Chekroun, M.D., H. Liu, and J.C. McWilliams, 2023. Optimal Parameterizing Manifolds for Anticipating Tipping Points and Higher-Order Critical Transitions. Chaos 33(9), 093126. doi:10.1063/5.0167419
Journals
Chekroun, M.D., H. Liu, J.C. McWilliams, and S. Wang, 2023. Transitions in Stochastic Non-Equilibrium Systems: Efficient Reduction and Analysis. Journal of Differential Equations 346, 145–204. doi:10.1016/j.jde.2022.11.025
Foucart, C., A. Charous, and P.F.J. Lermusiaux, 2023. Deep Reinforcement Learning for Adaptive Mesh Refinement. Journal of Computational Physics 491, 112381. doi:10.1016/j.jcp.2023.112381
Gupta, A. and P.F.J. Lermusiaux, 2023. Bayesian Learning of Coupled Biogeochemical-Physical Models. Progress in Oceanography 216, 103050. doi:10.1016/j.pocean.2023.103050
Gupta, A., and P.F.J. Lermusiaux, 2023. Generalized Neural Closure Models with Interpretability. Scientific Reports 13, 10364. doi:10.1038/s41598-023-35319-w
Trippe, B.L., S.K. Deshpande, and T. Broderick, 2023. Confidently Comparing Estimates with the c-value. Journal of the American Statistical Association 0(0), 1–12. doi:10.1080/01621459.2022.2153688
Chekroun, M.D., I. Koren, H. Liu, and H. Liu, 2022. Generic Generation of Noise-Driven Chaos in Stochastic Time Delay Systems: Bridging the Gap with High-End Simulations. Science Advances 8(46), eabq7137. doi:10.1126/sciadv.abq7137
Chekroun, M.D., H. Liu, and J.C. McWilliams, 2021. Stochastic Rectification of Fast Oscillations on Slow Manifold Closures. Proceedings of the National Academy of Sciences of the United States of America 118(48), e2113650118. doi:10.1073/pnas.2113650118
Gupta, A. and P.F.J. Lermusiaux, 2021. Neural Closure Models for Dynamical Systems. Proceedings of The Royal Society A, 477(2252), 1–29. doi:10.1098/rspa.2020.1004
Santos Gutiérrez, M., V. Lucarini, M.D. Chekroun, and M. Ghil, 2021. Reduced-order Models for Coupled Dynamical Systems: Data-driven Methods and the Koopman Operator. Chaos 31(5), 053116. doi:10.1063/5.0039496