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Abstract

Gaussian processes (GPs) are used to make
medical and scientific decisions, including in
cardiac care and monitoring of atmospheric
carbon dioxide levels. Notably, the choice of
GP kernel is often somewhat arbitrary. In par-
ticular, uncountably many kernels typically
align with qualitative prior knowledge (e.g.
function smoothness or stationarity). But
in practice, data analysts choose among a
handful of convenient standard kernels (e.g.
squared exponential). In the present work,
we ask: Would decisions made with a GP
differ under other, qualitatively interchange-
able kernels? We show how to answer this
question by solving a constrained optimiza-
tion problem over a finite-dimensional space.
We can then use standard optimizers to iden-
tify substantive changes in relevant decisions
made with a GP. We demonstrate in both syn-
thetic and real-world examples that decisions
made with a GP can exhibit non-robustness
to kernel choice, even when prior draws are
qualitatively interchangeable to a user.

1 INTRODUCTION

Gaussian processes (GPs) enable practitioners to esti-
mate flexible functional relationships between predic-
tors and outcomes. GPs have been used to monitor
physiological vital signs in hospital patients (e.g. Cheng
et al., 2020; Colopy et al., 2016; Futoma et al., 2017a,b),
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to estimate the health effects of exposure to airborne
pollutants (e.g. Ferrari and Dunson, 2020; Lee et al.,
2017; Ren et al., 2021), and in many other medical and
scientific settings. To use a GP for any application,
a practitioner must choose a covariance kernel. The
kernel determines the shape, smoothness, and other
properties of the latent function of interest (Duvenaud,
2014, Chap. 2). Ideally a user would specify a kernel
that exactly encodes all of their prior beliefs about
the latent function. In practice, a user often has only
vague qualitative prior information and typically selects
a kernel from a relatively small set of commonly used
families. It seems plausible that other kernels could
have been equally compatible with the user’s beliefs.
When a user has no reason to prefer one kernel over
another given their prior beliefs, we call the kernels
qualitatively interchangeable. We would worry if sub-
stantive medical or scientific decisions changed when
using a qualitatively interchangeable kernel: that is, if
real-life decisions are non-robust to the choice of ker-
nel. In this paper, we propose a workflow to assess the
robustness of the GP posterior under qualitatively in-
terchangeable choices of the kernel. Fig. 1 situates our
work, an example of model criticism, in the modeling
workflow.

Related work. Robustness and sensitivity of data
analyses to data and model choice have been studied
for decades (Andrews et al., 1972; Huber and Ronchetti,
2009; Goodfellow et al., 2015). In the context of
Bayesian methods, sensitivity to the choice of prior has
been studied as well (Berger et al., 1994; Gustafson,
1996; Berger, 2000; Giordano et al., 2021). These works
assess sensitivity by varying the prior within a small
epsilon-ball around the user-specified prior with the
intuition that a small ball will mostly contain priors
that are acceptable alternatives to the user-specified
prior. In contrast, we note that the class of qualita-
tively interchangeable kernels is actually the class of
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alternative priors of interest; we explicitly define and
study sensitivity within this class.

Our focus on robustness to kernel choice stands in con-
trast to existing work on robustness in GPs, which focus
on robustness to data perturbations (Kim and Ghahra-
mani, 2008; Hernández-Lobato et al., 2011; Jylänki
et al., 2011; Ranjan et al., 2016; Bogunovic et al., 2018;
Cardelli et al., 2019). Our focus is also distinct from
that of works studying convergence rates (van der Vaart
and van Zanten, 2011; Teckentrup, 2020; Wang and
Jing, 2021; Wynne et al., 2021) and asymptotic predic-
tive equivalence (Stein, 1993; Bevilacqua et al., 2019;
Kirchner and Bolin, 2021) for GP regression with mis-
specified kernels. These works do not examine how
kernel choice affects non-linear functionals like poste-
rior variances, do not study what happens in finite
samples, and do not consider kernel choice as an issue
of prior specification as we do. One might hope that
automatic kernel discovery procedures (e.g. Benton
et al., 2019; Duvenaud et al., 2013; Wilson and Adams,
2013; Wilson et al., 2016) ostensibly obviate the need
for careful kernel specification. However, choosing a
particular kernel via model fitting does not preclude
that many other kernels might satisfy a user’s prior
beliefs. Indeed, we show that decisions made with ker-
nels selected via modern model fitting can still exhibit
non-robustness to kernel choice (Appendix E).

Model robustness versus model sensitivity. We
emphasize that the goal of our work is to assess model
robustness, which we now distinguish from model sen-
sitivity. Model sensitivity measures how much our re-
ported estimates change when we change our model. To
assess model robustness, though, we also need to know
how the model is being used. Often in applied analyses,
many models reasonably reflect our prior beliefs and
there is an application-specific threshold beyond which
changes in reported estimates are deemed important; if
our sensitivity is sufficiently high that we can observe
an “important” change within the “reasonable” mod-
els, we say that our conclusion is (model) non-robust.
While sensitivity is an objective and measurable quan-
tity, model robustness is inherently qualitative and
user-dependent. So the methods we present here are
(and should be) qualitative and user-dependent. Al-
though these general ideas are well-established (Berger
et al., 1994; Insua and Ruggeri, 2000), operationalizing
them in the context of GPs is novel and challenging.

Our contributions. We propose and implement the
first workflow to discover whether applied decisions
based on a GP posterior are robust to the choice of
the user-specified prior (i.e. the kernel). Our workflow
proceeds as follows. (A) Keep expanding a class of
appropriate kernels around the original kernel until
some kernel in this class yields a substantively different

Figure 1: Where we sit in the modeling workflow.

decision. (B) Assess if this decision-changing kernel is
qualitatively interchangeable with the original kernel.
If the two kernels are interchangeable, we conclude
the decision is not robust; a different decision could be
reached with the same prior information. If the two
kernels are not interchangeable, we cannot conclude
non-robustness. We provide a practical implementation
of steps (A) and (B). We demonstrate the practical
utility of our workflow by discovering non-robustness in
various applied uses of Gaussian processes: (1) predict-
ing whether a hospital patient’s heart rate is alarmingly
high, (2) predicting future carbon dioxide levels, and
(3) classifying MNIST handwritten digits.

2 OUR WORKFLOW

Setup and notation. Consider data D =
{(xn, yn)}Nn=1, with covariates xn ∈ RD and outcomes
yn ∈ R. We model this data as yn ∼ N (f(xn), σ2),
where f : RD → R is an unknown function, and σ > 0
is a noise parameter. We place a zero-mean Gaussian
process (GP) prior on f with kernel k. Equivalently,
we place a zero-mean GP prior on {yn}Nn=1 with kernel
k′(xn, xm) := k(xn, xm) + σ2δnm. Going forward, we
assume that kernels k′ are comprised of a base kernel
k plus a noise term σ2δnm. Typical base kernels k
depend on a vector of hyperparameters θk; for conve-
nience, we define θ := (θk, σ

2). Unless stated otherwise,
we assume that θ is estimated using maximum marginal
likelihood estimation (MMLE). That is,

θ̂ = (θ̂k, σ̂
2) = arg max

θk,σ2

p(y1:N , | x1:N , θk, σ
2). (1)

Let k0 be the practitioner-chosen base kernel with
MMLE hyperparameters θ̂k. Let F ?(k) be any scalar
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functional of the posterior f | D that is a differentiable
function of the base kernel k. Let the level L ∈ R
represent a decision threshold in F ?(k). That is, we
make one decision when F ?(k) ≥ L and a different one
when F ?(k) < L. For example, let time be a single
covariate, and let outcome be the resting heart rate of
a hospital patient. F ?(k) could be the 95th percentile
of the GP posterior at a given time; an alarm might
trigger if F ?(k) is greater than L =130 bpm but not
otherwise (Fidler et al., 2017). While many applied
examples use F ? as a function of the posterior at a
single test point x∗, we stress that F ? can be any
differentiable function of the posterior, e.g. the smooth
maximum of means at a set of test points (Section 4).

We want to assess whether our decision would change
if we used a different, but qualitatively interchangeable,
kernel. Without loss of generality, we assume that
F ?(k0) < L. Then we can define non-robustness.

Definition 1. For original kernel k0, we say that our
decision F ?(k0) < L is non-robust to the choice of
kernel if there exists a kernel k1 that is qualitatively
interchangeable with k0 and F ?(k1) ≥ L.

We emphasize that non-robustness as defined in Defini-
tion 1 is dependent on a number of user-dependent
quantities – k0, F ?, L, and the user’s qualitative
prior beliefs – as well as the particular observed data
{(xn, yn)}Nn=1 and σ̂. Also note that here we assess
robustness to the specification of the GP governing
the function f . In the present work, we do not assess
sensitivity to the choice of i.i.d. normal noise around
f or the choice to use a GP prior at all. But allow-
ing more components of the model to vary can only
increase sensitivity. So if we find an analysis is non-
robust using our current methods, the analysis would
remain non-robust if we allowed more model variation.

Workflow overview. Our workflow is summarized in
Algorithm 1. We start by defining a set Kε of kernels
that are “ε-near” k0. We then optimize:

k1(ε) := arg max
k∈Kε

F ?(k)

ε∗ = smallest ε s.t. F ?(k1(ε)) ≥ L. (2)

To find ε∗, we slowly increase ε until k1(ε) changes our
decision. We then check whether the decision-changing
kernel, k1(ε∗), is qualitatively interchangeable with
k0. It remains to precisely define a set of “ε-near”
kernels and show that we can efficiently solve Eq. (2)
(Section 2.1), and to provide ways to assess qualitative
interchangeability (Section 2.2).

Note that although Algorithm 1 can detect non-
robustness, it cannot certify robustness; it is possible,
even though it may be unlikely, that there exists a qual-
itatively interchangeable kernel that the methodology

has not detected but that still changes the decision.
The inability to decisively declare an analysis robust is
generally true of robustness analyses, and the present
workflow is no exception. This observation is similar
in spirit to classical hypothesis tests: a user can reject
– but not accept – a null hypothesis.

Algorithm 1 Workflow for assessing robustness of GP
inferences to kernel choice

1: Choose initial kernel k0 using prior information.
2: Choose posterior quantity of interest F ?. . E.g.

Posterior mean at test point x?

3: Define decision threshold L . E.g. 130 bpm is an
alarming resting heart rate

4: Define “ε-near” kernels Kε, for ε > 0 . Section 2.1
5: Solve Eq. (2) to get k1(ε∗) . Section 2.1
6: Assess if k0 and k1(ε∗) are qualitatively interchange-

able. . Section 2.2
7: if k0 and k1(ε∗) qualitatively interchangeable then

return “F ? is non-robust to the choice of kernel.”
8: else return “Did not find that F ? is non-robust

to the choice of kernel.”

2.1 Nearby kernels and efficient optimization

We give two practical examples of how to choose Kε
in the present work and detail how to solve Eq. (2)
in each case. First, we consider the case where we
assume k ∈ Kε should be stationary. Second, we allow
non-stationary kernels k ∈ Kε.

Stationary kernels. Stationary kernels k satisfy
k(xn,xm) := k(τ), where τ := xn−xm. By Bochner’s
theorem, every stationary kernel can be represented
by a positive measure (Rasmussen and Williams, 2006,
Thm. 4.1). In the kernel discovery literature, it is
common to make the additional assumption that this

measure has a density S(ω) =
∫
e−2πiτ

Tωk(τ)dτ (Wil-
son and Adams, 2013; Benton et al., 2019; Wilson et al.,
2016). These authors show that the class of stationary
kernels with a spectral density is a rich, flexible class of
kernels. So, we optimize over spectral densities S(ω) –
which are positive integrable functions on the reals – to
recover stationary kernels. To make this optimization
problem finite dimensional, we optimize the spectral
density over a finite grid of frequencies ω. All of our
examples here use 1-dimensional covariates, so we use
the trapezoidal rule to recover k. For our constraint
set Kε, we use an ε ball in the `∞ norm around the
spectral density of k0 for some ε > 0. We find this
simple constraint set to be sufficient for the examples
in this paper; however, if users have specific prior be-
liefs about how the spectral density of k1 should be
constrained, this Kε can be modified. We summarize
this constraint set and the resulting optimization objec-
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Algorithm 2 Objective and Kε for stationary kernels

Objective
1: Input: Frequencies ω1, . . . , ωG, and density values
S(ω1), . . . , S(ωG).

2: Approximate the integral k(τ) =
∫
e2πiτ

TωS(ω)dω
at τ needed to evaluate F ? (e.g. trapezoidal rule).

3: return F ?(k).

Constraint on S(ω1), . . . , S(ωG) defining Kε
1: Input: Frequencies ω1, . . . , ωG, density values
S(ω1), . . . , S(ωG), constraint set size ε > 0.

2: Compute S0(ω1), . . . , S0(ωG) (spectral density of
k0) via trapezoidal rule or exact formula.

3: if Spectral density S of k satisfies:

max
(
0, (1− ε)S0(ωg)

)
≤ S(ωg) ≤ (1 + ε)S0(ωg),

g = 1, . . . , G.

then return “In constraint set”
4: Else return “Not in constraint set”

tive in Algorithm 2; see Appendix A for more details,
including selection of ω1, . . . , ωG.

Non-stationary kernels. In many modeling prob-
lems, stationarity may be a choice of convenience
rather than prior conviction, or one may believe non-
stationarity is probable. In either case, we wish
to allow non-stationary kernels in the neighborhood
Kε. A convenient technique for constructing non-
stationary kernels relies on input warping (Rasmussen
and Williams, 2006, Sec 4.2.3). Given a kernel k0 and
a non-linear mapping g, we define a perturbed kernel
k(x,x′) = k0(g(x), g(x′)). This construction guaran-
tees that the perturbed kernel k is a kernel function as
long as k0 is a valid kernel. We let the function g have
parameters w and set g(x;w) := x + h(x;w), where
h : RD → RD is a small neural network with weights
w. By controlling the magnitude of h, we can control
the deviations from k0.

We could optimize the weights w under the constraint
‖h(x;w)‖22 ≤ ε. However, it is unclear how to enforce
this constraint. Instead, we select a grid of M points
x̃1, . . . , x̃M ∈ RD and add a regularizer to our ob-
jective, 1

ε
1
M

∑M
m=1 ||h(x̃m, w)||22, where ε controls the

regularization strength. We find using a grid of points
to be a computationally cheap, mathematically simple,
and empirically successful approximation to regulariz-
ing the entire function. We summarize our objective
as a function of the network weights w in Algorithm 3.
Note that we have also changed our objective to in-
clude a generic loss `; some care needs to be taken
to ensure that the optimal k1(ε) is finite. See Sec-
tions 4 and 5 for specific implementations of `. Given

the ŵ minimizing the objective in Algorithm 3, we set
k1(ε)(x,x′) = k0(g(x; ŵ), g(x′; ŵ)).

Algorithm 3 Objective for non-stationary kernels

1: Input: Grid points x̃1, . . . , x̃M , regularizer
strength ε > 0, neural network weights w ∈ RD.

2: Define neural network h(x;w) with weights w.
3: Define k(x,x′) := k0(x + h(x;w),x′ + h(x′;w)).

4: return `(k;F ?, L) + 1
ε

1
M

∑M
m=1 ||h(x̃m;w)||22

2.2 Assessing qualitative interchangeability

We introduce two assessments, similar to prior predic-
tive checks (Gabry et al., 2019), to assess qualitative
interchangeability between two kernels k0 and k1.

Visual comparison of prior draws. When the co-
variates x are low-dimensional, we can plot a small
collection of functions drawn from each of the two
distributions GP(0, k0) and GP(0, k1). To ensure that
visual differences between the priors are due to actual
differences in the kernels and not randomness in the
draws, we use noise-matched prior draws. To define
noise-matched draws, recall that one can draw from
an N -dimensional Gaussian distribution N (0,Σ) by
computing the Cholesky decomposition LL> = Σ; if
we draw z ∼ N (0, IN ), we then have Lz ∼ N (0,Σ).
We say that draws from two multivariate Gaussians
are noise-matched if they use the same z.

If the user believes the two plots express the same
qualitative information, the kernels are qualitatively
interchangeable under this test. A potential draw-
back to this method is that when covariates are high-
dimensional, it may be difficult to effectively visualize
prior draws. We address this concern next.

Comparison through Wasserstein distances.
Our second test for qualitative interchangeability com-
putes a distance between the priors GP(0, k0) and
GP(0, k1) and uses hyperparameter uncertainty in k′0
to help users understand whether this distance is large.
Although directly computing distances between Gaus-
sian processes is difficult, we can compare the GP(0, k′0)
and GP(0, k′1) priors on the set {x1, . . . ,xN}. On this
set, these priors are just multivariate normal distri-
butions with covariance matrices equal to the Gram
matrices k0(X,X)+ σ̂2IN and k1(X,X)+ σ̂2IN , where
X ∈ RN×D is the matrix of covariates. Going for-
ward, we denote by d(k′0, k

′
1) the 2-Wasserstein dis-

tance between these multivariate normals. We use the
2-Wasserstein as a default choice because it directly
corresponds to quantities easily interpretable by users:
a 2-Wasserstein distance of α means that coordinate-
wise standard deviations differ by at most α (Thm. 3.4
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Huggins et al., 2020). While we feel the 2-Wasserstein
distance provides a good default choice of d, users can
substitute other choices if there are application-specific
reasons why another distance is more meaningful. In
Appendix G, we discuss this possibility and also show
that our results are typically not sensitive to the choice
of d throughout our experiments.

Even though users may be able to understand the
meaning of d(k′0, k

′
1), users may still have difficulty

understanding whether d(k′0, k
′
1) is large or not. In

particular, users may not have an understanding of the
scale of d. To help users understand the scale of d, we
use a particular form of uncertainty about k′0. Since

we learn the hyperparameters θ̂ of k′0 from finite data,
there remains frequentist sampling uncertainty about
θ̂, which we denote by the distribution q(θ̂). We make

R i.i.d. draws {θ(r)}Rr=1 from q(θ̂) (or an approxima-
tion of q). For each r, we compute d(k′0, k

′(r)), where
k

′(r) has the same functional form as k′0 but with hy-

perparameters θ(r) instead of θ̂. To the extent that
bootstrap resamples capture frequentist sampling vari-
ability, users should be as open to using most k

′(r) as
they are to using k′0. Thus if d(k′0, k

′
1) is small relative

to the d(k′0, k
′(r))’s, we say that k0 and k1 are qualita-

tively interchangeable. Note that we cannot necessarily
reject qualitative interchangeability if d(k′0, k

′
1) is large

relative to the d(k′0, k
′(r)). For example, if we observe

more and more data (x, y) with the x’s contained in
a compact region of RD, then we expect our uncer-
tainty about the hyperparameters to go to zero. Thus,
for fixed k′1, d(k′0, k

′
1) will eventually always be large

relative to the d(k′0, k
′(r)).

In our experiments, we make the following choices. Un-
less otherwise stated, we approximately sample from
q(θ̂) by drawing bootstrap samples from {(xn, yn)}Nn=1

and re-solving Eq. (1) with the bootstrapped data. We
construct a histogram of the 2-Wasserstein distance
between k

′(r) and k′0 across r, with a marker indicat-
ing the position of the 2-Wasserstein between k′1 and
k′0. If the marker lies to the left of or within the his-
togram, we conclude that k1 and k0 are qualitatively
interchangeable.

2.3 Workflow illustration on synthetic data

Data and decision. Before turning to real data, we
illustrate our workflow with a synthetic-data exam-
ple. We consider N = 24 data points with a single
covariate; see the leftmost panel of Fig. 2. We assume
we have qualitative prior beliefs that (i) f is smooth
and (ii) our beliefs about f are invariant to translation
along the single covariate (stationarity). In this case a
plausible kernel choice is a squared exponential kernel:
k0(x1, x2) = exp

(
−0.5(x1−x2)2/`

)
. We estimate k0’s

hyperparameter ` and the noise parameter σ via max-
imum marginal likelihood estimation (MMLE). Four
draws from the resulting prior are shown in the second
panel of Fig. 2.

For the purposes of this illustration, we will look at
two separate decisions. One is at x? = 2.0, which is
within a dense region of training data (interpolation).
And one is at x? = 6.25, which is outside the range of
the training data (extrapolation). Our functional of
interest at either point will be the change in posterior
mean, F ?(k) := µ(x?, k) − µ(x?, k0), where µ(x?, k)
is the posterior mean at test point x under kernel
k. We suppose that we would make a different deci-
sion if the posterior mean changed by a small amount:
F ? ≥ L = 0.01. Intuitively, we expect only minor
changes to the prior to be needed to bring about such a
posterior change in our extrapolation example. In our
interpolation example, we expect a substantial change
to the prior to be needed to change the posterior even
a small amount, as we have intentionally chosen our
interpolation point to sit in a region of dense training
data. We now show that the output of our method
matches this intuition in both cases.

Nearby kernels. Since we assume stationarity, we
choose Algorithm 2 at line 4 of Algorithm 1. Fig. 3
(first panel) shows what happens as we increase ε to
solve Eq. (2). The black dots (extrapolation) quickly
cross the decision threshold line, so we have solved
Eq. (2). The orange triangles (interpolation) show that
a larger ε is required to breach our decision threshold.

Qualitative interchangeability: Visual compari-
son of prior draws. We now demonstrate our first
test for qualitative interchangeability. For our extrapo-
lation example (x? = 6.25), let k(ex) be the solution to
Eq. (2). The third panel of Fig. 2 shows prior draws
with k(ex); the draws are noise-matched with the sec-
ond panel. k(ex) is so similar to k0 that the two sets
of prior draws (second and third panels) are visually
indistinguishable. We say that k(ex) is qualitatively
interchangeable with k0.

Let k(in) be the solution to Eq. (2) for our interpolation
example (x? = 2.0). The fourth panel of Fig. 2 shows
prior draws with k(in); the draws are noise-matched
with the second panel. Again, by design, both sets of
draws (second and fourth panels) are stationary and
smooth. However, the magnitudes of peaks and troughs
with k(in) are much smaller than those with k0. Thus,
we say that k(in) is not qualitatively interchangeable
with k0 under this test.

Qualitative interchangeability: 2-Wasserstein
comparison. Histograms of the 2-Wasserstein dis-
tance between k0 and k(r) appear in Fig. 3. k(ex) sits
within the histogram of alternative kernels generated
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Figure 2: (Far left): Synthetic data. Vertical lines denote our interpolation point (x? = 2.0) and extrapolation point

(x? = 6.25). (Center left:) Draws from the original prior GP(0, k0). (Center right): Draws from GP(0, k(ex)). (Far right):

Draws from GP(0, k(in)). The prior draws are noise-matched to the draws from k0 (Section 2.2).

Figure 3: (Left): Maximal value of the function F ? as a function of constraint set ε. Comparison of the 2-Wasserstein
distance between k0(X,X) and k1(X,X) to the posterior variation due to hyperparameter uncertainty for extrapolation
(middle) and interpolation (right). The red line corresponds to our decision-changing kernel k1.

via hyperparameter uncertainty (center), whereas k(in)

sits outside this uncertainty region (right). As in our
prior visualization comparison, we say that k(in) is
not qualitatively interchangeable with k0 under our
2-Wasserstein comparison, whereas k(ex) is.

Finally, following our workflow, we conclude that our
extrapolation example is non-robust to the choice of
kernel in the sense of Definition 1. On the other
hand, in our interpolation example, we do not find
non-robustness.

3 STATIONARY PERTURBATIONS
TO A MODEL OF HEART RATES

We now provide an example of using our workflow
to assess the sensitivity of GP predictions of hospital
patient deterioration. Colopy et al. (2016) use a GP
to model individual patients’ heart rates and predict
potentially troubling behavior at a future time x?. We
check whether this prediction is robust to kernel choice.

Data, model, and decision. Colopy et al. (2016)
observe an outcome, heart-rate data measured in beats
per minute (bpm), as a function of one covariate, time.
The authors choose their GP model to have mean equal

to zero and a kernel equal to the sum of a squared
exponential and Matérn(5/2) kernel; see Appendix C.
We fit the overall kernel’s hyperparameters via MMLE
and refer to the resulting kernel as k0. Some standard
hospital alarm systems activate at 130 bpm (Fidler
et al., 2017), a threshold describing a worryingly-high
resting heart rate. So we consider the task of predicting
whether the 95th percentile of the GP posterior is above
L = 130 bpm. Most predictions in Colopy et al. (2016)
take place 1.5 hours in the future, so we set F ? to
be the 95th quantile at 1.5 hours hours after the last
observed data point. The data from Colopy et al. (2016)
is confidential, so we use heart-rate data from the 2019
Computing in Cardiology Challenge (Reyna et al., 2019;
Goldberger et al., 2000).

Prior beliefs. Colopy et al. (2016) note that k0 en-
codes the belief that “longer trends (on the order of
hours) are governed by the smooth RBF kernel, while
minutely variations in [heart-rate] are governed by a
twice-differentiable Matérn(5/2) kernel.” Although
Colopy et al. (2016) are not explicit about assuming
stationarity, we presume it is a reasonable prior belief
here; while we expect that a patient’s heart rate may
change while in the hospital, our prior beliefs about
the timing of any changes may be roughly uniform. We
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Figure 4: Sensitivity of heart rate analysis in Section 3. (Top row): (left) Observed data. (middle and right) Noise-matched
draws from original prior GP(0, k0) (middle) and alternative prior GP(0, k1) (right). (Bottom row): (left) Comparison of
the difference between k0 and k1 (red line) to bootstrapped hyperparameter uncertainty (histogram). (middle) Once we
expand the constraint set to ε = 0.24 the predicted 95% quantile of heart rate at x? exceeds 130 bpm (red line). (right)
Comparison of posterior distributions f(x?) | D computed using k0 (blue) and k1(ε∗) (red).

thus choose Kε according to the stationary specification
in Section 2.1.

Robustness. Fig. 4 depicts our workflow (Algo-
rithm 1) in action. We solve Eq. (2) to obtain k1(ε∗)
such that F ?(k1(ε∗)) ≥ L. We then compare noise-
matched samples from the priors using k0 and k1(ε∗).
The noise-matched samples do not clearly represent
different pieces of prior information; both prior plots dis-
play functions that are fairly rough with similar length
scales. Finally, we see that the 2-Wasserstein distance
between k0 and k1(ε∗) is substantially smaller than the
2-Wasserstein distance between k0 and kernels from
the sampling uncertainty in the MMLE hyperparame-
ters. Our tests suggest k0 and k1(ε∗) are qualitatively
interchangeable; we conclude that the prediction that
F ? will breach the alarm threshold is non-robust in
the sense of Definition 1. While this outcome may be
surprising, it is not entirely unintuitive. The patient’s
heart rate is trending up toward the end of the observed
data. In Appendix C, we show an example where the
observed data is trending downward at the end of the
observed data. In the latter case, the resulting kernel
k1(ε∗) fails both of our tests of qualitative interchange-
ability and so we cannot conclude non-robustness.

4 NON-STATIONARY
PERTURBATIONS TO A MODEL
OF CO2 LEVELS

In a now-classic analysis of carbon dioxide (CO2) levels
at Mauna Loa, Rasmussen and Williams (2006) pre-
dicted future CO2 levels based on data up to 2003.
With data up to 2021, we can now see that the Ras-

mussen and Williams (2006) analysis substantially un-
derestimates present-day CO2 levels; compare the gray
region (99.7% quantile of the original predictions) to
the green (true levels) in Fig. 5. In this section, we
show that this prediction of modern CO2 levels is non-
robust to kernel choice. In Appendix E, we repeat the
analysis with a kernel whose structure is learned using
the automatic statistician (Duvenaud et al., 2013) and
discover similar lack of robustness.

Data, model, and decision. At the present day,
monthly data for CO2 emissions is available from the
year 1958 through 2021. But Rasmussen and Williams
(2006) use training data up to 2003. Rasmussen and
Williams (2006) use a kernel that is a sum of four basic
kernels, where each term plays a specific role; e.g. a
periodic term models the periodic seasonal trend in
CO2 levels. See Appendix D for a full description of the
kernel. We take this kernel with hyperparameters fit
via MMLE as our k0. Actual CO2 levels breached 415
ppm for the first time in human history (Solly, 2019) in
2019. Under k0, this level lies more than three standard
deviations away from the predicted means in all of
2019. To see whether a qualitatively interchangeable
k1 would better predict modern CO2 levels, we let
F ? be the smooth-max of all posterior means in 2019.
We will say the posterior has substantively changed if
F ? ≥ L = 415 ppm.

Prior beliefs. While k0 is a stationary kernel we
might also have non-stationary prior information such
as known historical or expected future developments in
climate policy or technology. So we chooseKε according
to the non-stationary input-warping specification in
Section 2.1. For our regularizer grid, we use 600 evenly
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spaced points x̃1, . . . , x̃600 between 1958 and 2021 to
control h throughout our time period of interest. Input
warping the entire kernel as k = k0(g(x), g(x′)) would
violate an important piece of prior information that we
have about CO2 levels: CO2 has a regular seasonality,
with minimal levels in the winter and maximal levels in
the summer. The original k0 accounts for this feature of
the data with a periodic term; Fig. 5 (top) shows that
this periodicity lines up very well with the training data.
To produce an alternative kernel that accounts for this
piece of prior knowledge, we leave the periodic portion
of the kernel unwarped. To parameterize g, we use
a fully connected network with two hidden layers, 50
units, and ReLU nonlinearities. To ensure the optimal
k1 is finite, we take the loss in Algorithm 3 to be
`(k;F ?, L) = (F ?(k)− L)2 to guarantee our objective
is bounded below.

Robustness. We now use our workflow to ask whether
qualitatively interchangeable kernels might have bet-
ter predicted the record-breaking CO2 levels in 2019;
see Fig. 5 for our results. We lower the regularization
strength (i.e. increase ε in Algorithm 3) until F ? ≥ L.
In the bottom of Fig. 5, we plot noise-matched prior
draws from k0 alongside draws from the resulting k1(ε∗).
Differences between draws from k0 and k1(ε∗) are al-
most visually indistinguishable on this scale. A closer
inspection in Appendix D confirms that the two priors
capture the same yearly periodic trend. These same
zoomed-in plots show that the priors are not completely
indistinguishable; however, in our opinion, the draws
display the same prior beliefs. The 2-Wasserstein com-
parison in Fig. 16 of Appendix D further confirms that
the perturbed kernel sits well within the histogram of
alternate kernels stemming from hyperparameter un-
certainty. We conclude that future predictions of CO2

levels using the original k0 are non-robust to the choice
of kernel in the sense of Definition 1.

5 NON-STATIONARY
PERTURBATIONS IN
CLASSIFYING MNIST DIGITS

So far we have restricted our attention to low-
dimensional covariates. To evaluate our approach in
a high-dimensional setting, we reproduce the MNIST
image classification experiment of Lee et al. (2018). It
is rare to have specific beliefs about high-dimensional
functions, so in this case we do not consider k0 as aris-
ing from prior beliefs. Rather we imagine k0 is used
purely for convenience and predictive quality – but that
a malicious actor is interested in changing the kernel
to achieve different test predictions without detection.

Data, model, and decision. Similar to Lee et al.
(2018), we use 1000 randomly sampled MNIST images

for a training set, and a separate 1000 images for a test
set. Given a test image x?, Lee et al. (2018) predict
the class label c ∈ {1, . . . , C} by using a C-output
GP with compositional structure, considered as the
infinite-width limit of a sequence of Bayesian neural
networks (Lee et al., 2018; de G. Matthews et al.,
2018). Let fc(x

?) be the cth output. The authors
classify any image x? by picking the class c that has
the posterior mean of fc(x

?), i.e. µc(x
?), closest to

0.9; see Appendix F for details. We use the kernel and
hyperparameters from Lee et al. (2018) for k0. We
imagine that the malicious actor wants to change the
label of a single test image x? from its current label
c0 to a different label c1. For concreteness, we set
c1 := |c0 − 1|. We consider 1000 separate iterations of
this exercise, once for each of the 1000 test images. For
a particular x?, we set our posterior quantity of interest
to be F ? = |µc0(x?) − 0.9| − |µc1(x?) − 0.9|. Since
F ? ≥ 0 implies that we have changed the prediction
for x?, we set our decision threshold L = 0.

Malicious actor. Instead of considering a range of
priors that match prior beliefs, we here consider a range
of priors that will allow a malicious actor to avoid
detection. Since we have no prior belief of stationarity,
we use the non-stationary construction from Section 2.1.
We find that optimizing F ? directly leads to kernels
where for c 6= c1, µc(x

?) takes on values at least an
order of magnitude higher than for the original kernel.
This change could be easily detected by an automated
system. For the purposes of the malicious actor, we
therefore consider these kernels to not be qualitatively
interchangeable. We instead optimize a surrogate loss
that maximizes the log probability of c1 being correct
and all other classes being incorrect; see Appendix F.
We find that optimizing this surrogate loss leads to
more benign-looking µc(x

?) and achieves F ? ≥ L.

Robustness. Fig. 6 shows the results of our workflow
applied to this problem. We find a sufficiently large
setting of ε that allows us, across all 1000 test-image
problems, to change every decision. In particular, for
ε = 10−4, we are able to find perturbed kernels that
change the predicted class label in every case. It is
not clear how to visualize our priors in this applica-
tion. So, of the approaches in Section 2.2, we use only
the hyperparameter uncertainty visualization to assess
qualitative interchangeability. Lee et al. (2018) opti-
mize the hyperparameters of k0 over a grid. Instead
of bootstrapping this procedure, we note that the size
of the grid defines a natural variability in the hyperpa-
rameters θ̂. To be conservative, we sample θ(r) from an
area around the hyperparameters selected by Lee et al.
(2018) that is over 10 times smaller than the full grid.
(Using the full original grid would find more extreme
non-robustness.) The Gram matrices corresponding
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Figure 5: Sensitivity of the Mauna Loa analysis in Section 4. (Top-left): Predictions made with the original kernel
k0 (black) and a qualitatively interchangeable kernel k1 (red). (Top-right): F ?, the mean CO2 level in June 2020, as a
function of ε. (Bottom): Noise-matched draws from a GP(0, k0) (left) and GP(0, k1(ε∗)) (right) prior. See Appendix D for
a closer inspection of each prior draw.

Figure 6: Sensitivity of MNIST analysis in Section 5. (Left):
F ? as a function of regularizer strength. (Right): Histogram
of the 2-Wasserstein distances between the 1000 (one for
each test image) input-warped kernel Gram matrices (in
red) plotted with those arising from kernel hyperparameter
uncertainty around k0 (in black).

to our perturbed kernels are much closer to k0(X,X)
than are the Gram matrices corresponding to each θ(r).
We conclude that classification of handwritten digits
using k0 is non-robust to the choice of kernel in the
sense of Definition 1.

6 DISCUSSION

In this paper, we proposed and implemented a workflow
for measuring the sensitivity of GP inferences to the
choice of the kernel function. We used our workflow
to discover substantial non-robustness in a variety of
practical examples, but also showed that many analyses
are not flagged as non-robust by our method. There are

many exciting directions for expanding on the present
work – both within our existing workflow and beyond.
We discuss these directions below.

Improving our workflow. Our workflow is made
up of many modular parts, and in some parts choices
were made for mathematical convenience (e.g. the par-
ticular constraint in our stationary objective or the
particular regularizer in our non-stationary objective
in Algorithm 3). Perhaps different choices could be
made to allow easier detection of non-robustness – or
to allow for certification of robustness (whereas our
workflow can only fail to find non-robustness)

What should we do about non-robustness? Our
framework flags non-robustness but does not show how
to make an analysis more robust. The instances of non-
robustness we have found suggest it might be worth-
while to develop methods to robustify GP inferences
to the choice of kernel. One challenge would be how
to best balance robustness against the ability to adapt
to the prior assumptions at hand: if a method is com-
pletely robust to any change in prior assumptions, there
is no point in specifying a prior at all!

Studying model selection and robustness. Our
example in Section 4 shows that the use of sophisti-
cated kernel selection tools does not necessarily mean
robustness issues are not present. However, it could be
that non-robustness is typically lessened or removed
by the use of such tools. Or maybe certain classes of
kernel selection tools ameliorate non-robustness issues
more than others. It remains to formalize and study
these questions.
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A Details of spectral density constraints

Here, we give the details of how we optimize over spectral densities to produce a stationary kernel as summarized
in Algorithm 2. Our goal is to optimize over the set of stationary kernels. It is not immediately clear how to
enforce this constraint; however, Bochner’s theorem (Rasmussen and Williams, 2006, Thm. 4.1) tells us that every
stationary kernel k(x, x′) = k(τ), where τ = x− x′ has a positive finite spectral measure µ on RD such that:

k(τ) =

∫
RD

e2πiτ
Tωdµ(ω). (3)

A common assumption in the literature on kernel discovery (Wilson and Adams, 2013; Benton et al., 2019; Wilson
et al., 2016) is to assume that µ has a density S with respect to the Lebesgue measure; that is, we can write:

k(τ) =

∫
RD

e2πiτ
TωS(ω)dω. (4)

These works have shown that the class of stationary kernel with spectral densities is a rich, flexible class of kernels.
We thus focus on the class of stationary kernels with spectral densities as this allows us to transform the problem
of optimizing over stationary kernels into the problem of optimizing over positive real valued functions. In all
of our examples optimizing over spectral densities, we have D = 1. We thus assume D = 1 in the rest of our
development here. In this case, it must be that S is symmetric around the origin to obtain a real-valued k. So,
we can simply Eq. (4) further as:

k(τ) =

∫ ∞
0

cos(2πτω)S(ω)dω. (5)

Optimizing over positive functions S on the positive real line seems at least somewhat more tractable than
optimizing over stationary positive-definite functions k(τ). However, this is still an infinite dimensional optimization
problem. To recover a finite dimensional optimization problem, we follow Benton et al. (2019) and choose a
grid ω1, . . . , ωG. We can then optimize over the finite values S(ω1), . . . , S(ωG) and use the trapezoidal rule to
approximate the integral in Eq. (5). Benton et al. (2019) find that G = 100 gives reasonable performance in their
experiments; we find the same in ours, and fix G = 100 throughout. Benton et al. (2019) recommend setting
ωg = 2πg/(8τmax), where τmax is the maximum spacing between datapoints. We find this to sometimes give
inaccurate results in the sense that using the trapezoidal rule / an exact formula to compute the density of k0,
S(ω1), . . . , S(ωG) and then using the trapezoidal rule to recover the gram matrix k0(X,X) gives an inaccurate
approximation to k0(X,X). This is problematic in our case, as it would imply k0(X,X) is not in the constraint
set for small ε. Instead, we recommend setting our ωg’s as a uniform grid from ω1 = 0 up to an ωG such that
S0(ωG) is equal to the floating point epsilon (10−15 in our experiments); some manual experimentation will be
required to implement this rule.

As we are only interested in kernels nearby k0, we will have to put some kind of constraint on k1’s spectral density,
S1(ω1), . . . , S1(ωG). We use a simple ε-ball given by:

max
(
0, (1− ε)S0(ωg)

)
≤ S1(ωg) ≤ (1 + ε)S0(ωg), g = 1, . . . , G, (6)

Because our posterior functional of interest F ? is a differentiable function of the kernel matrix, we can compute
gradients of F ? with respect to our discretized spectral density. Rather than manually work out the derivatives of
the trapezoidal rule combined with F ?, we use the automatic differentiation package jax1 (Bradbury et al., 2018).
Given a gradient of F ?, we take a step in the direction of the gradient and then project the current iterate onto
our constraint set in Eq. (6) by clipping the resulting spectral density.

B Additional details of synthetic-data experiment

We generated the x-component of the synthetic data by first drawing 25 uniform random numbers in [0, 5]. To
investigate what happens when interpolating in a region of dense training data, we then add 3.00, 3.025, 3.075,

1Note that jax does not use 64 bit floating point numbers by default. We found that the increased precision given by
64 bit floating point arithmetic to be important in our experiments.
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Figure 7: Sensitivity of heart rate analysis in Appendix C for an example where we do not find non-robustness.
(Top-left): Heart rate data; notice the data is trending downwards at the end of the time series. (Top-right):
Prior draws from our original kernel k0 from Eq. (7)). (Bottom-left): Prior draws from our decision-changing
kernel k1 that achieves F ? = L, noise matched by color to the draws from k0. (Bottom-right): Comparison of the
difference between k0 and k1 (red line) to posterior hyperparameter uncertainty (histogram).

and 3.10 as covariates (recall the interpolation point is x? = 3.05). The extrapolation point x? = 5.29 lies 0.5 to
the right of the largest x value drawn. The y-component is defined to be

yn = xn + εn,

where εn
iid∼ N (0, 1.5).

To discretize the spectral density, we follow Appendix A in using 100 frequencies evenly-spaced from 0 to
3.5. To optimize over nearby spectral densities, we also perform constrained gradient descent with randomized
initializations in the sense of Appendix A. For extrapolation (x? = 5.29), using 25 random seeds, we find
non-robustness. For interpolation (x? = 3.05), even with 40 random seeds, we do not find non-robustness.

Fig. 13 compares the distance between k1 and k0 to the distances between k0 and k(r), where k(r) is a bootstrapped
version of k0.

Computation for the synthetic experiments is done using a computing cluster, which has xeon-p8 computing
cores. We request 7 nodes, each using 15 cores to run parallel experiments across both ε and the random seed for
initialization. Total wall-clock time comes to roughly 10 minutes.

C Additional details for the heart rate example

Here, we give additional details for our heart rate modeling example from Section 3. According to Reyna et al.
(2019), the data was collected under the approval of appropriate institutional review boards, and personal identifiers
were removed. Following Colopy et al. (2016), we first take the log transform of our heart rate observations yn.

We then zero-mean the observations (
∑N
n=1 yn = 0) and set them to have unit variance (

∑N
n=1 y

2
n = 1). The

kernel used by Colopy et al. (2016) to model the resulting data log-scaled standardized data is a Matérn 5/2



Measuring the robustness of Gaussian processes to kernel choice

kernel plus a squared exponential kernel:

k0(x, x′) = h21

(
1 +

√
5 |x− x′|
λ1

+
5 |x− x′|2

3λ1

)
exp

[
−
√

5 |x− x′|
λ1

]
+ h22 exp

[
−|x− x

′|2

2λ22

]
, (7)

where h1, h2, λ1, λ2 > 0 are kernel hyperparameters, which we set via MMLE. While all inferences are done on
the zero-mean, unit-variance log-scaled data, all of our plots and discussion are given in the untransformed (i.e.
raw bpm) scale for ease of interpretability.

In the main text, we showed an example where our workflow in Algorithm 1 discovered non-robustness in
predicting whether a patient’s heart rate would be likely to be above 130 BPM or not 1.5 hours in the future. We
noted that there was some evidence in the data supporting this finding: the patient’s heart rate was trending
upward towards the end of the observed data, so we might expect that small changes to the prior could result
in significant posterior mass being placed on high heart rates. To demonstrate that we do not always find GP
analyses non-robust to the choice of the prior, we give an example here where we do not find non-robustness.
For our example, we use a different patient from the Computing in Cardiology challenge Reyna et al. (2019);
Goldberger et al. (2000). The heart rate for this patient is plotted in Fig. 7; notice that their heart rate is trending
down at the end of the observed data.

As in Section 3, we use the constraint set and objective specified by Algorithm 2 (i.e. we constrain ourselves to
stationary kernels with spectral densities close to the density of k0). Following Algorithm 1, we solve Eq. (2) to
find k1(ε∗) such that F ?(k1(ε∗)) = L. We then assess whether the recovered k1(ε∗) is qualitatively qualitatively
interchangeable with k0. We plot noise-matched prior draws from k0 and k1(ε∗) in Fig. 7. We see that k1(ε∗)
has obvious qualitative deviations from k0; the functions drawn from k1(ε∗) have noticably larger variance
(count the number of times the functions from k1(ε∗) pass 130 bpm). Additionally, we see in Fig. 7 that the
2-Wasserstein distance between k0(X,X) and k1(X,X) is much larger than the typical deviations around k0 due
to hyperparameter uncertainty. We conclude that k0 and k1(ε∗) are not qualitatively interchangeable. Thus, we
say that we do not find non-robustness in the sense of Definition 1. Again, this conclusion is fairly sensible: at the
final observation, the patient’s heart rate is below 80 BPM and is trending downwards. It thus seems reasonable
that it would take a somewhat unusual prior to predict that the patient’s heart rate would suddenly spike to 130.

The two heart rate experiments in were run on a laptop with a six-core i7-9750H processor. The experiments
took roughly five minutes each to complete.

D Additional details for CO2 experiment

Here, we give additional details on the CO2 experiment from Section 4. Our dataset is a series of monthly CO2

levels taken from Mauna Loa in Hawaii between 1958 and 2021 (Keeling et al., 2005); we download our data from
https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in situ co2/monthly/monthly in situ co2 mlo.csv.
Rasmussen and Williams (2006, Section 5.4.3) predict future CO2 levels using a GP. Their kernel is the sum of
four terms:

k0(x1, x2) = θ21 exp

(
− (x1 − x2)2

2θ22

)
(8)

+ θ23 exp

(
− (x1 − x2)2

2θ24
− 2 sin2(π(x1 − x2))

θ25

)
(9)

+ θ26

(
1 +

(x1 − x2)2

2θ27θ8

)−θ8
(10)

+ θ29 exp

(
− (x1 − x2)2)

2θ210

)
, (11)

where the θi comprise the kernel hyperparameters (in addition to the noise variance σ2). The different components
of this kernel encode different pieces of prior knowledge. The two squared exponentials encode long-term trends
and small-scale noise, respectively. The rational quadratic kernel (Eq. (14)) encodes small seasonal variability in
CO2 levels between different years. The periodic kernel captures the periodic trend in CO2 levels, which peak in
the summer and reach their minimum in the winter. This periodic is multiplied by a squared exponential to allow
deviations away from exact periodicity.

https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/monthly/monthly_in_situ_co2_mlo.csv
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Figure 8: Sensitivity analysis of Mauna Loa. Each plot shows noise matched samples from a zero mean Gaussian
process with original and perturbed kernel functions. These plots provide a zoomed in view of the prior samples
shown in Fig. 5. We note that draws from k1(ε∗) are in-phase with those of k0 (i.e. k1(ε∗) captures the seasonal
maxima and minima of CO2 just as well as k0 does). Overall, there is high agreement between functions sampled
from the two GPs.
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Similar to (Rasmussen and Williams, 2006, Section 5.4.3), we first transform the training data by making the
CO2 levels have zero mean. To set the GP hyperparameters, we find that the hyperparameters values reported in
Rasmussen and Williams (2006, Section 5.4.3) are close, but not exactly, the MMLE solution on our data set (the
gradient of the marginal log-likelihood has an entry substantively different from zero under the parameters from
Rasmussen and Williams (2006)).2 We set hyperparameters by 10 random restarts of MMLE, where the solution
iterates are initialized at the values reported in (Rasmussen and Williams, 2006, Section 5.4.3). The fitted values
are θ1 = 68.58, θ2 = 69.09, θ3 = 2.55, θ4 = 87.60, θ5 = 1.44, θ6 = 0.66, θ7 = 1.18, θ8 = 0.74, θ9 = 0.18, θ10 = 0.13,
θ11 = 0.19. They are, for the most part, within 5% of the values reported in Rasmussen and Williams (2006,
Section 5.4.3).

When Rasmussen and Williams (2006) ran their analysis, only data up to 2003 were available. As it turns out,
their analysis significantly underestimates current CO2 levels. In particular, they fail to predict the fact that CO2

levels hit 415 ppm for the first time in human history in 2019; in fact, the maximum of the predicted CO2 levels
in 2019 is over three posterior standard deviations away from 415 ppm. We ask if a qualitatively interchangeable
kernel could have changed this result. Ideally, we would set F ? to be the max of all posterior predictions in 2019.
However, this is not a smooth function of the kernel. So we instead let F ? to be the smooth max of the posterior
means of all the test points in 2019, {µ(xt)}Tt=1. The smooth-max we use is a scaled log-sum-exp, with a scale
α > 0:

F ?(k) = log

(
T∑
t=1

eαµ(xt)

)
/α.

Larger values of α provide a better approximation to the actual max function but may cause numerical difficulties;
we choose α = 10 as it seems to provide a reasonable approximation to the max function without introducing
numerical problems. While we optimize using this approximation to the max, our experiments show that the
recovered k1(ε∗) have an exact max prediction in 2019 of 415 ppm.

k0 is stationary, so we could search for alternative stationary kernels using our spectral density framework from
Section 2.1 (Algorithm 2). However, there is good reason to think we might want to consider non-stationary prior
beliefs. Developments in technology and/or global policy could have a large impact on CO2 levels. Thus, we
might encode past / expected future changes in technology and policy into our prior beliefs, making our prior
beliefs non-stationary.

Thus, we use the input warping approach from Section 2.1 (Algorithm 3). However, we do not input warp the
entirety of k0. As we know CO2 data has a regular periodicity, we leave the periodic component of the kernel,
exp[−2 sin2(π(x1 − x2))/θ25] unwarped. In preliminary experiments, we input warped the entirety of k0; the
resulting prior draws sometimes had minima in the summer and maxima in the winter, a clear violation of our
prior knowledge about CO2 levels. We input warp all other parts of k0 using a use a two hidden layer fully
connected network, with 50 units and ReLU nonlinearities to parameterize h. Finally, to ensure the optimal k1(ε)
is finite, we use `(k;F ?, L) = (F ?(k)−L)2 in Algorithm 3, which guarantees that our objective is bounded below.

We plot noise matched prior draws for k0 and k1(ε∗) in Fig. 8. The samples from k1(ε∗) appropriately line up
with the expected maxima and minima of CO2 levels (to see this, note that the draws from k1(ε∗) are in-phase
with those from k0, which correctly captures the seasonal maxima and minima). The deviations between the
noise-matched samples do not seem significant, so we say that k1(ε∗) and k0 are qualitatively interchangeable.
Further, we find that the distance between k1(ε∗) and k0 is smaller than what we might expect to arise from
sampling uncertainty about k0’s hyperparameters (see Fig. 16 in Appendix G). We therefore conclude that the
prediction of CO2 levels under k0 is non-robust to the choice of the kernel in the sense of Definition 1.

The Mauna Loa experiments were run on a laptop with a 2.3 GHz 8-Core Intel Core i9, with 64 GB of RAM.
The experiment (which optimizes from five random initialization) took about 15 minutes to run, with each seed
taking about 3 mins.

2This problem might be due to the existence of slightly different versions of the Mauna Loa data set. The originally
link for the data http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2 is no longer responsive, for instance.

http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2


Stephenson, Ghosh, Nguyen, Yurochkin, Deshpande, and Broderick

Figure 9: Sensitivity of the Mauna Loa analysis in Appendix E. (Top-left): Predictions made with the automatic
statistician kernel k0 (black) and a qualitatively interchangeable kernel k1 (red). (Top-right): F ?, the mean CO2 level in
June 2020, as a function of ε. (Bottom): Noise-matched draws from a GP(0, k0) (left) and GP(0, k1(ε∗)) (right) prior. See
Fig. 10 for a closer inspection of each prior draw.

E CO2 experiments using the automatic statistician

Here we use the kernel learned by the automatic statistician Duvenaud et al. (2013) to model the Mauna-Loa
CO2 data. The automatic statistician kernel is:

k0(x1, x2) =
(
θ21 + θ22(x1 − θ3)(x2 − θ3)

)
× θ24 exp

(
− (x1 − x2)2

2θ25

)
(12)

+ θ26 exp

(
−2 sin2(π(x1 − x2)/θ7)

θ28

)
× θ29 exp

(
− (x1 − x2)2

2θ210

)
(13)

+ θ211

(
1 +

(x1 − x2)2

2θ212θ13

)−θ14
× θ215 exp

(
− (x1 − x2)2)

2θ216

)
. (14)

We learned the hyper-parameters of the kernel by maximizing the marginal likelihood on data up till 2003,
mimicking the process used for learning the parameters of the hand designed kernel described in Appendix D.
Fig. 9 presents analogous results to those presented in Fig. 5 for the hand designed kernel.

F More details on MNIST experiments

We use the publicly available neural-tangents (Novak et al., 2020) package for constructing the kernels in our
MNIST experiments. We follow the experimental setup of Lee et al. (2018) where the authors use a Gaussian
process with a kernel corresponding to a 20 layer, infinitely wide, fully connected, deep neural network with ReLU
non-linearities. They place zero mean Gaussian priors over the weights, N (0, σ2

w), and biases, N (0, σ2
b ), and set

the hyper-parameters σ2
w = 1.45 and σ2

b = 0.28 via a grid search over parameters to maximize held-out predictive
performance. Lee et al. (2018) use a GP with C = 10 outputs (classes). They pre-process one-hot encoded output
vectors to have zero mean, i.e. yic = 0.9 if c is the correct class for the ith training point, and yic = −0.1 for all
incorrect classes; input images are flattened and an overall mean is subtracted from every image. Test prediction
is made by selecting a class corresponding to the GP output with mean closest to 0.9. The resulting GP trained
on one thousand images from the MNIST training set and evaluated on the MNIST test set achieves an accuracy
of 92.79%.

In our experiments we assess the robustness of their kernel. The 28×28 MNIST images require a warping function
g : R784 → R784. We use a fully connected multi-layer perceptron with one 784 unit hidden layer, 784 input, and
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Figure 10: Sensitivity analysis of Mauna Loa. Each plot shows noise matched samples from a zero mean Gaussian
process with original and perturbed kernel functions. These plots provide a zoomed in view of the prior samples
shown in Fig. 9. We note that draws from k1(ε∗) are in-phase with those of k0 (i.e. k1(ε∗) captures the seasonal
maxima and minima of CO2 just as well as k0 does). Overall, there is high agreement between functions sampled
from the two GPs.
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Figure 11: Additional MNIST experiments. Here we visualize the training and test set performances along the
hyperparamter grid used for assessing qualitative interchangeability. The train and test accuracies exhibit high
performance and low variability across the grid.

Figure 12: Example test images from Section 5. x? (upper) and their warps g(x?) (lower) and predicted class
labels (above and below).

784 output units with ReLU non-linearities to parametrize g. Let c0 be the prediction under the original kernel
at a target test image x?. We define c1 := |c0 − 1| and create a “fake” output y∗ with y∗c1 = 0.9 and y∗c = −0.1
for c 6= c1. We find parameters of g by minimizing the objective in Algorithm 3 plugging in

`(k;F ?, L) = − 1

C

10∑
c=1

log p(y∗c |X,x?, Y ), (15)

i.e. the negative log-likelihood of the “fake” output at a particular test image x? under the perturbed kernel;
X and Y are the train inputs and outputs. As we discussed in the main text, directly optimizing the posterior
quantity of interest F ? = |µc0(x?)− 0.9|− |µc1(x?)− 0.9| produces unrealistic outputs, e.g. µc0(x?)� −0.1. Such
predictions would look obviously suspicious to a user, so we would say that our supposed malicious actor has not
achieved their goal in this case. Instead, we optimize the surrogate loss in Eq. (15). With this surrogate loss we
are able to find kernel perturbations yielding benign-looking outputs and achieving the goal of the malicious actor
to change the prediction at x? to c1, i.e. µc1(x?) ≈ 0.9 and µc(x

?) ≈ −0.1 for all c 6= c1. In this case, we feel
that a user would not be able to identify these predictions as obviously wrong, and so we say that the malicious
actor has achieved their goal of changing the predictions of k0 without detection.

Hyperparameter sensitivity. To quantify variability in the Gram matrices arising from hyperparameter
uncertainty, we vary σ2

w over 30 uniformly spaced points between 1.4 and 1.5, and σ2
b over 30 uniformly spaced

points between 0.23 and 0.33. This defines a grid that is ten times smaller than the grid Lee et al. (2018) optimize

their hyperparameters over when searching for θ̂. Thus we have no reason to pick θ̂ as the true optimum over any
of our grid points; that is, our grid points provide a natural (conservative) notion of uncertainty in θ̂. Fig. 11
shows that over the 900 possible hyperparameter combinations the train and test accuracies remain high and
exhibit low variability.

The experiment took approximately 55 minutes to run for a single test image. We ran the computations for the
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1000 test images in parallel on a compute cluster with Intel Xeon E5-2667 v2, 3.30GHz cores, requesting one core
each time.

G Additional Gram matrix comparisons

To assess qualitative interchangeability, we compared the 2-Wasserstein distance d between the Gram matrices
k0(X,X) and k1(ε∗)(X,X) to the 2-Wasserstein distance between k0(X,X) and k(r)(X,X), where k(r) had the
same functional form as k0 but different hyperparameters. In Section 2.2, we argue that the 2-Wasserstein distance
is a good default choice, as it corresponds to coordinate-wise differences in standard deviations. However, we
emphasize that if a user has problem-specific knowledge that would make another distance d more suitable, then
our workflow can use this d just as well. For example, if a user thinks that for any points x1, x2 ∈ RD, deviation
in the covariance |k1(x1, x2)− k0(x1, x2)| is meaningful in their problem, then they may want to consider d as
the infinity norm between Gram matrices. Here, we examine what what happens in all of our experiments when
considering a number of matrix norms and statistical distances for d; in particular, we consider the Frobenius
norm, nuclear norm, spectral norm, infinity norm, and symmetrized Kullback-Leibler distance.

In Figs. 13 to 15 and 18, we show the results of our histogram tests for qualitative interchangeability under
these alternative d’s for our synthetic and heart-rate experiments. While the use of some d’s leads to the same
conclusion as our use of the 2-Wasserstein distance in the main text, the use of the spectral norm or infinity
norm can result in a different conclusion. In particular, in our synthetic extrapolation experiment and our heart
rate example from the main text, we concluded that k1(ε∗) and k0 were qualitatively interchangeable (the red
line sat to the left of the grey histograms); however, in Figs. 13 and 15, we see that the red line lies to the
right of the grey histograms, which would lead us to reject qualitative interchangeability. We note that it is not
surprising that kernels optimized according to Algorithm 2 deviation significantly in the spectral norm or infinity
norm. This is because Algorithm 2 only constraints the spectral density of k1(ε∗) to be close in a percentage-wise
sense to the spectral density of k0. If the spectral density of k0 is large in an absolute sense – and it typically
is for lower frequencies – then k1(ε∗)’s spectral density can have large deviations in an absolute sense. Large
absolute deviations in the spectral density allow for large absolute deviations in the Gram matrices. As large
absolute deviations in the Gram matrices is what the spectral and infinity norm measure, it is unsurprising
that ‖k1(ε∗)(X,X)− k0(X,X)‖spectral and ‖k1(ε∗)(X,X)− k0(X,X)‖infinity are somewhat large. So, if a user
decides that the spectral or infinity norm are appropriate in their context, we recommend using a constraint set
in Algorithm 2 that better reflects this choice. E.g. one might constrain the density of k1(ε∗) to be close in both
a percentage and absolute sense.

Our CO2 modeling example and MNIST example do not use the stationary constraints from Algorithm 2. We see
in Figs. 16 and 17 that under all alternative choices of d we consider here (including the spectral and infinity
norms), we reach the same conclusions about qualitative interchangeability as we did under the 2-Wasserstein
distance.
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Figure 13: Extra hyperparameter uncertainty histograms for our synthetic extrapolation example in Section 2.3
in which we find find non-robustness. We compare the difference between k0 and k1(ε∗) (red) to bootstrapped
hyperparameter uncertainty (gray) in several distances.
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Figure 14: Extra hyperparameter uncertainty histograms for our synthetic interpolation example in Section 2.3 in
which we find do not find non-robustness. We compare the difference between k0 and k1(ε∗) (red) to bootstrapped
hyperparameter uncertainty (gray) in several distances.

Figure 15: Extra hyperparameter uncertainty histograms for our heart rate experiment in Section 3 in which we
find non-robustness. We compare the difference between k0 and k1(ε∗) (red) to bootstrapped hyperparameter
uncertainty (gray) in several distances.
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Figure 16: Extra hyperparameter uncertainty histograms for our Mauna Loa experiment in Section 4 in which we
find non-robustness. We compare the difference between k0 and k1(ε∗) (red) to bootstrapped hyperparameter
uncertainty (gray) in several distances.
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Figure 17: Extra hyperparameter uncertainty histograms for our MNIST experiment in Section 5 in which we
find non-robustness. We compare the difference between k0 and k1(ε∗) (red) to bootstrapped hyperparameter
uncertainty (gray) in several distances. Note, distances are plotted on the log-scale.

Figure 18: Extra hyperparameter uncertainty histograms for our additional heart rate experiment in Appendix C
in which we to find non-robustness. We compare the difference between k0 and k1(ε∗) (red) to bootstrapped
hyperparameter uncertainty (gray) in several distances.
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