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Abstract. We study the performance of sparse regression methods and
propose new techniques to distill the governing equations of nonlin-
ear dynamical systems from data. We start from the recently proposed
generic methodology of learning interpretable equation forms from data,
followed by performance of least absolute shrinkage and selection opera-
tor (LASSO) for this purpose. We first develop an algorithm that uses the
dual of LASSO optimization for higher accuracy and stability. We then
derive a second algorithm that learns the candidate function library in
a dynamic data driven applications systems (DDDAS) manner to distill
the governing equations of the dynamical system. This is achieved via
sequentially thresholded ridge regression (STRidge) over a orthogonal
polynomial space. The performance of the methods is illustrated using
the Lorenz 63 system and a marine ecosystem model.
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1 Introduction and Overview

Data today are no longer used mostly to verify models derived from first princi-
ples but also to dynamically adapt and learn such models [9]. This is particularly
important for non-autonomous nonlinear dynamical systems that describe a mul-
titude of problems from science and engineering. Recent groundbreaking meth-
ods leverage the fact that most dynamical equations governing physical systems
contain a few terms, making them sparse in high-dimensional nonlinear function
space [2,12]. By constructing an appropriate feature library based on the data
coordinates, one can apply sparse regression to discover the governing equations
of the dynamical system. Few studies however try to improve upon the sparse
regression algorithm at the core of the approach. This is exactly the first focus
area of the present work. We examine the sparse regression method most com-
monly employed in this field: Least Absolute Shrinkage and Selection Operator
(LASSO) [13]. Although LASSO works well with assured fast convergence rates
for uncorrelated features, it converges more slowly for highly correlated features,
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and tends to choose a feature at random from each of the correlated groups [7].
To alleviate these difficulties, we propose to solve the dual of LASSO to learn the
governing equations. Even in the case of correlated features, the dual LASSO has
a unique solution, which allows us to correctly choose the features. The second
part of this work deals with the case when the exact function blocks that describe
the dynamical system are not present in the feature library. We develop a way to
handle such cases by using an appropriate family of orthogonal functional basis
to span the feature library combined with an approach to adaptively increase
and decrease the dimension of the feature space. This allows us to add new com-
ponents to the feature space that are orthogonal to the existing features while
discarding those that do not have any projection of the dynamical system along
them. We employ this algorithm iteratively, while adding or removing appropri-
ate features to dynamically adapt our feature space for the best approximation
of the equations from data. These Dynamic Data Driven Applications Systems
(DDDAS) [3] approaches are demonstrated on the Lorenz 63 system [11] and a
marine ecosystem model [6,8] with a non-polynomial nonlinearity. We show that
our dynamic data driven algorithms robustly and accurately learn the presence
of active features and of the nonlinearities without requiring any explicit feature
information.

1.1 General Methodology

Let us assume that we have n state space parameters (x1, . . . , xn), with measure-
ments for xi and ẋi = dx/dt at times t = 1, . . . , T (denoted by a superscript). If
only state observations are available, the rate parameters can be computed using
finite difference. This is followed by constructing a nonlinear library of features
using the state space parameters. The span of these features now describes the
feature space. Typically we would construct this feature space through a class
of functions that are dense in the space that our dynamical system lives in. In
this work, we assume a polynomial feature library, however the methodology is
agnostic towards the choice of functional basis and would apply to any other
feature library as well. After constructing the feature library (say X), we for-
mulate the regression problem as Ẋ = XW + ε, where Ẋ(t,j) = ẋj

t and W
are the unknown weights, with ε being the noise. Often in dynamical models,
not all the features in the library that we consider are required to explain the
dynamical model. Thus, as in [2], we utilize sparse regression to select the rel-
evant features. However, unlike the aforementioned work, we dynamically build
an suitable feature library which allows us to infer the nonlinear terms in the
governing equations effectively, without knowing the type of functional space
they live in. We also use the dual of LASSO optimization for higher accuracy
and stability. These features, with their corresponding coefficients describe the
functional form of the governing equations.
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2 Regression Over Fixed Feature Space

In this section, we assume that the feature library is fixed, and that we wish
to find either the exact sparse equation form from this library or the closest
approximation to the governing equation only from the terms in the library. The
highest polynomial degree in the feature space (X) is p. Then, the feature space
contains terms of the form (xt

1)
p1 . . . (xt

i)
pi . . . (xt

n)pn , such that p1+ . . .+pn ≤ p.
The number of terms in the feature library is m =

(
n+p

n

)
= (n+p)!

n!p! (i.e. X ∈
IRT×m). Empirically the number of distinct terms in the governing equations is
O(n). Thus even for small enough p, the terms in the feature library are much
more in number than those to be chosen, which justifies sparse regression to
select the features. Let us denote the coefficient matrix obtained from the sparse
regression by W . The optimization problem with some penalty (P) is:

min
W

L(W ) =
[(

Ẋ − XW
)2

+ P(W )
]

. (1)

To further select the features appropriately, we use our knowledge of the
underlying physics of the dynamical system. We select features by looking at
their net characteristic magnitude instead of just the regression coefficients. We
refer to this as ‘scale based thresholding’.

As is well-known, the LASSO penalty is P(W ) = λ||W ||1 (hyperparameter
λ), which serves as a convex counterpart to the non-convex L0 norm. The pitfalls
of LASSO (even after removing the irrelevant features using the SAFE bounds
[15]) are that it requires significant hyperparameter tuning and it is extremely
sensitive to λ for correlated features (observed empirically). These motivate us
to instead formulate a new approach to solve the sparse regression problem.

To overcome the difficulties in the application of LASSO (along with the
SAFE rules), we formulate and solve its dual problem. For the LASSO solution
to be unique, the feature matrix must satisfy the irrepresentability condition
(IC) and beta-min condition [15]. The feature library violates the IC for highly
correlated columns, leading to an unstable feature selection. However, even for
highly correlated features, the corresponding dual LASSO solution is always
unique [13]. The dual problem is given by Eq. (2), which is strictly convex in θ
(implying a unique solution).

max
θ

D(θ) = ||Ẋ||22 − ||θ − Ẋ||22 such that ||XT θ||∞ ≤ λ . (2)

Let Ŵ be a solution of Eq. (1) with LASSO penalty and θ̂ be the unique
solution to the corresponding dual problem Eq. (2). Then a stationarity condition
implies:

θ̂ = Ẋ − XŴ . (3)

Even though LASSO does not have a unique Ŵ , the fitted value XŴ is
unique, as the optimization problem Eq. (1) is strongly convex in XW for
P(W ) = λ||W ||1. We make use of this by first computing a solution to the
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primal LASSO problem and then computing the unique dual solution by using
the primal fitted value and Eq. (3). Once we have the unique dual solution θ̂, we
complete the feature selection by using the dual active set, which is same as the
primal active set with high probability under the IC [7]. The KKT conditions
imply:

θ̂T Xi = sign(Ŵi) if Ŵi �= 0 and θ̂T Xi ∈ (−1, 1) if Ŵi = 0 . (4)

Equation (4) gives us a direct way to compute the active dual set once we
have θ̂. We discard the features for which θ̂T Xi ∈ (−1, 1) and retain the others.
This does not give us a good fit of the solution, so to compute the coefficients
accurately, we perform ridge regression (P(W ) = λ2||W ||22 over the active fea-
tures. We refer to this new algorithm as ‘dual LASSO feature selection’.

3 Regression Over a Dynamic Data Driven Feature Space

In this section, we consider cases where the feature library is not known and
learned using DDDAS. If we have no prior belief over the form of the equations,
we may not be able to construct an efficient feature library. In such situations,
learning this library from data might be the most advantageous choice. The näıve
approach of adding any new functions to the feature library until convergence can
be very expensive and ill conditioned. A more principled and efficient approach
is to make the use of orthogonal functions of some parametric family to construct
this library, ensuring that the problem is always well conditioned. The drawback
in this case is that the regressor may not be sparse over this feature library.

Starting with an empty library, we recursively add a feature to it and compute
the corresponding loss function of the resulting fit by using STRidge (as will be
described). If the loss function decreases by more than a certain fraction, we keep
this feature. Otherwise, we discard it and look at the next orthogonal feature.
Once every few addition timesteps, we perform a removal step to discard the
feature(s) that do not result in a significant increase in the loss function. This
ensures that we do not keep lower order functions that may not be required to
describe the equations as higher order functions are added. Our algorithm is
inspired by previous greedy feature development algorithms such as FoBa [14].
However, these algorithms require pre-determined full possible feature space,
whereas we construct new features on the fly. Once the equations are obtained
in terms of these orthogonal polynomials, we distill their sparse forms by using
symbolic equation simplification [1].

To compute regressors over the orthogonal feature space, we use sequentially
thresholded ridge regression (STRidge), developed by [12]. The idea is simple:
we iteratively compute the ridge regression solution with decreasing penalty pro-
portional to the condition number of X, and discard the components using scale
based thresholding (Sect. 2). We iterate with ridge regression until there is no
change in the feature space. As the feature matrix is orthonormal by construc-
tion, the analytical solution is W = (1 + λ)−1

XT Ẋ. The overall pseudocode for
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learning the governing equations through adaptively growing the feature library
is given by Algorithm 1, and the corresponding results are presented in Sect. 4.

Algorithm 1. Learning Governing Equations through Adaptive Feature Library
Require: state parameters: x = xt

i, ẋ = ẋt
i; orthogonal family Fj(•); feature addition

/ removal thresholds: ra (≤ 1), rr (≥ 1), λ0; removal step frequency kr

Initialize: X = ∅, W = 0, t = 0, L = ∞, k = 0
while True do

Xt = [X, Fk(x)]; solve the STRidge problem: Wt = STRidge(Ẋ, Xt, λ0)

Compute the loss Lt =
(
Ẋ − XtWt

)2

if Lt ≤ raL then X = Xt ; W = Wt

if mod (k, kr) == 0 then
for i = 1, . . . , X.shape[1] do

Xt = [X[:, 1 : i − 1], X[:, i + 1 : end]]; solve: Wt = STRidge(Ẋ, Xt, λ0)

Compute the loss Lt =
(
Ẋ − XtWt

)2

if Lt ≤ rrL then X = Xt ; W = Wt

k = k + 1.
break if no change in feature space over multiple iterations.

Perform symbolic simplification of Ẋ = XW to obtain the final form of the equations

4 Results

4.1 Lorenz 63 System

For the first applications, our testbed will be the Lorenz 63 system (n = 3)
given by Eq. (5), and fixed polynomial feature libraries with p = 3, 10 and 20
(m = 20, 286 and 1771). The idea behind considering larger orders (p) is that it
highlights the poor performance of LASSO for highly correlated features.

ẋ = 10(yz − x) ; ẏ = x(28 − z) ; ż = xy − 2.667z (5)

Figure 1a plots the number of non-zero features in the equations for different
p values. LASSO has a much higher number of non-zero terms, and this number
increases significantly with p (and m), indicating instability of the solution. Dual
LASSO feature selection performs very well, and the number of present features
does not change for the most part with p. Figure 1b plots the absolute weights
for the components for the p = 3 case for the ẏ equation. Dual LASSO feature
selection retrieves the correct features (with accurate weights), while LASSO
detects the correct features but also detects high order features that have low
weights and are highly correlated to each other. This serves as a great validation
of the superiority of dual LASSO feature selection over conventional LASSO
feature selection for model discovery.
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Fig. 1. (a) Number of nonzero terms for ẋ, ẏ, ż, and (b) absolute weights in the ODE
for ẏ (p = 3) for the Lorenz 63 system.

4.2 Marine Ecosystem Model

To demonstrate the capabilities of adaptive feature library growth algorithm
(Sect. 3), we evaluate the learning scheme in a more complicated and realistic
scenario. Hence, we now try to learn marine ecosystem models, which contain
non-polynomial non-linearities. Realistic ecosystem models are very complex,
but in broad-terms they can be seen as flow of food energy from nutrients, to
phytoplanktons, to zooplanktons, to fishes, and finally recycling back to nutri-
ents. Due to the lack of governing laws, and empirical nature of the development
of these models, there are many different options in-terms of complexity and
model parameterizations available, which could be highly nonlinear. But given
the regional and seasonal differences at different locations in the world’s oceans,
one can quickly run out of all the options suggested by different biologists, and
there is a need for DDDAS that adapt and learn new models from data [4,5,9,10].
Such models could be further adapted to run ‘online’, i.e. the inferred models
can be updated as more data comes in, thereby improving and assimilating the
observations on the fly. For the present test case, we consider a 3-component
Nutrients-Phytoplankton-Detritus (NPD) model [6], given by,

Ṅ = − rmaxNP

(kN ) +N
+ lPNP + lDND; Ṗ =

rmaxNP

(kN ) +N
− lPNP − lPDP ; Ḋ = lPDP − lDND (6)

where N , P and D are normalized biological concentrations. The involved param-
eters are the nutrient uptake rate for phytoplanktons, rmax, losses by respiration,
lPN , and mortality lPD. Mineralization is simulated by the rate lDN . The choice of
the parameter values determine the dynamical stability of this system, and it
can vary between stable point, spiral to stable point, and stable limit cycle.

The parameter values chosen for the testcase are: rmax = 1 day−1, KN =
0.3mmol m−3, lPN = 0.50 day−1, lPD = 0.05 day−1, lDN = 0.06 day−1, and T =
1 mmol m−3, which makes the system spiral towards a stable point. Noise free
data of the states and derivatives computed using a forward Euler scheme are
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extracted at a time-step of Δt = 0.01 day for the time period of t = 0 to
t = 50 days, and used for learning the system from scratch.

We start with an empty feature library and W = 0 and iteratively grow the
feature space using Algorithm 1 with Legendre polynomials (denoted by L

(•)
p ),

ra = 0.85, rr = 1.10, λ0 = 1, and removal step working after every addition step
(kr = 1). We adaptively grow the feature space until a maximum polynomial
degree of 6 is reached. Finally, we use symbolic simplification followed by scale
based thresholding to obtain the governing equations in an interpretable form.

This equation discovery problem presents a challenging paradigm as the exact
evolution equations for the N and P states contain a non-polynomial nonlinear-
ity. We expect that our algorithm captures an approximation of this term in the
space spanned by (multivariable) polynomials. Equation (7) describes the final
active terms of the governing equations obtained after the adaptive growth of
the feature space along with their corresponding coefficients.

dN

dt
= 27.92L(P )

1 + 0.053L(D)
1 − 199.18L(N)

1 L
(P )
1 + 77.13L(N)

2 L
(P )
1

− 194.94L(N)
3 L

(P )
1 + 27.90L(N)

4 L
(P )
1 + 1.12L(P )

4 L
(D)
2 − 51.50L(N)

5 L
(P )
1

dP

dt
= − 28.65L(P )

1 + 199.18L(N)
1 L

(P )
1 − 77.13L(N)

2 L
(P )
1 + 196.71L(N)

3 L
(P )
1

− 0.94L(N)
3 L

(D)
3 − 27.22L(N)

4 L
(P )
1 + 52.12L(N)

5 L
(P )
1

dD

dt
= 0.0502L(P )

1 − 0.061L(D)
1 − 0.0003L(N)

3 L
(D)
2

(7)
Amongst the

(
9
3

)
= 84 terms, only a few are determined to be active for each

of the evolution equations. Once Eq. (7) is simplified using symbolic simplifica-
tion and scale based thresholding (cutoff 0.1%), we obtain the functional form
of the governing equations:

dN

dt
=0.51P − 3.40NP + 11.55N2P − 36.30N3P + 124.69N4P − 382.72N5P

dP

dt
= − 0.56P + 3.30NP − 10.78N2P + 37.76N3P − 127.16N4P + 378.60N5P

dD

dt
=0.0505P − 0.062D − 0.0002N2D

(8)

We write Eq. (8) in a more concise form as given by Eq. (9). The terms
within the parentheses in the first two expressions is the truncated Taylor series
for 0.3/(0.3 + N) (expanded around N = 0, with Ñ = N/0.3.) that our algo-
rithm learns. This is the best representation of the non-polynomial nonlinearity
in the available subspace. Thus, without any prior information, our adaptive
algorithm infers the presence and the best approximation of the present nonlin-
earity. Unfortunately, our algorithm does not recognize the presence of the lDND
term in the equation for dN/dt, but it does capture it in the dD/dt equation.
It also incorrectly adds a term ND2 to the evolution equation of D with a very
small coefficient. However, all other active terms are correctly chosen and their
corresponding learned coefficients are very close to the actual values from Eq. (6).
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This example effectively shows the superiority of our algorithm in identifying the
nonlinearities present in the governing equations without any prior information.

dN

dt
= 0.51P − PÑ

(
1.02 − 1.04Ñ + 0.98Ñ2 − 1.01Ñ3 + 0.93Ñ4

)

dP

dt
= −0.56P + PÑ

(
0.99 − 0.97Ñ + 1.02Ñ2 − 1.03Ñ3 + 0.92Ñ4

)

dD

dt
= 0.0505P − 0.062D + 0.00067ND2

Ṅ ≈ 0.5P − PN

0.3 +N
; Ṗ ≈ −0.50P − 0.06P +

PN

0.3 +N
; Ḋ ≈ 0.0505P − 0.062D

(9)

5 Conclusions and Future Work

We investigated the LASSO and developed the dual LASSO feature selection
algorithm and dynamic data driven feature learning approaches to solve the
problem of discovering governing equations only from state parameter data.
After defining the problem and the solution methodology, we addressed the lim-
itations of LASSO in feature selection through a new algorithm, referred to as
‘dual LASSO feature selection’, that relies on the uniqueness of the dual solution
for the active set selection. This was followed by proposing a new methodology to
learn the governing equations from scratch by dynamically building the feature
library using appropriate orthogonal functional basis. We showcased results of
the learning schemes on the classic Lorenz 63 system and also a marine ecosystem
model with a non-polynomial nonlinearity. We found that our adaptive subspace
algorithm effectively learns a Taylor series approximation of such a nonlinear-
ity, even when no prior information about the presence and the nature of this
nonlinearity is provided. Future directions involve extending the ideas of feature
library building to the construction of the functions to be added through a mix
of a larger family of orthogonal functions. It would be interesting to study the
applications of these algorithms in the presence of model and observation noise,
and to higher dimensional systems often encountered in science and engineering.
Further, using the learned system to guide future observations would also close
the loop for the DDDAS paradigm.
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