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Abstract

At the core of self-supervised learning for vision is the idea of learning invariant or equivariant
representations with respect to a set of data transformations. This approach, however, introduces
strong inductive biases, which can render the representations fragile in downstream tasks that
do not conform to these symmetries. In this work, drawing insights from world models, we
propose to instead learn a general representation that can adapt to be invariant or equivariant
to different transformations by paying attention to context — a memory module that tracks
task-specific states, actions, and future states. Here, the action is the transformation, while the
current and future states respectively represent the input’s representation before and after the
transformation. Our proposed algorithm, Contextual Self-Supervised Learning (CONTEXTSSL),
learns equivariance to all transformations (as opposed to invariance). In this way, the model can
learn to encode all relevant features as general representations while having the versatility to
tail down to task-wise symmetries when given a few examples as the context. Empirically, we
demonstrate significant performance gains over existing methods on equivariance-related tasks,
supported by both qualitative and quantitative evaluations.

1 Introduction

Self-supervised learning (SSL) of image representations has made remarkable progress in recent years [Chen
et al., 2020a, Bardes et al., 2022, Zhou et al., 2022a, Larsson et al., 2016, Gidaris et al., 2018, Bachman et al.,
2019, Gidaris et al., 2021, Grill et al., 2020, Shwartz-Ziv et al., 2022, Misra and Maaten, 2020, Chen et al.,
2020b, He et al., 2020, Chen and He, 2021, Zbontar et al., 2021, Tomasev et al., 2022, Zhou et al., 2022b],
achieving competitive performance to its supervised counterparts on various downstream tasks, such as
image classification.

Most of these works are based on the joint-embedding architecture (as shown in Figure 2(a)), which
encourages the representations of semantically similar (positive) pairs to be close and those of dissimilar
(negative) pairs to be more orthogonal. Typically, positive pairs are generated by classic data augmentation
techniques that correspond to common pretext tasks, e.g., randomizing color, texture, orientation, and
cropping. The alignment of representations for positive pairs can be guided by either invariance [Chen
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Figure 1: We apply a transformation (rotation or color) on a source image in latent space and retrieve the
nearest neighbor (NN) of the predicted representation when the context contains pairs of data transformed
by (top row) 3D rotation (Rx, Ry, Rz); (bottom row) color transformation (θ, ϕ). In the top row, we see that
CONTEXTSSL learns equivariance to rotation and invariance to color as the NN representations match the
target’s angle but not its color. In the bottom row, it adapts to the color context and enforces the reverse,
being equivariant to color and invariant to rotation.

et al., 2020a, Bardes et al., 2022, Chen and He, 2021, He et al., 2020, Zbontar et al., 2021, Grill et al., 2020],
which promotes insensitivity to these augmentations, or equivariance [Gupta et al., 2023b, Devillers and
Lefort, 2023, Dangovski et al., 2022, Garrido et al., 2023b, Assran et al., 2023, Garrido et al., 2024], which
maintains sensitivity to them. However, enforcing invariance or equivariance to a pre-defined set of
augmentations introduces strong inductive priors which are far from universal across a range of downstream
tasks. For example, invariance to image flipping is useful for image classification but can significantly hurt
performance on image segmentation, where retaining sensitivity to flipping is crucial. This often results in
brittle representations that necessitate retraining the model with different augmentations tailored to each
downstream task [Xiao et al., 2021, Dangovski et al., 2022].

This rigidity of traditional SSL methodologies contrasts sharply with human perceptual abilities, which are
highly adaptive, tuning into relevant features based on the context of the environment or task at hand. For
example, humans focus more on color details when identifying flowers and on spatial orientation, such as
rotation angle, when determining the time on analog clocks. It suggests that the required feature invariances
or equivariances should also vary across different tasks or contexts, which motivates our central question.

Can incorporating context into self-supervised vision algorithms eliminate augmentation-based inductive priors and
enable dynamic adaptation to varying task symmetries?

This work suggests a positive answer to this question by proposing to enhance the current joint embedding
architecture with a finite context — an abstract representation of a task, containing a few demonstrations that
inform about task-specific symmetries, as shown in Figure 2(c). Based on this idea, we propose Contextual
Self-Supervised Learning (CONTEXTSSL), a contrastive learning framework that uses a transformer module
to adapt to selective invariance or equivariance to transformations by paying attention to context representing
a task. Unlike previous approaches with built-in symmetries, the ability of CONTEXTSSL to adapt to
varying data symmetries—all without undergoing any parameter updates—enables it to learn a general
representation across tasks, devoid of specific inductive priors.

This unique prospect makes our model a promising approach to building world models [Hafner et al., 2020,
2023, Hu et al., 2023, Sekar et al., 2020, Yang et al., 2024] for vision. World models are essential for building
representations of the world based on past experiences, akin to how humans form their internal world
representations. Recently, efforts have been made to adapt world modeling into vision through Image World
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Figure 2: Family of approaches in self-supervised learning (a) Joint Embedding methods [Chen et al.,
2020a, Bardes et al., 2022, Caron et al., 2021] encode invariances to input transformations a by aligning
representations across views of the same image; (b) Image World Models [Garrido et al., 2024, Assran
et al., 2023] train a world model in the latent space and encode equivariance to input transformations;
(c) Contextual World Models (ours) selectively enforce equivariance or invariance to a subset of input
transformations based on context {(xi, ai, yi)}ki=1

Models (IWM) [Garrido et al., 2024] ( Figure 2(b)), that consider transformations as actions and the input and
its transformed counterpart as world states at different time steps. However, these approaches also enforce
equivariance to a predefined set of actions, such as color jitter. CONTEXTSSL addresses this challenge by
enhancing traditional IWMs with context, a model we refer to as Contextual World Models. We demonstrate
that in the absence of context, CONTEXTSSL learns a general representation by encoding all relevant features
and data transformations. As the context increases, the model tailors its symmetries to a task, encouraging
equivariance to a subset of transformations and invariance to the rest (as shown in Figure 1). This approach
promotes learning a general representation that can flexibly adapt to the symmetries relevant to various
downstream tasks, eliminating the need to learn separate representations for each task. We empirically
validate our approach on the 3D Invariant Equivariant Benchmark (3DIEBench) and CIFAR-10, extending to
transformations such as rotations, cropping, and blurring.
To summarize, the main contributions of our work are:

• We propose CONTEXTSSL, a self-supervised learning algorithm that adapts to task-specific symmetries
by paying attention to context. Our method resolves the long-standing challenge of enforcing fixed
invariances and equivariances to handcrafted data augmentations, enabling adaptive and task-sensitive
representations without parameter updates.

• We show that learning with context is prone to identifying shortcuts and subsequently propose two
key modules to address it: a context mask and an auxiliary predictor.

• We demonstrate the efficacy of our approach on 3D Invariant Equivariant Benchmark (3DIEBench) and
CIFAR10, showing its ability to selectively learn invariance or equivariance to transformations such as
color and rotation while maintaining similar performance on invariant (classification) benchmarks. We
extend CONTEXTSSL to supervised learning, demonstrating its ability to effectively leverage context to
identify features defining a task.
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2 Augmentation-based Inductive Bias in Self-Supervised Learning

The goal of self-supervised learning (SSL) is to derive meaningful data representations without relying on
human-labeled data. Given an unlabeled dataset D, SSL methods learn a representation function fθ : X → Z
that maps input data x ∈ X to a latent space Z .

2.1 Role of data augmentations in Self-Supervised Learning

Data augmentations are arguably the most important component in modern SSL methods, where the
representation function is learned to map the augmented views of data into latent space. The choice
of data augmentations plays a crucial role in the quality of the learned representations. Formally, we
define an augmentation A as a random variable distributed over a set of N data transformations with
domain A = {a1, . . . , aN}, where ai : Rd → Rd′

denotes an input mapping, and d, d′ are its input and
output dimensions, respectively. Among existing SSL methods, there are generally two ways to utilize
augmentations, either through invariant learning or equivariant learning. In invariant learning, two random
augmentations of the example are drawn, and their representations are pulled together during feature
learning to be invariant to the data augmentations as shown in Figure 2(a). Instead, in equivariant learning,
the features are learned to be sensitive to data augmentations.* Formally, for a representation Z, one can use
H(A|Z) as a measure of the degree of feature invariance or equivariance: if H(A|Z) is relatively small, the
representation Z is nearly equivariant to the augmentation A; otherwise, if H(A|Z) is very large (close to
H(A)), Z is invariant to A. Recent SSL methods [Gupta et al., 2023b, Garrido et al., 2023b, Park et al., 2022,
Devillers and Lefort, 2023, Dangovski et al., 2022] have shown that enforcing equivariance can often lead
to better representations compared to enforcing invariance, for two key reasons: 1) Invariance restricts the
expressive power of the features learned as it removes information about features or transformations that
may be relevant in fine-grained tasks [Lee et al., 2021, Xie et al., 2022a]; 2) contrastive learning benefits from
partial invariance through implicit equivariance of the projection head [Jing et al., 2022].

2.2 Drawbacks of Hardcoding Symmetries in Self-Supervised Pretraining

As discussed above, a common theme in existing SSL methods is to enforce invariance or equivariance to a
specific set of augmentations A. For instance, in SimCLR, A is chosen to be a manually selected set of random
augmentations such as random cropping, flipping, and color jitter. Therefore, the learned representations,
either invariant or equivariant to these augmentations, are tailored to the specific symmetry imposed during
pretraining. However, in real-world scenarios, no single symmetry is universally applicable across all tasks.
For example, object recognition (e.g., a chair) often requires invariance to image color, while certain tasks,
e.g., flower recognition, need sensitivity to color information instead. Either to include or not to include
color information as part of the augmentations can lead to suboptimal performance in certain tasks, causing
a fundamental dilemma in existing SSL. This leads to brittle representations over a range of downstream
tasks, as the model needs to be retrained on different augmentations depending on the downstream tasks, as
consistently observed in previous works Xiao et al. [2021], Dangovski et al. [2022].

*Here, the concept of equivariance is used in a loose sense, meaning that the learned features are sensitive to data augmentations.
Note that since some augmentations are non-invertible (e.g., grayscale), they do not form a group, and exact equivariance is not
well-defined.
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3 Beyond Built-in Symmetry: Contextual Self-Supervised Learning

Recognizing the limitations of existing augmentation-specific SSL methods, we propose a new paradigm:
Contextual Self-Supervised Learning (CONTEXTSSL). Unlike traditional methods, this approach learns
a single model that adapts to be either invariant or equivariant based on context-specific augmentations
tailored to the needs of the task or data at hand. Instead of enforcing a fixed set of symmetries, CONTEXTSSL
learns these symmetries from contextual cues, thus capturing the unique set of features of downstream tasks.
This adaptability allows it to serve as a general-purpose SSL framework, capable of learning from a diverse
array of pretraining tasks with varying symmetry priors and seamlessly adapting to different downstream
tasks.

To design CONTEXTSSL, we draw inspiration from world modeling [Hafner et al., 2020, 2023, Sekar et al.,
2020, Yang et al., 2024], a widely used framework in reinforcement learning (RL). World modeling aims to
build representations of the world from past experience by predicting the next state xt+1 from the current
state xt and action at. This next state prediction task captures the inherent mechanisms of the system
and facilitates decision-making. Traditionally applied in RL, the benefits of world modeling in vision
have been largely unexplored. Recently, Image World Models (IWM) [Garrido et al., 2023a] established a
parallel between world models and the image-based SSL by considering data transformations as actions, the
representation of input data as world state at time t and that of the transformed input as next world state.
However, IWMs have two key drawbacks: 1) similar to previous SSL approaches, they rely on a predefined
set of data augmentations, such as color, which are not tailored to specific downstream tasks and influence
the learned features; 2) they lack the memory module of world models that tracks previous experience in
terms of past states, actions, and corresponding next states and provides context to define the current state
fully.

In light of these ideas and challenges, we model CONTEXTSSL in vision self-supervised learning as Contextual
World Models. In this way, CONTEXTSSL addresses the key drawbacks of IWMs by 1) encouraging the model
to preserve all meaningful features to be able to adapt to symmetry from context and 2) incorporating context
to adapt to different task-specific symmetries, removing the need to re-train separate representations for
each downstream task. This general ability is akin to human perception, which captures versatile aspects of
the input while focusing on specific details depending on the context at hand. For instance, humans focus
more on color details when identifying flowers and on spatial orientation, such as rotation angle, when
determining the time on analog clocks.

3.1 Contextual World Models

Drawing inspiration from the in-context learning [Brown et al., 2020] of foundation models in natural lan-
guage processing, a natural way to incorporate the memory capabilities of world models is by encoding these
abilities as contextual information. In this work, we propose an expressive and efficient implementation of
CONTEXTSSL through Contextual World Models, where we design a transformer-based module to encode the
context and extract contextually equivariant or invariant representations. We begin by baking symmetries in
the context — (x, a, y) using positive pairs x and y transformed by a series of different augmentations. The
key intuition behind our approach is the selective inclusion of augmentation parameters for specific trans-
formation groups: excluding parameters enforces invariance while including them enforces equivariance.
This is because providing augmentation parameters allows the model to learn the impact of transformations
(equivariance), whereas excluding them during alignment enforces invariance, akin to invariant versus
equivariant learning in SSL. We elaborate on these ideas below.

Symmetries as Context. Given a set of groups of input transformations {G1, . . . ,GM}, the goal of CON-
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TEXTSSL is to build a general representation adaptive to a set of multiple symmetries corresponding to
these different groups. For example, each data augmentation, e.g., rotation, translation, as well as their
compositions, can serve as different transformation groups. Each group Gc can be represented through the
joint distribution P (x, a, y|Gc), where x is the input sample (sampled from an unlabeled dataset), a represents
the parameters of the transformation drawn from Gc and applied to x, and y is the transformed input. In prin-
ciple, x can be transformed by a composition of augmentations drawn from multiple transformation groups.
For instance, in self-supervised learning, it is common to enrich the learning process by transforming an
input image through rotations, crops, and blurring. In such a case, a represents a subset of the transformation
parameters belonging to the group Gc, applied to x to produce y. We approximate this probability distribution
by drawing K samples from the joint distribution and form a context C(Gc) = [(x1, a1, y1), . . . , (xK , aK , yK)],
where xi, ai, yi ∼ P (x, a, y|Gc), i ∈ [K]. Therefore, the goal of ContextSSL is to learn data representations
z = f(x, a|C) and z = f(x|C) that are adaptive to the data symmetries informed by the context C. Specifi-
cally, our goal is to train representations that become more equivariant to the underlying transformation
group Gc with increasing context. Further, if x and y are transformed by augmentations from groups apart
from Gc, we aim to learn more invariance to these groups with increase in context C(Gc). The degree of
equivariance of a representation can be quantified by the error in maintaining consistent transformations.
Based on this, a representation Z is considered "more equivariant (invariant)" if it has a lower (higher) error
in predicting the transformation parameters i.e. H(A|Z).

Contextual World Models. To implement this broad goal, we propose to adaptively learn the symmetries
represented by Gc by training the model:

yi ≈ h((xi, ai); (x1, a1, y1), . . . , (xi−1, ai−1, yi−1)). (1)

While the requested prediction yi concerns only the inputs xi and ai, the model can now pay atten-
tion to the experience so far, enforcing relevant symmetries for the augmentation group Gc. The pre-
dictor h is updated by minimizing the loss at each context length

∑K
i=1 ℓ(h((x, ai);Ci−1), yi) where Ci =

{(x1, a1, y1), . . . , (xi−1, ai−1, yi−1)} represents the context before index i.

A natural way to facilitate such context-based training is through attention mechanisms in transformer-based
autoregressive models. Large language models exhibit a remarkable capability of in-context learning — the
ability to generalize to unseen tasks on the fly merely by paying attention to a few demonstrative examples
of the task. Gupta et al. [2023a] among others, have leveraged this capability to generalize to different
distributions merely by paying attention to unlabeled examples from a domain. Inspired by this, we train a
decoder-only transformer model in-context by conditioning on the relevant context C(Gc) representing the
transformation group Gc.

3.2 Contextual Self-Supervised Learning (CONTEXTSSL)

Motivated by the above ideas, we begin by constructing pairs of points {(xi, yi)
K
i=1} by either 1) sampling a

transformation group G and transforming xi by augmentation from G to yi; or 2) if available, sampling a
meta-latent and its transformation parameters as the difference between their individual latent parameters.
We use the former construction in datasets such as CIFAR10 but use meta-latents such as 3D pose, lighting
etc. for datasets such as 3DIEBench [Garrido et al., 2023b]. Note that pairs of data can also be transformed by
a series of augmentations sampled from other transformation groups. However, as previously discussed,
the transformation parameters used in the context C(G) of group G are solely those of the augmentations
belonging to the group.

Following this, as illustrated in Figure 2, each input sample {(xi, yi)}Ki=1 from the context is independently
transformed by the encoder into its corresponding latent representation. Next, representations of the input
samples xi are concatenated with their corresponding transformation action ai. This concatenated vector
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(xi, ai) and the representation of the corresponding transformed input yi collectively form the context
corresponding to the symmetry G. The corresponding output embeddings are then aligned using the
InfoNCE loss, which is minimized at each context length. If ai is set to zero for all tokens in a sequence,
CONTEXTSSL enforces invariance to G, since it aligns xi and yi without conditioning on the transformation
parameters. Overall, we optimize the following loss:

Lcontrastive(h) = EG∼{G1,...GM}EC(G)

K∑
i=1

[
− log

exp h((xi, ai)|Ci(G))⊤h(yi|Ci(G))/τ∑K
j=1 exp h((xi, ai)|Ci(G))⊤h(yj |Cj(G))/τ

]
(2)

where transformed data tokens yj (j ̸= i) form the negatives. We use a similar symmetric loss term using yi
as the anchor, (xi, ai) and (xj , aj) (j ̸= i) as the positive and negatives respectively.

At inference, we tailor the extraction of representations to match the specific requirements of the downstream
task, whether it benefits from equivariance or invariance to a transformation group G. In particular, if the
task benefits from equivariance, we extract the representations of the test data at the maximum context
length used during training K, by constructing {(xi, ai, yi)}Ki=1 as its preceding context. Here ai belongs to
the group G and is used to transform other unlabelled data from the test set xi into yi. On the contrary, if the
downstream task benefits from invariance to the group, we use {(xi, 0, yi)}Li=1 as the preceding context. This
notion can be generalized to enforce equivariance to a subset of groups and invariance to another. Specifically,
including the augmentation parameters for transformations in a group G in the context enforces equivariance,
while excluding them enforces invariance. In both cases, the data are still transformed using augmentations,
regardless of the type of symmetry desired. This flexibility of context creation in CONTEXTSSL allows us to
tailor the representations to different symmetries and optimize for the model’s performance across various
tasks. However, this implementation bears two key challenges, as detailed below.

Causal + random mask attention figure

32

Unmasked

Pair Mask

Random Mask

(a) (b) (c)

Causal Mask

(x1, a1)

(x2, a2)

(x3, a3)

y1

y2

y3

Figure 3: (a) Traditional causal attention mask; (b) corresponding pair masking on top of causal attention
to prevent shortcuts when aligning positives; (c) Context Mask used in CONTEXTSSL to prevent shortcuts
while distinguishing positives from negatives.

Context Masking. Given that (xi, ai) precedes yi in the context sequence, a trivial solution to minimizing
the alignment loss arises where the model treats the embeddings of (xi, ai) identical to yi due to its access
to xi. This phenomenon, often referred to as shortcut learning, poses a significant challenge as it leads
the model to collapse to constant representations for each pair (xi, yi), all while perfectly minimizing the
loss. We address this challenge by masking out the input token (xi, ai) for each token yi in the context.
As a consequence, when encoding the token yi, the transformer only has access to past context Ci =
{(x1, a1, y1), . . . , (xi−1, ai−1, yi−1)}, excluding its corresponding positive sample (xi, ai).

This masking approach ensures that both the anchor and its corresponding positive share the same context,
thus promoting the alignment of positive samples based on semantic relationships rather than mere repli-
cation. However, as shown in Figure 4 for p = 0, a residual challenge of shortcut learning persists when
distinguishing the positives from the negatives. Since the context corresponding to each negative differs
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from that of the anchor and the positive, the model could employ trivial solutions, such as using the mean of
the context vector to differentiate between positives and negatives.

To mitigate this issue, we introduce an additional layer of randomness to our masking strategy. Specifically,
for each token in the context vector, we implement random masking of the corresponding pairs with a
probability p for tokens preceding it. Specifically, if (xi, ai) is chosen to be masked out, so is yi and vice versa.
This ensures that for a given anchor token, both the positive and the negatives have different contexts from
the anchor, thereby necessitating a deeper, semantic understanding to distinguish the positives from the
negatives effectively.

Avoiding collapse to Invariance. A trivial but undesirable solution that minimizes our optimization objective
is invariance to the input transformations i.e. the trained model can ignore the transformation parameters
and collapse back to behaviors associated with invariance-based methods. As illustrated in Figure 5,
naively training CONTEXTSSL leads to poor equivariance with respect to the transformations. Previous
works [Garrido et al., 2023b] have also identified this concern and proposed specialized architectures
that incorporate transformation parameters directly into the model, thereby outputting the predictor’s
weights and ensuring effective utilization of these parameters. For our setting, we introduce a rather simple
approach that involves jointly training an auxiliary predictor. This predictor is designed to predict the latent
transformations of the target sample yi from the concatenated input vector (xi, ai).

In practice, xi and yi are typically created as augmentations txi and tyi respectively of a raw image, with ai
denotes the relative transformation between the two. Our predictor predicts this latent transformation of the
target sample tyi from the input vector (xi, ai). We predict tyi instead of ai, as ai is already included in the
input token (xi, ai). As a consequence, the predictor g optimizes the following mean-squared loss

Lpredictor(g) = EG∼{G1,...GM}EC(G)

K∑
i=1

(tyi − g(xi, ai))
2 (3)

Finally, we propose the following objective that combines our transformation prediction loss with LCONTEXTSSL
loss:

LCONTEXTSSL = Lcontrastive + λLpredictor (4)

where λ weights the transformation prediction loss. Setting λ to zero reverts back to invariance to all input
transformations, rendering context inconsequential. We use a symmetric loss, alternating between (xi, ai)
and yi as the anchor. When yi is the anchor, the predictor loss is trained to predict tyi from yi and minimizes
the loss EG∼{G1,...GM}EC(G)

∑K
i=1(t

y
i − g(yi, 0))

2. In practice, we note that many variations of this approach
are possible. For instance, our contrastive loss can also be replaced by other Siamese self-supervised losses
such as SimSiam [Chen and He, 2021]. Additionally, alternative methods can be used to prevent collapse to
invariance. We leave further exploration of these possibilities to future work.

4 Experimental Results

To evaluate the efficacy of our proposed algorithm CONTEXTSSL, our experiments are designed to address
the following questions:

1. How does CONTEXTSSL fare against competitive invariant and equivariant self-supervised learning
approaches in terms of performance across varying context sizes and different sets of data transforma-
tions?
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2. How effectively can CONTEXTSSL identify task-specific symmetries, both within the scope of self-
supervised learning and beyond?

3. What roles do specific components such as selective masking and the auxiliary latent transformation
predictor play in facilitating the learning of general and context-adaptable representations?

4.1 Quantitative Assessment of Adaptation to Task-Specific Symmetries

We use the 3D Invariant Equivariant Benchmark (3DIEBench) [Garrido et al., 2023b] and CIFAR10 to
test equivariance and invariance to multiple data transformations. We compare CONTEXTSSL with 1)
VICReg [Bardes et al., 2022] and SimCLR [Chen et al., 2020a] among the invariant self-supervised approaches;
2) EquiMOD [Devillers and Lefort, 2023], SEN [Park et al., 2022] and SIE [Garrido et al., 2023b] amongst the
equivariant baselines. To discard the performance gains potentially arising from CONTEXTSSL’s transformer
architecture, for each approach N , we replace the original projection head or predictor with our transformer
model, denoted as N+. We then train two variants of N+: one without any context (denoted as N+(c=0))
and another with the full context length. We further test this for all our equivariant baselines on 3DIEBench,
we train equivariant approaches to be equivariant to either only 3D rotation, color transformations, or both.
We report the test performance on context lengths 0, 2, 14, 30, and 126. We employ linear classification over
frozen features to assess the quality of the invariant representations. For the equivariant counterpart, we
report R2 on the task of predicting the corresponding transformation. We report R2 performance on the
representation after the encoder for baselines. Detailed results for post-predictor embedding performance
are presented in Table 21 in the appendix. Additionally, we use Mean Reciprocal Rank (MRR) and Hit Rate
at k (H@k) to evaluate the performance of our context predictor. More details about pretraining algorithms
and training setup are provided in Appendix A.

Table 1: Quantitative evaluation of learned representations on invariant (classification) and equivariant
(rotation prediction, color prediction) tasks. Additional metrics are reported in Appendix B.6

G Method Rotation prediction (R2) Color prediction (R2) Classification (top-1)

0 2 14 30 126 0 2 14 30 126 Representation

Invariant
SimCLR 0.506 0.148 85.3
SimCLR+(c=0) 0.478 0.070 83.4
SimCLR+ 0.489 0.130 81.0
VICReg 0.371 0.023 76.3
VICReg+(c=0) 0.356 0.062 73.3

Equivariant

R
ot

at
io

n
+ C

ol
or EquiMOD 0.512 0.097 82.4

SIE 0.629 0.973 71.0
SEN 0.585 0.932 80.7

R
ot

at
io

n EquiMOD 0.512 0.097 82.4
SIE 0.671 0.011 77.3
SEN 0.633 0.055 81.5
CONTEXTSSL* 0.734 0.740 0.743 0.743 0.744 0.908 0.664 0.037 0.023 0.046 80.4

C
ol

or

EquiMOD 0.429 0.859 82.1
SIE 0.304 0.975 70.3
SEN 0.386 0.949 77.6
CONTEXTSSL* 0.735 0.614 0.389 0.345 0.344 0.908 0.981 0.985 0.986 0.986 80.4

Invariant Classification and Equivariant transformation prediction task. As shown in Table 1, invariant

*In Table 1, both the CONTEXTSSL models are the same and the performance is reported depending on whether the context
corresponds to rotation or color augmentation group.
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self-supervised learning methods such as SimCLR and VICReg achieve high downstream classification
accuracies but underperform in equivariant augmentation prediction tasks. EquiMOD persistently maintains
its downstream classification accuracy among the equivariant baselines but exhibits improvements in
augmentation prediction tasks only when trained to be equivariant to color. When trained to be equivariant
to only rotation or both rotation and color jointly, it offers no improvement in performance for augmentation
prediction compared to SimCLR, which serves as their base. SIE and SEN exhibit sensitivity to the trained
transformations and remain less sensitive to the others. However, their degree of invariance or equivariance
is much worse compared to CONTEXTSSL. Besides, aligning them with different targeted symmetry groups
requires retraining the entire model. In contrast, CONTEXTSSL exhibits equivariance to both rotation and
color in the absence of context. SIE and SEN learn to be equivariant to the transformation they are trained
to be equivarient to, and invariant to the other transformation. However, they require retraining of the
whole model to align with different targeted symmetry groups. Unlike the baseline approaches, which
train a separate model for each equivariance, CONTEXTSSL trains a single model that learns equivariance
to rotation and invariance to color (or vice versa) depending on the type of context. As seen from the
two rows corresponding to CONTEXTSSL in Table 1, when the context corresponds to pairs of data with
transformations sampled from the rotation (color) group, the model adaptively learns to be invariant to color
(rotation) while improving equivariance to rotation (color). Appendix B.7 shows that CONTEXTSSL learns
equivariance or invariance to the same transformation based on the context.

Table 2: Quantitative evaluation of learned predictors equivariant to only rotation based on Mean Reciprocal
Rank (MRR) and Hit Rate H@k on the validation dataset. CONTEXTSSL learns to be more equivariant to
rotation with context.

Method MRR (↑) H@1 (↑) H@5 (↑)

0 2 14 30 126 0 2 14 30 126 0 2 14 30 126

EquiMOD 0.16 0.05 0.22
SEN 0.17 0.05 0.22
CONTEXTSSL 0.240 0.270 0.373 0.396 0.402 0.108 0.129 0.223 0.245 0.292 0.366 0.412 0.541 0.561 0.568

Equivariant Measures Based on Nearest Neighbours Retrieval. Table 2 illustrates the performance of
CONTEXTSSL on MRR and H@k compared to baseline methods with trained equivariance to rotation.
CONTEXTSSL outperforms the baseline models, and its performance on all the metrics consistently improves
with increasing context length, showing adaptation to rotation-specific features. To put these numbers
into perspective, a H@1 score of 0.29 for CONTEXTSSL signifies that the first nearest neighbor is the target
embedding 29% of the time. In contrast, this occurs only 5% of the time for EquiMod and SEN, which is
marginally better than the 2% expected by random chance. Notably, CONTEXTSSL surpasses the baseline
performances even with zero context, demonstrating its ability to learn equivariance without any contextual
information.

4.2 Role of Context Mask and Auxiliary Predictor

Role of Context Mask. To illustrate how context masking effectively eliminates shortcuts, we conduct
an ablation study with varying masking probabilities, detailed in Figure 4. We observed that as masking
probability increases, performance on both classification and prediction tasks initially improves but later
declines, reaching optimal performance at a masking probability of 90%. Specifically, without the context
mask, the trained model shows poor classification accuracy and weak performance on equivariant tasks.
However, with just 20% masking, performance significantly improves for both invariant and equivariant
tasks.

Role of Auxiliary Predictor. We demonstrate that the auxiliary predictor is crucial for the model to achieve
equivariance. In its absence, as depicted in Figure 5, while the model retains its performance on the invariant
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Figure 4: Role of context mask to avoid context-based shortcuts in CONTEXTSSL

classification task, it fails to learn equivariance and cannot effectively adapt to different contexts.

(a) (b)

(a) (b)

Figure 5: Role of auxiliary predictor to
avoid collapse to the trivial solution
of invariance.
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Figure 6: Nearest neighbors of different methods taking as input
the source image and rotation angle. CONTEXTSSL aligns best
with the rotation angle of the target image.

4.3 Qualitative Assessment of Adaptation to Task-Specific Symmetries

We conduct a qualitative assessment of model performance by taking the nearest neighbors of the predictor
output when inputting a source image and a transformation variable, as shown in Figure 6. The nearest
neighbors of invariance models (SimCLR and VICReg) have random rotation angles. Equivariance baselines
(SEN, SIE, EquiMOD) correctly generate the target rotation angle for some of the three nearest neighbors
but fail in others. CONTEXTSSL consistently outperforms all baseline models by accurately identifying
the target angle in all instances of the top three nearest neighbors while remaining invariant to color
variations. Additional qualitative assessments of CONTEXTSSL across varying contexts are provided in
Section Appendix B.3. Specifically, we demonstrate how the nearest neighbors for a source image vary with
changes in context length, further emphasizing CONTEXTSSL’s adaptability to become more invariant or
equivariant depending on the context.

4.4 Expanding to Diverse Data Transformations

Previously, our experiments with the 3DIEBench dataset focused on rotations and color as transformation
groups. We extend our approach to transformations such as blurring, color jitter, and cropping on CIFAR10.
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We evaluate our approach using contexts derived from two augmentations simultaneously. The results for
the combinations of crop and blur are reported in Table 3. Consistent with our previous results, while almost
retaining the classification performance as SimCLR, CONTEXTSSL learns to adaptively enforce equivariance
to crop (blur) and invariance to blur (crop) depending on context. Note that the invariance performance
initially improves with increasing context length but then diminishes. This occurs due to the 90% random
masking ratio during training, which necessitates out-of-distribution generalization when the context length
is large. Results on additional transformation pairs are provided in Appendix B.4.

Table 3: Performance of CONTEXTSSL on invariant (classification) and equivariant (crop prediction, blur
prediction) tasks in CIFAR-10 under the environment of crop, i.e. CONTEXTSSL (crop), and blur, i.e.
CONTEXTSSL (blur).

Method Crop prediction (R2) Blur prediction (R2) Classification (top-1)

0 2 14 30 126 0 2 14 30 126 Representation

SimCLR 0.459 0.371 89.1
SimCLR+ (c=0) 0.448 0.361 88.9
SimCLR+ 0.505 0.381 89.7
CONTEXTSSL (crop) 0.608 0.607 0.607 0.608 0.608 0.920 0.854 0.624 0.667 0.694 88.5
CONTEXTSSL (blur) 0.609 0.482 0.434 0.417 0.465 0.920 0.923 0.925 0.925 0.925 88.5

4.5 Enforcing Invariance or Equivariance to the Same Transformation Using Context

Apart from adaptively learning equivariance to a subset of transformation groups and invariance to the
rest as shown in Table 1, we extend CONTEXTSSL to operate within environments characterized by a single
transformation. Motivated by this, we ask the question: Can CONTEXTSSL adapt to learn equivariance or
invariance to the same transformation depending on the context? At training, we randomly sample one of these
environments. If the environment corresponds to enforcing equivariance, we construct our context in the
same way as before i.e. pairs of positives transformed using augmentations sampled from the transformation
group. However, if the environment corresponds to enforcing invariance, we maximize alignment between
positives transformed by augmentation sampled from the transformation group without conditioning on
that augmentation. Take rotation in 3DIEBench as an example. As shown in Table 4, and similar to findings
in two transformation setting (rotation and color) in Table 1, CONTEXTSSL effectively adapts to enforce
invariance and equivariance to rotation depending on the context. Specifically, under the ’none’ context,
where context is defined as {(xi, 0, yi)}Ki=1, the model’s performance on rotation prediction task improves
with context Detailed results for predicting individual transformation parameters are provided in Table 24 in
the Appendix.

Table 4: Performance of CONTEXTSSL on 3DIEBench to enforce equivariant and invariance to the same
transformation depending on context. We observe that under the equivariant environment (rotation), CON-
TEXTSSL performs well on rotation prediction R2 (equivariant task), and under the invariant environment
(none), CONTEXTSSL performs poorly on the equivariant task, thus enforcing invariance to rotations.

Method Rotation prediction (R2) Classification (top-1)

0 2 14 30 126 Representation

SimCLR 0.506 85.3
SimCLR+ (c=0) 0.478 83.4
SimCLR+ 0.489 81.0
CONTEXTSSL (rotation) 0.737 0.737 0.736 0.737 0.738 80.6
CONTEXTSSL (none) 0.737 0.717 0.477 0.377 0.473 80.6
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4.6 Context World Models Beyond Self-Supervised Learning

While our analysis has primarily focused on self-supervised learning, the concept of context is versatile and
extends beyond representation learning. In principle, irrespective of the task at hand, paying attention to
context can learn and identify features defined by it. To validate this and explore broader applications of our
algorithm, we consider a supervised learning task where our transformer model is trained to directly predict
the labels corresponding to an input image. We further corrupt the labels to be directly influenced by the
augmentation group transforming the data. Specifically, for the 3DIEBench dataset, we add a constant value
of 10 to each label if the context corresponds to the rotation group and leave it unchanged otherwise. Note
that, since the shortcuts caused by positive and negative samples in self-supervised learning are absent in the
supervised setting, the context mask is not applied. We report classification performance along with rotation
and color prediction equivariant measures. As shown in Table 5, CONTEXTSSL’s classification accuracy
improves with context, demonstrating its ability to better identify the underlying symmetry group with an
increase in context. Additional results are provided in Appendix B.5. Further, CONTEXTSSL serves as a
general framework that can adapt to different training regimes, such as supervised learning.

Table 5: Performance of CONTEXTSSL on equivariant tasks (including classificaion) for context-dependent
labels. CONTEXTSSL adapts to context-dependent labels with varying context.

Method Rotation prediction (R2) Color prediction (R2) Classification (top-1)

0 2 14 30 126 0 2 14 30 126 0 2 14 30 126

SimCLR (color) 0.537 0.056 72.0
SimCLR (rotation) 0.537 0.056 14.2
SimCLR+ (c=0) (color) 0.427 -0.007 80.4
SimCLR+ (c=0) (rotation) 0.427 -0.007 5.2
SimCLR+ (color) 0.424 0.243 16.8 15.1 15.6 14.8 14.0
SimCLR+ (rotation) 0.424 0.243 56.1 58.2 58.4 58.4 59.1
CONTEXTSSL (color) 0.556 0.542 0.538 0.540 0.539 0.913 0.973 0.981 0.982 0.982 8.9 82.4 82.7 82.8 83.0
CONTEXTSSL (rotation) 0.556 0.624 0.661 0.665 0.666 0.913 0.379 0.111 0.095 0.093 73.5 82.7 82.6 82.6 83.0

5 Related Work

Self-Supervised Learning. Existing SSL methods generally belong to two categories: invariant learn-
ing [Chen et al., 2020a, Bardes et al., 2022, Chen and He, 2021, He et al., 2020, Zbontar et al., 2021, Grill et al.,
2020] and equivariant learning. The representative method for invariant learning is contrastive learning,
which draws the representations of positive samples together in the latent space such that the representations
are invariant to data augmentation. Contrastive learning can learn highly discriminative features at the cost
of losing certain image information due to the invariance constraint Xiao et al. [2021]. Motivated by this
limitation, recent works explore merging contrastive learning with equivariant learning tasks by separate
embedding Xiao et al. [2021], Garrido et al. [2023b], augmentation-conditioned predictor Devillers and Lefort
[2023], Garrido et al. [2024], and explicit equivariant transformation Gupta et al. [2023b]. However, existing
works still inherit the limitations of contrastive learning: its symmetry prior is built on a given set of manual
augmentations and is not adaptive to downstream tasks. In contrast, our method enables the contextual
world model to adapt its symmetry to the contextual data, which is more flexible and generalizable to
various tasks.

World Models. World modeling has achieved notable success in reinforcement learning (RL) for model-based
planning Ha and Schmidhuber [2018], Sekar et al. [2020], Hafner et al. [2020] and vision [Hafner et al., 2023,
Hu et al., 2023, Yang et al., 2024], where it involves predicting future states based on current observations
and actions. This concept, however, has not yet been fully leveraged in visual representation learning.
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Nevertheless, Garrido et al. [2024] shows that several families of self-supervised learning approaches
can be reformulated through the lens of world modeling. Equivariant self-supervised learning methods.
Specifically, Masked Image Modeling approaches [He et al., 2022, Bao et al., 2022, El-Nouby et al., 2024,
Xie et al., 2022b] consider masked pixels and target pixel reconstruction as their action and next state.
Other equivariant learning approaches [Devillers and Lefort, 2023, Park et al., 2022, Garrido et al., 2023b]
consider data transformations and representation of the target image as their action and next state pair.
However, unlike true world modeling, these approaches do not track past experiences, a component critical
for generalization. Our method instead leverages context to track past experiences in terms of state, action,
and next-state triplets, enabling it to adapt and generalize to varying environments.

In-context Learning. Our work is inspired by and extends the concept of in-context learning (ICL) [Brown
et al., 2020] to training. Initially studied in the context of language, in-context learning has recently been
adapted for vision tasks [Gupta et al., 2023a, Wang et al., 2023, Bar et al., 2022, Li and Liang, 2021], allowing
models to infer environmental features or tasks directly from input prompts without predefined notions.
For example, Visual Prompting [Wang et al., 2023, Bar et al., 2022] uses a task input/output example pair
and a query image at test time, and uses inpainting to generate the desired output. Gupta et al. [2023a]
propose using unlabeled data as context at training to extract environment-specific signals and address
domain generalization. ICL has been extensively explored in various domains, including vision, language,
and multimodal tasks. However, our work is the first to apply ICL to vision self-supervised representation
learning.

6 Conclusion and Future Perspectives

The field of language modeling has witnessed a significant paradigm shift over the past decade, moving
towards foundation models that generalize across a variety of tasks either directly or through distillation.
However, this shift toward generalization has been conspicuously absent in the vision domain. This is largely
because self-supervised approaches for vision still heavily rely on inductive priors strongly introduced
by enforcing either invariance or equivariance to data augmentations. This renders representations brittle
in downstream tasks that do not conform to these priors and necessitates retraining the representation
separately for each task. This work forgoes any notion of pre-defined symmetries and instead trains a
model to infer the task-relevant symmetries directly from the context through what we term Contextual
Self-Supervised Learning (CONTEXTSSL). The ability of our model to learn selective equivariances and
invariances based on mere context opens up new avenues for effectively handling a broader range of
tasks, particularly in dynamic environments where the relevance of specific features may change over time.
However, we limit our scope of symmetries to hand-crafted transformations in the data and do not explore
naturally occurring symmetries. Nonetheless, CONTEXTSSL lays the groundwork for models that can
potentially discern and adapt to the underlying patterns of tasks, recognize shortcuts, and more effectively
generalize across unseen scenarios. Through this work, we hope to contribute to a broader understanding of
how machines can learn more like humans — contextually, adaptively, and with an eye toward the infinite
variability of the real world.
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and Marin Soljačić. Equivariant contrastive learning. In International Conference on Learning Representations,
2022.

Alexandre Devillers and Mathieu Lefort. Equimod: An equivariance module to improve self-supervised
learning. In International Conference on Learning Representations, 2023.

Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev, Vaishaal
Shankar, Joshua M Susskind, and Armand Joulin. Scalable pre-training of large autoregressive image
models. arXiv preprint arXiv:2401.08541, 2024.

Quentin Garrido, Laurent Najman, and Yann Lecun. Self-supervised learning of split invariant equivariant
representations. preprint arXiv:2302.10283, 2023a.

16

https://arxiv.org/abs/2301.08243
https://arxiv.org/abs/2105.04906
https://arxiv.org/abs/2105.04906
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
http://proceedings.mlr.press/v119/chen20j/chen20j.pdf


Quentin Garrido, Laurent Najman, and Yann Lecun. Self-supervised learning of split invariant equivariant
representations. International Conference on Machine Learning, 2023b. URL https://arxiv.org/pdf/
2302.10283.pdf.

Quentin Garrido, Mahmoud Assran, Nicolas Ballas, Adrien Bardes, Laurent Najman, and Yann LeCun.
Learning and leveraging world models in visual representation learning. arXiv preprint arXiv:2403.00504,
2024.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by predicting
image rotations. International Conference on Learning Representations, 2018.

Spyros Gidaris, Andrei Bursuc, Gilles Puy, Nikos Komodakis, Matthieu Cord, and Patrick Pérez. Obow:
Online bag-of-visual-words generation for self-supervised learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 6830–6840, 2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl
Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own
latent-a new approach to self-supervised learning. Advances in neural information processing systems, 33:
21271–21284, 2020.

Sharut Gupta, Stefanie Jegelka, David Lopez-Paz, and Kartik Ahuja. Context is environment. In The Twelfth
International Conference on Learning Representations, 2023a.

Sharut Gupta, Joshua Robinson, Derek Lim, Soledad Villar, and Stefanie Jegelka. Structuring represen-
tation geometry with rotationally equivariant contrastive learning. International Conference on Learning
Representations, 2023b.

David Ha and Jürgen Schmidhuber. World models. Advances in Neural Information Processing Systems, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. International Conference on Learning Representations, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through
world models. arXiv preprint arXiv:2301.04104, 2023.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9729–9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are
scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 16000–16009, 2022.

Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shotton,
and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving. arXiv preprint
arXiv:2309.17080, 2023.

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in contrastive
self-supervised learning. In International Conference on Learning Representations, 2022.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Learning representations for automatic
colorization. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October
11–14, 2016, Proceedings, Part IV 14, pages 577–593. Springer, 2016.

Hankook Lee, Kibok Lee, Kimin Lee, Honglak Lee, and Jinwoo Shin. Improving transferability of represen-
tations via augmentation-aware self-supervision. Advances in Neural Information Processing Systems, 34:
17710–17722, 2021.

17

https://arxiv.org/pdf/2302.10283.pdf
https://arxiv.org/pdf/2302.10283.pdf


Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. Annual
Meeting of the Association for Computational Linguistics, 2021.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representations. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 6707–6717, 2020.

Jung Yeon Park, Ondrej Biza, Linfeng Zhao, Jan Willem van de Meent, and Robin Walters. Learning
symmetric embeddings for equivariant world models. International Conference on Machine Learning, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak. Planning
to explore via self-supervised world models. In International conference on machine learning, pages 8583–8592.
PMLR, 2020.

Ravid Shwartz-Ziv, Micah Goldblum, Hossein Souri, Sanyam Kapoor, Chen Zhu, Yann LeCun, and Andrew G
Wilson. Pre-train your loss: Easy bayesian transfer learning with informative priors. Advances in Neural
Information Processing Systems, 35:27706–27715, 2022.

Nenad Tomasev, Ioana Bica, Brian McWilliams, Lars Buesing, Razvan Pascanu, Charles Blundell, and Jovana
Mitrovic. Pushing the limits of self-supervised resnets: Can we outperform supervised learning without
labels on imagenet? arXiv preprint arXiv:2201.05119, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Xinlong Wang, Wen Wang, Yue Cao, Chunhua Shen, and Tiejun Huang. Images speak in images: A generalist
painter for in-context visual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6830–6839, 2023.

Tete Xiao, Xiaolong Wang, Alexei A Efros, and Trevor Darrell. What should not be contrastive in contrastive
learning. In International Conference on Learning Representations, 2021.

Yuyang Xie, Jianhong Wen, Kin Wai Lau, Yasar Abbas Ur Rehman, and Jiajun Shen. What should be
equivariant in self-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4111–4120, 2022a.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim:
A simple framework for masked image modeling. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9653–9663, 2022b.

Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter Abbeel.
Learning interactive real-world simulators. International Conference on Learning Representations, 2024.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised learning
via redundancy reduction. In International Conference on Machine Learning, pages 12310–12320. PMLR, 2021.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot: Image
bert pre-training with online tokenizer. International Conference on Learning Representations, 2022a. URL
https://arxiv.org/abs/2111.07832.

Pan Zhou, Yichen Zhou, Chenyang Si, Weihao Yu, Teck Khim Ng, and Shuicheng Yan. Mugs: A multi-
granular self-supervised learning framework. arXiv preprint arXiv:2203.14415, 2022b.

18

https://arxiv.org/abs/2111.07832


Appendix

A Supplementary experimental details and assets disclosure 18

A.1 Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.2 Hardware and setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.4 Baseline Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.5 Training Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.6 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

B Additional Experiments 20

B.1 Quantitative Assessment of Adaptation to Task-Specific Symmetries . . . . . . . . . . . . . . 20

B.1.1 Invariant Classification and Equivariant transformation prediction task . . . . . . . . 20

B.1.2 Equivariant Measures Based on Nearest Neighbours Retrieval . . . . . . . . . . . . . . 21

B.2 Role of Context Mask and Auxiliary Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

B.2.1 Role of Context Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

B.2.2 Role of Auxiliary Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B.3 Qualitative Assessment of Adaptation to Task-Specific Symmetries . . . . . . . . . . . . . . . 24

B.3.1 Comparison with Baseline Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B.3.2 Nearest Neighbour Retrieval with Varying Context . . . . . . . . . . . . . . . . . . . . 24

B.4 Expanding to Diverse Data Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B.5 Context World Models Beyond Self-Supervised Learning . . . . . . . . . . . . . . . . . . . . . 27

B.6 Performance on Encoder Representations and Predictor Embedding . . . . . . . . . . . . . . 27

B.7 Enforcing Invariance or Equivariance to the Same Transformation Using Context . . . . . . . 28

A Supplementary experimental details and assets disclosure

To evaluate the efficacy of our proposed algorithm CONTEXTSSL, our experiments are designed to address
the following questions:

1. How does CONTEXTSSL fare against competitive invariant and equivariant self-supervised learning
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approaches in terms of performance across varying context sizes and different sets of data transforma-
tions?

2. How effectively can CONTEXTSSL identify task-specific symmetries, both within the scope of self-
supervised learning and beyond?

3. What roles do specific components such as selective masking and the auxiliary latent transformation
predictor play in facilitating the learning of general and context-adaptable representations?

A.1 Assets

We do not introduce new data in the course of this work. Instead, we use publicly available widely used
image datasets for the purposes of benchmarking and comparison.

A.2 Hardware and setup

Each experiment was conducted on 1 NVIDIA Tesla V100 GPUs, each with 32GB of accelerator RAM. The
CPUs used were Intel Xeon E5-2698 v4 processors with 20 cores and 384GB of RAM. All experiments were
implemented using the PyTorch deep learning framework.

A.3 Datasets

3D Invariant Equivariant Benchmark (3DIEBench). To test equivariance and invariance to multiple data
transformations, we use the 3D Invariant Equivariant Benchmark (3DIEBench) [Garrido et al., 2023b] which
has been specifically designed to address the limitations of existing datasets in evaluating invariant and
equivariant representations. It contains images of 3D objects along with their latent parameters such as
object rotation, lighting color, and floor color. Since we have access available to individual meta latent
parameters, transformation parameters between two views of an object are calculated as the difference
between their individual latents. We test our approach on 3DIEBench under two settings 1) Considering two
transformation groups: rotation and color with the aim of learning invariance to one and equivariance to
another after conditioning on context; 2) Considering one transformation group, say rotation and learning
to enforce invariance or equivariance to rotation with context. As previously mentioned, all methods are
trained for 1000 epochs using a batch size of 512 on 128×128 resolution images. We use the standard training,
validation and test splits, made publicly available by the authors [Garrido et al., 2023b].

CIFAR10. 3DIEBench dataset is limited to only rotations and color as transformation groups. We extend
our approach to include more common self-supervised benchmarks, such as CIFAR-10, incorporating
transformations like blurring, color jitter, and cropping. Unlike 3DIEBench, we manually construct positive
pairs by applying compositions of these handcrafted augmentations. We consider three transformation
groups: crop, blur and color. Similar to 3DIEBench, we consider combinations of two groups for each
training run. We use the standard training, validation and test splits.
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A.4 Baseline Algorithms

Among the invariant self-supervised approached, we compare our approach to VICReg [Bardes et al., 2022]
and and SimCLR [Chen et al., 2020a]. For each method, comparisons are drawn using their originally
proposed architectures. For the equivariant baselines, we consider EquiMOD [Devillers and Lefort, 2023],
SIE [Garrido et al., 2023b] and SEN [Park et al., 2022]. Similar to Garrido et al. [2023b], For SEN, we use the
InfoNCE loss instead the original triplet loss. To discard the performance gains potentially arising from
CONTEXTSSL’s transformer architecture, for each approach, we consider an additional baseline that replaces
the original projection heads or predictor with our transformer model. Given an algorithm name N , we
refer to this baseline as N+. Amongst these, we report the best performing variant in our results. For N+,
we conduct analysis in two distinct settings: 1) a ’no context’ or c = 0 invariant condition, and 2) a fully
contextualized setting with a context length of 126.

A.5 Training Protocol

To ensure a fair comparison across different algorithms for each dataset, we use a standardized neural
network backbone. Precisely, for our encoder, we use a ResNet-18 backbone pre-trained on ImageNet.
For CONTEXTSSL, output features from the encoder are transformed into the context sequence, which
is then processed by the decoder-only Transformer [Vaswani et al., 2017] from the GPT-2 Transformer
family [Radford et al., 2019]. Our model configuration includes 3 layers, 4 attention heads, and a 2048-
dimensional embedding space, consistently applied across all datasets. Linear layers are utilized to convert
the input sequence into the transformer’s latent embedding of dimension 2048 and to map the predicted
output vectors to the output space of dimension 512.

We fix the maximum training context length to 128. Since for every y, the corresponding token (xi, ai) is
masked out, context length L corresponds to effective context length L− 2. Thus, we report CONTEXTSSL’s
performance over varying test context length of 0, 2, 14, 30 and 126. On all datasets, we train CONTEXTSSL
with the Adam optimizer with a learning rate of 5e−5 and weight decay 1e−3. For baseline self-supervised
approaches, in their original architecture, we use a learning rate of 1e−3 with no weight decay. However,
when tested using the transformer architecture, we choose one of the above two optimizer hyperpameters.
Consequently, performance of the best performing model is reported among the two baselines. Similar
to Garrido et al. [2023b], we report hyper-parameters and architectures specific to each method:

• SimCLR [Chen et al., 2020a] We train using a 2048-2048-2048 dimensional multi-layered perceptron
(MLP) based projection head with a temperature of 0.5.

• VICReg [Bardes et al., 2022] We train using a 2048-2048-2048 MLP for the projection head and use
weight of 10 for both the invariance loss and variance loss and 1 for covariance loss.

• SEN [Park et al., 2022] Similar to other approaches we use a projection head of dimension 2048-2048-
2048 and temperature 0.1.

• EquiMod [Devillers and Lefort, 2023] We use the standatd projection head of dimensions 1024-1024-
128 and use equal weighing of the invariance and the equivariance loss.

• SIE [Garrido et al., 2023b] We use two 1024-1024-1024 projection heads, one for invariant latent space
and other for equivariant. When trained to learn equivariance to only rotation or only color, we use
weight of 10 for both the invariance loss and variance loss, 1 for the covariance loss and 4.5 for the
equivariant loss. However, when trained to be equivariant to both rotation and color jointly, we use 10
as the equivariant weight.
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A.6 Evaluation metrics

In line with established self-supervised learning methodologies, we begin by assessing the quality of the
learned representations through downstream tasks. For evaluating invariant representations, we employ lin-
ear classification over frozen features. To evaluate equivariant representations, we predict the corresponding
data transformation. This prediction takes representations from two differently transformed views of the
same object and regresses on the applied transformation between them. Further, we use Mean Reciprocal
Rank (MRR) and Hit Rate at k (H@k) to evaluate the performance for our context predictor. Given the source
data and the transformation action, we identify the k nearest neighbors in the embedding space. MRR
is calculated as the average reciprocal rank of the target embedding within these nearest neighbors. Hit
rate-k (H@k) assigns a score of 1 if the target embedding is within the k-nearest neighbors of the predicted
embedding and 0 otherwise. Similar to Garrido et al. [2023b], we restrict the search for nearest neighbors to
different views of the same object, thus ensuring that the predictor is not penalized for retrieving an incorrect
object in a pose similar to the correct one.

B Additional Experiments

B.1 Quantitative Assessment of Adaptation to Task-Specific Symmetries

In this section, we present additional results on the quantitative assessment of model performance on
3DIEBench, including the evaluation of learned representations on equivariant tasks (rotation and color
prediction) to predict individual latent values. In contrast, the results in Table 1 focus on predicting relative
latent values between pairs of image embeddings as inputs.

B.1.1 Invariant Classification and Equivariant transformation prediction task

As shown in Table 6, invariant self-supervised learning methods such as SimCLR and VICReg underperform
in equivariant augmentation prediction tasks. The equivariant baselines, EquiMOD, SIE, and SEN, exhibit
improvements compared to the invariant baselines in some of the augmentation prediction tasks. However,
their degree of equivariance is much worse compared to CONTEXTSSL. Besides, aligning them with different
targeted symmetry groups requires retraining the entire model. In contrast, CONTEXTSSL employs a single
model capable of learning equivariance to rotation and invariance to color (or vice versa) based on the given
context. As seen from the two rows corresponding to CONTEXTSSL Table 1, when the context corresponds
to pairs of data with transformations sampled from the rotation (color) group, the model adaptively learns
to be invariant to color (rotation) while retaining equivariance to rotation (color).

Results in Table 1 are the average value over three random seeds. We provide the standard deviation for
rotation and color prediction of CONTEXTSSL in Table 7 and Table 8.

B.1.2 Equivariant Measures Based on Nearest Neighbours Retrieval

Similar to Table 2, we provide the performance of CONTEXTSSL on MRR and H@k compared to baseline
methods with trained equivariance to rotation. While Table 2 uses the validation set data as the retrieval
library, Table 9 provides the results using the training set data. CONTEXTSSL outperforms the baseline
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Table 6: Quantitative evaluation of learned representations on equivariant (rotation prediction, color predic-
tion) tasks to predict individual latent values.

G Method Rotation prediction (R2) Color prediction (R2)

0 2 14 30 126 0 2 14 30 126

Invariant
SimCLR 0.791 0.137
SimCLR+(c=0) 0.773 0.061
SimCLR+ 0.773 0.116
VICReg 0.660 0.011
VICReg+(c=0) 0.615 0.061

Equivariant

R
ot

at
io

n
+ C

ol
or EquiMOD 0.712 0.221

SIE 0.760 0.972
SEN 0.617 0.888

R
ot

at
io

n EquiMOD 0.707 0.033
SIE 0.790 0.001
SEN 0.723 0.437
CONTEXTSSL* 0.838 0.839 0.840 0.840 0.840 0.895 0.620 0.021 0.014 0.021

C
ol

or

EquiMOD 0.660 0.855
SIE 0.560 0.974
SEN 0.713 0.876
CONTEXTSSL* 0.838 0.800 0.699 0.666 0.685 0.895 0.981 0.985 0.985 0.986

Table 7: Performance of CONTEXTSSL in 3DIEBench in rotation prediction under the environment of rotation,
i.e. CONTEXTSSL (rotation), and color, i.e. CONTEXTSSL (color), with standard deviations over three random
seeds.

Method Rotation prediction (R2)

0 2 14 30 126

CONTEXTSSL (rotation) 0.734 ± 0.002 0.740 ± 0.004 0.743 ± 0.001 0.743 ± 0.001 0.744 ± 0.001
CONTEXTSSL (color) 0.735 ± 0.001 0.614 ± 0.108 0.389 ± 0.054 0.345 ± 0.040 0.344 ± 0.003

Table 8: Performance of CONTEXTSSL in 3DIEBench in color prediction under the environment of rotation,
i.e. CONTEXTSSL (rotation), and color, i.e. CONTEXTSSL (color), with standard deviations over three random
seeds.

Method Color prediction (R2)

0 2 14 30 126

CONTEXTSSL (rotation) 0.908 ± 0.002 0.664 ± 0.166 0.037 ± 0.010 0.023 ± 0.001 0.046 ± 0.007
CONTEXTSSL (color) 0.908 ± 0.002 0.981 ± 0.002 0.985 ± 0.001 0.986 ± 0.001 0.986 ± 0.001

models, and its performance on all the metrics consistently improves with increasing context length, showing
adaptation to rotation-specific features.
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Table 9: Quantitative evaluation of learned predictors equivariant to only rotation based on Mean Reciprocal
Rank (MRR) and Hit Rate H@k on training dataset. CONTEXTSSL learns to be more equivariant to rotation
with context.

Method MRR (↑) H@1 (↑) H@5 (↑)

0 2 14 30 126 0 2 14 30 126 0 2 14 30 126

EquiMOD 0.17 0.06 0.24
SEN 0.17 0.06 0.24
CONTEXTSSL 0.282 0.321 0.470 0.498 0.531 0.132 0.263 0.375 0.398 0.402 0.436 0.495 0.650 0.669 0.680

B.2 Role of Context Mask and Auxiliary Predictor

In this section, we provide additional results for the role of context mask and auxiliary predictor.

B.2.1 Role of Context Mask

(a) (b) (c)

Figure 7: Role of context mask to avoid context based shortcuts in CONTEXTSSL under color context

In addition to Figure 4, we provide the performance of the rotation and color prediction tasks with varying
masking probabilities under the environment of color in Figure 7. We observe that as masking probability
increases, performance on both classification and prediction tasks initially improves but later declines,
reaching optimal performance at a masking probability of 90%.

Results in Figure 4 and Figure 7 are the average value over three random seeds. We provide the standard
deviation for rotation and color prediction of CONTEXTSSL in Table 10 and Table 11.

Additionally, we demonstrate that the context mask is essential for removing shortcuts in the invariance
setting. The performance comparison between SimCLR+ and the model without the context mask is
presented in Table 12 for 3DIEBench and Table 13 for CIFAR10. Without the context mask, classification
accuracy drops significantly, highlighting its crucial role.

B.2.2 Role of Auxiliary Predictor

We provide the complete results corresponding to Figure 5 in Table 14 to demonstrate that the auxiliary
predictor is crucial for the model to achieve equivariance. For better comparison, the rotation and color
prediction performance for the invariance baselines (SimCLR, SimCLR+(c=0), SimCLR+) is based on the
predictor output instead of the features. In its absence, while the model retains its performance on the
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Table 10: Performance of CONTEXTSSL rotation prediction tasks in 3DIEBench under different random
masking probabilities, with standard deviations over three random seeds.

Context Probability Rotation prediction (R2)

0 2 14 30 126

Rotation

0.00 0.677 ± 0.004 0.677 ± 0.002 0.673 ± 0.009 0.682 ± 0.003 0.683 ± 0.003
0.20 0.710 ± 0.002 0.721 ± 0.006 0.727 ± 0.002 0.729 ± 0.001 0.729 ± 0.001
0.50 0.725 ± 0.001 0.738 ± 0.005 0.743 ± 0.001 0.743 ± 0.001 0.744 ± 0.001
0.75 0.734 ± 0.002 0.738 ± 0.006 0.742 ± 0.004 0.741 ± 0.004 0.741 ± 0.002
0.90 0.734 ± 0.002 0.740 ± 0.004 0.743 ± 0.001 0.743 ± 0.001 0.744 ± 0.001
0.98 0.726 ± 0.002 0.725 ± 0.003 0.726 ± 0.002 0.726 ± 0.003 0.726 ± 0.003

Color

0.00 0.677 ± 0.004 0.676 ± 0.005 0.620 ± 0.019 0.569 ± 0.019 0.655 ± 0.010
0.20 0.710 ± 0.002 0.689 ± 0.013 0.427 ± 0.031 0.336 ± 0.007 0.282 ± 0.022
0.50 0.725 ± 0.001 0.683 ± 0.006 0.390 ± 0.031 0.282 ± 0.013 0.287 ± 0.002
0.75 0.734 ± 0.002 0.718 ± 0.002 0.499 ± 0.035 0.378 ± 0.054 0.472 ± 0.015
0.90 0.735 ± 0.001 0.614 ± 0.108 0.389 ± 0.054 0.345 ± 0.040 0.344 ± 0.003
0.98 0.726 ± 0.002 0.508 ± 0.127 0.529 ± 0.141 0.571 ± 0.125 0.665 ± 0.023

Table 11: Performance of CONTEXTSSL color prediction tasks in 3DIEBench under different random masking
probabilities, with standard deviations over three random seeds.

Context Probability Color prediction (R2)

0 2 14 30 126

Rotation

0.00 0.981 ± 0.002 0.940 ± 0.033 0.613 ± 0.123 0.406 ± 0.125 0.807 ± 0.080
0.20 0.975 ± 0.001 0.866 ± 0.171 0.465 ± 0.113 0.194 ± 0.057 0.124 ± 0.027
0.50 0.971 ± 0.002 0.904 ± 0.086 0.699 ± 0.028 0.205 ± 0.054 0.091 ± 0.016
0.75 0.980 ± 0.001 0.727 ± 0.351 0.358 ± 0.233 0.162 ± 0.021 0.076 ± 0.009
0.90 0.908 ± 0.002 0.664 ± 0.166 0.037 ± 0.010 0.023 ± 0.001 0.046 ± 0.007
0.98 0.982 ± 0.001 0.674 ± 0.368 0.309 ± 0.139 0.303 ± 0.118 0.253 ± 0.033

Color

0.00 0.981 ± 0.002 0.986 ± 0.002 0.989 ± 0.001 0.989 ± 0.001 0.989 ± 0.001
0.20 0.975 ± 0.001 0.984 ± 0.002 0.987 ± 0.001 0.987 ± 0.001 0.987 ± 0.001
0.50 0.971 ± 0.002 0.982 ± 0.002 0.986 ± 0.002 0.987 ± 0.002 0.988 ± 0.001
0.75 0.980 ± 0.001 0.983 ± 0.001 0.987 ± 0.001 0.987 ± 0.001 0.988 ± 0.001
0.90 0.908 ± 0.002 0.981 ± 0.002 0.985 ± 0.001 0.986 ± 0.001 0.986 ± 0.001
0.98 0.982 ± 0.001 0.982 ± 0.001 0.981 ± 0.001 0.981 ± 0.001 0.981 ± 0.001

Table 12: Performance of the invariant SimCLR+ on equivariant (rotation prediction, color prediction) and
invariant (classification) tasks in 3DIEBench. Both relative value predictions and individual latent value
predictions are reported for prediction tasks. Context masking is essential for invariant model performance.

Method Rotation prediction (R2) Color prediction (R2) Classification (top-1)

Relative Individual Relative Individual Representation

SimCLR+ 0.489 0.773 0.130 0.116 81.0
SimCLR+ (w/o mask) 0.247 0.544 0.464 0.498 42.3

invariant classification task, it fails to learn equivariance, performs similarly to the invariant models, and
cannot effectively adapt to different contexts.
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Table 13: Performance of the invariant SimCLR+ on equivariant (crop prediction, blur prediction, color
prediction) and invariant (classification) tasks in CIFAR-10. Both relative value predictions and individual
latent value predictions are reported for prediction tasks. Context masking is essential for invariant model
performance.

Method Crop prediction (R2) Blur prediction (R2) Color prediction (R2) Classification (top-1)

Relative Individual Relative Individual Relative Individual Representation

SimCLR+ 0.505 0.453 0.381 0.170 0.121 0.103 89.7
SimCLR+ (w/o mask) 0.362 0.202 0.444 0.322 0.318 0.242 59.9

Table 14: Performance of CONTEXTSSL on classification, rotation and color prediction tasks in 3DIEBench
with and without the auxiliary predictor

Method Rotation prediction (R2) Color prediction (R2) Classification (top-1)

0 2 14 30 126 0 2 14 30 126 Representation

SimCLR 0.227 -0.004 85.3
SimCLR+ (c=0) 0.230 -0.004 83.4
SimCLR+ 0.228 -0.004 81.0
CONTEXTSSL (w/o) (rotation) 0.227 0.227 0.226 0.226 0.227 -0.003 -0.003 -0.003 -0.004 -0.004 80.8
CONTEXTSSL (w/o) (color) 0.227 0.227 0.226 0.226 0.227 -0.003 -0.003 -0.003 -0.004 -0.004 80.8
CONTEXTSSL (rotation) 0.734 0.740 0.743 0.743 0.744 0.908 0.664 0.037 0.023 0.046 80.4
CONTEXTSSL (color) 0.735 0.614 0.389 0.345 0.344 0.908 0.981 0.985 0.986 0.986 80.4

B.3 Qualitative Assessment of Adaptation to Task-Specific Symmetries

B.3.1 Comparison with Baseline Approaches

We provide additional results to the qualitative assessment comparing with different models in Figure 8. The
nearest neighbors of invariance models (SimCLR and VICReg) have random rotation angles. Equivariance
baselines (SEN, SIE, EquiMOD) correctly generate the target rotation angle for some of the 3-nearest neighbors
but fail in others. CONTEXTSSL outperforms by successfully identifying the correct angle in all 3-nearest
neighbors while remaining invariant to color variations.

SIESEN CONTEXTSSLEquiMODVICReg

Source

Target

SimCLR

1-
N
N

2-
N
N

3-
N
N

Figure 8: Nearest neighbors of different methods taking as input the source image and rotation angle.
CONTEXTSSL aligns best with the rotation angle of the target image.
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B.3.2 Nearest Neighbour Retrieval with Varying Context

In this section, we conduct a qualitative assessment of model performance by taking the nearest neighbors of
the predictor output when inputting a source image and a transformation variable, and show the change in
retrieving quality in Figure 9, Figure 10, and Figure 11. We observe that the nearest neighbors have a closer
rotation angle (color) to the target image under rotation (color) context as context length increases, indicating
CONTEXTSSL’s ability to adapt to the given context as context length increases.
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Target
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Increasing 
context length

Context (Rotation) Context (Color)

1-NN 2-NN 3-NN 4-NN 1-NN 2-NN 3-NN 4-NN

Figure 9: Nearest neighbors of CONTEXTSSL taking as input the source image and rotation angle at different
context lengths. As context increases, CONTEXTSSL aligns better with the rotation angle (color) of the target
image when the context is based on rotation (color).
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Figure 10: Nearest neighbors of CONTEXTSSL taking as input the source image and rotation angle at different
context lengths. As context increases, CONTEXTSSL aligns better with the rotation angle (color) of the target
image when the context is based on rotation (color).
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Figure 11: Nearest neighbors of CONTEXTSSL taking as input the source image and rotation angle at different
context lengths. As context increases, CONTEXTSSL aligns better with the rotation angle (color) of the target
image when the context is based on rotation (color).

B.4 Expanding to Diverse Data Transformations

Unlike 3DIEBench where meta-latents for each data are available, we manually construct positives by
applying augmentations like crop and blur on CIFAR10. The results for the combinations of crop and blur
are reported in Table 3. We additionally provide the results for the combinations of crop and color in Table 16
and crop and blur in Table 3. Consistent with our previous results, while almost retaining the classification
performance as SimCLR, CONTEXTSSL learns to adaptively enforce equivariance and invariance to different
environments depending upon the context.

Table 15: CIFAR-10 Color-Blur. Performance of CONTEXTSSL on invariant (classification) and equivariant
(color prediction, blur prediction) tasks in CIFAR-10 under the environment of color, i.e. CONTEXTSSL
(color), and blur, i.e. CONTEXTSSL (blur).

Method Color prediction (R2) Blur prediction (R2) Classification (top-1)

0 2 14 30 126 0 2 14 30 126 Representation

SimCLR 0.154 0.371 89.1
SimCLR+ (c=0) 0.054 0.361 88.9
SimCLR+ 0.121 0.381 89.7
CONTEXTSSL (color) 0.518 0.519 0.519 0.519 0.519 0.916 0.793 0.699 0.735 0.823 88.9
CONTEXTSSL (blur) 0.518 0.353 0.241 0.259 0.333 0.916 0.916 0.916 0.916 0.917 88.8

In addition to the results for predicting relative latent values between pairs of image embeddings as input
in Table 3, Table 16, and Table 15, we provide the evaluation of learned representations on equivariant
tasks (rotation and color prediction) to predict individual latent values, as shown in Table 17, Table 19, and
Table 18 respectively. Both results lead to the same conclusion, that CONTEXTSSL is able to adaptively
enforce equivariance and invariance to different environments depending upon the context.
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Table 16: CIFAR-10 Crop-Color. Performance of CONTEXTSSL on invariant (classification) and equivariant
(crop prediction, color prediction) tasks in CIFAR-10 under the environment of crop, i.e. CONTEXTSSL (crop),
and color, i.e. CONTEXTSSL (color).

Method Crop prediction (R2) Color prediction (R2) Classification (top-1)

0 2 14 30 126 0 2 14 30 126 Representation

SimCLR 0.459 0.154 89.1
SimCLR+ (c=0) 0.448 0.054 88.9
SimCLR+ 0.505 0.121 89.7
CONTEXTSSL (crop) 0.606 0.606 0.607 0.607 0.607 0.522 0.378 0.253 0.264 0.301 87.5
CONTEXTSSL (color) 0.605 0.467 0.387 0.466 0.511 0.523 0.525 0.527 0.527 0.527 87.5

Table 17: CIFAR-10 Crop-Blur. Performance of CONTEXTSSL on equivariant (crop prediction, blur predic-
tion) tasks in CIFAR-10 under the environment of crop, i.e. CONTEXTSSL (crop), and blur, i.e. CONTEXTSSL
(blur), to predict individual latent values.

Method Crop prediction (R2) Blur prediction (R2)

0 2 14 30 126 0 2 14 30 126

SimCLR 0.382 0.122
SimCLR+ (c=0) 0.375 0.111
SimCLR+ 0.453 0.170
CONTEXTSSL (crop) 0.576 0.575 0.576 0.576 0.576 0.835 0.795 0.630 0.644 0.663
CONTEXTSSL (blur) 0.575 0.504 0.463 0.443 0.474 0.835 0.835 0.836 0.837 0.837

Table 18: CIFAR-10 Color-Blur. Performance of CONTEXTSSL on equivariant (color prediction, blur
prediction) tasks in CIFAR-10 under the environment of color, i.e. CONTEXTSSL (color), and blur, i.e.
CONTEXTSSL (blur), to predict individual latent values.

Method Color prediction (R2) Blur prediction (R2)

0 2 14 30 126 0 2 14 30 126

SimCLR 0.121 0.122
SimCLR+ (c=0) 0.039 0.111
SimCLR+ 0.103 0.170
CONTEXTSSL (color) 0.488 0.488 0.488 0.488 0.488 0.837 0.711 0.628 0.672 0.730
CONTEXTSSL (blur) 0.488 0.376 0.286 0.309 0.362 0.837 0.838 0.838 0.838 0.837

B.5 Context World Models Beyond Self-Supervised Learning

We report classification performance along with rotation and color prediction equivariant measures. The
results for predicting relative values are shown in Table 5 and the results for predicting individual latent
values are shown in Table 20. The equivariance (invariance) performance of CONTEXTSSL improves with
increased context.
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Table 19: CIFAR-10 Crop-Blur. Performance of CONTEXTSSL on equivariant (crop prediction, color predic-
tion) tasks in CIFAR-10 under the environment of crop, i.e. CONTEXTSSL (crop), and color, i.e. CONTEXTSSL
(color), to predict individual latent values.

Method Crop prediction (R2) Color prediction (R2)

0 2 14 30 126 0 2 14 30 126

SimCLR 0.382 0.121
SimCLR+ (c=0) 0.375 0.039
SimCLR+ 0.453 0.103
CONTEXTSSL (crop) 0.570 0.572 0.572 0.572 0.572 0.495 0.417 0.342 0.356 0.373
CONTEXTSSL (color) 0.570 0.490 0.447 0.492 0.515 0.495 0.496 0.497 0.497 0.497

Table 20: Context-Dependent Labels Classification Task. Performance of CONTEXTSSL on equivariant
(rotation prediction, color prediction) tasks for context-dependent labels to predict individual latent values.
As context length increases, CONTEXTSSL becomes more equivariant to color (or rotation) and more invariant
to rotation (or color) within the respective environment.

Method Rotation prediction (R2) Color prediction (R2)

0 2 14 30 126 0 2 14 30 126

SimCLR 0.781 0.058
SimCLR+ (c=0) 0.478 -0.003
SimCLR+ 0.695 0.267
CONTEXTSSL (color) 0.751 0.751 0.750 0.750 0.749 0.915 0.973 0.980 0.981 0.981
CONTEXTSSL (rotation) 0.750 0.778 0.797 0.795 0.795 0.915 0.375 0.104 0.091 0.090

B.6 Performance on Encoder Representations and Predictor Embedding

We analyze the difference between the performance on representation and the performance on predictor
embedding for both the invariance (classification) task and equivariance (rotation prediction) task in Table 21
and Table 22. CONTEXTSSL maintains almost the same performance for rotation prediction using either
representations or embeddings, while the performance of all other baselines drops significantly when using
the embeddings. Similar conclusions apply to the classification case.

B.7 Enforcing Invariance or Equivariance to the Same Transformation Using Context

Apart from adaptively learning equivariance to a subset of transformation groups and invariance to the
rest as shown in Table 1, we extend CONTEXTSSL to operate within environments characterized by a single
transformation. Motivated by this, we ask the question: Can CONTEXTSSL adapt to learn equivariance or
invariance to the same transformation depending on the context?. At training, we randomly sample one of these
environments. If the environment corresponds to enforcing equivariance, we construct our context in the
same way as before i.e. pairs of positives transformed using augmentations sampled from the transformation
group. However, if the environment corresponds to enforcing invariance, we maximize alignment between
positives transformed by augmentation sampled from the transformation group without conditioning on
that augmentation. Take rotation in 3DIEBench as an example. As shown in Table 23, similar to our results
in two transformation setting (rotation and color) in Table 1, CONTEXTSSL effectively adapts to enforce
invariance and equivarance to rotation depending on the context. Results for predicting individual latents
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Table 21: Model performance in rotation prediction task, within the rotation-equivariant environment. The R2

values are calculated for both the representations and the embeddings (output of projection head for invariant
models (VICReg, SimCLR) or predictor for equivariant models (SEN, EquiMod, SIE, CONTEXTSSL). Unlike
other models, which experience a significant performance drop between representations and embeddings,
CONTEXTSSL maintains consistent performance.

Method Rotation prediction (R2)

Representations Embeddings Change

VICReg 0.37 0.23 -0.14
SimCLR 0.51 0.23 -0.28
SEN 0.63 0.39 -0.24
EquiMod 0.51 0.39 -0.12
SIE 0.67 0.60 -0.07
CONTEXTSSL (rotation) 0.74 0.74 -0.00

Table 22: Performance of CONTEXTSSL on the accuracy of predictor embeddings for context-dependent
labels.

Method Classification (top-1)

0 2 14 30 126 Representation Change

SimCLR 52.7 85.3 -32.6
SimCLR+ (c=0) 72.4 83.4 -11.0
SimCLR+ 77.8 81.0 -3.2
CONTEXTSSL (rotation) 76.6 76.9 75.6 76.9 77.5 80.4 -2.9
CONTEXTSSL (color) 76.6 75.3 71.7 72.6 76.5 80.4 -3.9

are provided in Table 24.

Table 23: Single Transformation Setting. Performance of CONTEXTSSL in 3DIEBench under the equivariant
environment, i.e. CONTEXTSSL (rotation), and the invariant environment, i.e. CONTEXTSSL (none), with
respect to rotation.

Method Rotation prediction (R2) Classification (top-1)

0 2 14 30 126 Representation

SimCLR 0.506 85.3
SimCLR+ (c=0) 0.478 83.4
SimCLR+ 0.489 81.0
CONTEXTSSL (rotation) 0.737 0.737 0.736 0.737 0.738 80.6
CONTEXTSSL (none) 0.737 0.717 0.477 0.377 0.473 80.6
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Table 24: Single Transformation Setting. Performance of CONTEXTSSL in 3DIEBench under the equivariant
environment, i.e. CONTEXTSSL (rotation), and the invariant environment, i.e. CONTEXTSSL (none), with
respect to rotation, to predict the individual latent values.

Method Rotation prediction (R2)

0 2 14 30 126

SimCLR 0.791
SimCLR+ (c=0) 0.773
SimCLR+ 0.773
CONTEXTSSL (rotation) 0.778 0.777 0.767 0.768 0.777
CONTEXTSSL (none) 0.839 0.829 0.721 0.667 0.698
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