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CrossMark
Abstract

This work proposes a general framework for analyzing noise-driven transitions
in spatially extended non-equilibrium systems and explaining the emergence
of coherent patterns beyond the instability onset. The framework relies on
stochastic parameterization formulas to reduce the complexity of the ori-
ginal equations while preserving the essential dynamical effects of unresolved
scales. The approach is flexible and operates for both Gaussian noise and non-
Gaussian noise with jumps. Our stochastic parameterization formulas offer
two key advantages. First, they can approximate stochastic invariant manifolds
when these manifolds exist. Second, even when such manifolds break down,
our formulas can be adapted through a simple optimization of its constitutive
parameters. This allows us to handle scenarios with weak time-scale separa-
tion where the system has undergone multiple transitions, resulting in large-
amplitude solutions not captured by invariant manifolds or other time-scale
separation methods. The optimized stochastic parameterizations capture then
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how small-scale noise impacts larger scales through the system’s nonlinear
interactions. This effect is achieved by the very fabric of our parameteriza-
tions incorporating non-Markovian (memory-dependent) coefficients into the
reduced equation. These coefficients account for the noise’s past influence, not
just its current value, using a finite memory length that is selected for optimal
performance. The specific memory function, which determines how this past
influence is weighted, depends on both the strength of the noise and how it
interacts with the system’s nonlinearities. Remarkably, training our theory-
guided reduced models on a single noise path effectively learns the optimal
memory length for out-of-sample predictions. This approach retains indeed
good accuracy in predicting noise-induced transitions, including rare events,
when tested against a large ensemble of different noise paths. This success
stems from our hybrid approach, which combines analytical understanding
with data-driven learning. This combination avoids a key limitation of purely
data-driven methods: their struggle to generalize to unseen scenarios, also
known as the ‘extrapolation problem.’

Keywords: spatially extended non-equilibrium systems, transition paths,
data-driven optimization, stochastic parameterization, jump process,
critical transitions
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1. Introduction

Non-equilibrium systems are irreversible systems characterized by a continuous flow of energy
that is driven by external forces or internal fluctuations. There are many different types of
non-equilibrium systems, and they can be found in a wide variety of fields, including physics,
chemistry, biology, and engineering. Non-equilibrium systems can exhibit complex behavior,
including self-organization, pattern formation, and chaos. These complex behaviors arise from
the interplay of nonlinear dynamics and statistical fluctuations. The emergence of coherent,
complex patterns is ubiquitous in many spatially extended non-equilibrium systems; see e.g. [7,
12, 60, 98, 125, 126, 129, 136, 152, 178]. Mechanisms to explain the emergence of these pat-
terns include the development of instability saturated by nonlinear effects whose calculations
can be conducted typically near the onset of linear instability; see e.g. [58, 120]. Historically,
hydrodynamic systems have been commonly used as prototypes to study instabilities out of
equilibrium in spatially extended systems, from both an experimental and a theoretical point
of view [59, 60].

To describe how physical instability develops in such systems with infinitely many degrees
of freedom, we often focus on the amplitudes’ temporal evolution of specific normal modes.
The latter correspond typically to those that are mildly unstable and that are only slightly
damped in linear theory. When the number of these nearly marginal modes is finite, their
amplitudes are governed by ordinary differential equations (ODEs) in which the growth rates
of the linear theory have been renormalized by nonlinear terms [58, 60, 98, 120]. Intuitively,
the reason for this reduction is a simple separation of time scales. Modes that have just crossed
the imaginary axis have a small real part and are evolving slowly on long time scales, all the
other fast modes rapidly adapting themselves to these slow modes.

However, for non-equilibrium systems away from the onset of linear instability, such as
when the Reynolds number for a fluid flow increases far beyond a laminar regime, the emer-
gence of coherent patterns does not fit within this instability/nonlinear saturation theory as
the reduction principle of the fast modes onto the slow ones breaks down [58] and calls for
new reduction techniques to explain emergence. Furthermore, in the presence of random fluc-
tuations, reduced equations under the form of deterministic ODEs are inherently incapable
to capture phenomena like noise-induced transitions. Noise can have unexpected outcomes
such as altering the sequence of transitions, possibly suppressing instabilities [44], the onset
of turbulence [21] or, to the opposite, exciting transitions [104, 152]. Examples in which noise-
induced transitions have an important role include the generation of convective rolls [1, 81],
electroconvection in nematic liquid crystals [104, 144], certain oceanic flows [158, 162], and
climate phenomena [69, 123, 148, 154].
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This work aims to gain deeper insights into the efficient derivation of reduced models for
such non-equilibrium systems subject to random fluctuations [60, 152]. In that respect, we seek
reduced models able to capture the emergence of noise-driven spatiotemporal patterns and pre-
dict their transitions triggered by the subtle coupling between noise and the nonlinear dynam-
ics. Our overall goal is to develop a unified framework for identifying the key variables and
their interactions (parameterization) in complex systems undergoing noise-driven transitions.
We specifically focus on systems that have experienced multiple branching points (bifurca-
tions), leading to high-multiplicity regimes with numerous co-existing metastable states whose
amplitude is relatively large (order one or more) resulting from a combination of strong noise,
inherent nonlinear dynamics, or both. The purpose is thus to address limitations of existing
approaches like amplitude equations and center manifold techniques in dealing with such
regimes.

To address these limitations, the framework of optimal parameterizing manifolds (OPMs)
introduced in [37, 39, 41] for forced-dissipative systems offers a powerful solution. This frame-
work allows for the efficient derivation of parameterizations away from the onset of instability,
achieved through continuous deformations of near-onset parameterizations that are optimized
by data-driven minimization. Typically, the loss function involves a natural discrepancy met-
ric measuring the defect of parameterization of the unresolved variables by the resolved ones.
The parameterizations that are optimized are derived from the governing equations by means
of backward—forward (BF) systems providing useful approximations of the unstable growth
saturated by the nonlinear terms, even when the spectral gap between the stable and unstable
modes is small [39, 41, 43]. These approximations, once optimized, do not suffer indeed the
restrictions of invariant manifolds (spectral gap condition [41, equation (2.18)]) allowing to
handle situations with e.g. weak time-scale separation between the resolved and unresolved
modes.

In this article, we carry over this variational approach to the case of spatially extended non-
equilibrium systems within the framework of stochastic partial differential equations (SPDEs).
In particular, we extend the parameterization formulas obtained in [40, 42, 43] for SPDEs
driven by multiplicative noise (parameter noise [81, 152]), to SPDEs driven, beyond this onset,
by more realistic, spatio-temporal noise either of Gaussian or of non-Gaussian nature with
jumps. For this class of SPDEs, our framework allows for dealing with the important case of
cutoff scales larger than the scales forced stochastically.

For this forcing scenario, the stochastic parameterizations derived in this work, give rise
to reduced systems taking the form of stochastic differential equations (SDEs) with non-
Markovian, path-dependent coefficients depending on the noise’s past; see e.g. section 5.2
below. We mention that many time series records from real-world datasets, are known to
exhibit long-term memory. This is the case of long-range memory features assumed to repres-
ent the internal variability of the climate on time scales from years to centuries [75, 127, 150,
155]. There, the surface temperature is considered as a superposition of internal variability
(the response to stochastic forcing) and a forced signal which is the linear response to external
forcing. The background variability may be modeled using a stochastic process with memory,
or a different process that incorporates non-Gaussianity if this is considered more appropriate
[151]. As will become apparent at the end of this paper, our reduction approach is adaptable
to PDEs under the influence of stochastic forcing with long-range dependence; see section 9.

In parallel and since Hasselmann’s seminal work [95], several climate models have been
incorporating stochastic forcing to represent unresolved processes [13, 77, 114, 117, 121, 134].
Our approach shows that reduced models derived from these complex systems are expected
to exhibit finite-range memory effects depending on the past history of the stochastic forcing,
even if the latter is white in time. These exogenous memory effects, stemming from the forcing
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noise’s history, are distinct from endogenous memory effects encountered in the reduction of
nonlinear, unforced systems [48, 86, 117]. The latter, predicted by the Mori—Zwanzig (MZ)
theory, are functionals of the past of the resolved state variables. Endogenous memory effects
often appear when the validity of the conditional expectation in the MZ expansion, breaks
down [37, 38, 117, 161]. The exogenous memory effects dealt with in this work, have a dif-
ferent origin, arising as soon as the cutoff scale is larger than the scales forced stochastically.

It is worth mentioning that reduced models with non-Markovian coefficients responsible for
such exogenous memory effects, have been encountered in the reduction of stochastic systems
driven by white noise, albeit near a change of stability. These are obtained from reduction
approaches benefiting from timescale separation such as stochastic normal forms [5, 52, 130],
stochastic invariant manifold (SIM) approximations [40, 42, 43, 73], or multiscale methods
[14, 16, 17, 106]. Our reduction approach is not limited to timescale separation.

In that respect, our reduction framework is tested against a stochastic Allen—Cahn equation
(sACE), a powerful tool for modeling non-equilibrium phase transitions in various scientific
fields [22, 60, 98, 164]. The latter model is set in a parameter regime with weak timescale
separation and far from the instability onset, in which the system exhibits multiple coexisting
metastable states connected to the basic state through rare or typical stochastic transition paths.

We show that our resulting OPM reduced systems, when trained over a single path, are
not only able to retain a remarkable predictive power to emulate ensemble statistics (correl-
ations, power spectra, etc) obtained as average over a large ensemble of noise realizations,
but also anticipate what are the system’s typical and rare metastable states and their statistics
of occurrence. The OPM reduced system’s ability to reproduce accurately such transitions is
rooted in its very structure. Its coefficients are nonlinear functionals of the aforementioned
non-Markovian terms (see equation (85) below) allowing for an accurate representation of the
genuine nonlinear interactions between noise and nonlinear terms in the original sACE, which
drive fluctuations in the large-mode amplitudes.

We emphasize, that because the cutoff scale, defining the retained large-scale dynamics,
is chosen here to be larger than the forcing scale, any deterministic reduction (e.g. Galerkin,
invariant manifold, etc) would filter out the underlying noise’s effects. This leaves them blind
to the subtle fluctuations driving the system’s behavior and leading eventually to stochastic
transitions. In contrast, our stochastic parameterization approach sees right through this filter.
It tracks how the noise, acting in the ‘unseen’ part of the system, interacts with the resolved
modes through our reduction method’s non-Markovian coefficients.

To demonstrate the broad applicability of our reduction approach, we apply it in section 6 to
another significant class of spatially extended non-equilibrium systems: jump-driven SPDEs.
The unforced, nonlinear dynamics is here chosen to exhibit an S-shaped solution curve.
Many systems sharing this attribute are indicative of multistability, tipping points, and hys-
teresis. Such behaviors are observed in various fields, including combustion theory [8, 76],
plasma physics [88, 157], ecology [126], neuroscience [102], climate science [83, 131], and
oceanography [165, 172]. By understanding the complex interactions between noise and non-
linearity into these phenomena, we can gain insights into critical transitions and tipping points,
which are increasingly relevant to addressing global challenges like climate change [19, 20,
113, 117, 173].

Jump processes offer a powerful tool for modeling complex systems with non-smooth
dynamics. They offer valuable insights into multistable behaviors [156, 179] and have been
applied to various real-world phenomena, such as paleoclimate events [68, 151], chaotic
transport [159], atmospheric dynamics [46, 47, 105, 137, 160, 166], and cloud physics [33,
100].
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SPDEs driven by jump processes are gaining increasing attention in applications [66].
For instance, jump processes can replace (non-smooth) ‘if-then’ conditions in such models,
enabling more efficient simulations [47]. Nevertheless, efficient reduction techniques to dis-
entangle the jump interactions with other smoother nonlinear components of the model, are
still under development [115, 174, 176]. Our stochastic parameterization framework provides
a promising solution in this direction, as demonstrated in section 6. By capturing the intric-
ate interplay between jump noise and nonlinear dynamics within the reduced equations, our
approach can significantly simplify the analysis of such complex systems.

2. Invariance equation and approximations

2.1. Spatially extended non-equilibrium systems

This article is concerned with the efficient reduction of spatially extended non-equilibrium sys-
tems. To do so, we work within the framework of Stochastic Equations in Infinite Dimensions
[64] and its Ergodic Theory [63]. Formally, these equations take the following form

du = (Au+ G (u)) dr + dn,, (1)

in which 7, is a stochastic process, either composed of Brownian motions or jump processes
and whose exact structure is specified below. This formalism provides a convenient way to
analyze stochastic partial differential equations (SPDEs) by means of semigroup theory [96,
135], in which the unknown u evolves typically in a Hilbert space H.

The operator A represents a linear differential operator while G is a nonlinear operator that
accounts for the nonlinear terms. Both of these operators may involve loss of spatial regularity
when applied to a function « in H. To have a consistent existence theory of solutions and their
stochastic invariant manifolds for SPDEs requires to take into account such loss of regularity
effects [63, 64].

General assumptions encountered in applications are made on the linear operator A
following [96]. More specifically, we assume

A=—L+B, @)

where L is sectorial with domain D(L) C H which is compactly and densely embedded in H.
We assume also that — L is stable, while /5 is a low-order perturbation of £, i.e. 5 is a bounded
linear operator such that B : D(L*) — H for some « in [0,1). We refer to [96, section 1.4]
for an intuitive presentation of fractional power of an operator and characterization of the so-
called operator domain D(L%). In practice, the choice of « should match the loss of regularity
effects caused by the nonlinear terms so that

G: D(LY) — H,

is a well-defined C”-smooth mapping that satisfies G(0) = 0, DG(0) = 0 (tangency condition),
and

G(M):Gk(u7'-~,u)+0(HM||];+1), (3)

with p > k > 2, and Gy, denoting the leading-order operator (on D(£%)) in the Taylor expansion
of G, near the origin. A broad class of spatially extended stochastic equations from physics can
be recasted into this framework (see [40, 42, 64, 116, 119] for examples), as well as time-delay
systems subject to stochastic disturbances [32, 33, 36].

6



J. Phys. A: Math. Theor. 58 (2025) 045204 M D Chekroun et al

Throughout this article, we assume that the driving noise in equation (1) is an H-valued
stochastic process that takes the form

N
7, (w) :Zajnf(w)ej, teR, 0,20, we, 4)
j=1

where the e; are eigenmodes of A, the n{ denote either a finite family of mutually independent
jump processes, or mutually independent Brownian motions, M, over their relevant probability
space (£2,IP, F) endowed with its canonical probability measure P and filtration F; see e.g. [5,
appendix A.3].

Within this framework, the reduction of spatially extended non-equilibrium systems is
organized in terms of resolved and unresolved spatial scales. The resolved scales are typic-
ally spanned by large wavenumbers and the unresolved by smaller ones. In that respect, the
eigenmodes of the operator A plays a central role throughout this paper to rank the spatial
scales. Typically, we assume that the state space H. of resolved variables is spanned by the
following modes

H.=span{e;, - ,e, }, 5)

where the e; correspond to large-scale modes up to a cutoff-scale associated with some index
m, (see remark 2.1). The subspace of unresolved modes is then the orthogonal complement of
H. in H, namely

H. ®H;j=H. ©6)
To these subspaces, we associate their respective canonical projectors denoted by
Il. : H— H,and II; : H — H;. @)

Throughout section 3 below and the remaining of this section, we focus on the case of driving
Brownian motions; the case of driving jump processes is dealt with in section 6.

Our goal is to provide a general approach to derive reduced models that preserve the essen-
tial features of the large-scale dynamics without resolving the small scales.

We present hereafter and in section 3 below, the formulas of the underlying small-scale
parameterizations in the Gaussian noise case. The formalism is flexible and easily adaptable
to the case of non-Gaussian noises with jumps such as discussed in sections 6 and 7, below.

Remark 2.1. Within our working assumptions, the spectrum o (A) consists only of isolated
eigenvalues with finite multiplicities. This combined with the sectorial property of A implies
that there are at most finitely many eigenvalues with a given real part. The sectorial property
of A also implies that the real part of the spectrum, Re(o(A)), is bounded above (see also [70,
theorem I1.4.18]). These two properties of Re(c(A)) allow us in turn to label elements in o(A)
according to the lexicographical order which we adopt throughout this article:

o(A)={\|neN"}, ®)
such that for any 1 < n < n’ we have either

Re (\,) >Re(\y), ©
or

Re(\,) =Re(\y),and Im(A,) > Im(A\,). (10)

7
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This way, we can rely on a simple labeling of the eigenvalues/eigenmodes by positive integers
to organize the resolved and unresolved scales and the corresponding parameterization formu-
las derived hereafter. In practice, when the spatial domain is 2D or 3D, it is usually physic-
ally more intuitive to label the eigenelements by wave vectors. The parameterization formulas
presented below can be easily recast within this convention; see e.g. [31].

2.2. Invariance equation and BF systems

As mentioned in Introduction, this work extends the parameterization formulas in [39, 41]
(designed for constant or time-dependent forcing) to the stochastic setting. In both determ-
inistic and stochastic contexts, deriving the relevant parameterizations and reduced systems
relies on solving BF systems arising in the theory of invariant manifolds. Similar to [39, 41],
our BF framework allows us to overcome limitations of traditional invariant manifolds, par-
ticularly the spectral gap condition ([41, equation. (2.18)]). This restrictive condition, which
requires large gaps in the spectrum of the operator A, is bypassed through data-driven optim-
ization (detailed in section 3.3) of the backward integration time over which the BF systems
are integrated.

Before diving into the parameterization formulas retained to address these limitations
(section 2.3), we recall the basics of reducing an SPDE to a SIM. In particular, this detour
enables us to better appreciate the emergence of BF systems as a natural framework for para-
meterizations. For that purpose, adapting the approach from [42], we transform the SPDE
reduction problem into the more tractable problem of reducing a PDE with random coeffi-
cients. This simplification makes the problem significantly more amenable to analysis than its
original SPDE form.

To do so, consider the stationary solution z(#,w) to the Langevin equation

dz = Azdr+ dW,, (11

(Ornstein-Uhlenbeck (OU) process), where W, is defined in equation (4) with the correspond-
ing mutually independent Brownian motions, W, in place of the 77, i.e.:

N
Wi(w)=> oW (w)e, teR, weQ. (12)
j=1

Then, for each noise’s path w, the change of variable
v=u—z(tw), (13)
transforms the SPDE,
du= (Au+G(u)) dr+ dW,,

into the following PDE with random coefficients in the v-variable:

%ZAV—FG(V-FZ(Z‘,OJ)). (14)

Under standard conditions involving the spectral gap between the resolved and unresolved
modes [10], the path-dependent PDE (14) admits a SIM, and the underlying stochastic SIM
mapping, ¢ (¢,X) (X € H,), satisfies the stochastic invariance equation:

atd) + 'CA [¢] (X) = _Dd) (t,X,w) (HCG(X+ ¢ +Z(taw))) + HfG(X+ ¢ +Z(taw))v (15)

8
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where £, denotes the operator acting on differentiable mappings v from H_ into Hj, as follows:

with A, =1I.A and Af = HfA
To simplify, assume that H. and H; are chosen such that II;W; = 0. Then in particular
z; = Iz = 0. Consider now the Lyapunov—Perron integral

1
J(t,X,w) = / e(t—s)AfoGk (e(s_[)AcX“r‘Zc (s,o.))) ds, (17)

where z. = Il z. In what follows, we denote by (-, -) the Hermitian inner product on H defined
as {f,g) = [f(x)g(x) dx, while Gy denotes the leading-order term of order k in the Taylor expan-
sion of G(X) around X =0, and e denotes the nth eigenmode of the adjoint operator of A
adopting the same labelling convention as for A; see remark 2.1. To the order k we associ-
ate the set K of indices {1,--- ,k}, and denote by K, any subset of indices made of (possibly
empty) of disjoint elements of K.

We have then the following result.

Theorem 2.1. Under the previous assumptions, assume furthermore that the following non-
resonance condition holds, for any (j,,--- ji) in (1,--- ,m.)X, n > m. + 1, and any subset K,
such as defined above:

(G}, #0and yex0,#0) = [Re | A= > N, | <0, (18)
PGK\KZ
with G}, = (Gi(ej,, -+ ,¢€5,),€y).
Then, the Lyapunov—Perron integral JJ (equation (17)) is well-defined almost surely, and is
a solution to the following homological equation with random coefficients:
Oy + La[v] (X) =Gy (X +z¢ (1,w)).- (19)

Moreover, we observe that the integral J is (formally) obtained as the limit, when T goes to
infinity, of the g-solution to the following BF auxiliary system:

d

P _Apselt—n, (20a)
dr

dg

EZqu-i-Hka(p-l-Zc(&w))» sEt—T.1], (20b)
with p(s) |s= =X € He,and q(s) |s=—r = 0. (20c)

That is
TILII;O ”:‘ (t,X,w) ks ([,X,(JJ) ||Hf =0, (21

where g, (t,X,w) denotes the solution to equation (20b) at time s =t, when initialized with
g=0ats=t—r.

For a proof of this Theorem, see appendix A. This theorem extends to the stochastic context
theorem III.1 of [39]. To simplify the notations, we omit below the w-dependence in certain
notations unless specified otherwise.

Theorem 2.1 teaches us that solving the BF system (20a)—(20c) gives the solution to
the homological equation (17) which is an approximation of the full invariance equation
equation (15). In the deterministic setting, solutions to the homological equation (17) are

9
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known to provide actual approximations of the invariant manifolds with rigorous estimates;
see [41, theorem 1] and [39, theorem III.1]. Such results extend to the case of SPDEs driven
by multiplicative (parameter) noise; see [40, theorem 2.1] and [42, theorem 6.1 and corollary
7.1]. It is not the scope of this article to deal with rigorous error estimates regarding the approx-
imation problem of stochastic invariant manifolds for SPDEs driven by additive noise, but the
rationale stays the same: solutions to the homological equation (17) or equivalently to the
BF system (20a)—(20c) provide actual approximations of the underlying stochastic invariant
manifolds, in the additive noise case as well.
Going back to the SPDE variable u, the BF system (20a)—(20c) becomes

dp =A.pds+ 11, dW, sE[t—T1,1], (22a)
dg = (Afa+ IL;Gy (p)) ds, sE[t—T1,1], (22b)
withp (s) [s=; =X € H.,and ¢ (s) |s=— = 0. (22¢)

Note that in this BF system, only the low-mode variable p is forced stochastically, and thus
from what precedes, lim, _, . g, (, X), provides a legitimate approximation of the SIM at time
t when in the original SPDE, only the low modes are forced stochastically, i.e. N =m, in
equation (12). In the next section, we consider the general case when the low and high modes
are stochastically forced.

2.3. Approximations of fully coupled BF systems

BF systems have been actually proposed in the literature for the construction of SIMs [61],
through a different route than what presented above, i.e. without exploiting the invariance
equation. The idea pursued in [61] is to envision SIMs as a fixed point of an integral form of
the following fully coupled BF system

dp = [Ap+11.G (p+q)|ds + T.dW,, s€ 1, ., (23a)
dg = [Ayq +1G (p + q)]ds + IL;dW,, s €17, (23b)
with p (s) |s= = X € H¢,and ¢ () |s=—r = 0. (23¢)

where [, ; = [t — 7,1]. Note that in equations (23a) and (23b), we do not assume here the noise
term W, to be a finite sum of mutually independent Brownian motions. In the case of an infinite
sum one can thus covers the case of space-time white noise due to [103].

In any case, it is known that this type of fully coupled nonlinear problems involving back-
ward stochastic equations does not have always solutions in general and we refer to [61, pro-
position 3.1] for conditions on A and G ensuring existence of solutions and thus SIM. This
(nonlinear) BF approach to SIM is also subject to a spectral gap condition that requires gap to
be large enough as in [10].

Denoting by g (#,X) the solution to equation (23b) at s = ¢, proposition 3.4 of [61] ensures
then that lim, _, ., ¢, (¢,X) exists in L*>(£2) and that this limit gives the sought SIM, i.e.

TSM (X, 1) = lim ¢, (,X), X€H,. (24)
T—00
The SIM is thus obtained, almost surely, as the asymptotic graph of the mapping X — ¢, (¢,X),
when 7 is sent to infinite.

Instead of relying on an integral form of equations (23a) and (230), one can address though
the existence and construction of a SIM via a more direct approach, exploiting iteration

10
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schemes built directly from equations (23a) and (23b). It is not the purpose of this article
to analyze the convergence of such iterative schemes (subject also to a spectral gap condition
as in [61]) but rather to illustrate how informative such schemes can be in designing stochastic
parameterizations in practice.

To solve equations (23a) and (23b), given an initial guess, (p(o) , q(o)), we propose the fol-
lowing iterative scheme:

dp® = [Acp“) +11.G (p“—l) + q“_l))} ds + IL.dW,, (25a)
dg® = [qu(” +1LG (p“—” + q(l_l))} ds -+ IT;dW,, (25b)

where ¢ > 1 and with p(©) (s)|s=r =XinH. and g9 (8)|s=r—+ = 0. Here again, the first equation
(equation (25a)) is integrated backward over [t — 7, 1], followed by a forward integration of the
second equation (equation (25b)) over the same interval. To simplify the notations, we will
often omit to point out the interval [r — 7,7] in the BF systems below.

To help interpret the parameterization produced by such an iterative scheme, we restrict
momentarily ourselves to the case of a nonlinearity G that is quadratic (denoted by B) and
to noise terms that are scaled by a parameter €. This case covers the important case of the
Kardar—Parisi—Zhang equation [51]. The inclusion of this scaling factor e allows us to group
the terms constituting the stochastic parameterization according to powers of e providing in
particular useful small-noise expansions; see equation (30) below.

Under this framework, if we start with (p(*),¢(?)) = (0,0), we get then

t
P (s) =el"MeX —c / el AT awy, (260)

s

gD (s) = e / el )T aw, (26b)
1—T

which leads to
t t
P () = el x|l (0 (51 + 0 61) a e [ el Nersaw,
and

q@ (s) :/ e(S_S/)AfoB (p(l) (s") +4qV (s’)) ds’+e/ e(S_S/)AfodWS/. 27
t—7 —

T

To further make explicit ¢(® (s) that provides the stochastic parameterization we are seeking
(after two iterations), we introduce

ﬁ(s):f/e(“sl)’\"dWi, W), i=1,...,me, (284)

gn(s) = / e awn (W), n>me+ 1. (28b)
—7

We can then rewrite (p(!), g(1)) given in equation (26a) as follows:

me

p(l) (S) — Z (e(s—t)AiXi + €ﬁ (S)) e;, (2961)

i=1

1
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gV () =€ Y guls)en (295)

n>me+1

By introducing additionally B} = (B(e;,e;),e;;), we get for any n > m, + 1 the following
expansions

8 (p1 ()00 )—62ZB,f 95 +e S B () e,

ij=1 ij=1
me me
+e Y Bifi(s)etTNX; 4+ Y " Brel Iy X
ij—l ij=1
me
H,,B( (1)( ) ) _622 Z Bn +6Z Z Bln’gn (s= t))\iXiv
i=1n"=m.-+1 i=1n"=m.-+1

and
LB (" (5).qV () = D Biygw ()8 (5)-
n'n’' >Zm.+1

Let us denote by II,, the projector onto the mode e,. Using the above identities in (27), and
setting s =¢, we get forn > m.+ 1,

t
1L,q® () = €a, (1 +ezbm X+Z o B”XX+6/ (=" )M awn (w), (30)
—T

ij=1
where
an(T)z/ (=% 3" g (s
ij=1
(@)
+ t P (Z Z Bm’ +Bnt ( I)gn’ (S/)> dS/
i=1n"=m.+1
[ !’
+/ e(t,S ))\n Z BZ/ann' (Sl)gn” (S/) dS/, 31)
=7 n ' =me+1
Q0]
t me
bin (7’) :/ ()‘ >‘ Bn +Bn )dsl
/ (1=s") A)Z Bm/+an gw (s )dsl, 32)
= n'=m.+1
and
t ]—exp(—(s;'r) e
Clr-;- ()= / e(’*S/)(An*()\Hr)\j)) ds’ = Tj’ if 6ij #£0,
T F otherwise,
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with 63 =\ + /\j — A\

In the classical approximation theory of SIM, one is interested in conditions ensuring con-
vergence of the integrals involved in the random coefficients a, and b;, as T — o0, since q(z) (1)
(and its higher-order analogues q(é)(t) with ¢ > 2) aims to approximate the SIM defined in
equation (24). In our approach to stochastic parameterization, we do not restrict ourselves to
such a limiting case but rather seek optimal backward integration time 7 that minimizes a
parameterization defect as explained below in section 3.3.

However, computing this parameterization defect involves the computation of the random
coefficients in the course of time (see equation (53) below). The challenge is that the structure
of a, and b;, involves repeated stochastic convolutions in time, and as such one wants to avoid
a direct computation by quadrature. We propose below an alternative and efficient way to
compute such random coefficients, for a simpler, more brutal approximation than ¢(®. As
shown in sections 5 and 6, this other class of stochastic parameterizations turns out to be highly
performant for the important case where the stochastically forced scales are exclusively part
of the neglected scales.

This approximation consists of setting ¢(') = 0 in equation (27), namely to deal with the
stochastic parameterization

t t
O (1,X,0) = / =N ILG (e“*f)f‘vx) ds+e / eI [T AW, (w), (33)
=7 —7
going back to the original model (1) with its nonlinearity G.

Note also that this parameterization, ®(#,X,w), is exactly the solution g(s,X,w) at s =t of

the following BF system

dp =A.pds, se€l ., (34a)
dg = (Ajq +15;G (p)) ds+ ell;dW,, s€ 1., (34b)
with p (s) |s=; = X € H¢,and ¢ (5) |s=—r =0, (34c¢)

with I, , = [t — 7,1].

Section 3.2 details an efficient computation of the single stochastic convolution in
equation (33) using auxiliary ODEs with random coefficients. It is worth noting that previ-
ous SPDE reduction approaches have, in certain circumstances or under specific assumptions
(e.g. II.B(q,q) =0 as seen in [17, equation (2.2)] and [121, equation (2.10)]), deliberately
opted to avoid directly computing these convolutions via quadrature [145, 146, 170].

The stochastic convolution in equation (33) accounts for finite-range memory effects stem-
ming from the stochastic forcing to the original equation. Such terms have been encountered
in the approximation of low-mode amplitudes, albeit in their asymptotic format when 7 — oo
see e.g. [17, 18]. As shown in our examples below (sections 5 and 6), stochastic convolution
terms become crucial for efficient reduction when the cutoff scale, defining the retained large-
scale dynamics, is larger than the forcing scale. There, we show furthermore that the finite-
range memory content (measured by 7) is a key factor for a skillful reduction when optimized
properly. Also, as exemplified in applications, optimizing the nonlinear terms in equation (33)
may turn to be of utmost importance to reproduce accurately the average motion of the SPDE
dynamics; see section 5.5 below.

The efficient computation of repeated convolutions involved in the coefficients a, and b,
is however more challenging and will be communicated elsewhere. This is not only a tech-
nical aspect though, as these repeated convolutions in a, given by equation (31) character-
ize important triad interactions reflecting how the noise interacts through the nonlinear terms

13
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into three groups: the low—low interactions in («), the low-high interactions in (/) and high—
high interactions in (7). By using the simpler parameterization ¢ defined in equation (33) we
do not keep these interactions at the parameterization level, however as ¢ approximates the
high-mode amplitude it still allows us to account for triad interactions into the corresponding
reduced models; see e.g. equation (85) below.

3. Non-Markovian parameterizations: formulas and optimization

The previous discussion leads us to consider, for each n > m, + 1, the following scale-aware
BF systems

dp =A.pds, sE[t—T1,1], (35a)
dg=(MNg+1L,G(p)) ds+o,dWs, s€[t—T,1], (35b)
with p (s) |;=r =X € Hc,and ¢ (5) [s=—r = Y € R, (35¢)

where 11, denotes the projector onto the mode e,. Here, 7 is a free parameter to be adjusted,
no longer condemned to approach oo as in the approximation theory of SIM discussed above.
Note that compared to equation (34b), we break down the forcing mode by mode for each
high mode to allow for adjusting the free backward parameter, 7, per scale to parameterize
(scale-awareness). This strategy allows for a greater degree of freedom to calibrate useful
parameterizations, as will be apparent in applications dealt with in sections 5 and 6.

Also, compared to equation (34b), the initial condition for the forward integration in
equation (35b) is a scale-aware parameter Y in equation (35¢). It is aimed at resolving the
time-mean of the nth high-mode amplitude, (u(7),e;) with u solving equation (1). In many
applications, it is enough to set ¥ = 0 though.

In the following, we make explicit the stochastic parameterization obtained by integration of
the BF system (35a)—(35¢) for SPDEs with cubic nonlinear terms, for which the stochastically
forced scales are part of the neglected scales.

3.1 Stochastic parameterizations for systems with cubic interactions

We consider
du = (Au+ G, (u,u) + G; (u,u,u)) dt + dW,. (36)

Here, A is a partial differential operator as defined in equation (2) for a suitable ambient Hilbert
space H; see also [43, chapter 2]. The operators G, and G3 are quadratic and cubic, respectively.
Here again, we assume the eigenmodes of A and its adjoint A* to form a bi-orthonormal basis
of H; namely, the set of eigenmodes {e;} of A and {e'} of A* each forms a Hilbert basis
of H, and they satisfy the bi-orthogonality condition (e;, e} )y = ; x, where J; ; denotes the
Kronecker delta function. The noise term W, takes the form defined in equation (12). Stochastic
equations such as equation (36) arise in many areas of physics such as in the description of
phase separation [22, 26, 62], pattern formations [60, 152] or transitions in geophysical fluid
models [40, 80, 123, 140, 153, 158, 162].

We assume that equation (36) is well-posed in the sense of possessing for any up in H a
unique mild solution, i.e. there exists a stopping time 7" > 0 such that the integral equation,

u(t) = eMug + / A (G, (u(s)) + Gs (u(s))) ds + / A=) aw,, 1< 0,7], (37)
0 0

14
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possesses, almost surely, a unique solution in C([0, 7], H) (continuous path in the Hilbert space
H) for all stopping time ¢t < 7.
Here the stochastic integral can be represented as a series of one-dimensional Ito integrals

t t
/ eAlr=) dw, = ZJk/ eM(t=9) dWiek, (38)
0 — Jo

where the W’; are the independent Brownian motions in (12). It is known that equation (36)
admits a unique mild solution in H with the right conditions on the coefficients of G, and G3
(confining potential) [64]; see also [92, proposition 3.4]. We refer to [63, 64] for background
on the stochastic convolution term fol el=9A dw,.

Throughout this section we assume that only a subset of unresolved modes in the decompos-
ition (6) of H are stochastically forced according to equation (12), namely that the following
condition holds:

(H) 0; = 0for 1 <j < m in (12), and that there exists at least one index k in (m. + 1,N) such
that oy # 0.

In this case, the BF system (35a)—(35¢) becomes

dp = A pds, sE[t—T1,1], (39a)
dgn = (Augn +11,G2 (p) + 11,G3 (p)) ds + 0, AWy, s € [t—T,1], (390)
with p (s) |s=r = X € H¢,and g, (5) |s=r—r = Y. (39¢)

The solution g, to equation (39b) at s =t provides a parameterization ®,(7,X,t) aimed at
approximating the nth high-mode amplitude, u, () = IL,u(t) = (u(t),e,), of the SPDE solution
u when X is equal to the low-mode amplitude u(7) = IT.u(¢). This BF system can be solved
analytically. Its solution provides the stochastic parameterization, ®,,, expressed, for n > m, +
1, as the following stochastic nonlinear mapping of X in H.:

D, (T,X, t;w) ={qn (tawi)
_ CA'XTY‘F o (Wl: (w) _e™ W;l,.,- (w)) +Zf,-l (Z;w)

+ D (D () BIXX) + Y (Ef(r) ClXiXiXe),  (40)
ij=1 iy k=1
with X = ZZILZI Xyey.
The stochastic term Z7 is given by

t
Z! (tw) = Jn)\,,eA"’/ e MW (w) ds, (41)
—

and as such, is dependent on the noise’s path and the ‘past’ of the Wiener process forcing the
nth scale: it conveys exogenous memory effects, i.e. it is non-Markovian in the sense of [94].

The coefficients Bj; and Cj in equation (40) are given respectively by
B} = (G2 (ei,€)) ,e), e = (G3 (ei,e),ex) e,), (42a)

rvn

while the coefficients DJ};(7) and Ej; () are given by

l—exp(—t;Z-T) 5 £0
PR b i L

T, otherwise,

(43)
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and

l—exp(—éf}k'r) .

——L 0 if 6 £0

AR S
T, otherwise,

(44)

with 6;}- =N+ —A, and (Si’;k = A+ A+ X —A,. From equations (43) and (44), one
observes that the parameter 7 (depending on n) allows, in principle, for balancing the small
denominators due to small spectral gaps, i.e. when the dj; or the 7, are small. This attribute is
shared with the parameterization formulas obtained by the BF approach in the deterministic
context; see [39, remark III.1]. It plays an important role in the ability of our parameteriza-
tions to handle physically relevant situations with a weak time-scale separation; see section 5.5
below.

Remark 3.1. In connection with the stochastic convolution &, = le—T e(’_s)A"Hdes in
equation (33), we note that the stochastic terms in equation (40), involving the processes W7,
W;__.,and Z, can be rewritten as a scalar stochastic integral, more precisely:

t
/ eMn(t=s) AW = w" — e W+ Un_lZ;l— (t) 45)
-7

Note that the RHS in equation (45) is simply the projection of §; . onto mode e,, (equation (38)).
Equation (45) is a direct consequence of It6’s formula applied to the product e ~**W” fol-
lowed by integration over [t — 7,]. Indeed, we have (dropping the n-dependence),

d(e M Wy) = —Ae MWds+e MW, + d (e V) dW,
= —)\e_)‘ng ds4+e™ dwg,

by treating dsdW; as zero due to Ito calculus [132].
By introducing now §W = W, —e " W,_, and denoting by J the stochastic convolution
le—r eMt=5) dW,, we arrive due to equation (41) at

e MW+ Ne NZ, =e M, (46)

which gives the relation J = 0W + A\Z., where we have set g, = 1 to simplify.

In the expression of ®, given by equation (40), we opt for the expression involving the
Riemann-Stieltjes integral Z for practical purpose. The latter can be indeed readily gener-
alized to the case of jump noise (equations (101)—-(102) below) without relying on stochastic
calculus involving a jump measure (section 7).

In what follows we drop the dependence of ®,, on w and sometimes on ¢, unless specified.
The parameterization of the neglected scales writes then as

o, (Xa t) = Z , (TH,X,[)e”, @7

n>me+1

with 7 = (7,)n>m.+1, and @, defined in equation (40).

We observe that letting 7 approach infinity in equation (47) recovers equation (33) when
G = G, + G3. This implies that the manifold constructed from equation (47) can be viewed
as a homotopic deformation of the SIM approximation defined in equation (33), controlled by
the parameters 7,.

This connection motivates utilizing the variational framework presented in [39, 41] to
identify the ‘optimal’ stochastic manifold within the family defined by equation (47). In
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section 3.3, we demonstrate that a simple data-driven minimization of a least-squares para-
meterization error, applied to a single training path, yields trained parameterizations (in terms
of 7) with remarkable predictive power. For instance, these parameterizations can be used to
infer ensemble statistics of SPDEs for a large set of unseen paths during training.

However, unlike the deterministic case, the stochastic framework necessitates addressing
the efficient simulation of the coefficients involved in equation (47) for optimization purposes.
This challenge is tackled in the following subsection.

3.2. Non-Markovian path-dependent coefficients: Efficient simulation

Our stochastic parameterization given by (47) contains random coefficients Z2 (#;w), each of
them involving an integral of the history of the Brownian motion making them non-Markovian
in the sense of [94], i.e. depending on the noise path history. We present below an efficient
mean to compute these random coefficients by solving auxiliary ODEs with path-dependent
coefficients, avoiding this way the cumbersome computation of integrals over noise paths that
would need to be updated at each time ¢. This approach is used for the following purpose:

(1) To find the optimal vector 7% made of optimal BF integration times and form in turn the
stochastic optimal parameterization ® -+, and

(i1) To efficiently simulate the corresponding optimal reduced system built from ®.- along
with its path-dependent coefficients.

According to (41), the computation of Z7 boils down to the computation of the random
integral

t
e’\"’/ e MW (w) ds,
— T+t

which is of the following form:
t
P (t,w;k) = e’“/ e W (w) ds, (48)
—T+t

where 7 >0, and j > m. + 1 due to assumption (H). We only need to consider the case that
K < 0, since we consider here only cases in which the unstable modes are included within the
space H. of resolved scales.

By taking time derivative on both sides of (48), we obtain that Z_(#,w; x) satisfies the follow-
ing ODE with path-dependent coefficients also called a random differential equation (RDE):

dr A .
i KL+ W, (w) —e""W,__(w). (49)
Since k < 0, the linear part #/ in (49) brings a stable contribution to (49). As a result, £ (t,w; k)
can be computed by integrating (49) forward in time starting at # = 0 with initial datum given
by:

1(0,w) =F (0,w; k), (50)
where 7 (0,w; k) is computed using (48).

Now, to determine Z (f;w) in (41) it is sufficient to observe that

7! (w) = op Il (fw; ) (51)
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The random coefficient Z (#;w) is thus computed by using (51) after I”. (¢,w; \,) is computed
by solving, forward in time, the corresponding RDE of the form (49) with initial datum

0
I1(0,w) =TI (0,w; \y) = / e MW (w) ds. (52)
This way, we compute only the integral (52) and then propagate it through equation (49) to
evaluate Z” (t;w), instead of computing for each ¢ the integral in the definition (41). The res-
ulting procedure is thus much more efficient to handle numerically than a direct computation
of Z"' (t;w) based on the integral formulation (41) which would involve a careful and compu-
tationally more expensive quadrature at each time-step. Note that a similar treatment has been
adopted in [43, chapter 5.3] for the computation of the time-dependent coefficients arising
in stochastic parameterizations of SPDEs driven by linear multiplicative noise, and in [39,
section III.C.2] for the case of non-autonomous forcing.

3.3. Data-informed optimization and training path

Thanks to section 3.2, we are now in position to propose an efficient variational approach
to optimize the stochastic parameterizations of section 3.1 in view of handling parameter
regimes located away from the instability onset and thus a greater wealth of possible stochastic
transitions.

Given a solution path u(f) to equation (36) available over an interval Ir of length T, we
aim for determining the optimal parameterization ®,, (given by (40)) that minimizes—in the
T-variable—the following parameterization defect

2

Q, (7,1) = |uy (1) = ® (T,uc (1),1) |7, (53)

for each n > m, + 1. Here (-) denotes the time-mean over Iy while u,(r) and u.(7) denote the
projections of u(¢) onto the high-mode e, and the reduced state space H., respectively.

Figure 1 illustrates a schematic of the stochastic OPM obtained through this procedure. It
conveys a useful geometric interpretation: the parameterization ®.- (equation (47)) defines a
stochastic manifold 91, (¢), constructed as the graph of ®, (X, ) for X in H., that satisfies for
almost every noise path:

dist (u (1), M7 (0)° < > Qulm, 1),

n>2mq+1

where dist(u(7), 1 (¢)) denotes the distance of u(r) to the manifold 9t (7). In practical applic-
ations, a finite number of modes are resolved and thus parameterized. Therefore, minimizing
each Q,(,,T) with respect to 7, naturally enforces the closeness of u(¢) to the manifold 9t~ (¢)
in a least-squares sense.

Our primary objective is not to tailor the parameterizations ®,, to each individual solution
path. Instead, we aim to optimize them on a single ‘training path’. Subsequently, this optim-
ized parameterization, ®; is employed to predict dynamical behaviors for any other noise
realization, or at least statistically across an ensemble of such realizations.

To achieve this, we utilize the optimized 7, values to construct the stochastic OPM as
defined in equation (47). The optimized non-Markovian coefficients within this parameter-
ization are designed to efficiently capture the time-dependent interactions between nonlinear
terms and noise, as well as the corresponding transfer of energy between forced and unforced
scales. This is particularly relevant for scenarios where stochastic transitions are driven by
small-scale forcing.
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Figure 1. Panel (A): This panel illustrates a training solution path (black curve) for the
stochastic optimal parameterization method. This path is shown to be transverse to the
underlying stochastic manifolds (red curves) as occurring typically for the reduction of
stochastic systems using such objects (see [40, figure 2]) for a concrete simple example).
The optimal parameterization (denoted by ®,(7,, X, 7)) aims to approximate the actual
state (pink dots) of the system’s solution (represented by the black curve) at any given
time (here labeled as #; and #;). A key strength of this parameterization is its ability to
capture the solution’s average behavior by its expected value, E(®,) (gray curve). Panel
(B): This panel schematically shows how the ‘goodness-of-fit’ (parameterization defect,
Oy, defined by equation (53)) changes with the parameter 7. The red asterisk marks the
value 7,; that minimizes this defect.

Sections 5 and 6 below illustrate how this single-path training strategy can be used effi-
ciently to predict from the corresponding reduced systems the statistical behavior as time
and/or the noise’s path is varied. The next section delves into the justification of this variational
approach, and the theoretical characterization of the notion of stochastic OPM by relying on
ergodic arguments. The reader interested in applications can jump directly to sections 5 and 6.

4. Non-Markovian optimal parameterizations and invariant measures

The ergodic and mixing properties of dissipative partial differential equations (PDEs) driven
by stochastic external forces have been a subject of intense research over the past two decades.
It is rather well understood in the case when all deterministic modes are forced; see e.g. [87,
110]. The situation in which only finitely many modes are forced such as considered in this
study is much more subtle to handle in order to prove unique ergodicity. The works [91, 92]
provide answers in such a degenerate situation based on a theory of hypoellipticity for nonlin-
ear SPDEs. In parallel, the work [93] generalizing the asymptotic coupling method introduced
in [90], allows for covering a broad class of nonlinear stochastic evolution equations including
stochastic delay equations.

Building upon these results, we proceed under the assumption of a unique ergodic invariant
measure, denoted by u. Given a reduced state space H., we demonstrate in this section the
following:

(1) The path-dependence of the non-Markovian optimal reduced model arises from the random
measure denoted by p,, that is obtained through the disintegration of y over the underlying
probability space ).
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(ii)) The non-Markovian optimal reduced model provides an averaged system in H, that is
still path-dependent. For a given noise path w, it provides the reduced system in H, that
averages out the unresolved variables with respect to the disintegration of p,, over H.. A
detailed explanation is provided in theorem 4.2.

4.1. Theoretical insights

Adopting the framework of random dynamical systems (RDSs) [5], recall that an RDS, S(¢,w),
is said to be white noise, if the associated ‘past’ and ‘future’ o-algebras F~ (see (56)) and F*
are independent. Given a white noise RDS, S(#,w), the relations between random invariant
measures for S and invariant measures for the associated Markov semigroup P; is well known
[56]. We recall below these relationships and enrich the discussion with lemma 4.1 below from
[72].

Assume that equation (1) generates a white noise RDS, S(#,w), associated with a Markov
semigroup P, having p as an invariant measure, then the following limit taken in the weak™

topology:
po = lim S(1,0_w) u, (54)
exists [P-a.s. and provides a random probability measure that is S-invariant in the sense that
S(t,w) pu = pow, P-as., t=0. (55)

A random probability measure p,, that satisfies (55) is called below a (random) statistical equi-
librium. Recall that 6, here denotes the standard ergodic transformation on the set of Wiener
path Q) defined through the helix identity [5, definition 2.3.6], W,(6,w) = W (w) — W (w),
w in .

A statistical equilibrium such as p,, defined above is furthermore Markovian [54], in the
sense it is measurable with respect to the past o-algebra

F =0{w—S(r,0_w) : 0< 7 <1} (56)

see [56, proposition 4.2]; see also [5, theorems 1.7.2 and 2.3.45].
Note that the limit (54) exists in the sense that for every bounded measurable function
f+H— R, the real-valued stochastic process

(1) = [ £ A(S(00-)10) = [ FS(00-)) dn 57)

is a bounded martingale, and therefore converges IP-a.s by the Doob’s first martingale conver-
gence theorem; see e.g. [132, theorem C.5 p. 302]. This implies, in particular, the P-almost
sure convergence of the measure-valued random variable w — S(#,6_,w)u in the topology of
weak convergence of Prq(H), which in turn implies the convergence in the narrow topology
of Pro(H); see [55, chapter 3].

Reciprocally, given a Markovian S-invariant random measure p,, of an RDS for which the
o-algebras F~ and F T are independent, the probability measure, u, defined by

1="E(ps) =/prdP(w)7 (58)

is an invariant measure of the Markov semigroup P;; see [49, theorem 1.10.1].

In case of uniqueness of x4 (and thus ergodicity) satisfying P,u = p, then this one-to-one
correspondence property implies that any other random probability measure v, different from
the random measure p,, obtained from (54), is non-Markovian which means in particular that
fQ v, dPP # 1 otherwise we would have v, = p,,, P-a.s.
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In case a random attractor A(w) exists, since the latter is a forward invariant compact
random set, the Markovian random measure p,, must be supported by A(w); see [55, the-
orem 6.17] (see also [57, proposition 4.5]). We conclude thus, in the case of a unique ergodic
measure for P, , to the existence of a unigue Markov S-invariant random measure p,, supported
by A, and that all other S-invariant random measures (also necessarily supported by A) are
non-Markovian.

RDS’s where the future and past o-algebras are independent, are generated for many
stochastic systems in practice. This is the case for instance of a broad class of SDEs; see
[5, section 2.3]. The problem of generation of white noise RDSs in infinite dimension is much
less clarified and it is beyond the scope of this article to address this question.

Instead, we point out below that there exists other ways to associate to an RDS which is
not necessarily of white-noise type, a meaningful random probability measure p,, that still for
instance satisfies (58). This is indeed the case if the RDS satisfies some weak mixing property
with respect to a (non-random) probability ;4 on H as the following lemma from [72], shows:

Lemma 4.1. Assume there exists p in Pr(H) satisfying the following weak mixing property

l/ ds/]Ef(S(s,G_SO)u) d,u—>/fdu, (59)
tJo H =00 [y

for each bounded, continuous f: H— R.
Then there exists an Fo-measurable random probability measure p,, given by

1 t
Pow = ;/ S(s,0_,w) pds, (60)
0
that satisfies
E(pe) = / P dP (w) = p, (61)
Q

and is S-invariant in the sense of (55), i.e. that is a statistical equilibrium.

For a proof of lemma 4.1 see that of [72, lemma 2.5].

Thus, either built from an invariant measure of the Markov semigroup, in the case of a
white-noise RDS, or from a weakly mixing measure in the sense of (59), a statistical equilib-
rium satisfying (58) can be naturally associated with equation (36) as long as the appropriate
assumptions are satisfied. At this level of generality, we do not enter into addressing the import-
ant question dealing with sufficient conditions on the linear part A and and nonlinear terms that
ensure for an SPDE like equation (36), the generation of an RDS that is either of white-noise
type or weakly mixing in the sense of (59); see [72] for examples in the latter case.

We also introduce the following notion of pullback parameterization defect.

Definition 4.1. Given a parameterization ® : {) x H. — Hj that is measurable (in the measure-
theoretic sense), and a mild solution u of equation (36), the pullback parameterization defect
associated with ® over the interval [0, 7] and for a noise-path w, is defined as:

T
Qr(w@):% / a5 (1, 0_10) — ® (w0, e (1,6_)) |2 62)
0

Given the statistical equilibrium p,,, we denote by m,, the push-forward of p,, by the pro-
jector 11, onto H., namely

m,, (B) = p., (II; ' (B)), Be B(H.), (63)
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where B(H.) denotes the family of Borel sets of H.; i.e. the family of sets that can be formed
from open sets (for the topology on H. induced by the norm || - ||z, ) through the operations of
countable union, countable intersection, and relative complement.

The random measure m,, allows us to consider the following functional space X’ = L2 (2 x
H_;H;) of parameterizations, defined as

X = {<I> : Q x H. — Hymeasurable ’ @ (w,X) [|*dm,, (X) < oo a.s.}, (64)
H.

namely the Hilbert space constituted by H;-valued random functions of the resolved variables
X in H., that are square-integrable with respect to m,,, almost surely.

We are now in position to formulate the main result of this section, namely the following
generalization to the stochastic context of theorem 4 from [41].

Theorem 4.1. Assume that one of the following properties hold:

(i) The RDS generated by equation (36) is of white-noise type and the Markov semigroup
associated with equation (1) admits a (unique) ergodic invariant measure .
(ii) The RDS generated by equation (36) is weakly mixing in the sense of (59).

Let us denote by p,, the weak*-limit of p defined in (54) for case (i), and by p,, the statistical
equilibrium ensured by lemma 4.1, in case (ii). We denote by pX the disintegration of p., on
the small-scale subspace H;, conditioned on the coarse-scale variable X.

Assume that the small-scale variable Y has a finite energy in the sense that

//\|Y\|2dpwdp<oo. (65)

Then the minimization problem

min//x Y — @ (w,X)|]*dp,, (X,Y) dP (w), (66)

dex Y)eH. x H;

possesses a unique solution whose argmin is given by
P* (w,X) :/ Ydo¥ (Y), X€ H,, P-as. (67)
Hj

Furthermore, if the RDS possesses a pullback attractor A(w) in H, and p,, is pullback
mixing in the sense that for all u in H,

1 T
lim 7/ f(W,S(L 6710.)) M) dr = f(w,v) dpw (V)7 f(w7 ) € Cb (H)7 P-Cl.S.7 (68)
T—oo T 0 A(w)
then P-almost surely
lim Q7 (w,®*) < lim Or(w,®), & € X. (69)
T— o0 T— o0

Proof. The proof follows the same lines of [41, theorem 4]. It consists of replacing:

(i) The probability measure p therein by the probability measure p on €2 x H that is naturally
associated with the family of random measures p,, and whose marginal on ) is given by
P; see [56, proposition 3.6],

(i) The fl;IICtiOIl space L7, (H. x Hy; Hj) therein by the function space & = L2(€ x H, x
H f;H F)
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By applying to the ambient Hilbert space &£, the standard projection theorem onto closed
convex sets [23, theorem 5.2], one defines (given 11.) the conditional expectation £, [g|TI ] of
g as the unique function in £ that satisfies the inequality

E, [lg—E, gL |*] <E,[llg—¥|?*], forall ¥ € €. (70)

Now by applying the general disintegration theorem of probability measures, applied to p
(see [41, Eq. (3.18)]), we obtain the following explicit representation of the random conditional
expectation

Ep[g‘nc} (W’X):/ g(w,X,Y) dpw,X(Y)7 (71)

Hy

with p,, x denoting the disintegrated measure of p over €2 x H.. By noting that this disintegrated
measure is the same as the disintegration pX (over H,) of the random measure p,,, we conclude
by taking g(w,X,Y) =Y as for the proof of [41, Theorem 4] that ®* given by (67) solves the
minimization problem (66).

The inequality (69) results then from the pullback mixing property (68) and the defini-
tion (62) of the pullback parameterization defect. O

4.2. Non-Markovian optimal reduced model, and conditional expectation

The mathematical framework of section 4.1 allows us to provide a useful interpretation of non-
Markovian optimal reduced model for SPDE of type equation (36). To simplify the presenta-
tion, we restrict ourselves here to the case Gz =0.

We denote then by G(v) the vector field in H, formed by gathering the linear and nonlinear
parts of equation (36) in this case, namely

Gv)=Av+Gy(v,v), VvEH. (72)

The theorem formulated below characterizes the relationships between the non-Markovian
optimal reduced model and the random conditional expectation associated with the projector
II. onto the reduced state space H.; i.e. the resolved modes. Its proof is almost identical to that
of [41, theorem 5] with only slight amendment and the details are thus omitted.

Theorem 4.2. Consider the SPDE of type equation (36) with G; =0. Let p,, be a (random)
statistical equilibrium satisfying either (54) (in case (i) of theorem 4.1) or ensured by lemma
4.1 (in case (ii) of theorem 4.1).

Then, under the conditions of theorem 4.1, the random conditional expectation associated
with 11,

E,,. [GITL] (X) = / G(X+Y)dpf,,(¥), X H,,
YEHf

satisfies
Epy,. [GITL] (X) = AX + TGy (X.X) + 2ILGy (X, @ (00.X)) + (G2 (V1)) . (73)

with

(Ga (YY) = / IL.G, (Y. ¥) o, (¥). (74)

" €Hj

for which pX denotes the disintegration of p,, over H..
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Then, given the reduced state space H. and the statistical equilibrium p,, if
(G2(Y,Y)) px =0, the non-Markovian optimal reduced model of equation (36) with noise
acting into the ‘orthogonal direction’ of H. (assumption (H) in section 3.1), is given by:

dX = E,, . [GITL] (X) dr (75)

Hereafter, we simply refer to equation (75) as the (random) conditional expectation.

4.3. Practical implications

Thus, theorem 4.2 teaches us that an approximation of the (actual) non-Markovian optimal
parameterization, ®* given by (67), provides in fine an approximation of the conditional
expectation involved in equation (75).

The non-Markovian optimal parameterization involves, from its definition, averaging with
respect to the unknown probability measure p,,. As such, designing a practical approximation
scheme with rigorous error estimates remains challenging. Near the instability onset, the non-
Markovian optimal parameterization simplifies to the stochastic invariant manifold. In this
regime, probabilistic error estimates have been established for a wide range of SPDEs, includ-
ing those relevant to fluid dynamics [40]. However, obtaining such guarantees becomes signi-
ficantly more difficult for scenarios away from the instability onset, even for low-dimensional
SDEs [34].

This is where the data-informed optimization approach from section 3.3 offers a practical
solution within a relevant class of parameterizations. Variational inequality (69) provides a key
insight: the parameterization defect serves as a good measure of a parameterization’s qual-
ity. Lower defect values indicate a better parameterization, one that is expected to yield a
reduced model closer to the (theoretical) non-Markovian optimal reduced model defined by
equation (75).

Even with a very good approximation of the actual non-Markovian optimal parameter-
ization, ®*, a key question remains: under what conditions does the theoretical conditional
expectation (equation (75)) provide a sufficient system’s closure on its own? We address this
question in sections 5 and 6, through concrete examples. Analyzing two universal models for
non-equilibrium phase transitions, we demonstrate that the non-Markovian reduced models
constructed using the formulas from section 3 become particularly relevant for understanding
and predicting the underlying stochastic transitions when the cutoff scale exceeds the scales
forced stochastically (sections 5.3-5.5 and 6.4).

To deal with these non-equilibrium systems, we consider the class P of parameterizations
for approximating the true non-Markovian optimal parameterization, ®*. This class P consists
of continuous deformations away from the instability onset point of parameterizations that are
valid near this onset (as discussed in section 3.1).

Our numerical results demonstrate that this class P effectively models and approximates
the true non-Markovian terms in the optimal reduced model (equation (75)) across various
scenarios. After learning an optimal parameterization within class P using a single noise real-
ization, the resulting approximation of the optimal reduced model typically becomes an ODE
system with coefficients dependent on the specific noise path. These path-dependent coeffi-
cients encode the interactions between noise and nonlinearities, as exemplified by the reduced
models equations (85) and (104) below, with their ability to predict noise-induced transitions
within the reduced state spaces.
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5. Predicting stochastic transitions with Non-Markovian reduced models

5.1. Noise-induced transitions in a stochastic Allen—-Cahn model

We consider now the following SACE [2, 22, 29]
du= (Ofu+u—u’)dt+dW,, 0<x<L, >0, (76)

with homogeneous Dirichlet boundary conditions. The ambient Hilbert space is H = L*(0,L)
endowed with its natural inner product denoted by (-, -).

This equation and variants have a long history. The deterministic part of the equation
provides the gradient flow of the Ginzburg—Landau free energy functional [85]

E(u) = /OL (W +V(u (x))) dx, 77)

with the potential V given by the standard double-well function V(u) = (1> — 1)? /4. Indeed,
one can readily check that —DE (u) = 02u + u — u?, where DE denotes the Fréchet derivative
of € at u. The sACE provides a general framework for studying pattern formation and interface
dynamics in systems ranging from liquid crystals and ferromagnets to tumor growth and cell
membranes [98, 164].

Its universality makes it relevant across diverse fields, contributing to a unified understand-
ing of these complex phenomena. By incorporating the spatio-temporal noise term, dW,, into
the deterministic Allen—Cahn equation, the sACE accounts for inherent fluctuation and uncer-
tainty present in real systems [22]. This allows for a more realistic description of transitions
between phases, providing valuable insights beyond what pure deterministic models can offer.
Near critical points, where phases coexist, the SACE reveals the delicate balance between
deterministic driving forces and stochastic fluctuations. Studying these transitions helps us
understand critical phenomena in diverse systems, from superfluid transitions to magnetiza-
tion reversal in magnets [22, 98].

Phase transitions for the SACE and its variants have indeed been analyzed both theoretically
utilizing the large deviation principle [78] and also numerically through different rare event
algorithms. For instance, in [11] the expectation of the transition time between two metastable
states is rigorously derived for a class of 1D parabolic SPDEs with bistable potential that
include sACE as a special case. The phase diagram and various transition paths have also
been computed by either an adaptive multilevel splitting algorithm [147] or a minimum-action
method [177], where the latter deals with a nongradient flow generalization of the sACE that
includes a constant force and also a nonlocal term.

Despite its importance in numerous physical applications, the reduction problem for the
accurate reproduction of transition paths in the SACE has received limited attention, with exist-
ing works focusing primarily on scenarios near instability onset and low noise intensity (e.g.
[15, 18, 27, 142, 170]).

In this study, we consider the SACE placed away from instability onset, after several bifurc-
ations have taken place where multiple steady states coexist; see figure 2. It corresponds to the
parameter regime

L=3971,g=4, N=38, (78)
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Table 1. Energy distribution of the steady states across the first few eigenmodes.

(3] e e3 ey es €6 e7 es

o 9469% 0 479% 0 046% O 0.05% 0
A 99.16% 0 0 0 0.83% 0 0
AN 0 99.93% 0 0 0 0 0

in which the parameters ¢ and N indicate the modes that are forced stochastically in
equation (76), according to

N
W, (x,w) = Z ojW{(w)ej (x), teR, (79)

Jj=q+1
where we set 0; = 0 = 0.2 for g + 1 < j < N. Note that as in section 3.1, e;, denote the eigen-
modes of the operator Au = 9?u + u (with homogeneous Dirichlet boundary conditions), given

here by
2 . [(j7mx .
) =y/7sin| =), JjeN, (80)

with corresponding eigenvalues \; = 1 —j2m?/L?. We refer to appendix B for the numerical
details regarding the simulation of equation (76).

More specifically, the domain size L is chosen so that when o = 0 the trivial steady state has
experienced three successive bifurcations leading thus to a total of seven steady states with two
stable nodes (¢ and ¢,") and five saddle points (0, ¢4, @5, ¢4, and ¢3). These steady states
are characterized here by their zeros: the saddle states are of sign-change type while the stable
ones are of constant sign; see [6, 29]. Note also that the same conclusion holds for the case
with either Neumann boundary conditions or periodic boundary conditions; see e.g. [11, figure
2]. In our notation, a and b denote the string made of sign changes over (0, L), with leftmost
symbol in a to be +. For instance, for ¢¢ (resp. ¢3), a = {+,—,+} (resp. b= {—,+,—}),
while @ = {+,—} (resp. b = {—,+}) for ¢4 (resp. ¢5).

By analyzing the energy distribution of these steady states carried out by the eigenmodes
(see table 1), one observes that d)ft are nearly collinear to e;, while qﬁg/ b are nearly collinear
to e, and qﬁg/h to es.

A sketch of the bifurcation diagram as L is varied (for 0 =0) is shown in figure 2(A);
see [6] for detailed analysis. The vertical dashed line marks the domain size L = 3.97 con-
sidered in our numerical simulations. For this domain size, the system exhibits three unstable
modes whose interplay with the nonlinear terms yields the deterministic flow structure depic-
ted in figure 2(B). There, the deterministic global attractor is made of the seven steady states
mentioned above (black filled/empty circles) connected by heteroclinic orbits shown by solid/-
dashed curves with arrows. To this attractor, we superimposed a solution path to the stochastic
model (76) emanating from uy =0 (light grey ‘rough’ curve). We adopt the Arnol’d’s conven-
tion for this representation: black filled circles indicate the stable steady states while the empty
ones indicate the saddle/unstable steady states.

These steady states organize the stochastic dynamics when the noise is turned on: a solu-
tion path to equation (76) transits typically from one metastable states to another; the latter
corresponding to profiles in the physical space that are random perturbations of an underlying
steady state’s profile; see insets of figure 4 below. For the parameter setting (78), we observe
though, over a large ensemble of noise paths, that the SPDE’s dynamics exhibit transition paths
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Figure 2. Panel (A): Bifurcation diagram associated with equation (76) (without noise)
as L is varied. The dashed vertical line marks the parameter regime analyzed here. Panel
(B): Schematic of the deterministic flow structure for this parameter regime. Are shown
here, the deterministic global attractor on which is superimposed a solution path to the
sACE.

connecting uy = 0 to neighborhoods of the steady states qbf and (b;/ b, but does not meanders

near qﬁg/ ? over the interval [0, 7] considered (T = 40).

Noteworthy is the visual rendering of the sojourn time of the solution path shown in
figure 2(B). It is more substantial in the neighborhood of ¢4 than in that of d)}". It is a depic-
tion of a solution path to equation (76) over [0, 7]: most of the trajectory spends time near a
sign-change metastable state (¢4) rather than to the constant-sign one ((b?'). Large ensemble
simulations of the sACE for the parameter regime (78) reveals that what is shown for a single
path here is actually observed at the final time t = T, when the noise path is varied: the sign-
change states gb;/ b are the rule whereas the constant-sign states d)f are the exceptions, cor-
responding here to rare events. Figure 3 shows two solution paths in the space-time domain
connecting uy = 0 to either a sign-changing metastable state (typical) or a constant-sign meta-
stable state (rare event). In section 5.3 below we shall discuss the mechanisms behind these
patterns and their transition phenomenology, and the extent to which non-Markovian reduced
models described below are able to reproduce it.

5.2. Non-Markovian optimal reduced models

Recall that our general goal is the derivation of reduced models able to reproduce the emer-
gence of noise-driven spatiotemporal patterns and predict their transitions triggered by the
subtle coupling between noise and the nonlinear dynamics.

For the sACE (76) at hand, this goal is declined into the following form: To derive reduced
models not only able to accurately estimate ensemble statistics (averages across many realiz-
ations) of the states reached at a given time # = T, but also to anticipate the system’s typical
metastable states as well as those reached through the rarest transition paths pointed above.

To address this issue, we place ourselves in the challenging situation for which the cutoff
scale is larger than the scales forced stochastically; i.e. the case where noise acts only in
the unresolved part of the system. We show below that stochastic parameterization frame-
work of section 3 allows us to derive such an effective reduced model. This model is built
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Figure 3. Typical and rare transition paths for equation (76). One path connecting 1o =0
to a sign-changing metastable state (typical, left panel), and one path connecting 1o =0
to a constant-sign metastable state (rare event, right panel). Are shown also the large
(uc) and small (u;) scale contributions.

from the stochastic parameterization (40) obtained from the BF system (39a)—(39c¢) applied to
equations (76) and (79), that is optimized—on a single training path—following section 3.3.
We describe below the details of this derivation.

Thus, we take the reduced state space to be spanned by the g first unforced eigenmodes,
ie.

H. =span{e;,--- e, }. (81)

In other words, the reduced state space is spanned by low modes that are not forced stochastic-
ally; i.e. ¢ = m. in (79). The subspace Hj is taken to be the orthogonal complement of H, in
L2(0,L) and contains the stochastically forced modes; see (79).

Equation (76) fits into the stochastic parameterization framework of section 3 (see
equation (36)) with Au = 9?u+ u subject to homogenous Dirichlet boundary conditions,
G,(u) =0 and with G denoting the cubic Nemytski’i operator defined as Gs(u,v,w)(x) =
—u(x)v(x)w(x) for any u,v and w in L*(0,L), with x in (0,L).
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The resulting stochastic parameterization ®, given by (40) (with Y = 0) takes then the fol-
lowing form:

D, (1,X,t;w) = 0y (W} (w) — ™ W/__(w)) +Z2 (tw)
q
+ > (B (1) CRXiXixXe) (82)
i,j,k=1

for each n in (¢+1,N). Here Ej, is given in equation (44), and Z!(t;w) is given by
equation (41).

Since the linear operator A is here self-adjoint, we have e, = e,, and the coefficients Cyj;
are given by

L
" = —(eigjer,en) = — / e (1) ¢; (x) ex (x) e (x) d, (83)

where 1 <i,j,k<g,andg+1<n<N.

For each n in (g + 1,N), the free parameter 7 in (82) is optimized over a single, common,
training path, u(t), solving the sACE, by minimizing Q,(7) in (53) with &, given by (82); see
section 3.3. To do so, we follow the procedure described in section 3.2 to simulate efficiently
the required random random coefficients (here the Z"-terms), solving in particular the random
ODE:s (49).

After minimization, once 7% = (7, ..., 7x) is obtained, the corresponding g-dimensional
optimal reduced system in the class P (see section 4.3), is given component-wisely by

3

yi :)\iYi _< Zyje]+ Z q) n?y tw aei>7 (84)

n=q+1

wherei =1,---,gandy = (y1, -~ ,y,)"
The optimal reduced system (84), referred to as the OPM closure hereafter, can be further
expanded as

q
Vi =Aiyi + Z key/ykye+3z Z k”yfykq)” (0.3, 60)

Jik,e=1 Jk=1n=qg+1
+3Z Z jnn’yj nayat;w)q)n’ (T;;k’ayat;w)
j=1nn’'=qg+1
N
+ Z Cnn n”(b ( ;vyvt;w)(pn/ (Trjvy,t;w)@n”(T:”,yat;w)~ (85)
n,n’ n''=q+1

Here also, the coefficients C jk are those defined in (83) for 1 <i,j,k,¢ < N. Note that the
required Z"-terms to 51mulate equation (85) are advanced in time by solving the correspond-
ing equation (49). A total of N — g such equations are solved, each corresponding to a single
random coefficient per mode to parameterize. Thus, a total of, N = ¢+ (N — ¢), ODEs with
random coefficients are solved to obtain a reduced model of the amplitudes of the g first modes.
We call equation (85) together with its auxiliary ODEs of type given by equation (49), the
optimal reduced model for the sACE.
A compact form of equation (85) can be written as follows:

y =LAy + 1G5 (y + @ (y,5w)), ¥y € He, (86)
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where

B (y,5w) = Zcb TE Y Lw) e, (87)
n=q+1

with ®, defined in equation (82). We refer to appendix B for the numerical details regarding
the simulation of equation (86).

Noteworthy is that an approximation of the sACE solution paths can be obtained from
the solutions y(¢,w) to the optimal reduced model. Such an approximation consists of simply
lifting the surrogate low-mode amplitude y(,w) simulated from equation (86), to H; via the
optimal parameterization, .+, defined in equation (87). This approximation takes then the
form

uP™ (¢, x,w) Zy] tw)ej(x Z D, (17,y (tw),Kw)e, (x). (88)

n=qg+1

The insets of figure 7(A) of section 5.4 show the approximation skills achieved by this formula
obtained thus only by solving the reduced equation equation (86).

5.3. Why energy flows in a certain direction: the role of non-Markovian effects

The sACE (76) is integrated over a large ensemble of noise paths (10° members), from ug =0
at t=0 up to a time t="T. In our simulations with a fixed time horizon (T = 40), reaching a
constant-sign state at the end (r = T') is a rare event, even though these states correspond to the
deeper energy wells in the system’s landscape (as shown in figure 4). Conversely, sign-change
states, which reside in shallower wells, are more common. This might seem counterintuit-
ive from an energy perspective. Nevertheless, this can be explained by the degenerate noise
(equation (79)) used to force the SACE: only a specific group of unresolved (stable) modes
is excited by noise and this may limit the system’s ability to explore the deeper energy wells
efficiently within the simulation timeframe.

Over time (as ¢ increases), the noise term in the sACE interacts with the nonlinear terms,
gradually affecting the unforced resolved modes. Our experiments show that the amplitude of
the sACE’s solution amplitude carried by e, grows the fastest for most noise paths. Because
gzﬁg/ bis nearly aligned with e, (as shown in table 1), this means that for most noise paths, the

solution is expected to reach a metastable state close to gb;/ ” when the nonlinear effects become
significant (nonlinear saturation kicks in).

Understanding why energy primarily accumulates in the e, direction is complex. It stems
from how noise initially affecting unresolved modes (Modes 5 to 8) propagates through nonlin-
ear interactions, gradually influencing larger-scale resolved modes. As the initial state (ug = 0)
lacks energy, this noise-induced energy transfer to larger scales takes some time. Our analysis
reveals that during the interval I = (0, 10), the solution is dominated by these small-scale fea-
tures inherited from the noise forcing (table 2 and figure 3).

This finding has significant implications for closure methods: to accurately reproduce both
rare and typical transitions, the underlying parameterization must effectively represent the
system’s small-scale response to stochastic forcing before the transition occurs.

Figures 5 and 6 illustrate how the optimal parameterization and reduced model
(equations (86) and (87)) capture the subtle differences in the small-scale component that ulti-
mately lead to rare or typical events in the full SACE system. Notably, for both rare (figure 5)
and typical paths (figure 6), the low-mode amplitudes of the sACE solution are near zero dur-
ing the interval I = (0, 10) (Panels (C)—(F) and table 2). Therefore, it is the spatial patterns of
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Figure 4. Ginzburg-Landau free energy functional. Here, the Ginzburg-Landau free
energy functional £ (u) given by (77) is shown over the reduced state made of the two
dominant modes’ amplitudes. A few solution paths navigating across this energy’s land-

scape (over [0,7]) are shown. The ‘shallower’ local minima correspond to qzbg/ b (sign-

change profile), while the deeper ones correspond to qb?[ (constant-sign profile). The
insets show examples of metastable states, reached at =T by the sACE, located near
these steady states. The rare paths are those trapped in the deeper wells due to the degen-
erate noise employed here; see Text.

the small-scale component, rather than its energy content, that control the triggering of rare
or typical events (figures 3(A) and (D). The successful parameterization of these small-scale
features (figures 5(B) and 6(B)) is crucial for the optimal reduced model’s ability to reproduce
the key behaviors of the SACE’s large-scale dynamics.

The non-Markovian terms are essential for accurately capturing these small-scale patterns
before a rare or typical event occurs. When large-scale mode amplitudes are near zero during
interval I (table 2), the optimal parameterization (equation (87)) is dominated by the (optim-
ized) non-Markovian field &, given by:

N
& (wvx) = Z M, (I’T:aw)en (x)v (89)

n=qg+1
with
M, (1,7F,w) = o0 (w; (W) =MW (w)) + 28 (5w). (90)

v in

After this initial transient period, nonlinear effects become significant, and the large-scale
mode amplitudes undergo substantial fluctuations. Panels C-F in figures 5 and 6 demonstrate
this behavior and the optimal reduced model’s ability to predict these large-scale fluctuations
beyond interval I. The OPM reduced system’s ability to capture such transitions is rooted in its
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Figure 5. Non-Markovian terms and rare path’s small-scale component. Panel A shows
the small-scale component of the solution to the SACE, experiencing a rare transition
path. Panel B shows the OPM parameterization of this small-scale component over the
interval (0,10), prior the transition takes place. Panels (C)—(F) show the ability of the
optimal reduced model, equation (85), to predict the large fluctuations experienced by
the large-scale modes’ amplitudes, beyond this interval.
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Figure 6. Non-Markovian terms and typical path’s small-scale component. Same as
figure 5 but for a typical path.
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Table 2. Energy distribution over (0, 10) for the SACE’s rare and typical paths.

e e es ey eés €6 e7 es

Rare path 0 0.05% 0.01% O 49.6% 26.1% 151% 9.2%
Typical path 0 022% 0 0 348%  33% 19.7%  12.4%

very structure. Its coefficients in equation (85) are nonlinear functionals of the non-Markovian
M,,-terns within &, allowing for an accurate representation of the genuine nonlinear interac-
tions between noise and nonlinear terms in the original sACE, which drive fluctuations in the
large-mode amplitudes (Modes 1 to 4).

After a transition occurs and energy is transferred to the low modes, the stochastic com-
ponent &, and its non-Markovian terms become secondary while the nonlinear terms in the
stochastic parameterization (82) become crucial for capturing the average behavior of the
SACE dynamics, as highlighted in section 5.5 below.

5.4. Rare and typical events statistics from non-Markovian reduced models

Here, we evaluate the ability of our non-Markovian reduced model (equation (86)) to statist-
ically predict the rare and typical transitions discussed in the previous section. We test the
reduced model’s performance in this task using a vast ensemble of one million noise paths.

Recall that the optimal parameterization (®,,, defined in (82)) is trained on a single, ‘typical’
noise path (see figure 8(A). In other words, we minimized the parameterization defect Q,(7)
in equation (53) for this specific path. Our key objective here is to assess how well the reduced
model (equation (86)) can predict the distribution of final states (metastable states at time 7'
across a much larger set of out-of-sample noise paths.

To do so, we look at a natural ‘min+max metric.” This metric consists of adding the min-
imum to the maximum values of the SACE’s solution profile at time 7. The shape of this
probability distribution shows that a value close to zero corresponds to a typical sign-change
metastable state, while a value close to 1 or —1, corresponds to a rare constant-sign metastable
state.

Figure 7(A) demonstrates the effectiveness of the non-Markovian optimal reduced model
in capturing rare events. The optimal reduced system (equation (86)) can predict noise-driven
trajectories connecting an initial state (1) = 0) to rare final states (SACE solution’s profile with
a constant sign at time 7T') with statistically significant accuracy (see figure 7(A)). While these
rare events occur less frequently in the reduced system compared to the full SACE (smaller red
bumps compared to black ones near 1 and — 1), the ability of the reduced equation equation (86)
to predict them highlights the optimal parameterization’s success in capturing the system’s
subtle interactions between the noise and nonlinear effects responsible for these rare events.

Thus, the optimal reduced system reproduces faithfully the probability distribution of both
common (frequently occurring sign-change profiles) and rare (constant-sign profiles) final
states at time T (figure 7(A)). This is particularly impressive considering the model was trained
on just a single path, yet generalizes well to predict the behavior across a large ensemble of
out-of-sample paths.

Figure 8(A) shows the training stage over a typical transition path. The optimization of the
free parameter 7 in the stochastic parameterization ®, (see equation (82)) is executed over
a typical transition path, by minimizing the normalized parameterization defects Q,(7,T) =

Q,(r,T)/ |un(t) |2 (Q,,(7,T) defined in equation (53)) for all the relevant n (heren =35, --- ,8).
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Figure 7. Comparison of metastable state statistics between the full SACE model
(equation (76)) and the optimal reduced model (equation (86)) at time # = T. Panels B
and D show the distribution of u(7,x, -) from the sACE solution at = T Panels C and E
show the corresponding approximation u°"™ (T, x, -) obtained from the optimal reduced
model’s solutions at r =T, leveraging equation (88). One million test paths are used to
generate these statistics. See Text for more details.
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Figure 8. The (normalized) parameterization defects, O, (7). Panel (A): The parameter-
ization ®, given by (82) is trained offline on a (single) typical transition path taken over
the interval (¢, T), with £, = 10 corresponding to the time at which nonlinear effects kick
in (see figure 5). This optimized stochastic parameterization is used into the reduced sys-
tem (86) to produce the online ensemble results of figure 7. Panel (B): The 7-dependence
of the 0, (7) is shown on a rare transition path, for information purposes. See section 5.5
for more details.

We observe that Qs and Qg exhibit clear minima, whereas the other modes have their para-
meterization defect not substantially diminished at finite 7-values compared to its asymptotic
value (as 7 — o00). Same features are observed over a rare transition path; see figure 8(B).
Recall that our reduced system is an ODE system whose stochasticity comes exclusively from
its random coefficients as the resolved modes in the full system are not directly forced by noise.
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It is this specificity that enables the reduced equations to effectively predict noise-induced
transitions, including rare events. This remarkable capability relies on the optimized memory
content embedded within the path-dependent, non-Markovian coefficients.

Thus, the optimized, non-Markovian and nonlinear reduced equation (85) is able to track
efficiently how the noise, acting on the ‘unseen’ part of the system, interacts with the resolved
modes through these non-Markovian coefficients. While these coefficients effectively encode
the fluctuations for a good reduction of the sACE system, they alone are insufficient to handle
regimes with weak time-scale separation such as dealt with here. Understanding the average
behavior of the resolved dynamics is equally important. The next section explores how our
parameterization, particularly its nonlinear terms, play a crucial role in capturing this average
behavior.

5.5. Weak time-scale separation, nonlinear terms and conditional expectation

We assess the ability of our reduced system to capture this average dynamical behavior in the
physical space. In that respect, figures 7(B) and (D) show the expected profiles of the SACE’s
states obtained at t =T (solid black curves) from the sACE (76), along with their standard
deviation (grey shaded areas), for the ensemble used for figure 7(A). Similarly, figures 7(C)
and (E) show the expected profiles (solid red curves) with their standard deviation as obtained
at =T from u°"™(T,x,-) defined in equation (88), once the low-mode amplitude is simulated
by the optimal reduced model (86) and lifted to H; by using the stochastic parameterization
(DT* .

By conducting large-ensemble (online) simulations of our reduced model (equation (86)),
we accurately reproduce the mean motion and second-order statistics of the original sACE.
This success stems from our parameterization’s ability to effectively represent the average
behavior of the unresolved variables during the offline training phase, as defined by the prob-
ability measure £ in (58). Figure 9 illustrates this point for the fifth and sixth modes’ amplitudes
of the SACE system. Notably, the nonlinear nature of the Markovian optimal parameterization,
evident after taking the expectation (see equation (91) below), highlights the crucial role of
nonlinear terms in our stochastic parameterization (equation (82)) in achieving this accurate
representation.

The manifold shown in figure 9(A) (resp. figure 9(B) is obtained as the graph of the fol-
lowing Markovian OPM for the 6th (resp. 5th) mode’s amplitude, given by the expectation of
equation (82) with n =6 (resp. n =5) after optimization (figure 8),

q
(X1,X,) — E[®, = Y (B (7)) CuXiXiXe) 91)
i,j,k=1

for X = (X1, X2, X3,X4) with X3 = p3 and X4 = p4, where p3 and p4 denote the most probable
values of the 3rd and 4th solution components, u3(t) and uy(z), to enable visualization as a
2D surface while favoring a certain ‘typicalness’ of the visualized manifold. Note that the
Markovian OPM corresponds simply to the deterministic cubic term in (82) after replacing 7
by the optimal 7,7, since the remaining stochastic terms equal to o, fll_T”* eM=) AW (w) (see
remark 3.1), whose expectation is zero as stochastic integral in the sense of Ito.

Without the optimization stage, the parameterizations of section 2 experience deficient
accuracy when the memory content is taken to be 7 = oo, due to small values that the spectral

'1 4
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Figure 9. Markovian optimal parameterization for the 5th and 6th modes’ amplitudes.
Panel (A): The black curve shows the time evolution of the 6th mode’s amplitude,
ue (1), obtained by solving the governing equation, equation (76), over the time inter-
val 0 to 400. This 6th mode’s amplitude is shown against the corresponding first and
second modes’ amplitudes, u; (¢) and u»(r). For visualization purposes, the other solu-
tion components in the four-dimensional subspace H., u3(f) and u4(r), are fixed at their
most probable values, p3 and p4, respectively. The manifold shown is the underlying
Markovian OPM for the 6th mode’s amplitude (equation (91) with n = 6). Panel (B):
Same for the 5th mode’s amplitude us(f) = (u(?),es) and its corresponding Markovian
OPM (equation (91) with n=15).
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Figure 10. Autocorrelation functions (ACFs). Ensemble averages of the ACFs for the
SACE’s solution amplitude carried by the resolved mode e (black curve) and those car-
ried by the unresolved modes es, . .. ,eg (red curves). The gray (resp. pinky) shaded area
around the black (resp. red) curve shows the ACF’s standard deviation for e4 (resp. the
unresolved modes). These statistics are computed from the same ensemble of SACE
solution paths as in figure 7.

gaps 53'k take in denominators. As a reminder, small spectral gaps are indeed a known lim-
itation of traditional invariant manifold techniques, often leading to inaccurate results in this
case. Optimizing the parameter 7 helps address this issue. It introduces corrective terms like
(1 —exp(—0j;)7) in the cubic coefficients (Ej;, equation (44)) that effectively compensate for
these small gaps. This is especially important for fifth and sixth (unresolved) modes whose
parameterization defects show a clear minimum during optimization (figure 8).

Small spectral gaps often translate into a more observable dynamical effect: weak time-
scale separation between the resolved and unresolved variables near the cutoff scale. This
is where the optimization process plays a particularly important role. In our sACE system,
we observe indeed that the timescales of the unresolved modes near cutoff have a greater
impact on the optimization of the backward integration time 7 (figure 8) from our BF system
(equations (39a)—(39¢)) which underpins the parameterization (equation (82)). Modes like the
fifth and sixth (unresolved) have correlation decay rates closer to the fourth resolved mode,
compared to the much faster decay rates of the seventh and eighth modes (figure 10). Notably,
the fourth and sixth modes exhibit very similar decay rates (except for short time lags). This
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similarity makes finding the optimal value for 7 crucial. Interestingly, the minimum in the
optimization is more pronounced for the sixth mode compared to the fifth (figure 8). This dif-
ference could be caused by non-linear interactions between these modes or their relative energy
content. The seventh and eighth modes exhibit much faster correlation decay (figure 10) and
consequently their parameterization defects exhibit marginal optimization at finite 7-values
compared to their asymptotic values.

Thus, the closure results shown in figure 7 demonstrate our reduction approach’s effect-
iveness in handling weak time-scale separation scenarios, while also suggesting potential for
further improvement (see section 9). Our data-driven optimization of analytical parameter-
ization formulas offers a compelling alternative to traditional multiscale methods or those
based on invariant manifolds [15, 18, 27, 142, 170]. These methods, while providing rigor-
ous error estimates, often require strong time-scale separation for the derivation of their amp-
litude equations. Additionally, they can achieve higher-order nonlinearities in their reduced
equations too but through a different route: the It6 formula is applied after exploiting a slow
timescale of the system (e.g. [18, equation (12)] and [128, equation (15)]). Integrating optim-
ization concepts into these alternative frameworks could be a promising avenue to explore how
it performs in weak time-scale separation regimes.

6. Predicting jump-induced transitions

6.1. Spatially extended system with double-fold bifurcation

We consider the following spatially extended system,

QRu+A(1+u*—ear’) =0, on (0,L), (92a)

u(0) =u(L) =0. (92b)

This system serves as a basic example of a spatially extended system exhibiting a double-fold
bifurcation (also known as an S-shaped bifurcation). In this bifurcation, two equilibrium points
collide and vanish, leading to tipping phenomena within a hysteresis loop. Similar elliptic prob-
lems to equations (92a) and (92b) with these properties emerge in various applications such
as gas combustion and chemical kinetics [8, 76], plasma physics and Grad—Shafranov equilib-
ria in Tokamaks [30, 88, 157], and gravitational equilibrium of polytropic stars [30, 74, 99].
Beyond polynomial nonlinearities, other spatially extended systems are known to exhibit S-
shaped bifurcation diagrams. Examples include: Earth’s energy balance models [83, 97, 131],
and oceanic models based on hydrostatic primitive or Boussinesq equations employed in the
study of the Atlantic meridional overturning circulation (AMOC) [67, 165, 172]. We also note
that the OPM approach has already been successfully applied to predict tipping phenomena in
a prototype Stommel—Cessi model of the AMOC driven by Gaussian noise [39].

For equation (92a), the bifurcation parameter is A. For L =2, it is known that the solution
curve A — u) exhibits an S-shaped bifurcation when € < ¢* = 0.3103 [107, theorem 3.2]. This
critical constant €* is derived from a general analytic formula applicable to a broader class of
equations where > is replaced by u” with a fractional exponent p > 2 [107]. More precisely,
for e satisfying

P

» 1 2 =2 p—1 2 p=2
g [ S N G —— 93
T3 L’(P—l)] p+1 L’(p—l)} ©3)

Theorem 3.2 of [107] ensures that the solution curve to equations (92a) and (92b) (with u?
replaced by u”) is exactly S-shaped. We focus here on the case p = 3.
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Figure 11. Double-fold bifurcation in equations (92a) and (92b). The red curve shows
unstable steady states for e = €¢* /2. The black curves represent stable steady states. The
double-fold bifurcation occurs at the two turning points where the unstable states (red
curve) collide with the stable states (black curves). The vertical dashed line indicates the
value A =1.32 used in table 3 for stochastic simulation in section 6.2, and prediction
experiments in section 6.3.

To locate the interval of A over which an exact multiplicity of three steady states occurs (as
predicted by the S-shape) we compute the bifurcation diagram of equations (92a) and (92b) for
€ = ¢* /2; see appendix C for details. The result is shown in figure 11. The vertical dashed line
at A = 1.32 marks the A-value at which stochastic perturbations are included below to trigger
jumps across these steady states.

6.2. System’s sensitivity to jumps, and jump-driven dynamics

In this section, we consider stochastic perturbations of jump type carried by some of the
eigenmodes of the linearized problem at the unstable steady state Uy. The latter problem is
given by
82 + A (2U§ - 3eU§2) & = B, on (0,L), (94a)
Y (0) =1 (L) =0, (94b)
and is solved below using a Chebyshev spectral method [167, chapters 6 & 7] for the numerical
experiments. Hereafter we denote by (3,,e,) the eigenpairs solving equations (94a) and (94b).

Note that the eigenvalues are real and simple for this problem.
Thus, the jump-driven SPDE at the core of our reduction study is given by:

B,Lt—afu—)\(l—&—uz—af) = A1y, (95a)
u(0) =up € H, (95b)

supplemented with Dirichlet boundary conditions. The ambient Hilbert space is H = L*(0,L)
endowed with its natural inner product denoted by (-, -).
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Table 3. Parameter values for equation (95a).

€ fr At o A L

= 0.35 1 300 1.32 2

Here, 7, is a jump noise term that takes the form

1 (x) = 0Cf (1) (€3 (x) +es5(x)), x € (0,1), (96)

where o > 0, e3 and es are the third and fifth eigenmodes for equations (94a) and (94b), (; isa
random variable uniformly distributed in (—1,1), and f(¢) is a square signal, whose activation
is randomly distributed in the course of time. More precisely, given a firing rate f, in (0, 1), and
duration At > 0, we define the following real-valued jump process:

f(t) =Tye <y, nAr<t<(n+1)At 97)

where &, is a uniformly distributed random variable taking values in [0, 1] and 1 (¢ <5y = 1 if
and only if 0 < & < f,. We refer to [66, section 3.4] for existence results in Hilbert spaces of
mild solutions to SPDEs driven by jump processes, that apply to equations (95a) and (950).
This type of jump process is also known as a dichotomous Markov noise [9], or a two-state
Markov jump process in certain fields [160]. It is encountered in many applications [101].

The specific values for the noise parameters (frequency rate, f,, time scale, At, and intensity,
o) are provided in table 3. The random forcing in our simulations is chosen with two key
considerations:

e Time scale (Af): The time scale At is large enough to allow the system to gradually relax
towards its stable steady states over time.

e Frequency rate (f;): The frequency rate, f,, is adjusted to ensure this relaxation process can
occur effectively.

This configuration ensures that if a perturbation is applied for a duration of Ar and then
removed for several subsequent At intervals, the system naturally return to its closest stable
steady state.

This relaxation behavior after a perturbation is clearly visible in the first mode’s amplitude,
y1(f) = (u(r),e;) (where u solves equations (954) and (95b)). The top panel of figure 12 illus-
trates this concept. Shortly after the vertical dashed magenta line at t =21.4, we observe y; (¢)
relaxing towards the constant value (U, e1). Here, UY denotes the stable steady state with the
largest energy for A = 1.32 (represented by the top blue dot in figure 11). Similar relaxation
episodes occur throughout the simulation, with y;(f) sometimes relaxing towards (U7}, eq),
involving the stable steady state U’y with the smallest energy (refer again to figure 11).

While the noise intensity (o =300) in table table 3 may seem large, this value is neces-
sary because we specifically target modes e; and es used in the stochastic forcing defined in
equation (96). These modes contribute less than 1% of the total energy in the unforced para-
bolic equation. When the jump noise is activated with this intensity, the amplitudes of y(¢)
and ys(r) fluctuate significantly, becoming comparable in magnitude to y;(¢). This eliminates
the previous order-of-magnitude difference.

As a result, the random perturbations introduced by modes e3 and es, through the system’s
nonlinearities, can now drive the SPDE solution across the potential barriers associated with
the steady states. This explains the multimodal behavior observed in the time evolution of y; ()
as shown in figure 12.
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Figure 12. Jump-driven dynamics. T?/P panel: The top (resp. bottom) horizontal blue
dashed line shown corresponds to (U, e;) (resp. (U%,e1)) with UY (resp. UY) denot-
ing the stable steady state to equations (92a) and (92b) with maximum (resp. min-
imum) energy. The horizontal dashed red line corresponds to (Uy,e1) with U3 denoting
the unstable steady state. The black dotted curve going across these horizontal dashed
lines (and the associated potential barriers) is showing y;(#) = (u(t),e;) with u solv-
ing equations (95a) and (95b) for the parameter values of table 3. Bottom panel: Here,
is shown R(t,x) = u(t,x)/std(u(t)) — n/(x)/std(n;) when 7, # 0. The shaded planes
mark two different patterns exhibited by the system’s response, for two close y;-values
(vertical purple dashed lines), illustrating the difficulty of closing accurately the y;-
variable. See Text for more details.

A crucial question remains: with such a strong random force (o =300), are the observed
dynamics in the system solely a reflection of this forcing, or is there more to it? To address
this, we calculate a quantity called R(¢,x). This quantity compares the normalized solution,
u(t,x)/std(u(r)), with the normalized forcing term, 7,(x)/std(7,), at times when forcing is
present (1), # 0); see caption of figure 12. Here, std denotes standard deviation.

The key point is that the forcing term, 7,(x), consists of a time-dependent coefficient mul-
tiplied by a specific spatial pattern defined by p(x) = e3(x) + es(x). If the system’s response
were strictly proportional to the forcing, then R(#,x) would simply match this spatial pattern
(p(x) with three peaks and two valleys).

However, the bottom panel of figure 12 tells a different story. We see that R(¢,x) deviates
significantly and in a complex way from p(x) as time progresses. This implies that the system’s
response is not simply a mirror image of the forcing term. The nonlinear terms in the equation
play a crucial role in shaping the response dynamics.

Developing reduced models for this system faces another significant hurdle: the system’s
high sensitivity to small changes, particularly in the first mode’s amplitude (y;). Here is the
key point: even tiny variations in y;, especially near the potential barrier of a steady state,
can lead to vastly different spatial patterns in the full SPDE solution. Figure 12 illustrates this
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sensitivity. For example, consider points #; = 15.04 and #, = 53.49 marked by the two vertical
purple dashed lines in the top panel of figure 12. The corresponding values of y; are very close
(y1(f1) = 3.92 and y;(t;) = 3.89). However, the SPDE solutions at these times (shown in the
vertical shaded planes) exhibit dramatically different spatial patterns.

The significant difference between the response of the first mode’s amplitude (y;) and the
full SPDE solution (u) in equation equations (95a) and (95b) underscores the critical need for
an accurate parameterization of the neglected variables. Capturing this kind of sensitive beha-
vior with a reduced model that only tracks y; requires a comprehensive representation of the
influence from these excluded variables. We demonstrate in the next section that our optimal
parameterization framework effectively tackles this challenging parameterization issue.

6.3. Non-Markovian optimal reduced model

We describe below how our BF framework introduced in this work to derive stochastic para-
meterizations of SPDEs driven by white noise can be readily adapted to SPDEs driven by jump
processes. The stochastic model equations (95a) and (95b), driven by the jump process defined
in equation (96), serves as a concrete example. Our objective is to develop a reduced model
for the first mode’s amplitude in equation (95a). In other words, we aim to create a simpli-
fied, one-dimensional stochastic model that can accurately reproduce the complex dynamics
discussed in section 6.2, including the stochastic transitions.
To do so, we rewrite equation (95a) for the fluctuation variable

v—u—US, (98)

where U3 denotes the unstable steady state of equations (92a) and (92b) (for A =1.32) cor-
responding to the red dot shown in figure 11. The fluctuation equation in the v-variable reads
then as follows:

By — 0%v — A (2U§ - 3eU§2) v—A(1 = 3eU)V + Aev® = A, on (0,L) x (0,7).  (99)

Each nth eigenmode, e, solving equations (94a) and (94b) turns out to be very close to the
Fourier sine mode /2 /Lsin(nwx/L), and the eigenvalues decay quickly. The first few eigen-
values are 3; = 0.1815, 5, = —7.4966, B3 = —19.9665, 34 = —37.2840, and 35 = —59.5108.
Here only the first mode e; is unstable while the others are all stable.

Our reduced state space is thus taken to be

H. =span{e;}. (100)

For the parameter setting of table 3, most of the energy (99.9%) is distributed among the
unstable mode e;, on one hand, and the forced modes, e3 and es, on the other, with energy
carried by the third mode’s amplitude representing up to 60% depending on the noise path.
An accurate parameterization of these forced modes along with their nonlinear interactions
with the unstable mode is thus key to achieve for a reliable reduced model of the first mode’s
amplitude.

To do so, we consider the BF parameterization framework of section 3.1 for cubic SPDEs
driven by white noise that we adapt to the jump noise case. If one replaces the Brownian motion
in the BF system (39a)—(39¢) by the jump process term, o (,f(¢) (from equation (96)), one gets
the following parameterization of the nth mode’s amplitude (n € {3,5}):

@, (0, X, ;0) =P TY + TL (tw) + DY, (T) B X+ Efy (1) Ly X, (101)
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where the coefficients BY;, C{,,, D/, and E},; are those defined in section 3.1, while the
stochastic term is now given by the non-Markovian coefficient

JU(tw) = o\ / P =9 f(s) ds. (102)

This stochastic term is the counterpart of the Z"-term defined in (41) for the white noise case.
As for the Z"-term, the J"-term is efficiently generated by solving the following ODE with
random coefficients:

& = B+ oA (6 ()~ Gt 7) (103)

for n =3 and n =75; cf equation (49). Note that the parameterization equation (101) takes the
same structural form as equation (82) in the case of white noise forcing (see remark 3.1), with
the bounded jump noise replacing the latter here. This is due to the underlying BF systems at
the core of the derivation of these formulas where only the nature of the forcing changes; see
also section 8 below.

Then, after optimization over a single training path of the parameterization defects Q,(7)
(see section 6.4 below), an analogue to the optimal reduced model (equation (86)) becomes in
our case the following 1-D ODE with path-dependent coefficients:

y=Biy+ <(>\ —3AUL) (v (N ey + P (1) ,e1> — e <(y(t)el PO e > . (104)
with
P(t) =3 (73,y(1) ,t)es + Ps (75, y (1), 1) es. (105)

Here, P(¢) is the optimized stochastic parameterization in the class P (see section 4.3) for
the SPDE (99) driven by the jump process 7; defined in equation (96). Note that the required
non-Markovian J"-terms to simulate equation (104) are obtained by solving equation (103)
in the course of time. So a total of three ODEs with random coefficients are solved to obtain
a reduced model of the first mode’s amplitude. Thus, equation (104) along with its auxiliary
J-equations, form the optimal reduced system.

The inner product in equation (104) leverages the analytical expression of P(¢) provided
in the same equation. This inner product is computed once offline, resulting in a degree-9
polynomial with random coefficients after expanding the ®; and ®5 terms as described in
equation (101). However, this expression can be further simplified. By analyzing the order of
magnitude of the terms in equation (101) for the parameter regime of table 3 (o large), we
observe that P(¢) simplifies to

P 1) =T (hw)es + 5. (5w)es, (106)

setting ¥ =0 in ,, (n = 3,5) defined in equation (101). The remaining unresolved modes,
which are also unforced, contribute less than 0.1% of the total energy and are therefore neg-
lected in the parameterization P(t). In any event, the approximation in (106) expresses a prom-
inence of the stochastic terms over the nonlinear ones in the parameterization (101), unlike for
the reduction of the sACE analyzed in section 5.4. The parameterization becomes then purely
stochastic without nonlinear terms. Yet, the optimal reduced system, equation (104), exhibits
nonlinear products of stochastic coefficients.

To clarify this point, we introduce a few more notations. We denote by a$ (x) the spatial
coefficient, A — 3\eUsj (x), involved in the quadratic term of equation (104) (as inherited from
equation (99)). To simplify the notations we denote also by J3 (resp. J5) the term Ji; (t;w)

(resp. Ji; (t;w)), and introduce the bilinear operator G, (u,v)(x) = u(x)v(x), for x in (0,L) and
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Figure 13. The normalized parameterization defects, O, forn =3 and n = 5. The optim-
ization is performed on a single path. See Text.

any functions u,v in L*(0,L). We have then, using the approximation formula (106), that the
quadratic term in equation (104) expands as follows

<af\ (D) e +P (1) 701> =y (1) (a5Ga (e1,e1) 1) + (V3 (f))z (a5\Ga(e3,e3) ,e1)

+ (U5 (0)2 (a5\Ga (es,e5) 1) +2(a\Gy (e3,e5) ,e1)J5 (1) J5 (1)

+2(a5Ga (e1,€3) ,€1)y (1) J5 (1) +2(a5Ga (e1,e5) 1)y (1) J5 (1),
(107)

with a similar expression obtained from the cubic terms in equation (104). Already from
equation (107) one observes the production of stochastic constant terms driven by (J3 (1)),
(J2(1))* and J;(1)J%(¢) as well as linear terms driven by J3(7) and J%(f) contributing to the
dynamics of the surrogate first mode’s amplitude y. These stochastic terms turn out to be essen-
tial for a good emulation of the first mode’s amplitude. This point is illustrated by the following
experiment.

6.4. Training data, parameterization defects, and reduced model’s skills

The training data for the optimal reduced model is comprised of N = 40000 snapshots. These
sACE snapshots are generated over a training interval from 0 to 7, with 7' = 400, for a single,
noise path driving the sACE. The corresponding normalized parameterization defects (quan-
tified by Q,,) are visualized in figure 13.

Here, it is important to note that the distinct minima observed in Q3 and Qs are not caused
by weak time-scale separations (as discussed in section 5.5 for the sACE). Instead, they are
primarily a consequence of the high noise intensity (o) used in this case, which leads to solu-
tions with large amplitudes. This is further supported by the observation that these minima
become less pronounced as o is reduced (verified for arbitrary noise paths).

Figure 14 shows the optimal parameterization’s ability to reproduce first mode’s complex
behavior. This figure showcases the effectiveness of the optimal reduced model (equation (104)
with P(¢) from equation (106)) in capturing the bimodal nature of the first mode’s amplitude.
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Figure 14. Ensemble PDF. Here, 10> out-of-sample test paths are used to estimate these
ensemble PDFs. Each underlying solution path is made of N = 2 x 10° iterations for a
time-step of 67 = 1072,
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Figure 15. First’s mode amplitude dynamics: Full system vs optimal reduction.

The model’s performance is evaluated using a vast set of unseen test paths. When compared to
the actual SPDE solution’s amplitude for the first mode (across these test paths), the optimal
reduced model closely follows the various transitions between metastable states, crossing as
needed the potential barriers. However, it is worth noting that this reduced model tends to
slightly overestimate the intensity of these larger excursions (as shown in figure 15).

7. Towards the reduction of more general Lévy-driven dynamics

We prolong the discussion and results of section 6 towards more general Lévy noise. For the
sake of simplicity we focus on finite-dimensional SDEs driven by Lévy processes.
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There is a vast literature on Lévy processes which roughly speaking are processes given as
the sum of a Brownian motion and a jump process [3, 50, 108, 133, 139]. Unlike the case of
diffusion processes (SDEs driven by Brownian motions), the representation of Kolmogorov
operators is non-unique in the case of Lévy-driven SDEs, and may take the form of operat-
ors involving fractional Laplacians or singular integrals among other representations [111].
We adopt here the definition commonly used in probability theory [4, theorem 3.5.14] which
presents the interest of being particularly intuitive as recalled below. We consider SDEs of the
form

where W, is a Brownian motion in R?, and L, is a Lévy process on R? independent from W,.
Here, we take F to be a smooth vector field on R?, and 3(x) to be, for each x, a d x d matrix
with smooth entries, such that (a;(x)) = X(x) X (x) is a positive definite matrix for each x in
R4,

Roughly speaking, a Lévy process L; on R? is a non-Gaussian stochastic process with
independent and stationary increments that experience sudden, large jumps in any direc-
tion. The probability distribution of the these jumps is characterized by a non-negative
Borel measure v defined on R? and concentrated on R?\{0} that satisfies the property
fRd\ o) min(1,y?)r(dy) < oo. This measure v is called the jump measure of the Lévy pro-
cess L;. Sometimes X; itself is referred to as a Lévy process with triplet (F, 33, ). Within this
convention, we reserve ourselves the terminology of a Lévy process to a process with triplet
(0,0,v). We refer to [3] and [139] for the mathematical background on Lévy processes.

Under suitable assumptions on F, 3, and the Lévy measure v, the solution X; to
equation (108) is a Markov process (e.g. [141]) and even a Feller process [109], with associated
Kolmogorov operator taking the following integro-differential form for (e.g.) v in C°(R?)
(Courrege theorem [53, 108]):

d
L (x) =F (x)-V+ > a;(x)0p + T (x), with (109a)

ij=1

Iy (x) = /R o) [ (x+y) =9 (x) =y VY () Ly <] v(dy),  (109b)

where 1 1» denotes the indicator function of the (open) unit ball in R"; see also [3, theorem
{llyll<1} P

The first-order term in equation (109a) is the drift term caused by the deterministic, non-
linear dynamics. The second-order differential operator represents the diffusion part of the
process X;. It is responsible for the continuous component of the process.

The I'-term, involving the integral, represents the jump part of the process. It captures the
discontinuous jumps that the process experience due to the sudden changes caused by the
Lévy process L,. Its intuitive interpretation breaks down as follows. The term, ¢ (x +y) — 1 (x),
calculates the difference in the test function value before and after the potential jump, capturing
the change in the test function due to the jump.

The term —y - V) (x) 1«1} represents a first-order correction for small jumps. It aims
to account for the fact that a small jump might not land exactly on the grid point (x +y), but
somewhere in its vicinity. This term is often referred to as the Girsanov correction. Thus, the
integral term I" accounts for all possible jump sizes (y) within a unit ball, as weighted by the
Lévy measure v(dy). The notion of Kolmogorov operators can be extended to SPDEs driven
by cylindrical Wiener processes, with x lying in a Hilbert space; see [65]. Building up on such a
functional framework, it is possible to provide a rigorous meaning of the Kolmogorov operator

46



J. Phys. A: Math. Theor. 58 (2025) 045204 M D Chekroun et al

Lk in the case of an SPDE driven by a general Lévy process, forcing possibly infinitely many
modes.

In the case of SPDE driven by a scalar jump process (forcing only two modes) studied
in section 6 (see equation (96)), the jump measure is simple to describe. It corresponds to the
measure v(ds) (s real) associated with the real-valued jump process £ (¢) given by equation (97).
This measure is the Dirac delta Ad;—, where A is the intensity of the Poisson process associated
with the random comb signal. Recall that this intensity is the limit of the probability of a single
event occurring in a small interval divided by the length of that interval as the interval becomes
infinitesimally small. Therefore, ) is equal to the firing rate f, of f(¢).

In the case of SDEs driven by a-stable Lévy processes,

v(dy) = caalyl = dy, (110)

where the non-Gaussianity index « lies in (0, 2), and ¢4, is a constant that depends on the
dimension and involves the gamma function of Euler [111]. A 2-stable (av=?2) process is
simply a Brownian motion.

The rigorous theory of slow and center manifolds are in their infancy for SDEs driven
by a-stable Lévy processes [174, 175], but the main formulas share the same ingredients as
recalled in section 2.2, with analogous BF interpretations of those discussed in section 2.3
for the Lyapunov—Perron integrals involved therein ([174, section 4]). The non-Markovian
parameterizations of section 3 and their data-driven optimization, can thus be extended, at
least formally, for the case of SDEs driven by a-stable Lévy processes and will be pursued
elsewhere on concrete applications.

8. A chart summarizing the approach

To streamline the application of the OPM reduction approach for stochastically forced sys-
tems presented in this paper, we provide a concise overview of its key steps, objectives, and
characteristics in the chart shown in figure 16. This summary is tailored to the class of SPDEs
discussed in section 2.1, with the primary goal of performing a reduction with a cutoff scale
just below the forcing scale. This reduction involves a solution splitting where only the dis-
regarded ‘small’ scales are stochastically forced (figures 16(A) and (B)).

Given this splitting, where the disregarded scales are those directly forced by stochasticity,
our approach reveals the importance of non-Markovian terms in the parameterization of these
scales. These terms depend on the noise’s path history, enabling the tracking of small-scale
fluctuations. The accuracy of this tracking is primarily governed by the memory content (1)
of the parameterization, which is optimized from data by minimizing a natural loss function
(figure 16(E)) over a single noise realization w.

Once optimized, the resulting non-Markovian parameterization, the OPM, allows us to cap-
ture the average behavior of small-scale fluctuations as a functional of large scales by averaging
over noise paths (see inset below figure 16(B)). To efficiently optimize the memory content (1)
and avoid the computation of cumbersome quadratures, we decompose the J-term in figure 16,
J(t,x) =>_J,(t)e,(x), into random coefficients J, that solve simple auxiliary ODEs depend-
ent on 7 and the noise path w. The resulting OPM closure, exemplified by equation (85), takes
the form of an SDE system with coefficients that are nonlinear functionals of these J,, terms
(figure 16(F)) reflecting the nonlinear interactions between the noise and nonlinear terms in
the original system.
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Figure 16. Chart presenting the main steps, objectives, and characteristics of the OPM
reduction approach.

As demonstrated with SPDEs driven by Gaussian noise (section 5) or jump processes
(section 6), the OPM closure effectively predicts noise-induced transitions and rare event stat-
istics. This success is attributed to our hybrid approach, which combines analytical insights
for constructing the parameterizing manifold ® (figure 16(C) and section 3.1) with data-driven
learning of the optimal memory content 7 (section III C).

9. Discussion and perspectives

Thus, this work demonstrates that OPMs constructed from BF systems and optimized using a
single solution path can accurately reproduce noise-induced transitions across a broad range
of out-of-sample, test paths. This approach is effective for non-Gaussian noise with jumps.
A remarkable feature of the approach is that, even though these two different types of noise
typically lead to different dynamical responses, the OPMs in these two settings take exactly
the same structural form with the corresponding non-Markovian terms depending on the past
history of the corresponding noise forcing the original SPDE; cf equations (40) and (41) and
cf equations (101) and (102).

Interestingly, the optimal parameterization formulas align with the approximation of
stochastic invariant manifolds when they exist. However, when these manifolds are no longer
applicable, the optimal parameterizations transcends the invariance constraint. In such cases, it
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provides the optimal stochastic parameterization with respect to the random invariant measure
Pw (defined in section 4.1), conditioned on the resolved variable X (as proven in theorem 4.1).

The formulas derived from the BF systems in section 3 enable practical approximation of
the theoretical optimal parameterization, particularly its non-Markovian random coefficients.
These coefficients become crucial, especially when noise affects unresolved modes. They
essentially encode how noise propagates to the resolved modes through nonlinear interactions.

We have shown, through various examples, that training on a single noise path equips
the coefficients with an optimized historical memory (of the noise) that plays a key role in
the accurate prediction of noise-induced excursion statistics, even when applied to a diverse
set of test paths. This demonstrates the strength of our hybrid framework, which combines
analytical understanding with data-driven insights. This approach allows us to overcome
the ‘extrapolation problem’, a significant challenge for purely data-driven machine-learned
parameterizations.

Section 2.3 discusses the possibility of constructing more intricate parameterizations using
an iterative scheme based on more general BF systems. However, these elaborations require
more computational effort due to the repeated stochastic convolutions. Implementing them
efficiently necessitates deriving auxiliary ODEs (analogues to equation (49)) for the coef-
ficients (a, and b;,) in equations (31) and (32). Chekroun et al[43], section 7.3, provides
examples of such auxiliary ODEs for handling repeated stochastic convolutions.

These more general stochastic parameterizations have the potential to significantly enhance
the parameterization capabilities of ® (equation (33)). This is because they encode higher-
order interaction terms with respect to the noise amplitude, as shown in equation (30).
Resolving these interactions is potentially important for improving the prediction of rare event
statistics by non-Markovian reduced systems, especially when the noise intensity is low. This
opens doors to potential applications using large deviation or rare event algorithms (e.g. [28,
80, 89, 143, 147, 158, 169, 171]). Additionally, iterating the BF system (equations (25a)
and (25b)) beyond ¢ = 2 can also introduce higher-order terms involving the low-mode amp-
litude X.

The inclusion of higher-term in X is non-unique though. For instance, inspired by [43,
section 7.2.1], stochastic parameterizations accounting for higher-order terms in X are pro-
duced by solving analytically the following BF system:

dp) = A p ds, (111a)
dp® = (Acpm +1LG, (pm)) ds, (111b)
dgn = (Magn +T,Gs (p) ) ds + 0, AW, (1t1e)
PV (1) =p® (1) =X € H, g, (1—7) =, (111d)

for which the two first equations for p(!) and p(® are simultaneously integrated backward
over [t— 7,1], followed by the forward integration of the g,-equation over the same inter-
val. Compared to equations (39a)—(39c¢), this BF system has two-layer in the low-mode vari-
able p resulting into parameterizations of order 4 in X; see [35, theorem 2] for an example.
These higher-order terms come from the nonlinear self-interactions between the low modes as
brought by the term II.G, (p(l)) . Accounting for additional interactions either through (111a)
or the iterative procedure of section 2.3 can help improve the parameterization skills (see also
[18, 142]), and should be considered if accuracy is key to resolve.
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An alternative route to enhance accuracy would involve to parameterize stochastically the
parameterization residual from the loss functions in (53), post-minimization. This technique
has proven effective in modeling the fast motion transversal to OPM manifolds by means
of networks of nonlinear stochastic oscillators [38, 117], as diagnosed by Ruelle—Pollicott
resonances [45, 163]. Similarly, rapid dynamical fluctuations, transversal to (Markovian) OPM
manifolds (figure 9), could benefit from refined parameterizations through the incorporation
of additional stochastic components following [38], potentially leading to more accurate rep-
resentation of rare event statistics by the corresponding closures (figure 7).

Extending beyond SPDEs driven by Markov processes, our framework can naturally
accommodate SPDEs driven by non-Markovian stochastic processes. A prime example is
when the stochastic forcing is a fractional Brownian motion (fBm) [122], for which the exist-
ence of unstable manifolds has been demonstrated [82]. By leveraging Lyapunov—Perron tech-
niques, as employed in the construction of these manifolds (section 2.2), our extension program
to parameterization can proceed analogously to section 3. This involves here as well, finite-time
integration of relevant BF systems to derive optimizable parameterizations from the governing
equation. The random coefficients in these parameterizations would then become again func-
tionals of the past history of the forcing noise, albeit this time incorporating a higher degree
of memory compared to the stochastic process Z? used in the parameterizations section 3, due
to the original memory content of the original forcing. Such generalized parameterizations
should provide valuable insights into the interplay between nonlinearity and noise in physical
systems exhibiting long-term memory effects [75, 138, 150].

Regardless of the Markovian or non-Markovian nature of the stochastic forcing, our reduc-
tion approach and its potential extensions offer valuable tools for addressing critical ques-
tions. By elucidating the intricate interplay between noise and nonlinearity, we can gain deeper
dynamical insights. For example, we anticipate applying this reduction program to investigate
early warning indicators of tipping phenomena, from a dynamical perspective, by tracing the
energy flow from forced scales to physically relevant modes [118, 168]. Climate tipping ele-
ments provide a compelling domain for exploring these concepts and applying our methods
[112, 113, 124].

The proposed stochastic parameterization method offers a new framework for understand-
ing noise-nonlinearity interactions in stochastic multiscale systems. It is important to note that
alternative techniques based on stochastic time scale separation, such as the stochastic path
perturbation approach, have been employed to study related phenomena, including the ran-
dom escape of stochastic fields from criticality in explosive systems [24] and first passage
time problems in nonlocal Fisher equations [25, 79]. Future research directions could explore
the potential of our method to obtain analytical approximations for first passage times in non-
local SPDEs near criticality. Such an extension could provide valuable insights into pattern
formations for a wide range of physical and biological problems such as in infectious disease
modeling [149], nonlinear optics [71], or vegetation models [84].
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Appendix A. Proof of theorem 2.1

Proof. Step 1. Let us remark that for any »

I1,Gy (e(S_Z)A‘X‘l-Zc) = Z H (exp (( Nie) Xy + %) Gjy.jp»
(f]7 )e]kf 1
where /= {1,---,m.} and G}, ;, = (Gi(e;,, -+~ ,¢€;,),e}).

Note that the product term above can be re-written as
k
H(exp((sft))‘jtz)XjeJije) :Z H €xp ((S*I)Aj,,)xj,, szq , (A
=1 K. PEK\K; q€k;

where K = {1,--- ,k} and K, runs through the subsets (possibly empty) of disjoint elements
of K.

Thus,
J(t,Xw)
13
= Z (/ el =IMIL, Gy (C(FI)AcX+Zc (Saw)) ds) €n
n>me+1 -
= </ H eXp ) +Z]e)exp((t_s))‘ )ds) Jie ]ke
n>mc+1(J, 1) EIF =1

and by using (A.1), J(t,X,w) exists if and only if for each (j,,- - ,ji) € I* with Gj .., #0,the
integrals

IKZ(I):/ qu(s,w) exp | (r—3) Z/\fﬁ ds, (A2)

q€K; peK\K_

exist as K, runs through the subsets (possibly empty) of disjoint elements of K = {1,--- ,k}.
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Since the OU process zq(s,w) has sublinear growth (see e.g. [42, lemma 3.1]), that is
limg 4o Z’(iiw) = 0 for all w, one can readily check that the integral I, defined in (A.2) is

finite for all ¢ provided that

Re [ A — > N, | <o. (A.3)
PEK\K;
Thus, the Lyapunov—Perron integral Jj defined in equation (17) is well-defined if the non-
resonance condition (18) holds.
Step 2. Thus J is well defined under the condition (18) of the Main Text. By direct calcu-
lation, we get

a3 (1, X,w)

B =1LGr (X + zc (Qw)) — AT (1, X, w)

1
— / e =IALDG, (e(s_’)A“X—l—zc(QSw))e(s_’M“Achs, (A.4)

and that

t
DxJ (1, X,w)AX = / eI DG, (e(x")A‘X—i- Ze (st)) e A Xds,
where DG, denote the Fréchet derivative of Gy. As a result, J(¢,X,w) solves (19).

Step 3. The solution to equations (20a)—(20c¢) is given explicitly

p(s) =elAx, (A.5)
S ! !’
q(s,w) = / (=N ILLG, (e(s —s)Acx 4 7, (s/,w)) ds’. (A.6)
1—T
In particular, the value of ¢(s,w) at s =¢, denoted by ¢ (f,X,w), is given by
t
g- (t,X,w) = / elt—s )AfoGk (e(s “Ax 4 7. (s/,w)) ds’.
t—1

We get then

-7

(X w) — gr (1X,w) = / I Gy (e0-MX + 2 (5,) ) ds. (A7)
— 00

The boundedness of J implies that the H;-norm of the integral on the RHS of (A.7) converges
to zero as T goes to infinity, and (21) follows. 0

Appendix B. Solving the sACE and its optimal reduced system

For the numerical integration of the sACE (76), we adopt a semi-implicit Euler method, where
the nonlinearity —u> and the noise term dW, are treated explicitly, and the linear term 0?u + u
is treated implicitly; the spatial discretization is handled with a pseudo-spectral method; see
[43, section 6.1] for a detailed description of this scheme applied to a stochastic Burgers-
type equation. We have set the time-step size to be 61 = 102 and the spatial resolution to be
0x=L/201.

The optimal reduced system (equation (85)) is also integrated with a semi-implicit Euler
method where the linear term is treated implicitly and the nonlinear terms explicitly, still
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with 8 = 10~2. The ODEs with random coefficients such as (49), used to simulate the non-
Markovian coefficients, Z7.., involved in the computation of O, (7, X,1), are simply integ-
rated by a forward Euler scheme, for the same time-step 0t = 102, The initial condition in
equation (52) for integrating the RDE, as defined in equation (49), is determined using the
trapezoidal rule.

Appendix C. Computations of the double-fold bifurcation diagram

To compute the double-fold bifurcation diagram shown in figure 11 for equations (92a)
and (92b), we adopt a Fourier sine series expansion of the solutions, in which u solving
equations (92a) and (92b) is approximated by uy(x) = 22,:1 ay+/2/Lsin(nmx/L). By doing
so, the elliptic boundary value problem equations (92a) and (92b) is reduced to a nonlin-
ear algebraic system for the coefficients ay = (ai,...,ay)’, which is solved by the Matlab
built-in solver £solve. The results shown in figure 11 are obtained from a six-dimensional
algebraic system (i.e. with six sine modes, N = 6), which turns out to provide high-precision
approximations.

We use a simple continuation approach to compute the bifurcation diagram based on this
algebraic system, benefiting from the knowledge that the solution curve is S-shaped. Starting
from A = 1 with a random initial guess, an increment of A\ = 1072 is used to compute the
lower branch A — UY of solutions to equations (92a) and (92b) (Iower black curve) with min-
imal energy. In our continuation procedure, the initial guess for U, A, is taken to be U}
computed at the previous step. As A is further increased, the procedure is stopped when the
associated Jacobian becomes nearly singular which indicates that ) is approaching the lower
turning point of the S-shaped curve.

The location of this turning point is estimated to be \* ~ 1.3309 as obtained by using
finer mesh as one gets close to singularity. We then select a A-value to be just a few AM-
increments below A\* (to ensure multiplicity of solutions) and pick as many different random
initial guesses as needed to get the two other solutions: the unstable one, U3, and the stable
one, UY, with maximal energy. From each of these newly computed solutions, we then adopt
the same continuation method to trace out the upper branch A — UY made of solutions with
maximal energy (upper black curve) and the ‘in between’ branch A — U} made of unstable
solutions (red curve).

Appendix D. Numerical solutions to the jump-driven model and its optimal
closure

The numerical integration of the stochastic equation (99) is performed in the same way as for
the SACE outlined in appendix B using a semi-implicit Euler method. Here also the nonlin-
earity and the noise term are treated explicitly, while the linear term is treated implicitly. The
spatial discretization is handled with a pseudo-spectral method; see again [43, section 6.1]. We
have set the time-step size to be 6z = 1072 and the spatial resolution to be dx = L/257. The
initial data is set to be ug = 0.5e; for the results shown in figures 12 and 15.

The optimal reduced system (equation (104)) is integrated with a forward Euler method still
with 6¢ = 102, The initial condition Jr (to;w) (cf (102)) for integrating (103) is computed
using the trapezoidal rule, and #y = max{7,75}. The initial data for equation (104) is set to
be the projection of the SPDE solution onto e; at time ¢ = .
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