′

2(∥x∥2)x(2))
∣∣
x=0

= −2(κ′′
1(0) + κ′′

2(0))

Therefore for any x ∈ R2, Var[ζ(x)] = −2(κ′
1(0) + κ′

2(0)), and we see Var[ζ(x)] = Var[δ(x)]. This completes the
proof.

H.2. Conservation of length scales across kΦ vs. kδ (and kΨ vs. kζ)

This subsection provides a derivation of the claim that if kΦ(x,x′; ℓ) = κ(∥x − x′∥/ℓ), for some κ : R+ → R, then
kδHelm(x,x

′; ℓ) = ℓ−4η(∥x− x′∥/ℓ) for some η : R+ → R that does not depend on ℓ. The relationship (argument to see it)
is identical KΨ and kζHelm.

We may see the claim to be true by expanding out the dependencies of kδHelm and kζHelm on kΦ and kΨ, seeing that they
involve fourth order partial derivatives, and applying a change of variables four times; each change of variables contributes
one factor of ℓ−1.
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In particular,

kδHelm =

(
∂4

∂(x(2))2∂((x′)(2))2
+

∂4

∂(x(2))2∂((x′)(1))2
+

∂4

∂(x(1))2∂((x′)(2))2
+

∂4

∂(x(1))2∂((x′)(1))2

)
kΦ and

kζHelm =

(
∂4

∂(x(2))2∂((x′)(2))2
+

∂4

∂(x(2))2∂((x′)(1))2
+

∂4

∂(x(1))2∂((x′)(2))2
+

∂4

∂(x(1))2∂((x′)(1))2

)
kΨ.

(27)

Consider first the potential function and divergence. If kΦ(x,x′) = κ(∥x − x′∥), then any second order mixed partial
derivative may be written through a change of variables (x to x/ℓ) as ∂2

∂x∂x′ kΦ(x,x
′) = ℓ−2 ∂2

∂ℓx∂ℓx′κ(∥ℓx − ℓx′∥/ℓ) =
ℓ−2 ∂2

∂x∂x′κ(∥x− x′∥/ℓ). Analogously, when we differentiate four times rather than twice to obtain kδHelm we have that if
kΦ(x,x

′) = κ(∥x− x′∥/ℓ), for some κ, then kδHelm = ℓ−4η(∥x− x′∥/ℓ) for some η that does not depend on ℓ.

H.3. Equivariance of Helmoltz GP predictions

Proposition 4.2. Let µF|D(Xte,Xtr,Ytr) denote the Helmholtz GP posterior mean for training data Xtr,Ytr and test
coordinates Xte, and let R be an operator rotating coordinates and velocities about (0, 0). Then

µF|D(RXte, RXtr, RYtr)=RµF|D(Xte,Xtr,Ytr). (20)

To prove the proposition, it is helpful to distinguish between random variables and the values they take on. We use boldface
to denote the random variables, for example Ytr. When a random variable Ytr takes a value Y we write Ytr = Y.

The rotation operator R is characterized by a 2 × 2 rotation matrix; if Xtr = [(x
(1)
1 , x

(2)
1 )⊤, . . . , (x

(1)
N , x

(2)
N )⊤], then

RXtr = [R(x
(1)
1 , x

(2)
1 )⊤, . . . , R(x

(1)
N , x

(2)
N )⊤] = [((Rx1)

(1), (Rx1)
(2))⊤, . . . , ((RxN )(1), (RxN )(2))⊤], where we denote

by (Rx)(1) the rotated first coordinate, and (Rx)(2) the rotated second coordinate. When the input is flattened, as in the
case of Ytr or µF |D, the R operator is applied as follows: (1) unflatten the vector to get it in the same form as Xtr, then (2)
apply the operator R as specified above, and finally (3) flatten the output vector to go back to the original Ytr shape. Our
proof relies on kΦ and kΨ being isotropic kernels.

Lemma H.1 (Invariance of the likelihood). Suppose F is distributed as a Helmholtz GP, and there are M observations
Ytr | F,Xtr = X ∼ N

(
[F (1)(X), F (2)(X)]⊤,Ktrtr(X,X)

)
, where I2M denotes the identity matrix of size 2M . Then

the marginal likelihood of the observations is invariant to rotation. That is, for any 2× 2 rotation matrix R,

p(Ytr = Y | Xtr = X) = p(Ytr = RY | Xtr = RX).

Proof. By assumption, kΦ is stationary and so, for any two locations x and x′ in R2 we may write kΦ(x,x′) = κ(∥x−x′∥)
for some function κ : R+ → R. Following Appendix C, we may write the induced covariance for gradΦ as

Cov [(gradΦ)(x), (gradΦ)(x′)] =


∂2kΦ(x,x

′)

∂x(1)∂(x′)(1)
∂2kΦ(x,x

′)

∂x(1)∂(x′)(2)

∂2kΦ(x,x
′)

∂x(2)∂(x′)(1)
∂2kΦ(x,x

′)

∂x(2)∂(x′)(2)



=


∂2κ(∥x− x′∥)
∂x(1)∂(x′)(1)

∂2κ(∥x− x′∥)
∂x(1)∂(x′)(2)

∂2κ(∥x− x′∥)
∂x(2)∂(x′)(1)

∂2κ(∥x− x′∥)
∂x(2)∂(x′)(2)

,



Similarly, we may compute Cov [(gradΦ)(Rx), (gradΦ)(Rx′)] through a change of variables (x to Rx) as
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Cov [(gradΦ)(Rx), (gradΦ)(Rx′)] =


∂2kΦ(Rx, Rx′)

∂x(1)∂(x′)(1)
∂2kΦ(Rx, Rx′)

∂x(1)∂(x′)(2)

∂2kΦ(Rx, Rx′)

∂x(2)∂(x′)(1)
∂2kΦ(Rx, Rx′)

∂x(2)∂(x′)(2)



=


∂2κ(∥Rx−Rx′∥)

∂x(1)∂(x′)(1)
∂2κ(∥Rx−Rx′∥)

∂x(1)∂(x′)(2)

∂2κ(∥Rx−Rx′∥)
∂x(2)∂(x′)(1)

∂2κ(∥Rx−Rx′∥)
∂x(2)∂(x′)(2)

,


= R⊤Cov [(gradΦ)(x), (gradΦ)(x′)]R

and see that Cov [(gradΦ)(x), (gradΦ)(x′)] = RCov [(gradΦ)(Rx), (gradΦ)(Rx′)])R⊤.

Similarly, for a collections of M locations X we have that Cov [(gradΦ)(X), (gradΦ)(X)] = (R ⊗
IM )Cov [(gradΦ)(RX), (gradΦ)(RX)] (R⊤ ⊗ IM ), where ⊗ denotes the Kronecker product.

An identical argument (up to a change in the sign of off-diagonal terms) can be used to derive the induced covariance for
rotΨ, Cov [(rotΨ)(x), (rotΨ)(x′)]. We obtain

Cov [(rotΨ)(x), (rotΨ)(x′)] = RCov [(rotΨ)(Rx), (rotΨ)(Rx′)]R⊤ and

Cov [(rotΨ)(X), (rotΨ)(X)] = (R⊗ IM )Cov [(rotΨ)(RX), (rotΨ)(RX)] (R⊤ ⊗ IM ).

Together, this implies that if we write the covariance of M vector velocity training observations Ytr at X as

Ktrtr(X,X) : = Var[Ytr|Xtr = X]

= kHelm(X,X) + σ2
obsI2M

= Cov [(gradΦ)(X), (gradΦ)(X)] + Cov [(rotΨ)(X), (rotΨ)(X)] + σ2
obsI2M

then
Ktrtr(X,X) = (R⊗ IM )Ktrtr(RX,RX)(R⊤ ⊗ IM )

As a result, for any R, Y and X we may compute the log likelihood according to the likelihood model as

log p(Ytr = RY | Xtr = RX)

= logN (RY ; 0,Ktrtr(RX,RX))

= −M log(2π)− 1

2
log |Ktrtr(RX,RX)|

− 1

2
log((R⊗ IM )Y )⊤ [Ktrtr(RX,RX)]

−1
((R⊗ IM )Y )

= −M log(2π)− 1

2
log |Ktrtr(X,X)| − 1

2
log Y ⊤Ktrtr(X,X)−1Y

= log p(Ytr = Y | Xtr = X),

as desired.

Lemma H.2 (Invariance of the conditionals). The conditionals distributions of the Helmoltz GP are invariant to rotation.
That is, for any 2× 2 rotation matrix R,

p(Yte = Yte | Xte = Xte,Xtr = Xtr,Ytr = Ytr)

=p(Yte = RYte | Xte = RXte,Xtr = RXtr,Ytr = RYtr)
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Proof. The lemma is obtained by applying Bayes’ rule and Lemma H.1 as

p(Yte = RYte | Xte = RXte,Xtr = RXtr,Ytr = RYtr)

=
p(Yte = RYte,Xte = RXte,Xtr = RXtr,Ytr = RYtr)∫

p(Yte = RY ′
te,Xte = RXte,Xtr = RXtr,Ytr = RYtr)dRY ′

te

=
p(Yte = Yte,Xte = Xte,Xtr = Xtr,Ytr = Ytr)∫

p(Yte = Y ′
te,Xte = Xte,Xtr = Xtr,Ytr = Ytr)dY ′

te

= p(Yte = Yte | Xte = Xte,Xtr = Xtr,Ytr = Ytr).

Proof of the equivariance proposition:

We now prove the proposition. Recall that

µF |D(Xte,Xtr,Ytr) = E[Yte | Xte = Xte,Ytr = Ytr,Xtr = Xtr].

Therefore, for any R, we may compute µF |D(RXte, RXtr, RYtr) as

µF |D(RXte, RXtr, RYtr) = E[Yte | Xte = RXte,Ytr = RYtr,Xtr = RXtr]

=

∫
Yte p(Yte = Yte | Xte = RXte,Ytr = RYtr,Xtr = RXtr)dYte

=

∫
RYte p(Yte = RYte | Xte = RXte,Ytr = RYtr,Xtr = RXtr)dYte

=

∫
RYte p(Yte = Yte | Xte = Xte,Ytr = Ytr,Xtr = Xtr)dYte

= E[RYte | Xte = Xte,Ytr = Ytr,Xtr = Xtr]

= RµF |D(Xte,Xtr,Ytr)

Where in the third line we perform a change of variables, noting that |R| = 1. The fourth line follows from Lemma H.2.
The final line is a result of linearity of expectation and the definition of µF |D, and provides the desired equality.

H.4. Non-Equivariance of Velocity GP predictions

In this appendix, we show that the velocity GP requires special constraints to exhibit reference-frame equivariance, and
these constraints force an undesirable coupling of divergence and vorticity length scales.

Proposition 4.3. For isotropic component kernels and zero prior mean, the velocity GP is reference-frame equivariant if
and only if the kernels for each component are equal.

Proof. We first show that if the velocity GP is reference-frame equivariant and has isotropic kernels for each component,
then the kernels for the two velocity components are equal. In order to show this, it suffices to show that the prior
is not equivariant, as this is the posterior given the empty dataset. Let F ∼ GP (0, k) be a function from R2 → R2

by stacking F (·) =
[
F (1)(·), F (2(·)

]T
. Rotational invariance of the prior is equivalent to the condition that for an

arbitrary 2-dimensional rotation matrix R,R−1F (R·) = F (·), where equality is in distribution for an entire sample path.
Consider a 90 degree rotation of the coordinate axis. In the case of a 90 degree rotation, by isotropy of the kernels,
R−1F (R·) = R−1F (·) = [F2(·), F1(·)]T . Considering each coordinate of R−1F (R·), equality in distribution to F implies
that F (2)(·) = F (1)(·) in distribution, and so the two components must have the same kernel.

We next show that if the two kernels are equal, then the velocity GP is rotationally equivariant. By Lemma H.2, it suffices
to show there exist kernels kΦ, kΨ such that the prior is equal in distribution to a Helmholtz GP with these kernels. Let
F denote a zero mean velocity GP with kernels k(1) = k(2). Let F ′ denote a Helmholtz GP with kernels kΦ = kΨ, and

kΦ(x,x
′) =

∫ x(1)

s′=0

∫ (x′)(1)

s=0
k(1)(s, s′)dsds′ +

∫ x(2)

s′=0

∫ (x′)(2)

s=0
k(2)(s, s′)dsds′. Applying Proposition 3.1 and the fundamental

theorem of calculus, we see the covariance functions of F and F ′ are equal, and since F and F ′ are zero mean Gaussian
processes, they are therefore equal in distribution.
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I. Experimental Results
In this section, we provide more details on our experimental results. The section is organized in three parts. Appendix I.1
focuses on experiments with simulated data. Appendix I.2 focuses on experiments with real data from the LASER experiment
(D’Asaro et al., 2017). Appendix I.3 focuses on real data from the GLAD experiment (Özgökmen, 2012). In each section, we
have one subsection for each experiment. These subsections provide simulation details (e.g., what is the underlying vector
field, and how we generated the buoys trajectories), model fitting details (e.g., hyperparameter optimization), and results. At
the end of each subsection, we include a figure with these results. All the figures have the same structure. The first column
represents ground truths. Second, third and fourth columns contain, respectively, SE-Helmholtz GP, SE-velocity GP, and
D-HNN results. The first two rows represent results for the velocity prediction task: row 1 shows reconstructed velocity
fields, row 2 differences from ground truth. Rows 3, 4, and 5 are about divergence: first divergence predictions, then standard
deviation and z-values for the two GP models. Finally, rows 6, 7, and 8 concern vorticity: vorticity predictions, standard
deviation and z-values for the two GP models. See Figure 5 for an example. For real data experiments, where we do not
have ground truths, we omit the first column and the second row, i.e., all plots involving comparisons with ground truth
quantities. See Figure 13 for an example.

For the simulated experiments, all root mean square errors are evaluated on the grids used to simulate the experiment.
Specific grids are discussed in the “simulation details“ paragraph of each individual experiments subsection. More explicitly,
the root mean square error is calculated as,

RMSE =

√
1

|L|
∑
x∈L

∥F (x)− F̂ (x)∥22 (28)

where F (x) denotes the simulated vector field, F̂ (x) denotes the predictions of a given model and L is the grid used to
simulate the vector field.

Initialization In all experiments except the GLAD data, we initialize our parameters such that log ℓΦ = 0, log σΦ =
0, log ℓΨ = 1, log σΨ = −1, log σ2

obs = −2 and likewise log ℓ1 = 0, log σ1 = 0, log ℓ2 = 1, log σ2 = −1, log σ2
obs = −2.

We describe the special difficulties of the GLAD data in Appendix I.3. In all other cases, we found that results were not
sensitive to initialization.

I.1. Simulated Experiments

We focus on simulations of key ocean behaviors of interest to oceanographers: vortices, straight currents, concentrated
divergences, and combinations thereof.

I.1.1. SIMULATED EXPERIMENT 1: SINGLE VORTEX

A single vortex in the ocean is a fluid flow pattern in which water particles rotate around a central point, with the flow
pattern resembling a spiral. These vortices can occur due to a variety of factors such as the wind, currents, and tides. Single
ocean vortices, also known as ocean eddies, can have a significant impact on ocean circulation and can transport heat, salt,
and nutrients across vast distances. They can also affect the distribution of marine life. The vortex constructed has zero
divergence and constant vorticity.

Simulation details. To simulate a vortex vector field in a two dimensional space, we first define a grid of points L of size
17 x 17, equally spaced over the interval [−1, 1] × [−1, 1]. For each point x = (x(1), x(2)) ∈ L, we compute the vortex
longitudinal and latitudinal velocities by:

F (1)(x) = −x(2)

F (2)(x) = x(1)

From these equations we obtain that the divergence of the vortex is 0 for any x = (x(1), x(2)) ∈ L:

δ(x) = div · F =
∂F (1)

∂x(1)
+

∂F (2)

∂x(2)
= 0 + 0 = 0
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and the vorticity is -2 for any x = (x(1), x(2)) ∈ L:

ζ(x) = curl · F =
∂F (1)

∂x(2)
− ∂F (2)

∂x(1)
= −1− 1 = −2

In our simulated experiment, we then use this vector field to simulate buoys trajectories, i.e. the evolution of buoys positions
and velocities across time. In doing so, we make an implicit stationarity assumption about the vector field. That is, we
assume that across the total time where we want to simulate buoys trajectories, the vector field remains the same. Then we
fix starting positions for the desired amount of buoys, in this case 4. We set these to be just on one side of the vortex, to
evaluate the ability of the models to reconstruct the full vortex by having access to observations covering only a portion of it.
We pick the total time (here 1) for which we observe the trajectories, and the amount of time steps at which we want to
observe the buoys trajectories (here 2), to split the total time. To find the trajectories, we solve the velocity-time ordinary
differential equation, dx/dt = F , where d/dt represents the time-derivative operator. Once we obtain the evolution of
buoys’ locations, we obtain the corresponding velocities by doing a linear interpolation of the underlying vortex field. By
doing this interpolation, we end up with our simulated dataset, consisting in this case of 8 observations.

Model fitting. We are interested in evaluating the models’ capabilities of reconstructing the full vortex, and capturing
the underlying divergence and vorticity structure. To do so, we consider test locations corresponding to the grid L, so that
we can compare our results with the ground truth, for velocities, divergence, and vorticity. To fit the SE-Helmholtz GP,
we initialize the hyperparameters as explained in the Initialization paragraph at the start of this appendix: ℓΦ = 1, σΦ =
1, ℓΨ = 2.7, σΨ = 0.368, σ2

obs = 0.135. The objective function of our optimization routine is the log marginal likelihood
from Equation (5). We optimize the parameter using the gradient-based algorithm Adam (Kingma & Ba, 2015). Note
that we optimize the hyperparameters in the log-scale. That is, we consider as parameters in the optimization step
log ℓΦ, log σΦ, log ℓΨ, log σΨ, and log σ2

obs, and we exponentiate these when evaluating the log marginal likelihood. In
doing so, we ensure that the optimal parameters are positive, as needed in this model. We run the optimization routine until
the algorithm reaches convergence. In this case, the convergence criterion is the difference of log marginal likelihood in two
consecutive optimization steps being less than 10−4. This convergence is achieved in less than 1000 iterations. The optimal
hyperparameters are: ℓΦ = 1.1131, σΦ = 0.0342, ℓΨ = 1.5142, σΨ = 0.8884, σ2

obs = 0.1597. The same optimization
routine is performed for the SE-velocity GP. In this case, the initial hyperparameters are ℓ1 = 1, σ1 = 1, ℓ2 = 2.7, σ2 =
0.368, σ2

obs = 0.135. The optimal hyperparameters are: ℓ1 = 1.6191, σ1 = 0.9710, ℓ2 = 2.7183, σ2 = 0.5811, σ2
obs =

0.1759. For both optimization routines, we tried different initial parametrizations, and the results agree substantially both
in terms of RMSEs and visual reconstruction. Finally, to train the D-HNN model, we run the training routine provided in
Greydanus & Sosanya (2022) code.

Results. We show the results in Figure 5. For each of the plots, the horizontal and vertical axes represent, respectively,
latitude and longitude. The first row represents the ground truth simulated vector field (left), and the reconstruction using the
SE-Helmholtz GP (center-left), the SE-velocity GP (center-right) and the D-HNN (right). Red arrows are the observed buoy
data, black arrows show the predicted current at test locations. We can see how our method predicts a full vortex covering the
spatial domain, whereas the SE-velocity GP predicts a smooth curve with much longer length scale, that does not resemble
the ground truth. The D-HNN prediction looks more similar to a vortex, but still not as good as the SE-Helmholtz GP. To
support this claim we also show differences from the ground truth in the second row. Finally, note that the RMSE for the
SE-Helmholtz GP is 0.24, whereas for the SE-velocity GP it is 0.72 and for the D-HNN is 0.54.

In the third row, we analyze the divergence. The left box shows the constantly zero ground truth. Our model prediction
(center-left) correctly captures this behavior, whereas the SE-velocity GP (center-right) predicts an irregular pattern not
resembling the truth. The same happens for D-HNN (right box). In the fourth row we show the standard deviation of
divergence predictions for the two GP models, and we can see how the SE-Helmholtz GP is very certain that there is no
divergence, whereas the uncertainty for the SE-velocity GP predictions is higher. Finally, in the fifth row, we show the
z-values for the divergence prediction, defined as the ratio between the mean and the standard deviation. This is a measure
of how far from zero the prediction is, measured in terms of standard deviation. Some standard cut-off values for this
quantity are −1 and +1, and one usually concludes that the prediction is significantly different (in the sense of one standard
deviation) from 0 if the corresponding z-value is beyond these thresholds. By using this indicator, we conclude that none
of the two predictions are significantly far from zero, so both models are accurate in predicting zero divergence, but our
prediction is more precise, in the sense that the mean is closer to the real value and the uncertainty is lower. This is confirmed
by looking at RMSEs: 0.0 for the SE-Helmholtz GP, 0.22 for SE-velocity GP, and 0.87 for the D-HNN.
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Finally, in the last three rows we analyze results for the vorticity. The left box shows the constant (-2) ground truth. The
SE-Helmholtz GP (center-left) predicts that the vorticity is around that value, especially in the center of the vortex, whereas
in the corners the behavior is not as good. The SE-velocity GP (center-right) performs much worse also here, by predicting
vorticity very close to zero, or positive, on almost all the spatial domain. The D-HNN (right box) predicts negative vorticity
in most of the domain, but the pattern is very irregular. In the second-to-last row we show the standard deviation of
divergence predictions for the two GP models, and we can see how the range of uncertainties on this task is more similar
than before, meaning that there are areas where both models are not very confident. Still, if we look at the z-values in the
last row, combined with the prediction plots, we see our model is better at predicting the magnitude and size of the vorticity
area. In terms of RMSEs, we have 0.77 for the SE-Helmholtz GP, 1.05 for the SE-velocity GP, and 1.03 for the D-HNN.

In general, in this experiment we have shown that when working with this very simple underlying vector field, our model
behaves better than the alternatives. In particular, we have seen how the prediction of the vortex is very accurate for the
SE-Helmholtz GP, whereas the two other models are more off (and this is reflected in the respective RMSEs). In terms
of divergence, our model predicts with certainty that there is no divergence, whereas the SE-velocity GP approach is less
precise (by predicting non-zero divergence with high uncertainty). Finally, we saw how in terms of vorticity our model is
the only one able to understand that there is a non-zero vorticity: even if the prediction is not perfect, it is still significantly
better than all the other models.
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Figure 5. Single vortex. First column: ground truths. Second column: SE-Helmholtz GP results. Third column: SE-velocity GP results.
Fourth column: D-HNN results.
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I.1.2. SIMULATED EXPERIMENT 2: VORTEX ADJACENT TO STRAIGHT CURRENT

This task elaborates on the previous one by splitting the spatial domain in two regions: the upper region has a single vortex,
and the lower region has a constant and straight flow from left to right.

The velocity field is discontinuous at the boundary, and therefore the divergence and vorticity are not defined as fields along
this line. In general, though, if we were to consider a smaller sub-region containing the boundary on the lefthand side (where
the vortex has downward velocity), we expect such a sub-region to have a negative flux. Analogously, if we were to consider
a sub-region containing the boundary on the righthand side (where the vortex has upward velocity), we would expect that
sub-region to have a positive flux.

Since the divergence and vorticity fields are not defined everywhere, it is not obvious what the desired behavior is in terms of
recovering these fields. Due to this ambiguity, we do not report the results of this experiment in the main text. However, these
discontinuities are reminiscent of fronts, which are of substantial interest to oceanographers, so we include this experiment
in this appendix for completeness and in case it spurs future advancements.

Simulation details. To simulate such a vortex vector field, we first define a grid of points L of size 25 x 50, equally spaced
over the interval [−1, 1]× [−1, 2]. We can see this grid as composed of two subgrids L1 and L2, each of dimension 25 x 25,
with L1 representing the top grid and L2 the lower one. Next, for each point x = (x(1), x(2)) ∈ L1, we compute the vortex
as done in Appendix I.1.1:

F (1)(x) = −x(2)

F (2)(x) = x(1)

and we still have δ(x) = 0 and ζ(x) = −2 for any x = (x(1), x(2)) ∈ L1.

For each point x ∈ L2, we simulate a constant field with the following equations:

F (1)(x) = 0.7

F (2)(x) = 0.

The divergence and vorticity for each x ∈ L2 are δ(x) = 0 and ζ(x) = 0.

As done for the previous experiment, we then use this vector field to simulate buoys trajectories making the stationarity
assumption. Here we consider 7 buoys, covering the full region, observed for a total time of 0.5 and 2 time steps. We
reconstruct the buoys trajectories by solving the ODE and interpolating as specified before. By doing this interpolation, the
simulated dataset consists of 14 observations.

Model fitting. We fit the three models with the routine specified in Appendix I.1.1. To fit the SE-Helmholtz GP,
we initialize the hyperparameters as follows: ℓΦ = 1, σΦ = 1, ℓΨ = 2.7, σΨ = 0.368, σ2

obs = 0.135. The optimal
hyperparameters are: ℓΦ = 3.8698, σΦ = 0.0885, ℓΨ = 1.2997, σΨ = 0.9773, σ2

obs = 0.0609. The same optimization
routine is performed for the SE-velocity GP. In this case, the initial hyperparameters are ℓ1 = 1, σ1 = 1, ℓ2 = 2.7, σ2 =
0.368, σ2

obs = 0.135. The optimal hyperparameters are: ℓ1 = 0.9397, σ1 = 1.0755, ℓ2 = 2.7183, σ2 = 0.5528, σ2
obs =

0.0087. For both optimization routines, we tried different initial parametrizations, and the results agree substantially both in
terms of RMSEs and visual reconstruction.

Results. We show the results in Figure 6. As before, for each of the plots, the horizontal and vertical axes represent,
respectively, latitude and longitude. The first row represents the ground truth simulated vector field (left), and the
reconstruction using the SE-Helmholtz GP (center-left), the SE-velocity GP (center-right) and the D-HNN (right). Red
arrows are the observed buoy data, black arrows show the predicted current at test locations. We can see how our method
predicts accurately the vortex structure, whereas it has some problems in the lower right corner, and smooths out the
discontinuity at the boundary. The SE-velocity GP is accurate as well for the vortex part, but has a significant issue in the
lower subgrid: the current flows from left to right, then gets interrupted, and then restarts in a different direction. This
behavior goes against the idea that currents are continuous (by conservation of momentum). The D-HNN predictions look
very similar to the SE-Helmholtz GP. In the second row we include the differences from the ground truth, and these show
as well that SE-Helmholtz GP and D-HNN are accurate, whereas the SE-velocity GP has issues in the lower part of the grid.
The RMSE for the SE-Helmholtz GP is 0.30, whereas for the SE-velocity GP it is 0.49 and for the D-HNN is 0.28.
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In the third row, we analyze the divergence. The left box shows the constantly zero ground truth except for at the boundary
line, where the divergence is undefined. Our model captures the zero divergence outside the boundary line, but does not
estimate any divergence at or around the boundary line. The SE-velocity GP (center-right) estimates an irregular pattern.
The D-HNN divergence estimate has the perhaps desirable property that it is negative on the left side and positive on the
right side, which might lead to reasonable predictions of flux into and out of regions containing the boundary between the
straight current and vortex. As it is unclear what a reasonable approximation to the divergence is when the divergence is
concentrated on a line, we do not report RMSE on this example.

Finally, in the last three rows we analyze results for the vorticity. The left box shows the ground truth, again ignoring the
boundary line where the vorticity is undefined. Here both the GP models’ predictions look very similar. Both predict that
there is a negative vorticity area in the top grid, and a close-to-zero vorticity area in the lower grid. The D-HNN vorticity
estimates in the upper and lower regions are similar to those of the GPs. Also the D-HNN estimate suggests a crisper
boundary than the GP approaches do. In the standard deviation and z-value plots, we see that both GP models seem quite
certain about the existence of a negative vorticity at least in part of the upper region. We again do not report RMSE for
vorticity in this example as the vorticity is not well-defined over the entire region we consider.

In summary, in this experiment we showed a situation in which the SE-Helmholtz GP is at least as good as the other two
models in predicting the velocity field. It is not entirely clear what desirable reconstruction of the divergence and vorticity
field is, as they are not defined on the boundary of the two regions, and the models show substantially different properties.
Finally, we note that this field violates the modeling assumptions made by the the two GP models (particularly continuity)
and further modeling innovation is likely needed to improve fidelity in examples like this one.
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Figure 6. Vortex adjacent to straight current. First column: ground truths. Second column: SE-Helmholtz GP results. Third column:
SE-velocity GP results. Fourth column: D-HNN results.
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I.1.3. SIMULATED EXPERIMENT 3: AREAS OF CONCENTRATED DIVERGENCE

For this experiment, we consider three different scenarios, differing only in the size of the divergence area. In each of these,
we observe 5 buoys, each for 2 time steps. For all the scenarios, the two models perform very well. We show the results
in Figures 7 to 9. Both models reconstruct the velocity field well, see Table 2 for more details. Moreover, this field has
no vorticity and divergence that peaks at the center of the region and slowly decreases in a circular way. This behavior is
captured by both models in an accurate way. We conclude that in this important simulated experiment our model is at least
as good as the SE-velocity GP approach.

A vector field with a single diffuse area of divergence simulates the behavior of an ocean fluid flow in which the water
particles are spreading out from a particular region. This behavior can be caused by a variety of factors, such as the
movement of warm and cold water masses, or the mixing of fresh and salt water, and can lead to increase in nutrient
concentration and high primary production and biodiversity. The fluid particles in this area are not rotating in a circular
motion as in a vortex, but instead moving away from each other, resulting in a decrease in density and velocity.

Simulation details. To simulate a vector field with a divergence area in a two dimensional space, we first define a grid of
points L of size 20 x 20, equally spaced over the interval [−2, 2] × [−2, 2]. The point (0, 0) represents the center of the
divergence area. To obtain a vector field with divergence area around this point, for each point x = (x(1), x(2)) ∈ L, we can
compute the longitudinal and latitudinal velocities by:

F (1)(x) =
x(1)

bd +R2
d(x)

F (2)(x) =
x(2)

bd +R2
d(x)

with Rd(x) = ((x(1))2 + (x(2))2 being the distance from the center of divergence, and bd a parameter governing the size of
the area of divergence. Larger bd implies larger area, but also smaller value at the center. Intuitively, this parameter measures
how diffuse the divergence around a center point is. This intuition can be confirmed by computing the actual divergence
value:

δ(x) = div · F =
∂F (1)

∂x(1)
+

∂F (2)

∂x(2)
=

bd + (x(1))2 − (x(2))2

(bd +R2
d(x))

2
+

bd − (x(1))2 + (x(2))2

(bd +R2
d(x))

2
=

2bd
(bd +R2

d(x))
2
.

For the vorticity instead we have

ζ(x) = curl · F =
∂F (1)

∂x(2)
− ∂F (2)

∂x(1)
=

−2(x(1))(x(2))

(bd +R2
d(x))

2
+

2(x(1))(x(2))

(bd +R2
d(x))

2
= 0.

The goals for each model then are to (1) reconstruct the velocity field in an accurate way, (2) predict that there is a divergent
area and its size, and (3) predict zero vorticity. Finally note that in this experiment, we propose three different scenarios,
where the only difference is how diffuse the divergence areas are. Specifically, we run three different experiments with
bsmall = 0.4, bmedium = 2, and bbig = 15.

As before, our observations are simulated buoy trajectories. For each scenario the simulation part is the same. We simulate 5
buoys, starting in the non-divergent areas, observed for a total time of 3, and we consider 2 time steps. Overall we have 10
observations. As usual, to get these trajectories we solve the velocity-time ODE and interpolate.

Model fitting. For each of the three scenarios, we fit the three models with the routine specified in Appendix I.1.1. The
hyperparameter initialization for both GPs is always the same across the three different scenarios: ℓΦ = 1, σΦ = 1, ℓΨ =
2.7, σΨ = 0.368, σ2

obs = 0.135 for the SE-Helmholtz GP, ℓ1 = 1, σ1 = 1, ℓ2 = 2.7, σ2 = 0.368, σ2
obs = 0.135 for the

SE-velocity GP. We provide the optimal hyperparameters for each scenario in the corresponding subsections.

Result: small divergence area, bsmall = 0.5. The optimal hyperparameters in this scenario are the following:

• ℓΦ = 1.1314, σΦ = 1.9422, ℓΨ = 5.3132, σΨ = 0.1864, σ2
obs = 0.1821 for the SE-Helmholtz GP
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• ℓ1 = 0.5078, σ1 = 1.6570, ℓ2 = 2.7183, σ2 = 1.8658, σ2
obs = 0.1396 for the SE-velocity GP.

In Figure 7 we show the results of this scenario. As before, for each of the plots, the horizontal and vertical axes
represent, respectively, latitude and longitude. The first row represents the ground truth simulated vector field (left), and
the reconstruction using the SE-Helmholtz GP (center-left), the SE-velocity GP (center-right) and the D-HNN (right). Red
arrows are the observed buoy data, black arrows show the predicted current at test locations. All three models have
some problems in reconstructing the underlying field. The two GPs are particularly problematic, because they predict
constant strong current that abruptly stops in regions where there are no buoys. The predictions are particularly bad for the
SE-velocity GP, which fails to understand the direction and size of the current in most of the region. The D-HNN prediction
is the one that looks better here, but it is still problematic in the sense that far away from the buoys the current starts to
rotate. The plots in the second row showing the difference from the ground truth show that all these models provide poor
performances on this task. In terms of RMSE, we have 1.11 for the SE-Helmholtz GP, 1.25 for the SE-velocity GP, and
0.67 for the D-HNN, confirming that our model performs much better.

In the third row, we analyze the divergence. The left box shows the divergence structure of this field. As described in the
preamble, since bd is small, we have a small area of divergence with big magnitude. The two GP models identify this area.
The SE-velocity GP is more accurate in predicting the size of the divergence area. The SE-Helmholtz GP predicts that
there is a divergence area in the middle and gets the correct magnitude, but predicts it to be larger than it actually is. If we
consider the z-value plots, we can see that this intuition is confirmed: the SE-velocity GP predicts only a small area to have
significant non-zero divergence, whereas our model overestimates the size of this area. The prediction of the D-HNN is
less accurate. In terms of RMSEs, we have 2.62 for the SE-Helmholtz GP, 1.45 for the SE-velocity GP, and 4.14 for the
D-HNN.

In the last three rows of the plot we have, as usual, the vorticity analysis. The left box shows the ground truth. Here
the SE-Helmholtz GP perfectly predicts zero vorticity, and the D-HNN is almost correct too. The SE-velocity GP, on the
contrary, predicts very irregular vorticity, with very high uncertainty. If we consider the z-value plots, we see there is
one region (in the center) where the vorticity is predicted to be non-zero in a significant manner. This is a problematic
behavior that the SE-velocity GP has and our model has not. We have 0.0 RMSE for the SE-Helmholtz GP, 1.07 for the
SE-velocity GP, and 0.31 for the D-HNN.

Result: medium divergence area, bsmall = 5. The optimal hyperparameters in this scenario are the following:

• ℓΦ = 1.9387, σΦ = 1.2387, ℓΨ = 2.3894, σΨ = 0.2192, σ2
obs = 0.0675 for the SE-Helmholtz GP

• ℓ1 = 1.6067, σ1 = 0.8181, ℓ2 = 2.7183, σ2 = 0.9859, σ2
obs = 0.0742 for the SE-velocity GP.

Figure 8 shows the results of this scenario. In the top part we have as always the velocity predictions. Since the divergence
area is more diffuse, both the velocity of the current and the lengthscale of variation are smaller, in the sense that there are
less sharp deviations. Compared to the previous scenario, this property of the field makes the prediction task easier for all
three models. In particular, the SE-Helmholtz GP and SE-velocity GP predict a field that almost resembles identically the
ground truth. The D-HNN still has some issues, specifically it predict some rotations far away from the observations. This
behavior can be seen by looking at the difference from ground truth in the second row. We have the following RMSEs: 0.17
for the SE-Helmholtz GP, 0.19 for the SE-velocity GP, and 0.55 for the D-HNN.

For the divergence, by looking at the ground truth plot on the left, we see the area of divergence is now more diffuse, and the
magnitude is lower. Both the SE-Helmholtz GP and the SE-velocity GP predict this area accurately, both in terms of size
and magnitude (they both predict this area to be a bit larger than it actually is). The D-HNN picks up divergence in a very
irregular way. In terms of uncertainty, both GP models are more certain about their predictions around the buoys, and the
z-values reflect this behavior: the area where the divergence is significantly different from zero (z-value above 1) is almost
identical to the actual ground truth. The RMSEs are: 0.39 for the SE-Helmholtz GP, 0.33 for the SE-velocity GP, 1.32 for
the D-HNN.

For the vorticity, we observe that the performances of all models are now worse. The SE-Helmholtz GP still predicts
vorticity very close to zero almost everywhere, but not exactly zero as before. The predictions for the SE-velocity GP still
look less accurate and irregular. The D-HNN performance is very poor. In terms of uncertainty, the SE-Helmholtz GP has
low uncertainty about its prediction, and this leads to an area where there is significantly non-zero vorticity (in terms of
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z-value). This behavior is somehow problematic, but note that the predicted mean is in absolute value very close to zero in
that area too. The z-value for the SE-velocity GP is as in the previous scenario, predicting significantly non-zero divergence
in an area where the mean is quite distant from zero. Again, this is a very undesirable behavior. The RMSEs are: 0.05 for
the SE-Helmholtz GP, 0.12 for the SE-velocity GP, 0.38 for the D-HNN.

Result: big divergence area, bsmall = 15. We finally study the last scenario, with the big area of divergence. The optimal
hyperparameters in this scenario are the following:

• ℓΦ = 3.3732, σΦ = 0.8362, ℓΨ = 14.7644, σΨ = 0.0659, σ2
obs = 0.0074 for the SE-Helmholtz GP

• ℓ1 = 2.3456, σ1 = 0.3376, ℓ2 = 2.7183, σ2 = 0.3355, σ2
obs = 0.0055 for the SE-velocity GP.

In Figure 9 we show the results of this scenario. Here the divergence areas are even more diffuse, and this seems to help a
lot the SE-Helmholtz GP predictions but not so much the other methods.

For the velocity prediction task, the three models produce predictions that are close to the truth. It is clear, however, that
the predictions of the SE-Helmholtz GP are more precise, whereas both the SE-velocity GP and D-HNN predict some
rotational shapes that should not be there. This result is confirmed by the RMSE: 0.04 for the SE-Helmholtz GP, 0.10 for
the SE-velocity GP, and 0.19 for the D-HNN.

In terms of divergence, predictions for the two GP models are similar, but our model is slightly better at predicting the full
size of the region, with low uncertainty. The D-HNN prediction is again poor. The z-values show how in the central area,
both models significantly predict non-zero divergence, but further away in the corners z-values get closer and closer to zero.
This behavior is due to the distribution of the buoys’ observations. The RMSEs are: 0.05 for the SE-Helmholtz GP, 0.12 for
the SE-velocity GP, and 0.27 for the D-HNN.

Finally, if we consider the vorticity, we can see how here the SE-Helmholtz GP is superior to the other two methods, as in
the two previous scenarios. It is able to detect that there is no vorticity, with very low uncertainty. The SE-velocity GP, on
the contrary, predicts non-zero positive vorticity in the left side of the plot, and non-zero negative vorticity in the right side.
These predictions are with low uncertainty and hence significant, as can be seen by looking at the z-values plot (most of the
domain has z-values beyond the thresholds +1 and -1). The prediction with D-HNN is in similar to the SE-velocity GP one.
The RMSEs are: 0.0 for the SE-Helmholtz GP, 0.10 for the SE-velocity GP, and 0.11 for the D-HNN.

In general, we saw how in these experiment the SE-Helmholtz GP is at least as good as the other two methods in almost all
the velocity prediction tasks, as good as the SE-velocity GP for the divergence tasks, and remarkably better in predicting
that there is no vorticity.
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Figure 7. Small area of divergence. First column: ground truths. Second column: SE-Helmholtz GP results. Third column:
SE-velocity GP results. Fourth column: D-HNN results.
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I.1.4. SIMULATED EXPERIMENT 4: DUFFING OSCILLATOR WITH AREAS OF CONCENTRATED DIVERGENCE

The Duffing oscillator is a nonlinear dynamic system that can be used to study the dynamics of oceanic phenomena such as
tides and currents. In this experiment, we add to this system a divergence area on the left region and a convergence area on
the right one. See top-left plot in Figure 10. In this way we obtain a field that has both divergence (positive on the right,
negative on the left), and vorticity (for the underlying Duffing system).

Simulation details. To simulate a Duffing oscillator in a two dimensional space, we first define a grid of points L of size
30 x 30, equally spaced over the interval [−4, 4] × [−4, 4]. Next, for each point x = (x(1), x(2)) ∈ L, we compute the
Duffing longitudinal and latitudinal velocities by:

F̃ (1)(x) = x(2)

F̃ (2)(x) = (x(1) − 0.1 ∗ (x(1))3) ∗ (1 + 0.1 ∗ cos(50 ∗ π/4)).

On top of this field we add a divergent field at location (−3, 0), using equations:

D(1)(x) =
(x(1) − (−3))

bd +R2
d(x)

D(2)(x) =
x(2)

bd +R2
c(x)

with Rd(x) = (x(1) − (−3))2 + (x(2) − 0)2 being the distance from the center of divergence, and bd a parameter governing
the size of the area of divergence. Larger bd implies larger area, but also smaller value at the center. It can be seen as a
parameter measuring how diffuse the divergence around a center point is. We also have a convergent field around (3, 0),
determined by the equations:

C(1)(x) = − (x(1) − 3)

bc +R2
d(x)

C(2)(x) = − (x(2))

bc +R2
c(x)

with Rc(x) = (x(1) − 3)2 + (x(2) − 0)2, the distance from the center of convergence. To get the full velocity field, we sum
up these three quantities:

F (1)(x) = F̃ (1)(x) +D(1)(x) + C(1)(x)

F (2)(x) = F̃ (2)(x) +D(2)(x) + C(2)(x).

In this system, the divergence and vorticity do not have a simple form, but can be calculated. For the sake of our divergence
analysis, it is sufficient to say that there are two areas of interest, around the center of divergence and convergence. In this
experiment, we propose three different scenarios, where the only difference is how diffuse the divergence areas are. For
simplicity, we assume b = bc = bd, and we run three different experiments with bsmall = 0.5, bmedium = 5, and bbig = 15.

As done before, to predict currents, divergence, and vorticity we simulate buoys. For each scenario the simulation part is the
same. We first simulate 3 buoys, starting in the non-divergent areas, observed for a total time of 5, and 2 time steps. We then
simulate 4 additional buoys, starting around the divergent areas, for a total time of 5, and 4 time steps. That is, we make
observations coarser for buoys in these regions. Overall we have 22 observations. As usual, to get these observations we
solve the velocity-time ODE and interpolate.

Model fitting. For each of the three scenarios, we fit the three models with the routine specified in Appendix I.1.1.
The hyperparameter initialization for both GPs is the same across the three different scenarios: ℓΦ = 1, σΦ = 1, ℓΨ =
2.7, σΨ = 0.368, σ2

obs = 0.135 for the SE-Helmholtz GP, ℓ1 = 1, σ1 = 1, ℓ2 = 2.7, σ2 = 0.368, σ2
obs = 0.135 for the

SE-velocity GP. We provide the optimal hyperparameters for each scenario in the corresponding subsections.

Result: small divergence area, bsmall = 0.5. The optimal hyperparameters in this scenario are the following:
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• ℓΦ = 0.6335, σΦ = 0.3734, ℓΨ = 3.9115, σΨ = 6.9294, σ2
obs = 0.0083 for the SE-Helmholtz GP

• ℓ1 = 0.7212, σ1 = 1.8767, ℓ2 = 2.7183, σ2 = 1.1361, σ2
obs = 0.0084 for the SE-velocity GP.

In Figure 10 we show the results of this scenario. As before, for each of the plots, the horizontal and vertical axes
represent, respectively, latitude and longitude. The first row represents the ground truth simulated vector field (left), and
the reconstruction using the SE-Helmholtz GP (center-left), the SE-velocity GP (center-right) and the D-HNN (right). Red
arrows are the observed buoy data, black arrows show the predicted current at test locations. First of all, we can see how
our method predicts accurately the duffing structure in the left part of the plot, whereas has some issues in the right one,
where we have the convergence area. The SE-velocity GP prediction is more problematic: the correct current is predicted
around the buoys, but farther away the prediction goes to zero, reverting to the prior mean. This is a problematic behavior,
e.g., because it predicts very non-continuous currents. The D-HNN prediction is problematic as well: the current looks
more continuous, but the general shape is very different from the ground truth. This behavior can be seen well from the
second row, the comparison to the ground truth. In terms of RMSE, we have 0.96 for the SE-Helmholtz GP, 2.05 for the
SE-velocity GP, and 2.14 for the D-HNN, confirming that our model performs much better.

In the third row, we analyze the divergence. The left box shows the divergence structure of this field. There is a small area
with very positive divergence on the left, and a small area with very negative divergence on the right. The two GP models
are good at identifying these areas. At the same time, they both predict some other areas of divergence around the observed
buoys. Nonetheless, if we consider the z-value plots (on the fifth row) we can see how the z-values for both models are very
high in the two areas of divergence, meaning that there is a strongly significant non-zero mean in those areas, as desired.
The D-HNN predicts a quite different divergence structure. The RMSEs are: 0.94 for the SE-Helmholtz GP, 0.95 for the
SE-velocity GP, and 1.89 for the D-HNN.

Finally, in the last three rows we analyze results for the vorticity. The left box shows the ground truth. Here the
SE-Helmholtz GP prediction looks more accurate than the other two. Nonetheless, even our model is not fully able to
capture the full vorticity structure. The predictions for the SE-velocity GP look particularly problematic because it is highly
affected by the location of the buoys, and that is reflected in the uncertainty and z-values plots. The D-HNN predicts a very
different field on this task as well. The RMSEs are: 1.40 for the SE-Helmholtz GP, 2.28 for the SE-velocity GP, and 2.64
for the D-HNN.

Result: medium divergence area, bsmall = 5. The optimal hyperparameters in this scenario are the following:

• ℓΦ = 1.2029, σΦ = 0.1666, ℓΨ = 3.3679, σΨ = 9.5514, σ2
obs = 0.0112 for the SE-Helmholtz GP

• ℓ1 = 6.7677, σ1 = 4.5316, ℓ2 = 2.7183, σ2 = 23.3219, σ2
obs = 0.0305 for the SE-velocity GP.

Figure 11 shows the results of this scenario. In the top part we have as always the velocity predictions. In this case, the
ground truth field is very similar to before, but the divergence areas are more diffuse, and hence the current has generally
longer lengthscale of variation (that is, the deviations are less sharp). This feature helps the predictions for all three methods.
We can see indeed how now the three models produce predictions that are closer to the truth than before. Still, by looking at
the difference from ground truth plots, we can see that the prediction of our model is slightly better than the SE-velocity GP,
and significantly better than the D-HNN. We have the following RMSEs: 0.19 for the SE-Helmholtz GP, 0.60 for the
SE-velocity GP, and 1.65 for the D-HNN. These confirm what can see visually in the plots.

In terms of divergence, by looking at the the ground truth plot on the left, one can immediately notice how the areas of
divergence are now more diffuse, and the magnitudes are lower. The SE-Helmholtz GP predicts accurately the two areas,
with some noise in the central region. The SE-velocity GP is less accurate, but overall understand that there are these two
areas. The D-HNN fails in identifying the two regions. It is interesting to observe the z-value plots in this experiment: for
the SE-Helmholtz GP, the z-values are very high in the two desired areas, meaning that our model is very certain about
divergence being different from zero in those areas. For the SE-velocity GP, the z-values still look good, just less accurate
than for our model. The RMSEs are: 0.14 for the SE-Helmholtz GP, 0.50 for the SE-velocity GP, and 1.15 for the D-HNN.

Finally, we consider the vorticity. Here the two GP models agree significantly on the shape of their predictions, and they
are both very similar to the ground truth. This result is reflected in the RMSEs: 0.24 for the SE-Helmholtz GP, 0.26 for
the SE-velocity GP. The prediction for the D-HNN is far from the truth (RMSE 2.39). The uncertainty is lower close to
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the data for both GP models. In general, both GP models seem to work well in recovering divergence and vorticity in this
scenario. The SE-Helmholtz GP is superior for the divergence, the SE-velocity GP for the vorticity.

Result: big divergence area, bsmall = 15. The optimal hyperparameters in this scenario are the following:

• ℓΦ = 2.9194, σΦ = 0.4599, ℓΨ = 3.2411, σΨ = 10.1815, σ2
obs = 0.0137 for the SE-Helmholtz GP

• ℓ1 = 7.3457, σ1 = 4.0581, ℓ2 = 2.7183, σ2 = 24.7519, σ2
obs = 0.0202 for the SE-velocity GP.

In Figure 12 we show the results of this scenario. Here the divergence areas are even more diffuse, and the overall field ends
up having longer lengthscale of variation. The results on velocity predictions, divergence, and vorticity are aligned with the
medium size scenario.

For the velocity prediction task, the three models produce predictions that are close to the truth. Now the two GP models are
similar, as can be seen in the difference from the truth plots, and they are both significantly better than the D-HNN. This
result is confirmed by the RMSEs: 0.41 for the SE-Helmholtz GP, 0.22 for the SE-velocity GP, and 1.63 for the D-HNN.

In terms of divergence, the SE-Helmholtz GP accurately predicts the two areas of divergence, still with some noise in the
central region. The SE-velocity GP is less accurate, especially in the top right region, but overall understand that there are
these two areas. The D-HNN prediction is poor. As in the past experiment, it is interesting to observe the z-value plots: both
GP models have very high z-values in the areas of divergence, proving their ability to capture the locations of these. The
RMSEs are: 0.08 for the SE-Helmholtz GP, 0.17 for the SE-velocity GP, 1.10 for the D-HNN.

Finally, also if we consider the vorticity, the results are similar to the previous scenario. Predictions are good for the two
GPs, with meaningful z-values. Now the SE-velocity GP predictions align almost perfectly with the ground truth, and this is
reflected in the lower RMSE (0.16 vs. 0.48 for the SE-Helmholtz GP). The D-HNN still fails to predict structure precisely
(2.41 RMSE)

In summary, with this experiment we showed that the SE-Helmholtz GP is generally better than the other models in
predicting the underlying velocity field (significantly better in the first scenario). In terms of divergence and vorticity, we do
not see a large difference compared to the SE-velocity GP: both models are very good; SE-Helmholtz GP is slightly better
for the divergence and SE-velocity GP is slightly better for the vorticity. This behavior is very interesting, showing how
both models are able to predict a complex divergence pattern (more complex than the previous experiment).

39



Gaussian Processes at the Helm(holtz)

0

5

0

5

0

5

0

5

1

2

3

1

2

3

−5

0

5

−5

0

5

−2

0

2

4

−2

0

2

4

−2

0

2

4

−2

0

2

4

1

2

3

1

2

3

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

Current Buoy

Figure 10. Duffing with small area of divergence. First column: ground truths. Second column: SE-Helmholtz GP results. Third column:
SE-velocity GP results. Fourth column: D-HNN results.
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I.2. Real-world data 1: LASER

The LAgrangian Submesoscale ExpeRiment, or LASER (Novelli et al., 2017), was performed in the Gulf of Mexico in
January-February 2016. Around 10 million data points were retrieved from more than 1000 near-surface biodegradable
CODE-type ocean drifters (drogued at a depth of one meter) tracked in real-time using SPOT GPS units. These data were then
preprocessed as described in Yaremchuk & Coelho (2014). Finally, since satellite data can have errors and positions of buoys
sometimes jump an unrealistic amount, oceanographers removed some bad points that were visible by eye. The preprocessed
data are available at https://data.gulfresearchinitiative.org/data/R4.x265.237:0001 (D’Asaro
et al., 2017). In our analysis, we use locations and velocities of buoys as they appear in this dataset.

The main goal of the experiment was to obtain data to understand the submesoscale ocean currents in the open ocean
environment near the DeSoto Canyon, as well as how oil or other pollutants might be transported via these currents. In our
analysis, we consider a subsample of the LASER data, in an area where the oceanographers expect a convergent front to be
(from visual inspection of drifter data). This particular structure in the ocean happens when there are two different masses of
water that collide and cause the formation of an area where water sinks. This behavior could happen when two water masses
with different temperatures and/or salinities meet, or when water masses from different directions go towards the same
area, such as the meeting of warm equatorial water and cold polar water. These fronts are very important for understanding
ocean circulation and weather patterns, and can also be a source of nutrients for marine life. To study this structure, we
consider two experiments: in the first one, we run our model on a small subset of buoys from this region, collapsing the time
dimension and downsampling the observations. To confirm our finds, we then run our models on a dataset that contains
more buoys and observations, still from that region.

I.2.1. LASER, CONVERGENT FRONT, SPARSE

In this analysis, we consider 19 buoys, observed every fifteen minutes over a two hour time horizon. By downsampling by a
factor of 3 and collapsing the time dimension, we obtain 55 observations. In these data, oceanographers expect to see a clear
convergent front in the left region of the spatial domain.

Model fitting. The optimization routine is exactly the same that we do for the simulated experiments: gradient-based
Adam algorithm until convergence or a sufficient amount of iterations has elapsed. For the initial hyperparameters, we
have tried various alternatives, and found out that the predictions do not change significantly. Hence, for coherence,
we stick to the usual initialization done for synthetic data, i.e., ℓΦ = 1, σΦ = 1, ℓΨ = 2.7, σΨ = 0.368, σ2

obs = 0.135
for the SE-Helmholtz GP, and ℓ1 = 1, σ1 = 1, ℓ2 = 2.7, σ2 = 0.368, σ2

obs = 0.135 for the SE-velocity GP. The
optimal hyperparameters obtained are: ℓΦ = 1.6032, σΦ = 0.0496, ℓΨ = 13.3272, σΨ = 1.6392, σ2

obs = 0.0232 for the
SE-Helmholtz GP, and ℓ1 = 8.3149, σ1 = 0.1384, ℓ2 = 2.7183, σ2 = 0.1318, σ2

obs = 0.0276

Results. We show the results in Figure 13. The top row shows the predictions for the three models. As before, red arrows
are the observed buoy data. The black arrows show the current posterior means at test locations. The test locations are 400
points evenly sparse on a 20 x 20 grid that covers the full range of latitude and longitude of our buoys’ observations. The
three models produce very similar results: a quasi-constant flow towards the south-west area of the region. There is a slight
difference in prediction for the region where buoys seem to converge (SE-velocity GP and D-HNN do not predict different
current around there, SE-Helmholtz GP predicts a more converging behavior).

This difference is clear when we look at the posterior divergence plots, in the second row. Our model predicts a negative
divergence area (in light-blue) in the area where the oceanographers expect a convergent front. On the contrary, the
SE-velocity GP predicts no divergence on the whole spatial domain. This is a very important difference, showing how our
model can perform better in recovering this very important property of the ocean. Note that this same intuition is confirmed
if we look at the fourth row, where we have z-value plots for both models: the z-values for the SE-Helmholtz GP around the
expected convergent front are strongly negative, meaning that the divergence there is significantly non-zero, as desired.

For the vorticity, we just have very small values, almost zero, for both models. Unfortunately, there is no oceanographic
knowledge to predict the vorticity far away from the observed drifter traces, and therefore we can not conclude anything
related to this point.
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I.2.2. LASER, CONVERGENT FRONT, FULL

To further validate the result on the divergence, we consider the same buoys floating over a nine hour time horizon,
downsampled by a factor of 3, obtaining 240 observations. We fit our models by performing the usual optimization routine,
and we plot the results in Figure 14.

In the top row we show the prediction results. For all the models, the predictions around the buoy agree almost perfectly with
predictions from the sparse experiment for the SE-Helmholtz GP; further away models, are more conservative and closer
to the prior. The divergence plots in the second row are of the most interest. The prediction according to SE-velocity GP
changes remarkably relative to the past experiment. Now it matches closely the Helmholtz result, and both methods detect
the convergent front. This result shows the strength of our model in being more data efficient, a very desirable property for a
GP model.
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Figure 13. LASER sparse. First column: SE-Helmholtz GP results. Second column: SE-velocity GP results. Third column: D-HNN
results.
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I.3. Real-world data 2: GLAD

The Grand Lagrangian Deployment (GLAD) experiment (Özgökmen, 2012) is another experiment conducted in the northern
Gulf of Mexico in July 2012. More than 300 custom-made buoys (of the same type as in the LASER experiment) were
deployed near the Deepwater Horizon site and Louisiana coast. This experiment was originally intended to help advance
research in understanding the spread and dispersion of oil after the Deepwater Horizon tragedy. Researchers have been
using this dataset to study interactions among ocean flows, the levels of influence on transport that large and small flows
have, and the size of oil spread at which large flows dominate. Since the GLAD experiment was conducted in the summer
time with a shallow 20-meter surface mixed layer for the buoys, the wind has a very strong impact on the trajectories,
creating a lot of oscillations. These oscillations are due to a balance of forces due to wind forcing and Earth’s rotation, and
get amplified during summer time. Filtering these oscillations is a very complicated task, so this wind-induced motions
represent a true problem for buoys that are used for measuring oceanographic parameters. Note that we do not see these
issues with the LASER data, because that was a winter experiment, where the surface layer is 100-meter deep and devoid of
these oscillations.

Model fitting. To deal with this issue, we consider a limited subset of our dataset. We take drifter traces of 12 buoys,
observed hourly over a four days time horizon. We collapse the time dimension and downsample these traces by a factor 50,
obtaining 85 observations. In terms of optimization routine, we follow very similarly what done in all the other experiments.
The only difference is that here different hyperparameter optimization led to different prediction plots for some combinations.
In our final results, we decided to stick to the hyperparameter initialization for which both the SE-Helmholtz GP and the
SE-velocity GP results were visually more appealing. These are ℓΦ = 12.18, σΦ = 0.135, ℓΨ = 7.4, σΨ = 3, σ2

obs = 0.135
for the SE-Helmholtz GP, ℓ1 = 2.7, σ1 = 1, ℓ2 = 2.7, σ2 = 1, σ2

obs = 0.135 for the SE-velocity GP.

The optimal hyperparameters obtained after the optimization routine are ℓΦ = 45.6840, σΦ = 0.0362, ℓΨ = 80.1871, σΨ =
13.5514, σ2

obs = 0.1715 for the SE-Helmholtz GP, and ℓ1 = 72.5835, σ1 = 0.2622, ℓ2 = 2.7183, σ2 = 0.1354, σ2
obs =

0.1739 for the SE-velocity GP.

Results. In these data, we expect to see a continuous current with no sharp deviations (i.e., lengthscale of variation is
long), with few smaller vortices distributed across the region. Unfortunately, here there is no explicit divergence structure
that oceanographers expect, so any conclusion from the divergence and vorticity plots is difficult to verify. We show the
results of the experiments in Figure 15. We have the predictions in the first row. As before, red arrows are the observed buoy
data. The black arrows show the current posterior means at test locations. First of all, the D-HNN model makes physically
implausible predictions, likely due to the sparse nature of the data on a large domain. For the GP models, both prediction
plots look reasonable, but there are two regions of interest showing important issues with the SE-velocity GP. Consider the
bottom right corner. Despite evidence of a strong current making a u-turn, the standard approach shows an abrupt drop
in current away from observed data. Our method, on the contrary, predicts a strong current connecting across drifters, in
accordance with the continuity of currents (the idea that when a fluid is in motion, it must move in such a way that mass is
conserved). This behavior is very problematic. Consider then the top-left corner. Flow behavior around the observations
suggests that there might be a vortex in that region. The standard approach shows none. With the SE-Helmholtz GP, instead,
we can see the expected vortex between the two lines of current.

To further prove our point, we increase the number of observations to 1200, by decreasing the downsampling factor, and we
re-fit the two models with the same optimization routine. The velocity prediction results are included in the first row of
Figure 16. Here we can see that our model starts being affected by the oscillations in the data, predicting currents with shorter
lengthscale of variation. But also it is still able to reconstruct a continuous current, also far away from the observations,
with some vortices with shorter length scale. For the SE-velocity GP, the discontinuity issues increase significantly, and the
model is still unable to detect vortices. These are two strong motivations to believe the SE-Helmholtz GP provides a better
alternative for this task. The prediction of the D-HNN remains poor.

In terms of divergence and vorticity reconstruction on the sparse dataset, the SE-Helmholtz GP predicts very small divergence
almost everywhere, and vorticity coherent with the buoys trajectories. The SE-velocity GP, instead, predicts a reasonable
vorticity field, but the divergence shows irregular patterns that look more suspicious. See the second and third blocks
in Figure 15 for a visual comparison. By looking at the data, we can see how there are regions on the left where buoys
observations seem to be more affected by the oscillations. The SE-velocity GP is more influenced by this noise than our
model, and hence predicts divergence areas around the buoys. This claim can be validated by looking at the plots when
the dataset size increases. See the second and third blocks in Figure 16. Here, both models seem to be affected more
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by the oscillations, but the SE-Helmholtz GP still predicts divergence closer to zero, whereas the SE-velocity GP predicts
divergence areas around each conglomerate of buoys in the region. Therefore, we can conclude that our model is at least as
good as the SE-velocity GP. Note that we cannot say anything stronger, because there is no expert knowledge suggesting
that the SE-Helmholtz GP behavior is the expected one.
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Figure 15. GLAD sparse. First column: SE-Helmholtz GP results. Second column: SE-velocity GP results. Third column: D-HNN
results.
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Figure 16. GLAD complete. First column: SE-Helmholtz GP results. Second column: SE-velocity GP results. Third column: D-HNN
results.
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