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ABSTRACT

A general, variational approach to derive low-order reduced models from possibly non-autonomous systems is presented. The approach
is based on the concept of optimal parameterizing manifold (OPM) that substitutes more classical notions of invariant or slow manifolds
when the breakdown of “slaving” occurs, i.e., when the unresolved variables cannot be expressed as an exact functional of the resolved
ones anymore. The OPM provides, within a given class of parameterizations of the unresolved variables, the manifold that averages out
optimally these variables as conditioned on the resolved ones. The class of parameterizations retained here is that of continuous deformations
of parameterizations rigorously valid near the onset of instability. These deformations are produced through the integration of auxiliary
backward–forward systems built from the model’s equations and lead to analytic formulas for parameterizations. In this modus operandi, the
backward integration time is the key parameter to select per scale/variable to parameterize in order to derive the relevant parameterizations
which are doomed to be no longer exact away from instability onset due to the breakdown of slaving typically encountered, e.g., for chaotic
regimes. The selection criterion is then made through data-informed minimization of a least-square parameterization defect. It is thus shown
through optimization of the backward integration time per scale/variable to parameterize, that skilled OPM reduced systems can be derived for
predicting with accuracy higher-order critical transitions or catastrophic tipping phenomena, while training our parameterization formulas
for regimes prior to these transitions takes place.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0167419

We introduce a framework for model reduction to produce ana-
lytic formulas to parameterize the neglected variables. These
parameterizations are built from the model’s equations in which
only a scalar is left to calibrate per scale/variable to parameter-
ize. This calibration is accomplished through a data-informed
minimization of a least-square parameterization defect. By their
analytic fabric, the resulting parameterizations benefit physical
interpretability. Furthermore, our hybrid framework—analytic
and data-informed—enables us to bypass the so-called extrapo-
lation problem, known to be an important issue for purely data-
driven machine-learned parameterizations. Here, by training our
parameterizations prior to transitions, we are able to perform

accurate predictions of these transitions via the corresponding
reduced systems.

I. INTRODUCTION

This article is concerned with the efficient reduction of forced-
dissipative systems of the form

dy

dt
= Ay + G(y)+ F(t), y ∈ H, (1)
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in which H denotes a Hilbert state space, possibly of finite
dimension. The forcing term F is considered to be either constant
in time or time-dependent, while A denotes a linear operator not
necessarily self-adjoint,1 which includes dissipative effects, and G
denotes a nonlinear operator, which saturates the possible unstable
growth due to unstable modes and may account for a loss of regu-
larity (such as for nonlinear advection) in the infinite-dimensional
setting. Such systems arise in a broad range of applications; see, e.g.,
Refs. 2–11.

The framework adopted is that of Ref. 12, which allows for
deriving analytic parameterizations of the neglected scales that
represent efficiently the nonlinear interactions with the retained,
resolved variables. The originality of the approach of Ref. 12 is that
the parameterizations are hybrid in their nature in the sense that
they are both model-adaptive, based on the dynamical equations,
and data-informed by high-resolution simulations.

For a given system, the optimization of these parameteriza-
tions benefits, thus, from their analytical origin resulting in only a
few parameters to learn over short-in-time training intervals, mainly
one scalar parameter per scale to parameterize. Their analytic fab-
ric contributes to their physical interpretability compared to, e.g.,
parameterizations that would be machine learned. The approach is
applicable to deterministic systems, finite- or infinite-dimensional,
and is based on the concept of optimal parameterizing manifold
(OPM) that substitutes the more classical notion of slow or invariant
manifolds when there takes place a breakdown of “slaving” rela-
tionships between the resolved and unresolved variables,12 i.e., when
the latter cannot be expressed as an exact functional of the formers
anymore.

By construction, the OPM takes its origin in a variational
approach. The OPM is the manifold that averages out optimally
the neglected variables as conditioned on the current state of the
resolved ones, Refs. 12, Theorem 4. The OPM allows for comput-
ing approximations of the conditional expectation term arising in
the Mori–Zwanzig approach to stochastic modeling of neglected
variables;13–17 see also Theorem 5 in Ref. 12 as well as Refs. 18 and 19.

The approach introduced in Ref. 12 to determine OPMs, in
practice, consists of first deriving analytic parametric formulas that
match rigorous leading approximations of unstable/center mani-
folds or slow manifolds near, e.g., the onset of instability (Ref. 12,
Sec. 2) and then to perform a data-driven optimization of the man-
ifold formulas’ parameters to handle regimes further away from
that instability onset (Ref. 12, Sec. 4). In other words, efficient
parameterizations away from the onset are obtained as continu-
ous deformations of parameterizations near the onset; deformations
that are optimized by minimizing cost functionals tailored to the
dynamics and measuring the defect of parameterization.

There, the optimization stage allows for alleviating the small
denominator problems rooted in small spectral gaps and for improv-
ing the parameterization of small-energy but dynamically impor-
tant variables. Thereby, relevant parameterizations are derived in
regimes where constraining spectral gap or timescale separation
conditions are responsible for the well-known failure of standard
invariant/inertial or slow manifolds.12,20–25 As a result, the OPM
approach provides (i) a natural remedy to the excessive backscat-
ter transfer of energy to the low modes classically encountered in
turbulence (Ref. 12, Sec. 6) and (ii) allows for deriving optimal

models of the slow motion for fast-slow systems not necessarily
in the presence of timescale separation.18,19 Due to their optimal
nature, OPMs allow also for providing accurate parameterizations
of dynamically important small-energy variables; a well-known issue
encountered in the closure of chaotic dynamics and related to (i).

This work examines the ability of the theory-guided and data-
informed parameterization approach of Ref. 12 in deriving reduced
systems able to predict higher-order transitions or catastrophic
tipping phenomena, when the original, full system is possibly sub-
ject to time-dependent perturbations. From a data-driven perspec-
tive, this problem is tied to the so-called extrapolation problem,
known, for instance, to be an important issue in machine learning,
requiring more advanced methods such as, e.g., transfer learning.26

While the past few decades have witnessed a surge and advances
of many data-driven reduced-order modeling methodologies,27,28

the prediction of non-trivial dynamics for parameter regimes not
included in the training dataset remains a challenging task. Here,
the OPM approach by its hybrid framework—analytic and data-
informed—allows us to bypass this extrapolation problem at a min-
imal cost in terms of learning efforts as illustrated in Secs. IV and V.
As shown below, the training of OPMs at parameter values prior the
transitions take place is sufficient to perform accurate predictions of
these transitions via OPM reduced systems.

The remainder of this paper is organized as follows. We first
survey in Sec. II the OPM approach and provide the general vari-
ational parameterization formulas for model reduction in the pres-
ence of a time-dependent forcing. We then expand in Sec. III on
the backward–forward (BF) systems method12,29 to derive these for-
mulas, clarifying fundamental relationships with homological equa-
tions arising in normal forms and invariant manifold theories.12,30–32

Section III C completes this analysis by analytic versions of
these formulas in view of applications. The ability of predicting
noise-induced transitions and catastrophic tipping phenomena33,34

through OPM reduced systems is illustrated in Sec. IV for a system
arising in the study of thermohaline circulation. Successes in pre-
dicting higher-order transitions such as period-doubling and chaos
are reported in Sec. V for a Rayleigh–Bénard problem, and con-
trasted by comparison with the difficulties encountered by standard
manifold parameterization approaches in Appendix D. We then
summarize the findings of this article with some concluding remarks
in Sec. VI.

II. VARIATIONAL PARAMETERIZATIONS FOR MODEL

REDUCTION

We summarize in this section the notion of variational param-
eterizations introduced in Ref. 12. The state space is decomposed as
the sum of the subspace, Hc , of resolved variables (coarse-scale), and
the subspace, Hs , of unresolved variables (small-scale). In practice,
Hc is spanned by the first few eigenmodes of A with dominant real
parts (e.g., unstable) and Hs by the rest of the modes, typically stable.

In many applications, one is interested in deriving reliable
reduced systems of Eq. (1) for wavenumbers smaller than a cutoff
scale kc corresponding to a reduced state space Hc of dimension mc.
To do so, we are after parameterizations for the unresolved variables
ys [i.e., the vector component of the solution y to Eq. (1) in Hs] of
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the form

8τ (X, t) =
∑

n≥mc+1

8n(τn, X, t)en, X ∈ Hc , (2)

in which τ the (possibly infinite) vector formed by the scalars τn

is a free parameter. As it will be apparent below, the goal is to get
a small-scale parameterization which is not necessarily exact such
that ys(t) is approximated by 8τ (yc(t), t) in a least-square sense,
where yc is the coarse-scale component of y in Hc . The vector τ
is aimed to be a homotopic deformation parameter. The purpose
is to have, as τ is varied, parameterizations that cover situations
for which slaving relationships between the large and small scales
hold (ys(t) = 8τ (yc(t), t)) as well as situations in which they are
broken (ys(t) 6= 8τ (yc(t), t)), e.g., far from criticality. With the suit-
able τ , the goal is to dispose of a reduced system resolving only the
“coarse-scales,” able to, e.g., predict higher-order transitions caused
by nonlinear interactions with the neglected, “small-scales.”

As strikingly shown in Ref. 12, meaningful parameterizations
away from the instability onset can still be obtained by relying on
bifurcation and center manifold theories. To accomplish this feat,
the parameterizations, rigorously valid near that onset, need though
to be revisited as suitably designed continuous deformations. The
modus operandi to provide such continuous deformations is detailed
in Sec. III, based on the method of backward–forward systems intro-
duced in Ref. 29, Chap. 4, in a stochastic context. In the case where
G(y) = Gk(y)+ h.o.t with Gk a homogeneous polynomial of degree
k, this approach gives analytical formulas of parameterizations given
by (see Sec. III A)

8τ (X, t) =
∑

n≥mc+1

(∫ 0

−τn
e−sλn

(
5nGk

(
esAcX − η(s)

)

+ 5nF(s + t)
)

ds

)
en,

(3)

with X =
mc∑

j=1

Xjej ∈ Hc and η(s) =
∫ 0

s

eAc(s−r)5cF(r + t) dr.

Here, (λn, en) denote the spectral elements of A which are ordered
such that <(λn) ≥ <(λn+1). In Eq. (3), 5n and 5c denote the
projector onto span(en) and Hc =span

(
e1, . . . , emc

)
, respectively,

while Ac = 5cA. This formula provides an explicit expression for
8n
τn
(X, t) in (2) given here by the integral term over [−τn, 0] multi-

plying en in (3). The only free parameter per mode en to parameterize
is the backward integration time τn.

The vector τ , made of the τn, is then optimized by using data
from the full model. To allow for a better flexibility, the optimiza-
tion is executed mode by mode one wishes to parameterize. Thus,
given a solution y(t) of the full model Eq. (1) over an interval IT

of length T, each parameterization 8n
τn
(X, t) of the solution ampli-

tude yn(t) carried by mode en is optimized by minimizing—in the
τn-variable—the following parameterization defect:

Qn(τn, T) =
∣∣yn(t)−8n(τn, yc(t), t)

∣∣2, (4)

for each n ≥ mc + 1. Here, (·) denotes the time-mean over IT, while
yn(t) and yc(t) denote the projections of y(t) onto the high-mode en

and the reduced state space Hc , respectively.
Geometrically, the function 8τ (X, t) given by (3) provides a

time-dependent manifold Mτ (t) such that

dist(y(t), Mτ (t))
2 ≤

N∑

n=mc+1

Qn(τn, T), (5)

where dist(y(t), Mτ (t)) denotes the distance of y(t) (lying, e.g., on
the system’s global attractor) to the manifold Mτ .

Thus, minimizing each Qn(τn, T) (in the τn-variable) is a nat-
ural idea to enforce closeness of y(t) in a least-squares sense to
the manifold Mτ (t). Panel (a) in Fig. 1 illustrates (5) for the
yn-component: The optimal parameterization, 8n

(
τ ∗

n , X, t
)
, mini-

mizing (4) is shown for a case where the dynamics is transverse to it
(e.g., in the absence of slaving), while8n

(
τ ∗

n , X, t
)

provides the best
parameterization in a least-squares sense.

In practice, the normalized parameterization defect, Qn, is
often used to compare different parameterizations. It is defined as

Qn(τ , T) = Qn(τ , T)/
∣∣yn

∣∣2. For instance, the flat manifold corre-
sponding to no parameterization (τn = 0) of the neglected variables
(Galerkin approximations) comes with Qn = 1 for all n, while a
manifold corresponding to a perfect slaving relationship between
yc(t) and yn(t)’s, comes with Qn = 0. When 0 < Qn < 1 for all n,
the underlying manifold Mτ will be referred to as a parameterizing
manifold (PM). Once the parameters τn are optimized by minimiza-
tion of (4), the resulting manifold will be referred to as the optimal
parameterizing manifold (OPM).35

We conclude this section by a few words of practical consid-
erations. As documented in Ref. 12, Secs. 5 and 6, the amount of
training data required in order to reach a robust estimation of the
optimal backward integration time τ ∗

n , is often comparable to the
dynamics’ time horizon that is necessary to resolve the decay of cor-
relations for the high-mode amplitude yn(t). For multiscale systems,
one thus often needs to dispose of a training dataset sufficiently
large to resolve the slowest decay of temporal correlations of the

FIG. 1. Panel (a): The black curve represents the training trajectory, here shown
to be transverse to the parameterizing manifolds (i.e., absence of exact slaving).
The gray smooth curves represent the time-dependent OPM aimed at tracking the
state of the neglected variable yn at time t as a function of the resolved variables
X . Panel (b): A schematic of the dependence on τ of the parameterization defect
Qn given by (4). The red asterisk marks the minimum ofQn achieved for τ = τ ∗

n .
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scales to parameterize. On the other hand, by benefiting from their
dynamical origin, i.e., through the model’s equations, the parameter-
izations formulas employed in this study (see Sec. III) allow often for
reaching out, in practice, satisfactory OPM approximations when
optimized over training intervals shorter than these characteristic
timescales.

When these conditions are met, the minimization of the
parameterization defect (4) is performed by a simple gradient-
descent algorithm (Ref. 12, Appendix). There, the first local mini-
mum that one reaches corresponds often to the OPM; see Secs. IV
and V and Ref. 12, Secs. 5 and 6. In the rare occasions where
the parameterization defect exhibits more than one local minimum
and the corresponding local minima are close to each others, crite-
ria involving colinearity between the features to parameterize and
the parameterization itself can be designed to further assist the
OPM selection. Section V D illustrates this point with the notion
of parameterization correlation.

III. VARIATIONAL PARAMETERIZATIONS: EXPLICIT

FORMULAS

A. Homological equation and backward–forward

systems: Time-dependent forcing

In this section, we recall from Ref. 12 and generalize to the
case of time-dependent forcing, the theoretical underpinnings of the
parameterization formula (3). First, observe that when F ≡ 0 and
τn = ∞ for all n, the parameterization (3) is reduced (formally) to

J(X) =
∫ 0

−∞
e−sAs5sGk(e

sAcX) ds, X ∈ Hc , (6)

where As = 5sA, with 5s denoting the canonical projectors onto
Hs . Equation (6) is known in invariant manifold theory as a
Lyapunov–Perron integral.7 It provides the leading-order approx-
imation of the underlying invariant manifold function if a suit-
able spectral gap condition is satisfied and solves the homological
equation

Dψ(X)AcX − Asψ(X) = 5sGk(X), (7)

see Refs. 2, Lemma 6.2.4 and 12, Theorem 1. The later equation is
a simplification of the invariance equation providing the invariant
manifold when it exists; see Refs. 5, Sec. VIIA1 and 12, Sec. 2.2. Thus,
Lyapunov–Perron integrals such as (6) are intimately related to the
homological equation, and the study of the latter informs us on the
former and, in turn, on the closed form of the underlying invariant
manifold.

Another key element was pointed out in Ref. 29, Chap. 4,
in the quest of getting new insights about invariant manifolds in
general and more specifically concerned with the approximation
of stochastic invariant manifolds of stochastic PDEs,36 along with
the rigorous low-dimensional approximation of their dynamics.37 It
consists of the method of backward–forward (BF) systems, there-
after revealed in Ref. 12 as a key tool to produce parameterizations
(based on model’s equations) that are relevant beyond the domain
of applicability of invariant manifold theory, i.e., away the onset of
instability.

To better understand this latter feature, let us recall first that
BF systems allow for providing to Lyapunov–Perron integrals such

as (6), a flow interpretation. In the case of (6), this BF system takes
the form [Ref. 12, Eq. (2.29)]

dp

ds
= Acp, s ∈ [−τ , 0], (8a)

dq

ds
= Asq +5sGk(p), s ∈ [−τ , 0], (8b)

with p(s)|s=0 = X, and q(s)|s=−τ = 0. (8c)

The Lyapunov–Perron integral is indeed recovered from this BF
system. The solution to Eq. (8b) at s = 0 is given by

q(0) =
∫ 0

−τ
e−sAs5sGk

(
esAcX

)
ds, X ∈ Hc , (9)

which by taking the limit formally in (9) as τ → ∞ leads to J given
by (6). Thus, stretching τ to infinity in the course of integration of
the BF system (8) allows for recovering rigorous approximations
(under some non-resonance conditions [Ref. 12, Theorem 1]) of
well-known objects such as the center manifold; see also Refs. 2,
Lemma 6.2.4 and 11, Appendix A.1. The intimate relationships
between Lyapunov–Perron integral, J(X), and the homological
Eq. (7) are hence supplemented by their relationships with the BF
system (8).

By breaking down, mode by mode, the backward integration
of Eq. (8b) (in the case of As diagonal), one allows for a backward
integration time τn per mode’s amplitude to parameterize, leading,
in turn, to the following class of parameterizations:

8τ (X) =
∑

n≥mc+1

(∫ 0

−τn
e−sλn5nGk

(
esAcX

)
ds

)
en, (10)

as indexed by τ = (τn)n≥mc+1. Clearly, Eq. (3) is a generalization of
Eq. (10).

We make precise now the similarities and differences between
Eqs. (3) and (10) at a deeper level as informed by their BF sys-
tem representation. In that respect, we consider for the case of
time-dependent forcing, the following BF system:

dp

ds
= Acp +5cF(s), s ∈ [t − τ , t], (11a)

dq

ds
= Asq +5sGk(p)+5sF(s), s ∈ [t − τ , t], (11b)

with p(t) = X ∈ Hc and q(t − τ) = 0. (11c)

Note that compared to the BF system (8), the backward–forward
integration is operated here on [t − τ , t] to account for the non-
autonomous character of the forcing, making this way the cor-
responding parameterization time-dependent as summarized in
Lemma III.1. In the presence of an autonomous forcing, oper-
ating the backward–forward integration of the BF system (8) on
[t − τ , t] does not change the parameterization, which remains
time-independent.

Since the BF system (11) is one-way coupled [with p forc-
ing (11b) but not reciprocally], if one assumes As to be diagonal
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over C, one can break down the forward equation (11b) into the
equations

dqn

ds
= λnqn +5nGk(p)+5nF(s), s ∈ [t − τ , t], (12)

allowing for flexibility in the choice of τ per mode en whose
amplitude is aimed at being parameterized by qn, for each
n ≥ mc + 1.

After backward integration of Eq. (11a) providing p(s), one
obtains by forward integration of Eq. (12) that

qn(t) =
∫ t

t−τ
e(t−s′)λn5nGk

(
e(s

′−t)AcX − γ
(
s′
) )

ds′

+
∫ t

t−τ
e(t−s′)λn5nF

(
s′
)

ds′, (13)

with γ (s′) =
∫ t

s′ e(s
′−r)Ac5cF(r) dr. By making the change of variable

s′ = s + t, one gets

qn(t) =
∫ 0

−τ
e−sλn5nGk

(
esAcX − η(s)

)
ds +

∫ 0

−τ
e−sλn5nF(s + t) ds,

(14)

with η(s) =
∫ 0

s
e(s−r)Ac5cF(r + t) dr = γ (s + t). Now, by summing

up these parameterizations over the modes en for n ≥ mc + 1, we
arrive at Eq. (3). Thus, our general parameterization formula (3) is
derived by solving the BF system made of backward Eq. (11a) and
the forward Eq. (12).

We want to gain into interpretability of such parameteriza-
tions in the context of forced-dissipative systems such as Eq. (1). For
this purpose, we clarify the fundamental equation satisfied by our
parameterizations; the goal being here to characterize the analog of
(7) in this non-autonomous context. To simplify, we restrict to the
case5cF = 0. The next lemma provides the sought equation.

Lemma III.1: Assume 5cF = 0 in the BF system (11). The
solution qX,τ (t) to Eq. (11b) is given by

qX,τ (t) =
∫ 0

−τ
e−sAs5sGk(e

sAcX) ds +
∫ 0

−τ
e−sAs5sF(s + t) ds.

(15)

It provides a time-dependent manifold function that maps Hc into Hs

and satisfies the following first order system of PDEs:
(
∂t + LA

)
8(X, t) = 5sGk(X)− eτAs5sGk(e

−τAcX)︸ ︷︷ ︸
(I)

+5sF(t)− eτAs5sF(t − τ)︸ ︷︷ ︸
(II)

, (16)

with LA being the differential operator acting on smooth mappings ψ
from Hc into Hs , defined as

LA[ψ](X) = Dψ(X)AcX − Asψ(X), X ∈ Hc . (17)

The proof of this lemma is found in Appendix A.
As it will become apparent below, the τ -dependence of the

terms in (I) is meant to control the small denominators that arise
in the presence of small spectral gap between the spectrum of Ac

and As that leads typically to over-parameterization when standard
invariant/inertial manifold theory is applied in such situations; see
Remark III.1 and Ref. 12, Sec. 6.

The terms in (II) are responsible for the presence of exogenous
memory terms in the solution to the homological equation Eq. (16),
i.e., in the parameterization8(X, t); see Eq. (31).

In the case F(t) is bounded,38 and <σ(As) < 0, Eq. (16)
reduces, in the (formal) limit τ → ∞, to

(
∂t + LA

)
8(X, t) = Gk(X)+5sF(t). (18)

Such a system of linear PDEs is known as the homological equation
and arises in the theory of time-dependent normal forms;31,39 see
also Ref. 40. In the case where 5sF is T-periodic, one can seek an
approximate solution in a Fourier expansion form (Ref. 41, Sec. 5.2),
leading to useful insights. For instance, solutions to (18) when G is
quadratic, exist if the following non-resonance condition is satisfied

iν
π

T
+ λi + λj − λn 6= 0, ν ∈ Z,

(19)

for (i, j) ∈ I2, n ≥ mc + 1,

(with I = {1, . . . , mc} and i2 = −1) in the case σ(A) is discrete,
without Jordan block. Actually, one can even prove in this case that

Spec(∂t + L) =
{
iν
π

T
+ δn

ij , (i, j) ∈ I2, n ≥ mc + 1, ν ∈ Z

}
,

(20)(
where δn

ij = λi + λj − λn

)
on the space of functions

E =




∑

n≥mc+1




mc∑

i,j=1

0n
ij(t)XiXj


 en, 0n

ij ∈ L2(T)



 , (21)

in which Xi and Xj represent the components of the vector X in Hc

onto ei and ej, respectively.
Thus, in view of Lemma III.1 and what precedes, the small-

scale parameterizations (15) obtained by solving the BF system
(11) over finite time intervals can be conceptualized as perturbed
solutions to the homological equation Eq. (18) arising in the compu-
tation of invariant and normal forms of non-autonomous dynamical
systems Ref. 31, Sec. 2.2. The perturbative terms brought by the τ -
dependence play an essential role to cover situations beyond the
domain of application of normal form and invariant manifold theo-
ries. As explained in Sec. III C and illustrated in Secs. IV and V, these
terms can be optimized to ensure skillful parameterizations for pre-
dicting, by reduced systems, higher-order transitions escaping the
domain of validity of these theories.

B. Homological equation and backward–forward

systems: Constant forcing

In this section, we clarify the conditions under which solu-
tions to Eq. (11) exist in the asymptotic limit τ → ∞. We consider
the case where F is constant in time, to simplify. For the existence
of Lyapunov–Perron integrals under the presence of more gen-
eral time-dependent forcings, we refer to Ref. 40. To this end, we
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introduce, for X in Hc ,

JF(X) =
∫ 0

−∞
e−sAs

(
5sGk

(
p(s)

)
+5sF

)
ds, (22)

where p(s) is the solution to Eq. (11a), namely,

p(s) = esAcX −
∫ 0

s

eAc(s−s′)5cF ds′. (23)

We have then the following result that we cast for the case of finite-
dimensional ODE system (of dimension N) to simply.

Theorem III.1: Assume that F is constant in time and that
A is diagonal under its eigenbasis

{
ej ∈ C

N
∣∣ j = 1, . . .N

}
. Assume

furthermore that <(λmc+1) < <(λmc) and <σ(As) < 0, i.e., Hs con-
tains only stable eigenmodes.

Finally, assume that the following non-resonance condition
holds:

∀ (j1, . . . , jk) ∈ (1, . . . , mc)
k, n ≥ mc + 1,

(24)

(
Gn

j1···jk 6= 0
)

=⇒


<


λn −

k∑

p=1

λjp


 < 0


 ,

with Gn
j1 ···jk =

〈
Gk

(
ej1 , . . . , ejk

)
, e ∗

n

〉
, where 〈·, ·〉 denotes the inner

product on C
N, Gk denotes the leading-order term in the Taylor

expansion of G, and e ∗
n denotes the eigenvectors of the conjugate

transpose of A.
Then, the Lyapunov–Perron integral JF given by (22) is well

defined and is a solution to the following homological equation:

LA[ψ](X)+ Dψ[X]5cF = 5sGk(X)+5sF (25)

and provides the leading-order approximation of the invariant mani-
fold function h(X) in the sense that

∥∥JF(X)− h(X)
∥∥

Hs

= o
(
‖X‖k

Hc

)
, X ∈ Hc .

Moreover, JF given by (22) is the limit, as τ goes to infinity, of the
solution to the BF system (11), when F is constant in time. That is,

lim
τ→∞

‖qX,τ (0)− JF(X)‖ = 0, (26)

where qX,τ (0) is the solution to Eq. (11b).
Conditions similar to (24) arise in the smooth linearization

of dynamical systems near an equilibrium.42 Here, condition (24)
implies that the eigenvalues of the stable part satisfy a Sternberg con-
dition of order k42 with respect to the eigenvalues associated with the
modes spanning the reduced state space Hc .

This theorem is essentially a consequence of Ref. 12, Theorems
1 and 2, in which condition (24) is a stronger version of that used
for Ref. 12, Theorem 2; see also Ref. 12, Remark 1 (iv). This con-
dition is necessary and sufficient here for

∫ 0
−∞ e−sAs5sGk(p(s)) ds

to be well defined. The convergence of
∫ 0

−∞ e−sAs5sF ds is straight-
forward since <σ(As) < 0 by assumption and F is constant. The
derivation of (25) follows the same lines as the derivation for Ref. 12,
Eq. (4.6).

One can also generalize Theorem III.1 to the case when F
is time-dependent provided that F satisfies suitable conditions to

ensure JF given by (22) to be well defined and that the non-
resonance condition (24) is suitably augmented. We leave the pre-
cise statement of such a generalization to a future work. For the
applications considered in later sections, the forcing term F is either
a constant or with a sublinear growth. For such cases, JF is always
well defined under the assumptions of Theorem III.1. We turn now
to present the explicit formulas of the parameterizations based on
the BF system (11).

C. Explicit formulas for variational parameterizations

We provide in this section, closed form formulas of parameter-
izations for forced dissipative such as Eq. (1). We consider first the
case where F is constant in time and then deal with time-dependent
forcing case.

1. The constant forcing case

To favor flexibility in applications, we consider scale-awareness
of our parameterizations via BF systems, i.e., we consider parameter-
izations that are built up, mode by mode, from the integration, for
each n ≥ mc + 1, of the following BF systems:

dp

ds
= Acp +5cF, s ∈ [−τ , 0], (27a)

dqn

ds
= λnqn +5nGk

(
p(s)

)
+5nF, s ∈ [−τ , 0], (27b)

with p(0) = X ∈ Hc and qn(−τ) = 0. (27c)

Recall that qn(0) is aimed at parameterizing the solution amplitude
yn(t) carried by mode en, when X = yc(t) in Eq. (27c), whose param-
eterization defect is minimized by optimization of the backward
integration time τ in (4). To dispose of explicit formulas for qn(0)
qualifying the dependence on τ facilitates greatly this minimization.

In the case the nonlinearity G(y) is quadratic, denoted by
B(y, y), such formulas are easily accessible as (27) is integrable. It
is actually integrable in the presence of higher-order terms, but we
provide the details here for the quadratic case, leaving the details to
the interested reader for extension.

Recall that we denote by e ∗
j the conjugate modes from the

adjoint A ∗ and that these modes satisfy the bi-orthogonality con-

dition. That is
〈
ei, e ∗

j

〉
= 1 if i = j, and zero otherwise, where 〈·, ·〉

denotes the inner product endowing H. Denoting by8n(τ ,λ, X) the
solution qn(0) to Eq. (27b), we find after calculations that

8n(τ ,λ, X) = Rn(F,λ, τ , X)− 1 − eτλn

λn

Fn, +
mc∑

i,j=1

Dn
ij(τ ,λ)Bn

ijXiXj,

(28)

in which Xi and Xj denote the components of the vector X in Hc onto
ei and ej, Bn

ij =
〈
B
(
ei, ej

)
, e∗

n

〉
and

Dn
ij(τ ,λ) =

1 − exp
(
−δn

ijτ
)

δn
ij

, if δn
ij 6= 0, (29)

while Dn
ij(τ ,λ) = τ otherwise. Here, δn

ij = λi + λj − λn, with the λj

referring to the eigenvalues of A. We refer to Ref. 12 and Appendix B
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for the expression of Rn(F,λ, τ , X), which accounts for the nonlin-
ear interactions between the forcing components in Hc . Here, the
dependence on the λj in (28) is made apparent, as this dependence
plays a key role in the prediction of the higher-order transitions; see
applications to the Rayleigh–Bénard system of Sec. V.

Remark III.1 (OPM balances small spectral gaps):
Theorem III.1 teaches us that when δn

ij > 0 not only Dn
ij(τ ,λ) defined

in (29) converges toward a well-defined quantity as τn → ∞ but also
the coefficients involved in Rn(F,λ, τ , X) [see (B1)–(B3)], in the case
of existence of invariant manifold. For parameter regimes where the
latter fails to exist, some of the δn

ij or the λj − λn involved in (B2)
and (B3) can become small, leading to the well-known small spec-
tral gap issue25 manifested typically by over-parameterization of the
en’s mode amplitude when the Lyapunov–Perron parameterization
(22) is employed; see Ref. 12, Sec. 6. The presence of the τn through
the exponential terms in (29) and (B2) and (B3) allows for balancing
these small spectral gaps after optimization and improve notably the
parameterization and closure skills; see Sec. V and Appendix D.

Remark III.2: Formulas such as introduced in Ref. 43 in
approximate inertial manifold (AIM) theory and used earlier
in atmospheric dynamics44 in the context of non-normal modes
initialization45–47 are also tied to leading-order approximations of
invariant manifolds since J(X) given by (6) satisfies

J(X) = −A−1
s
5sGk(X)+ O

(
‖X‖k

)
, X ∈ Hc (30)

and the term −A−1
s
5sGk(X) is the main parameterization used in

Ref. 43; see Refs. 29, Lemma 4.1 and 11, Theorem A.1.1. Adding
higher-order terms can potentially lead to more accurate parame-
terizations and push the validity of the approximation to a larger
neighborhood,48,49 but in the presence of small spectral gaps, such
an operation may become also less successful. When such formulas
arising in AIM theory are inserted within the proper data-informed
variational approach such as done in Ref. 12, Sec. 4.4, their optimized
version can also handle regimes in which spectral gap becomes small
as demonstrated in Ref. 12, Sec. 6.

2. The time-dependent forcing case

Here, we assume that the neglected modes are subject to time-
dependent forcing according to F(t) =

∑
n≥mc+1 σnfn(t)en. Then, by

solving the BF systems made of Eqs. (11a) and (12) with qn(t − τ)

= ζ (to account for possibly non-zero mean), we arrive at the follow-
ing time-dependent parameterization of the nth mode’s amplitude:

8n(τ ,λ, X, t) = eλnτ ζ + σneλnt

∫ t

t−τ
e−λnsfn(s) ds

︸ ︷︷ ︸
(I)

+
mc∑

i,j=1

Dn
ij(τ ,λ)Bn

ijXiXj, (31)

where X =
∑mc

j=1 Xj ej lies in Hc .
This formula of 8n gives the solution to the homological

equation Eq. (16) of Lemma III.1 in which 5s therein is replaced
here by 5n, the projector onto the mode en whose amplitude is
parameterized by 8n. Clearly, the terms in (I) are produced by the

time-dependent forcing. They are functionals of the past fn and
convey thus exogenous memory effects.

The integral term in (I) of Eq. (31) is of the form

I(t) = eκt

∫ t

t−τ
e−κsfn(s) ds. (32)

By taking derivates on both sides of (32), we observe that I satisfies

dI

dt
= κI + fn(t)− eκτ fn(t − τ). (33)

As a practical consequence, the computation of I(t) boils down to
solving the scalar ODE (33), which can be done with high-accuracy
numerically, when κ < 0. One bypasses thus the computation of
many quadratures (as t evolves) that we would have to perform
when relying on Eq. (32). Instead, only one quadrature is required
corresponding to the initialization of the ODE (33) at t = 0.

This latter computational aspect is important not only for sim-
ulation purposes when the corresponding OPM reduced system is
ran online but also for training purposes, in the search of the opti-
mal τ during the offline minimization stage of the parameterization
defect.

If time-dependent forcing terms are present in the reduced
state space Hc , then the BF system (27) can still be solved ana-
lytically albeit leading to more involved integral terms than in (I)
in the corresponding parameterization. This aspect will be detailed
elsewhere.

3. OPM reduced systems

Either in the constant forcing or time-dependent forcing case,
our OPM reduced system takes the form

Ẋ = AcX +5cG
(
X +8τ ∗(X, t)

)
+5cF, (34)

where

8τ (X, t) =
∑

n≥mc+1

8n(τn,λ, X, t)en, (35)

where either 8n(τn,λ, X, t) is given by (31) in the time-dependent
case, or by (28), otherwise. Whatever the case, the vector τ ∗ is
formed by the minimizers τ ∗

n of Qn given by (4), for each n.
Note that in the case of the time-dependent parameterization (31),
the OPM reduced system is run online by augmenting (35) with
Eq. (33), depending on the modes that are forced.

We emphasize finally that from a data-driven perspective, the
OPM reduced system benefits from its dynamical origin. By con-
struction, only a scalar parameter τ is indeed optimized per mode to
parameterize. This parameter benefits furthermore from a dynam-
ical interpretation since it plays a key role in balancing the small
spectral gaps known as to be the main issue in applications of
invariant or inertial manifold theory in practice;25 see Remark III.1.

IV. PREDICTING TIPPING POINTS

A. The Stommel–Cessi model and tipping points

A simple model for oceanic circulation showing bistability is
Stommel’s box model,50 where the ocean is represented by two
boxes, a low-latitude box with temperature T1 and salinity S1, and
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a high-latitude box with temperature T2 and salinity T2; see Ref. 51,
Fig. 1. The Stommel model can be viewed as the simplest “thermody-
namic” version of the Atlantic Meridional Overturning Circulation
(AMOC) (Ref. 52, Chap. 6), a major ocean current system trans-
porting warm surface waters toward the northern Atlantic that con-
stitutes an important tipping point element of the climate system;
see Refs. 53 and 54.

Cessi in Ref. 51 proposed a variation of this model, based on
the box model of Ref. 55, consisting of an ODE system describing
the evolution of the differences 1T = T1 − T2 and 1S = S1 − S2;
see Ref. 51, Eq. (2.3). The Cessi model trades the absolute functions
involved in the original Stommel model by polynomial relations
more prone to analysis. The dynamics of 1T and 1S are cou-
pled via the density difference 1ρ, approximated by the relation
1ρ = αS1S − αT1T which induces an exchange Q of mass between
the boxes to be given as Q = 1/τd + (q/V)1ρ2 according to Cessi’s
formulation, where q denotes the Poiseuille transport coefficient, V
is the volume of a box, and τd is the diffusion timescale. The coeffi-
cient αS is a coefficient inversely proportional to the practical salinity
unit, i.e., unit based on the properties of sea water conductivity while
αT is in ◦ C−1; see Ref. 51. In this simple model, 1T relaxes at a rate
τr to a reference temperature θ (with T1 = θ/2 and T2 = −θ/2) in
the absence of coupling between the boxes.

Using the dimensionless variables y = αS1S/(αTθ),
z = 1T/θ , and rescaling time by the diffusion timescale τd, the Cessi
model can be written as56

ẏ = F − y
[
1 + µ(z − y)2

]
,

ż = −1

ε
(z − 1)− z

[
1 + µ(z − y)2

]
,

(36)

in which F is proportional to the freshwater flux, ε = τr/τd, and
µ2 = τd(αTθ)

2q/V; see Refs. 51, Eq. (2.6) and 56.
The nonlinear exchange of mass between the boxes is reflected

by the nonlinear coupling terms in Eq. (36). These nonlinear terms
lead to multiple equilibria in certain parts of the parameter space, in
particular, when F is varied over a certain range [Fc1 , Fc2 ], while µ
and ε are fixed. One can even prove that Eq. (36) experiences two
saddle-node bifurcations,57 leading to a typical S-shaped bifurcation
diagram; see Fig. 2(a).

S-shaped bifurcation diagrams occur in oceanic models that
go well beyond Eq. (36) such as based on the hydrostatic primi-
tive equations or Boussinesq equations; see, e.g., Refs. 58–61. More
generally, S-shaped bifurcation diagrams and more complex multi-
plicity diagrams are known to occur in a broad class of nonlinear
problems62–64 that include energy balance climate models,65–68 popu-
lation dynamics models,69,70 vegetation pattern models,71,72 combus-
tion models,73–76 and many other fields.77

The very presence of such S-shaped bifurcation diagrams pro-
vides the skeleton for tipping point phenomena to take place when
such models are subject to the appropriate stochastic disturbances
and parameter drift, causing the system to “tip” or move away from
one branch of attractors to another; see Refs. 33 and 34. From an
observational viewpoint, the study of tipping points has gained a
considerable attention due to their role in climate change as a few
components of the climate system (e.g., Amazon forest and the
AMOC) have been identified as candidates for experiencing such
critical transitions if forced beyond the point of no return.53,54,78

Whatever the context, tipping phenomena are due to a subtle
interplay between nonlinearity, slow parameter drift, and fast dis-
turbances. To better understand how these interactions cooperate
to produce a tipping phenomenon could help improve the design of

FIG. 2. Panel (a): The S-shaped bifurcation of the Stommel–Cessi model (36) as the parameter F is varied, shown here for µ = 6.2 and ε = 0.1. The two branches of
locally stable steady states are marked by the solid black curves, and the other branch of unstable steady states are marked by the dashed black curve. The two vertical
gray lines mark, respectively, Fc1 = 0.8513 and Fc2 = 0.8821, at which the saddle-node bifurcations occur. Panel (b): Parameterization of δ′

2 by the OPM, 82(τ
∗, δ′

1, t)

given by (43), where F is fixed to be Fref = 0.855 marked out by the vertical green line in panel (a) and the noise strength parameter σ in (40) is taken to be σ = √
ε,

leading to σ1 ≈ 0.3399 and σ2 ≈ −0.0893 in (41). Panel (c): The normalized parameterization defect Q for 82(τ , δ
′
1, t) as τ is varied. Panel (d): The performance of the

OPM reduced Eq. (45) in reproducing the noise-induced transitions experienced by y(t) from the stochastically forced Stommel–Cessi model (40). Once (45) is solved, the
approximation of y is constructed using (46).
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early warning signals. However, we will not focus on this latter point
per se in this study, we show below, on the Cessi model that the OPM
framework provides useful insights in that perspective, by demon-
strating its ability of deriving reduced models to predict accurately
the crossing of a tipping point; see Sec. IV C.

B. OPM results for a fixed F value: Noise-induced

transitions

We report in this section on the OPM framework skills to
derive accurate reduced models to reproduce noise-induced tran-
sitions experienced by the Cessi model (36), when subject to fast
disturbances for a fixed value of F. The training of the OPM oper-
ated here serves as a basis for the harder tipping point prediction
problem dealt with in Sec. IV C, when F is allowed to drift slowly
through the critical value Fc2 at which the lower branch of steady

states experiences a saddle-node bifurcation manifested by a turn-
ing point; see Fig. 2(a) again. Recall that Fc1 denotes here the
F-value corresponding to the turning point experienced by the
upper branch.

Reformulation of the Cessi model (36). The 1D OPM reduced
equation is obtained as follows. First, we fix an arbitrary value of F
in [Fc1 , Fc2 ] that is denoted by Fref and marked by the green verti-
cal dashed line in Fig. 2(a). The system (36) is then rewritten for
the fluctuation variables y′(t) = y(t)− y and z′(t) = z(t)− z, where
X = (y, z) denotes the steady state of Eq. (36) in the lower branch
when F = Fref.

The resulting equation for δ = (y′, z′) is then of the form

δ̇ = Aδ + G2(δ)+ G3(δ), (37)

with A, G2, G3 given by

A =




−1 − µ
(
z − y

)2 + 2µy
(
z − y

)
−2µy

(
z − y

)

2µz
(
z − y

)
−1

ε
− 1 − µ

(
z − y

)2 − 2µz
(
z − y

)


 , (38)

G2(δ) =
(

−µy
(
z′ − y′)2 − 2µ

(
z − y

)
y′ (z′ − y′)

−µz
(
z′ − y′)2 − 2µ

(
z − y

)
z′ (z′ − y′)

)
and G3(δ) =

(
−µy′(z′ − y′)2

−µz′(z′ − y′)2

)
. (39)

Since X is a locally stable steady state, we add noise to the
first component of δ to trigger transitions from the lower branch
to the top branch in order to learn an OPM that can operate not
only locally near X but also when the dynamics is visiting the upper
branch. This leads to

δ̇ = Aδ + G2(δ)+ G3(δ)+ σẆ(t), (40)

where σ = (σ , 0)T and W denotes a standard one-dimensional two-
sided Brownian motion.

The eigenvalues of A have negative real parts since X is locally
stable. We assume that the matrix A has two distinct real eigenval-
ues, which turns out to be the case for a broad range of parame-
ter regimes. As in Sec. III, the spectral elements of the matrix A

(respectively, A∗) are denoted by
(
λj, ej

) [
respectively,

(
λ∗

j , e∗
j

)]
, for

j = 1, 2. These eigenmodes are normalized to satisfy
〈
ej, e∗

j

〉
= 1 and

are bi-orthogonal otherwise.

Let us introduce δ′ =
(〈
δ, e∗

1

〉
,
〈
δ, e∗

2

〉)T
and σj =

〈
σ , e∗

j

〉
, for

j = 1, 2. We also introduce 3 = diag(λ1, λ2). In the eigenbasis,
Eq. (40) can be written then as

δ̇′ = 3δ′ + G2

(
δ′)+ G3

(
δ′)+

(
σ1Ẇ(t), σ2Ẇ(t)

)T
, (41)

with

G
j

k

(
δ′) =

〈
Gk

(
δ′

1e1 + δ′
2e2

)
, e∗

j

〉
, j = 1, 2, (42)

where δ′
j denotes the jth component of δ′.

Derivation of the OPM reduced equation. We can now use
the formulas of Sec. III C to obtain an explicit variational parame-
terization of the most stable direction carrying the variable δ′

2 here,
in terms of the least stable one, carrying δ′

1.
For Eq. (41), both of the forcing terms appearing in the p- and

q-equations of the corresponding BF system (27) are stochastic (and
thus time-dependent). To simplify, we omit the stochastic forcing in
Eq. (27a) and work with the OPM formula given by (31) which, as
shown below, is sufficient for deriving an efficient reduced system.

Thus, the formula (31) becomes in this context

82(τ , X, t) = D2
11(τ )B

2
11X

2 + Zτ (t), (43)

where D2
11 is given by (29), B2

11 = 〈G2(e1), e∗
2〉, and

Zτ (t) = σ2e
λ2t

∫ t

t−τ
e−λ2sẆ(s) ds. (44)

Once the optimal τ ∗ is obtained by minimizing the parameter-
ization defect given by (4), we obtain the following OPM reduced
equation for δ′

1:

Ẋ = λ1X +
〈
G2(Xe1 +82(τ

∗, X, t)e2), e
∗
1

〉

+
〈
G3 (Xe1 +82(τ

∗, X, t)e2) , e∗
1

〉
+ σ1Ẇ(t). (45)

The online obtention of X(t) by simulation of the OPM reduced
equation Eq. (45) allows us to get the following approximation of
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TABLE I. Parameter values.

ε σ µ Fc1 Fc2 Fref

0.1
√
ε 6.2 0.8513 0.8821 0.855

the variables (y(t), z(t)) from the original Cessi model (36):

(yapp(t), zapp(t))
T = X(t)e1 +82(τ

∗, X(t), t)e2 + X, (46)

after going back to the original variables.
Numerical results. The OPM reduced equation Eq. (45) is

able to reproduce the dynamics of δ′
1 for a wide range of param-

eter regimes. We show in Fig. 2 a typical example of skills for
parameter values of µ, ε, σ , and F = Fref as listed in Table I. Since
Fref lies in

[
Fc1 , Fc2

]
(see Table I), the Cessi model (36) admits

three steady states among which two are locally stable (lower and
upper branches) and the other one is unstable (middle branch); see
Fig. 2(a) again. For this choice of Fref, the steady state corresponding
to the lower branch is X = (y, z) with y = 0.4130, z = 0.8285, and
the eigenvalues of A are λ1 = −0.5168 and λ2 = −15.7650.

The offline trajectory δ′(t) used as input for training82 to find
the optimal τ is taken as driven by an arbitrary Brownian path from
Eq. (41) for t in the time interval [20, 80]. The resulting offline skills
of the OPM,82(τ

∗, δ′
1(t), t), are shown as the blue curve in Fig. 2(b),

while the original targeted time series δ′
2(t) to parameterize is shown

in black. The optimal τ that minimizes the normalized parameter-
ization defect Q turns out to be ∞ for the considered regime, as
shown in Fig. 2(c). One observes that the OPM captures, in average,
the fluctuations of δ′

2(t); compare blue curve with black curve.
The skills of the corresponding OPM reduced Eq. (45)

are shown in Fig. 2(d), after converting back to the original
(y, z)-variable using (46). The results are shown out of sample, i.e.,
for another noise path and over a time interval different from the
one used for training. The 1D reduced OPM reduced Eq. (45) is able
to capture the multiple noise-induced transitions occurring across
the two equilibria (marked by the cyan lines), after transforming
back to the original (y, z)-variable; compare red with black curves in
Fig. 2(d). Both the Cessi model (40) and the reduced OPM equation
are numerically integrated using the Euler–Maruyama scheme with
time step δt = 10−3.

Note that we chose here the numerical value of Fref to be closer
to Fc1 than to Fc2 for making more challenging the tipping point pre-
diction experiment conducted in Sec. IV C. There, we indeed train
the OPM for F = Fref while aiming at predicting the tipping phe-
nomenon as F drifts slowly through Fc2 (located thus further away)
as time evolves.

C. Predicting the crossing of tipping points

OPM reduced Eq. (45) in the original coordinates. For better
interpretability, we first rewrite the OPM reduced Eq. (45) under the
original coordinates in which the Cessi model (36) is formulated.
For that purpose, we exploit the components of the eigenvectors of
A given by (38) (for F = Fref) that we write as e1 = (e11, e12)

T and

e2 = (e21, e22)
T. Then, from (46), the expression of yapp rewrites as

yapp(t) = e11X(t)+ e2182 (τ
∗, X(t), t)+ y

= e11X(t)+ γ (τ ∗)X(t)2 + e21Zτ∗(t)+ y, (47)

where the second line is obtained by using the expression of82 given
by (43) and the notation γ (τ ∗) = e21D

2
11(τ

∗)B2
11. It turns out that

X(t) =
−e11 +

√
(e11)

2 − 4γ (τ ∗)
(
e21Zτ∗(t)+ y − yapp(t)

)

2γ (τ ∗)

def= ϕ(τ ∗, yapp(t), t), t ≥ 0. (48)

From (46), we also have

zapp(t) = e12X(t)+ e2282(τ
∗, X(t), t)+ z

= e12X(t)+ γ2(τ
∗)X(t)2 + e22Zτ∗(t)+ z, (49)

where γ2(τ
∗) = e22D

2
11(τ

∗)B2
11.

We can now express zapp(t) as a function of yapp(t), i.e.,
zapp(t) = 9(τ ∗, yapp(t), t) with9 given by

9(τ ∗, yapp, t) = z + γ2(τ
∗)ϕ(τ ∗, yapp, t)2

+ e12ϕ(τ
∗, yapp, t)+ e22Zτ∗(t) (50)

as obtained by replacing X(t) with ϕ(τ ∗, yapp, t) in Eq. (49). Replac-
ing yapp by the dummy variable y, one observes that 9 provides a
time-dependent manifold that parameterizes the variable z in the
original Cessi model as (a time-dependent) polynomial function of
radical functions in y due to the expression of ϕ(τ ∗, y, t); see (48).

We are now in position to derive the equation satisfied by yapp

aimed at approximating y in the original variables. For that purpose,
we first differentiate with respect to time the expression of X(t) given
in (48) to obtain

Ẋ = −e21Żτ∗(t)+ ẏapp√
(e11)

2 − 4γ (τ ∗)
(
e21Zτ∗(t)+ y − yapp

) . (51)

On the other hand, by taking into account the expressions of yapp

in (47) and zapp in (49), we observe that the X-equation (45) can be
re-written as

Ẋ =
〈
F
(
yapp(t), zapp(t)

)
+ σẆ(t), e∗

1

〉
. (52)

with

F(y, z) =




Fref − y
[
1 + µ(z − y)2

]

−1

ε
(z − 1)− z

[
1 + µ(z − y)2

]


 , (53)

given by the right-hand side (RHS) of the Cessi model (36) with
F = Fref.

Now, by equating the RHS of Eq. (52) with that of Eq. (51), we
obtain, after substitution of zapp by 9(τ ∗, yapp, t), that yapp satisfies
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the following equation:

Ẏ = α(τ ∗, Y)
〈
F(Y,9(τ ∗, Y, t))+ σẆ(t), e∗

1

〉
+ e21Żτ∗(t), (54)

where

α(τ ∗, Y) =
√
(e11)

2 − 4γ (τ ∗)
(
e21Zτ∗(t)+ y − Y

)
, (55)

and Żτ∗ is given by [cf. (44)]

Żτ∗(t) = λ2Zτ∗(t)+ σ2Ẇ(t)− σ2e
λ2τ

∗
Ẇ(t − τ ∗). (56)

Equation (54) is the OPM reduced equation for the y-variable of
the Cessis model, as rewritten in the original system of coordinates.
This equation in its analytic formulation mixes information about
the two components of the RHS to Eq. (36) through the inner prod-
uct involved in Eq. (54), while parameterizing the z-variable by the
time-dependent parametarization 9(τ ∗, ·, t) given by (50). While
designed for F = Fref away from the lower tipping point, we show
next that the OPM reduced system built up this way demonstrates a
remarkable ability in predicting this tipping point when F is allowed
to drift away from Fref in the course of time.

Prediction results. Thus, we aim at predicting by our OPM
reduced model, the tipping phenomenon experienced by the full
model when F is subject to a slow drift in time via

F(t) = F0 + κt, (57)

where κ > 0 is a small parameter, and F0 is some fixed value of
F such that F0 < Fc2 , with Fc2 denoting the parameter value of the
turning point of the lower branch of equilibria; see Fig. 2(a).

The original Cessi model is forced as follows:

ẏ = F(t)− y
[
1 + µ(z − y)2

]
+ σẆt,

ż = −1

ε
(z − 1)− z

[
1 + µ(z − y)2

]
.

(58)

Introducing g(t) =
〈
(F(t)− Fref, 0)

T, e∗
1

〉
and writing F(t) as

Fref + (F(t)− Fref), we consider the following forced version of the
OPM reduced Eq. (54):

Ẏ = α(τ ∗, Y)
〈
F(Y,9(τ ∗, Y, t))+ σẆ(t), e∗

1

〉
+ e21Żτ∗(t)+ g(t).

(59)

In this equation, recall that the parameterization,9(τ ∗, ·, t) has been
trained for F = Fref; see above.

We set now F0 = 0.85, κ = 2 × 10−4, and σ = √
ε/50, while

µ = 6.2 and ε = 0.1 are kept as in Table I. Note that compared to the
results shown in Fig. 2, the noise level is here substantially reduced
to focus on the tipping phenomenon to occur in the vicinity of the
turning point F = Fc2 . The goal is thus to compare the behavior of
y(t) solving the forced Cessi model (58) with that of the solution
Y(t) of the (forced) OPM reduced Eq. (59) as F(t) crosses the critical
value Fc2 .

The results are shown in Fig. 3. The red curve corresponds to
the solution of the OPM reduced Eq. (59), and the black curve to the
y-component of the forced Cessi model (58). Our baseline is the slow
manifold parameterization, which consists of simply parameteriz-
ing z as z = 1 + O(ε) in Eq. (59), which provides, for ε sufficiently

FIG. 3. The tipping phenomenon as predicted by the OPM reduced Eq. (59)
(red curve) compared with that experienced by the full Cessi model (58)
(black curve). The OPM is trained for F = Fref = 0.855 as marked out by the ver-
tical green line. Also shown in yellow is the result obtained from the slow manifold
reduced Eq. (60).

small due to Tikhonov’s theorem,56,79 good reduction skills from the
“slow” reduced equation

ẏ = F(t)− y
[
1 + µ(1 − y)2

]
+ σẆt. (60)

Here, the value ε = 0.1 lies beyond the domain of applicability of the
Tikhonov theorem, and as a result, the slow reduced Eq. (60) fails in
predicting any tipping phenomenon; see yellow curve in Fig. 3. In
contrast, the OPM reduced Eq. (59) demonstrates a striking success
in predicting the tipping phenomenon to the upper branch, in spite
of being trained away from the targeted turning point, for F = Fref as
marked by the (green) vertical dash line. The only caveat is the over-
shoot observed in the magnitude of the predicted random steady
state in the upper branch.

The striking prediction result of Fig. 3 are shown for one noise
realization. We explore now the accuracy in predicting such a tip-
ping phenomenon by the OPM reduced Eq. (59) when the noise
realization is varied.

To do so, we estimate the statistical distribution of the F-value
at which tipping takes place, denoted by Ftransition, for both the Cessi
model (58) and Eq. (59). These distributions are estimated as fol-
lows. We denote by ȳc the y-component of the steady state at which
the saddle-node bifurcation occurs in the lower-branch for F = Fc2 .
As noise is turned on and F(t) evolves slowly through Fc2 , the solu-
tion path y(t) to Eq. (58) increases in average while fluctuating
around the ȳc-value (due to small noise) before shooting off to the
upper branch as one nears Fc2 . During this process, there is a time
instant, denoted by ttransition, such that for all t > ttransition, y(t) stay
above ȳc. We denote the F-value corresponding to ttransition as Ftransition

according to (57). Whatever the noise realization, the solution to the
OPM reduced Eq. (59) experiences the same phenomenon leading
thus to its own Ftransition for a particular noise realization. As shown
by the histograms in Fig. 4, the distribution of Ftransition predicted
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FIG. 4. Statistical distribution of the threshold value of F at which the tipping
phenomenon occurs for both the full Cessi model (58) (orange bar) and the
OPM reduced Eq. (59) (blue curve). The histograms are computed based on 106

arbitrarily fixed noise realizations.

by the OPM reduced Eq. (59) (blue curve) follows closely that com-
puted from the full system (58) (orange bars). Thus, not only the
OPM reduced Eq. (59) is qualitatively able to reproduce the pas-
sage through a tipping point (as shown in Fig. 3) but is also able to
accurately predicting the critical F-value (or time-instant) at which
the tipping phenomenon takes place with an overall success rate
over 99%.

V. PREDICTING HIGHER-ORDER CRITICAL

TRANSITIONS

A. Problem formulation

In this section, we aim at applying our variational parameter-
ization framework to the following Rayleigh–Bénard (RB) system
from Ref. 80:

Ċ1 = −σb1C1 − C2C4 + b4C
2
4 + b3C3C5 − σb2C7,

Ċ2 = −σC2 + C1C4 − C2C5 + C4C5 − σ

2
C9,

Ċ3 = −σb1C3 + C2C4 − b4C
2
2 − b3C1C5 + σb2C8,

Ċ4 = −σC4 − C2C3 − C2C5 + C4C5 + σ

2
C9,

Ċ5 = −σb5C5 + 1

2
C2

2 − 1

2
C2

4,

Ċ6 = −b6C6 + C2C9 − C4C9,

Ċ7 = −b1C7 − rC1 + 2C5C8 − C4C9,

Ċ8 = −b1C8 + rC3 − 2C5C7 + C2C9,

Ċ9 = −C9 − C2(r + 2C6 + C8)+ C4(r + 2C6 + C7).

(61)

Here, σ denotes the Prandtl number and r denotes the reduced
Rayleigh number defined to be the ratio between the Rayleigh num-
ber R and its critical value Rc at which the convection sets in. The

TABLE II. Prediction experiments for the RB System (67). The parameter values rD
(< r*) correspond to the allowable upper bound for which the mean state dependence

of Cr on r is estimated, in view of extrapolation at r = rP. In each experiment, Ir = [r0,

rD] with rD − r0 = 2× 10−2, corresponding to segments show in orange in Fig. 5(d).

The critical value r* indicates the parameter value at which the transition occurs,

depending on the experiment. The parameter value rP> r* at which the prediction

is sought is also given.

mc rD r* rP

Experiment I (period-doubling) 3 13.91 13.99 14
Experiment II (chaos) 5 14.10 14.17 14.22

coefficients bi are given by

b1 =
4
(
1 + a2

)

1 + 2a2
, b2 = 1 + 2a2

2 (1 + a2)
, b3 =

2
(
1 − a2

)

1 + a2
,

b4 = a2

1 + a2
, b5 = 8a2

1 + 2a2
, b6 = 4

1 + 2a2
,

with a = 1
2 corresponding to the critical horizontal wavenumber

of the square convection cell. This system is obtained as a Fourier
truncation of hydrodynamic equations describing Rayleigh–Bénard
(RB) convection in a 3D box.80 The Prandtl number is chosen to be
σ = 0.5 in the experiments performed below, which is the same as
used in Ref. 80. The reduced Rayleigh number r is varied according
to these experiments; see Table II.

Our goal is to assess the ability of our variational parameter-
ization framework for predicting higher-order transitions arising
in (61) by training the OPM only with data prior to the transi-
tion we aim at predicting. The Rayleigh number r is our control
parameter. As it increases, Eq. (67) undergoes several critical transi-
tions/bifurcations, leading to chaos via a period-doubling cascade.80

We focus on the prediction of two transition scenarios beyond Hopf
bifurcation: (I) the period-doubling bifurcation and (II) the transi-
tion from a period-doubling regime to chaos. Noteworthy are the
failures that standard invariant manifold theory or AIM encounter
in the prediction of these transitions, here; see Appendix D.

To do so, we re-write Eq. (61) into the following compact form:

Ċ = LC + B(C, C), (62)

where C = (C1, . . .C9)
T, and L is the 9 × 9 matrix given by

L =




−σb1 0 0 0 0 0 −σb2 0 0

0 −σ 0 0 0 0 0 0 −σ
2

0 0 −σb1 0 0 0 0 σb2 0

0 0 0 −σ 0 0 0 0
σ

2
0 0 0 0 −σb5 0 0 0 0

0 0 0 0 0 −b6 0 0 0

−r 0 0 0 0 0 −b1 0 0

0 0 r 0 0 0 0 −b1 0

0 −r 0 r 0 0 0 0 −1




.
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The nonlinear term B is defined as follows. For any φ = (φ1, . . . ,
φ9)

T and ψ = (ψ1, . . . ,ψ9)
T in C

9, we have

B(φ,ψ) =




−φ2ψ4 + b4φ4ψ4 + b3φ3ψ5

φ1ψ4 − φ2ψ5 + φ4ψ5

φ2ψ4 − b4φ2ψ2 − b3φ1ψ5

−φ2ψ3 − φ2ψ5 + φ4ψ5

1

2
φ2ψ2 − 1

2
φ4ψ4

φ2ψ9 − φ4ψ9

2φ5ψ8 − φ4ψ9

−2φ5ψ7 + φ2ψ9

−2φ2ψ6 − φ2ψ8 + 2φ4ψ6 + φ4ψ7




. (63)

We now re-write Eq. (61) in terms of fluctuations with respect to
its mean state. In that respect, we subtract from C(t) = (C1(t), . . . ,
C9(t)) its mean state Cr, which is estimated, in practice, from simula-
tion of Eq. (61) over a typical characteristic time of the dynamics that
resolves, e.g., decay of correlations (when the dynamics is chaotic) or
a period (when the dynamics is periodic); see also Ref. 12. The corre-
sponding ODE system for the fluctuation variable, δ(t) = C(t)− Cr,
is then given by

dδ

dt
= Aδ + B(δ, δ)+ LCr + B

(
Cr, Cr

)
, (64)

with

Aδ = Lδ + B
(
Cr, δ

)
+ B

(
δ, Cr

)
. (65)

Denote the spectral elements of the matrix A by {(λj, ej) : 1 ≤ j

≤ 9} and those of A∗ by
{(
λ∗

j , e∗
j

)
: 1 ≤ j ≤ 9

}
. Here the eigen-

modes are normalized so that
〈
ej, e∗

k

〉
= 1 if j = k and 0 otherwise.

By taking the expansion of δ in terms of the eigenelements of L, we
get

δ(t) =
9∑

j=1

yj(t)ej with yj(t) =
〈
δ(t), e∗

j

〉
. (66)

Assuming that A is diagonalizable in C and by rewriting (64) in the
variable y = (y1, . . . , y9)

T, we obtain that

ẏj = λj

(
Cr

)
yj +

9∑

k,`=1

B
j

k`

(
Cr

)
yky` + Fj

(
Cr

)
,

(67)
j = 1, . . . , 9,

where B
j

k`

(
Cr

)
=
〈
B(ek, e`), e∗

j

〉
and

Fj

(
Cr

)
=
〈
LCr + B

(
Cr, Cr

)
, e∗

j

〉
. (68)

Like λj, the eigenmodes also depend on the mean state Cr, explaining

the dependence of the interaction coefficients B
j

k`. From now on, we
work with Eq. (67).

B. Predicting higher-order transitions via OPM:

Method

Thus, we aim at predicting for Eq. (67) two types of tran-
sition: (I) the period-doubling bifurcation and (II) the transition
from period-doubling to chaos, referred to as Experiments I and
II, respectively. For each of these experiments, we are given a
reduced state space Hc = span(e1, . . . , emc) with mc as indicated in
Table II, depending on the parameter regime. The eignemodes are
here ranked by the real part of the corresponding eigenvalues, e1

corresponding to the eigenvalue with the largest real part. The goal
is to derive an OPM reduced system (34) able to predict such tran-
sitions. The challenge lies in the optimization stage of the OPM due
to the prediction constraint, one is prevented to use data from the
full model at the parameter r = rP which one desires to predict the
dynamics. Only data prior to the critical value r∗ at which the con-
cerned transition, either period-doubling or chaos takes place are
here allowed.

Due to the dependence on Cr of λ, as well as of the inter-
action coefficients B

j

k` and forcing terms Fj, a particular attention
to this dependence has to be paid. Indeed, recall that the param-
eterizations 8n given by the explicit formula (28) depend heavily
here on the spectral elements of linearized operator A at Cr and
thus does its optimization. Since the goal is to eventually dispose
of an OPM reduced system able to predict the dynamical behav-
ior at r = rP > r ∗, one cannot rely on data from the full model at
r = rP and thus one cannot exploit, in particular, the knowledge of
the mean state Cr for r = rP. We are thus forced to estimate the latter
for our purpose.

To do so, we estimate the dependence on r of Cr on an inter-
val Ir = [r0, rD] such that r0 < rD < r ∗ (see Table II), and use this
estimation to extrapolate the value of Cr at r = rP, which we denote

by C
ext
rP

. For both experiments, it turned out that a linear extrapola-

tion is sufficient. This extrapolated value C
ext
rP

allows us to compute

the spectral elements of the operator A given by (65) in which C
ext
rP

replaces the genuine mean state Cr. Obviously, the better is the

approximation of Cr by C
ext
rP

, the better the approximation of λ
(
CrP

)

by λ
(
C

ext
rP

)
along with the corresponding eigenspace.

We turn now to the training of the OPM exploiting these
surrogate spectral elements, which will be used for predicting the
dynamical behavior at r = rP. To avoid any looking ahead whatso-
ever, we allow ourselves to only use the data of the full model (67)
for r = rD < rP and minimize the following parameterization defect:

Jn(τ ) =
∣∣∣yrD

n (t)−8n(τ ,λ
(
C

ext
rP

)
, yrD

c (t))
∣∣∣
2

, (69)

for each relevant n, in which yrD
c
(t) (respectively, yn(t)) denotes

the full model solution’s amplitude in Hc (respectively, en) at

r = rD. The normalized defect is then given by Jn(τ ) = Jn(τ )/
∣∣yrD

n

∣∣2.
To compute these defects we proceed as follows. We first use the
spectral elements at r = rP of the linearized matrix A at the extrapo-

lated mean state C
ext
rP

to form the coefficients Rn, λ−1
n

(
1 − eτλn

)
Fn

and Dn
ij(τ ,λ)Bn

ij involved in the expression (28) of 8n. For each
n, the defect Jn(τ ) is then fed by the input data at r = rD
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FIG. 5. Prediction of transitions: OPM prediction results. Panel (d): The black curve shows the dependence on r of the norm of the mean state vector, Cr . The vertical dashed
lines at r∗1 = 13.991 and r∗2 = 14.173 mark the onset of period-doubling bifurcation and chaos, respectively. The points P1 and P2 correspond to the r-values at which the
two prediction experiments are conducted; see Table II. The orange segments that precede the points D1 and D2 denote the parameter intervals over which data are used
to build the OPM reduced system for predicting the dynamics at r = rP1 and r = rP2 , respectively; see Steps 1–4. The (normalized) parameterization defects are shown in
panels (c) and (e) for training data at r = rD1 and r = rD2 , respectively. Panels (a) and (b): Global attractor (in lagged coordinates) and PSDs for three selected components
at r = rP1 and r = rP2 , respectively. Black curves are from the full system (61), and red ones from the OPM reduced system (70).

[
i.e., y

rD
n (t) and yrD

c
(t)
]

and evaluated for τ that varies in some suf-
ficiently large interval to capture global minima. The results are
shown in Figs. 5(c) and 5(e) for Experiment I and II, respectively.
Note that the evaluation of Jn(τ ) for a range of τ is used here only
for visualization purposes as it is not needed to find a minimum. A
simple gradient-descent algorithm can be indeed used for the latter;
see Ref. 12, Appendix. We denote by τ̂ ∗

n the resulting optimal value
of τ per variable to parameterize.

After the τ̂ ∗
n are found for each n ≥ mc + 1, the OPM reduced

system used to predict the dynamics at r = rP takes the form

Ẋj = λ̂j(rP)Xj +
mc∑

k,`=1

B̂
j

k`(rP)XkX`

+
mc∑

k=1

9∑

`=mc+1

(
B̂

j

k`(rP)+ B̂
j

`k(rP)
)
Xk8`(τ̂

∗
` , λ̂(rP), X)

+
9∑

k,`=mc+1

B̂
j

k`(rP)8k(τ̂
∗

k , λ̂(rP), X)8`(τ̂
∗
` , λ̂(rP), X)

+ F̂j(rP), j = 1, . . . , mc, (70)

with λ̂j(rP)= λj

(
C

ext
rP

)
, B̂

j

k`(rP)= B
j

k`

(
C

ext
rP

)
, and F̂j(rP)= Fj

(
C

ext
rP

)
.

We can then summarize our approach for predicting higher-
order transitions via OPM reduced systems as follows:

Step 1. Extrapolation C
ext
rP

of Cr at r = rP (the parameter at which
one desires to predict the dynamics).

Step 2. Computation of the spectral elements of the linearized oper-

ator A at r = rP by replacing Cr by C
ext
rP

in (65).
Step 3. Training of the OPM using the spectral elements of Step 2

and data of the full model for r = rD < rP.
Step 4. Run the OPM reduced system (70) to predict the dynamics

at r = rP.

We mention that the minimization of certain parameterization
defects may require a special care such as for J6 in Experiment II. Due
to the presence of nearby local minima [see red curve in Fig. 5(e)],
the analysis of the optimal value of τ to select for calibrating an opti-
mal parameterization of y6(t) is more subtle and exploits actually a
complementary metric known as the parameterization correlation;
see Sec. V D.

Obviously, the accuracy in approximating the genuine mean
state CrP by ĈrP is a determining factor in the transition predic-
tion procedure described in steps 1–4 above. Here, the relative error
in approximating ‖CrPi

‖ (i = 1, 2) is 0.03% for Experiment I and
0.27% for Experiment II. For the latter case, although the parameter
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dependence is rough beyond r ∗
2 (see Panel D), there is no bru-

tal local variations of relatively large magnitude as identified for
other nonlinear systems.18,81 Systems for which a linear response to
parameter variation is a valid assumption,82,83 thus constitute seem-
ingly a favorable ground to apply the proposed transition prediction
procedure.

C. Prediction of higher-order transitions by OPM

reduced systems

As summarized in Figs. 5(a) and 5(b), for each prediction
experiment of Table II, the OPM reduced system (70) not only
successfully predicts the occurrence of the targeted transition at
either r = rP1 and r = rP2 [P1 and P2 in Fig. 5(d)] but also approx-
imates with good accuracy the embedded (global) attractor as well
as key statistics of the dynamics such as the power spectral density
(PSD). Note that for Experiment I (period-doubling), we choose the
reduced dimension to be mc = 3 and to be mc = 5 for Experiment
II (transition to chaos). For Experiment I, the global minimizers
of Jn(τ ) given by (69) are retained to build up the corresponding
OPM. In Experiment II, all the global minimizers are also retained
except for J6(τ ) from which the second minimizer is used for the
construction of the OPM.

Once the OPM is built, an approximation of C(t) is obtained
from the solution X(t) to the corresponding OPM reduced system
(70) according to

CPM(t) = C
ext
rP

+
mc∑

j=1

Xj(t)ej +
N∑

n=mc+1

8n

(
τ̂ ∗

n , λ̂(rP), X
)

en, (71)

with8n given by (28) whose spectral entries are given by the spectral
elements of A given by (65) for r = rP in which CrP is replaced by

C
ext
rP

. The ej and en denote the eigenvectors of this matrix and N = 9
here.

As the baseline, the skills of the OPM reduced system (70)
are compared to those from reduced systems when parameteriza-
tions from invariant manifold theory such as (6) or from inertial
manifold theory such as (30), are employed; see Theorem 2 in
Ref. 12 and Remark III.2. The details and results are discussed
in Appendix D. The main message is that compared to the OPM
reduced system (70), the reduced systems based on these tradi-
tional inertial/inertial manifold theories fail in predicting the correct
dynamics. A main player in this failure lies in the inability of these
standard parameterizations to accurately approximate small-energy
variables that are dynamically important; see Appendix D. The
OPM parameterization by its variational nature enables to fix this
over-parameterization issue here.

D. Distinguishing between close local minima:

Parameterization correlation analysis

Since 8n’s coefficients depend nonlinearly on τ [see Eqs. (28)
and (29) and (B1)], the parameterization defects, Jn(τ ), defined
in (69) are also highly nonlinear and may not be convex in the
τ -variable as shown for certain variables in panels (c) and (e) of
Fig. 5. A minimization algorithm to reach most often its global min-
imum is nevertheless detailed in Ref. 12, Appendix A and is not

limited to the RB system analyzed here. In certain rare occasions,
a local minimum may be an acceptable halting point with an online
performance slightly improved compared to that of the global min-
imum. In such a case, one discriminates between a local minimum
and the global one by typically inspecting another metric offline: the
correlation angle that measures essentially the collinearity between
the actual high-mode dynamics and its parameterization. Here, such
a situation occurs for Experiment II; see J6 in Fig. 5(e).

Following Ref. 12, Sec. 3.1.2, we recall thus a simple criterion
to assist the selection of an OPM when there are more than one
local minimum displayed by the parameterization defect and the
corresponding local minimal values are close to each other.

Given a parameterization 8 that is not trivial (i.e., 8 6= 0), we
define the parameterization correlation as

c(t) = Re〈8(yc(t)), ys(t)〉
‖8(yc(t))‖ ‖ys(t)‖

. (72)

It provides a measure of collinearity between the unresolved variable
ys(t) and its parameterization 8(yc(t)), as time evolves. It serves
thus as a complimentary, more geometric way to measure the phase
coherence between the resolved and unresolved variables than with
the parameterization defect Qn(τn, T) defined in (4). The closer to
unity c(t) is for a given parameterization, the better phase coherence
between the resolved and unresolved variables is expected to hold.

We illustrate this point on J6(τ ) shown in Fig. 5(e). The defect
J6 exhibits two close minima corresponding to J6 ≈ 0.1535 and
J6 ≈ 0.1720, occurring respectively at τ ≈ 0.65 and τ ≈ 1.80. Thus,
the parameterization defect alone does not help provide a satisfac-
tory discriminatory diagnosis between these two minimizers. To the
contrary, the parameterization correlation shown in Fig. 6 allows for
diagnosing more clearly that the OPM associated with the local min-
imizer has a neat advantage compared to that associated with the
global minimizer.

As explained in Ref. 12, Sec. 3.1.2, this parameterization corre-
lation criterion is also useful to assist the selection of the dimension

FIG. 6. Parameterization correlation c(t) defined by (72) for the OPM in Exper-
iment II (transition to chaos). The metric c(t) is here computed by using the
full model solutions for r = rD = 14.1 in J6 in (69), by making τ = 0.65 and
τ = 1.80 corresponding to the global minimizer (green curve) and the nearby
local minimizer (red curve), respectively; see Fig. 5(e).
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of the reduced state space. Indeed, once an OPM has been deter-
mined, the dimension mc of the reduced system should be chosen so
that the parameterization correlation is sufficiently close to unity as
measured, for instance, in the L2-norm over the training time win-
dow. The basic idea is that one should not only parameterize prop-
erly the statistical effects of the neglected variables but also avoid
to lose their phase relationships with the unresolved variables.12,84

For instance, for predicting the transition to chaos, we observe that
an OPM comes with a parameterization correlation much closer to
unity in the case mc = 5 than mc = 3 (not shown).

VI. CONCLUDING REMARKS

In this article, we have described a general framework, based
on the OPM approach introduced in Ref. 12 for autonomous sys-
tems, to derive effective (OPM) reduced systems that are able to
predict either higher-order transitions caused by parameter regime
shift or tipping phenomena caused by model’s stochastic distur-
bances and slow parameter drift. In each case, the OPMs are sought
as continuous deformations of classical invariant manifolds to han-
dle parameter regimes away from bifurcation onsets while keeping
the reduced state space relatively low-dimensional. The underly-
ing OPM parameterizations are derived analytically from model’s
equations and constructed as explicit solutions to auxiliary BF sys-
tems such as Eq. (11), whose backward integration time is optimized
per unresolved mode. This optimization involves the minimiza-
tion of natural cost functionals tailored upon the full dynamics at
parameter values prior to the transitions taking place; see (4). In
each case—either for prediction of higher-order transitions or tip-
ping points—we presented compelling evidence of the success of
the OPM approach to address such extrapolation problems typically
difficult to handle for data-driven reduction methods.

As reviewed in Sec. III, the BF systems such as Eq. (11) allow
for drawing insightful relationships with the approximation the-
ory of classical invariant/inertial manifolds (see Refs. 12, Sec. 2
and 31, 40, 85) when the backward integration time τ in Eq. (11) is
sent to ∞; see Theorem III.1. Once the invariant/inertial manifolds
fail to provide legitimate parameterizations, the optimization of the
backward integration time may lead to local minima at finite τ of the
parameterization defect, which if sufficiently small, gives access to
skillful parameterizations to predict, e.g., higher-order transitions.
This way, as illustrated in Sec. V (Experiment II), the OPM approach
allows us to bypass the well-known stumbling blocks tied to the
presence of small spectral gaps such as those encountered in iner-
tial manifold theory25 and tied to the accurate parameterization of
dynamically important small-energy variables; see also Remark III.1,
Appendix D, and Ref. 12, Sec. 6.

To understand the dynamical mechanisms at play behind a tip-
ping phenomenon and to predict its occurrence are of uttermost
importance, but this task is hindered by the often high dimension-
ality nature of the underlying physical system. Devising accurate
and analytically reduced models to be able to predict tipping phe-
nomenon from complex system is thus of prime importance to serve
understanding. The OPM results of Sec. IV indicate great promises
for the OPM approach to tackle this important task for more com-
plex systems. Other reduction methods to handle the prediction of

tipping point dynamics have been proposed recently in the litera-
ture but mainly for mutualistic networks.86–88 The OPM formulas
presented here are not limited to this kind of networks and can
be directly applied to a broad class of spatially extended systems
governed by (stochastic) PDEs or to nonlinear time-delay systems
by adopting the framework of Ref. 89 for the latter to devise cen-
ter manifold parameterizations and their OPM generalization; see
Refs. 90 and 91.

The OPM approach could be also informative to design for
such systems nearing a tipping point, early warning signal (EWS)
indicators from multivariate time series. Extension of EWS tech-
niques to multivariate data is an active field of research with meth-
ods ranging from empirical orthogonal functions reduction92 to
methods exploiting the system’s Jacobian matrix and relationships
with the cross-correlation matrix93 or exploiting the detection of
spatial location of “hotspots” of stability loss.94,95 By its nonlinear
modus operandi for reduction, the OPM parameterizations identify
a subgroup of essential variables to characterize a tipping phe-
nomenon which, in turn, could be very useful to construct the
relevant observables of the system for the design of useful EWS
indicators.

Thus, since the examples of Secs. IV and V are representative of
more general problems of prime importance, the successes demon-
strated by the OPM approach on these examples invites for further
investigations for more complex systems.

Similarly, we would like to point out another important aspect
in that perspective. For spatially extended systems, the modes
involve typically wavenumbers that can help interpret certain pri-
mary physical patterns. Formulas such as (28) and (31) arising
in OPM parameterizations involve a rebalancing of the interac-
tions Bn

ij among such modes by means of the coefficients Dn
ij(τ ,λ);

see Remark III.1. Thus, an OPM parameterization when skillful to
derive efficient systems may provide useful insights into explain-
ing emergent patterns due to certain nonlinear interactions of
wavenumbers for regimes beyond the instability onset. For more
complex systems that are dealt with here, it is known already that
near the instability onset of primary bifurcations, center manifold
theory provides such physical insights; see, e.g., Refs. 96–102.

By the approach proposed here, relying on OPMs obtained
as continuous deformations of invariant/center manifolds, one can
thus track the interactions that survive or emerge between cer-
tain wavenumbers as one progresses through higher-order transi-
tions. Such insights bring new elements to potentially explain the
low-frequency variability of recurrent large-scale patterns typically
observed, e.g., in oceanic models,103,104 offering at least new lines of
thoughts to the dynamical system approach proposed in the previ-
ous studies.104–107 In that perspective, the analytic expression (B1)
of terms such as Rn(F,λ, τ , X) in (28) bring also new elements to
break down the nonlinear interactions between the forcing of cer-
tain modes compared to others. Formulas such as (B1) extend to
the case of time-dependent or stochastic forcing of the coarse-scale
modes whose exact expression will be communicated elsewhere. As
for the case of noise-induced transitions reported in Fig. 2(d), these
generalized formulas are expected to provide, in particular, new
insights into regime shifts not involving crossing a bifurcation point
but tied to other mechanisms such as slow–fast cyclic transitions or
stochastic resonances.108
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Yet, another important practical aspect that deserves in-depth
investigation is related to the robustness of the OPM approach sub-
ject to model errors. Such errors can arise from multiple sources,
including, e.g., imperfection of the originally utilized high-fidelity
model in capturing the true physics and noise contamination of the
solution data used to train the OPM. For the examples of Secs. IV
and V, since we train the OPM in a parameter regime prior to the
occurrence of the concerned transitions, the utilized training data
contain, de facto, model errors. The reported results in these sec-
tions show that the OPM is robust in providing effectively reduced
models subject to such model errors. Nevertheless, it would provide
useful insights if one can systematically quantify uncertainties of the
OPM reduced models subject to various types of model errors. In
that respect, several approaches could be beneficial for stochastic
systems such as those based on the information-theoretic frame-
work of Ref. 109 or the perturbation theory of ergodic Markov
chains and linear response theory,110 as well as methods based on
data-assimilation techniques.111
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APPENDIX A: PROOF OF LEMMA III.1

We introduce the notations

gτ (t) =
∫ 0

−τ
e−sAs5sF(s + t) ds,

(A1)

9τ (X) =
∫ 0

−τ
e−sAs5sB

(
esAcX

)
ds.

In Eq. (15), replacing X by erAcX where r is an arbitrary real
number, we get

8τ

(
erAcX, t

)
= 9τ

(
erAcX

)
+ gτ (t). (A2)

Note that

ϕ(r) = 9τ

(
erAcX

)
=
∫ 0

−τ
e−sAs5sB

(
e(s+r)AcX

)
ds

=
∫ r

r−τ
e(r−s′)As5sB

(
es′AcX

)
ds′. (A3)

We obtain then

∂rϕ(r) = 5sB
(
erAcX

)
− eτAs5sB

(
e(r−τ)AcX

)
+ Asϕ(r). (A4)

On the other hand, since ϕ(r) = 8τ (e
rAcX, t)− gτ (t) due to (15), we

also have

∂rϕ(r) = D8τ

(
erAcX, t

)
AcerAcX. (A5)

By taking the limit r → 0, we obtain from (A4) and (A5) that

D8τ (X, t)AcX = 5sB(X)− eτAs5sB
(
e−τAcX

)
+ As9τ (X). (A6)

Now, if we replace t in (15) by t + r, we obtain

8τ (X, t + r) = 9τ (X)+ gτ (t + r). (A7)

Note that

ϕ̃(r) = gτ (t + r) =
∫ 0

−τ
e−sAs5sF(s + t + r) ds

=
∫ r

r−τ
e(r−s′)As5sF(s′ + t) ds′. (A8)

It follows that

∂rϕ̃(r) = 5sF(r + t)− eτAs5sF(r − τ + t)+ As ϕ̃(r). (A9)

Since ϕ̃(r) = 8τ (X, t + r)−9τ (X), we also have

∂rϕ̃(r) = ∂t8τ (X, t + r). (A10)

By taking the limit r → 0, we obtain from (A9) and (A10) that

∂t8τ (X, t) = 5sF(t)− eτAs5sF(t − τ)+ Asgτ (t). (A11)

The homological Eq. (16) follows then from (A6) and (A11) while
gathering the relevant terms to form the operator LA given by (17).

APPENDIX B: THE LOW-ORDER TERM IN THE OPM

PARAMETERIZATION

In the special case where F in (27) is time-independent, by
introducing Xi = 〈X, e∗

i 〉 and Fi = 〈F, e∗
i 〉, the Rn-term in the param-

eterization (28) takes the form
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Rn(F,λ, τ , X) =
mc∑

i,j=1

Un
ij(τ ,λ)Bn

ijFiFj +
mc∑

i,j=1

Vn
ij(τ ,λ)Fj

(
Bn

ij + Bn
ji

)
Xi, (B1)

with

Un
ij(τ ,λ) =





1

λiλj

(
Dn

ij(τ ,λ)− 1 − exp(−τ(λi − λn))

λi − λn

− 1 − exp(−τ(λj − λn))

λj − λn

− 1 − exp(τλn)

λn

)
if λi 6= 0 and λj 6= 0,

1

λi

(
τ exp(−τ(λi − λn))

λi − λn

− 1 − exp(−τ(λi − λn))

(λi − λn)
2 + τ exp(τλn)

λn

+ 1 − exp(τλn)

(λn)
2

)
if λi 6= 0 and λj = 0,

1

λj

(
τ exp(−τ(λj − λn))

λj − λn

− 1 − exp(−τ(λj − λn))

(λj − λn)
2 + τ exp(τλn)

λn

+ 1 − exp(τλn)

(λn)
2

)
if λi = 0 and λj 6= 0,

τ 2 exp(τλn)

λn

− 2

λn

(
τ exp(τλn)

λn

+ 1 − exp(τλn)

(λn)
2

)
if λi = 0 and λj = 0,

(B2)

and

Vn
ij(τ ,λ) =





1 − exp(−τ(λi + λj − λn))

λj(λi + λj − λn)
− 1 − exp(−τ(λi − λn))

λj(λi − λn)
if λj 6= 0,

τ exp(−τ(λi − λn))

λi − λn

− 1 − exp(−τ(λi − λn))

(λi − λn)
2 otherwise.

(B3)

For the application to the Rayleigh—Bénard system consid-
ered in Sec. V, the forcing term F is produced after rewriting the
original unforced system in terms of the fluctuation variable with
respect to the mean state. For this problem, the eigenvalues λ and
the interaction coefficients Bn

ij both depend on the mean state.

APPENDIX C: NUMERICAL ASPECTS

In the numerical experiments of Sec. V, the full RB system
(61) as well as the OPM reduced system (70) are numerically inte-
grated using a standard fourth-order Runge–Kutta (RK4) method
with a time-step size taken to be δt = 5 × 10−3. Note that since
the eigenvalues of A are typically complex-valued, some care is
needed when integrating (70). Indeed, since complex eigenmodes
of A must appear in complex conjugate pairs, the corresponding
components of x in (70) also form complex conjugate pairs. To
prevent round-off errors that may disrupt the underlying complex
conjugacy, after each RK4 time step, we enforce complex conjugacy
as follows. Assuming that xj and xj+1 form a conjugate pairs and
that after an RK4 step, xj = a1 + ib1 and xj+1 = a2 − ib2

(
i2 = −1

)

where a1, a2, b1, and b2 are real-valued with a1 ≈ a2 and b1 ≈ a2, we
redefine xj and xj+1 to be, respectively, given by xj = (a1 + a2)/2
+ i(b1 + b2)/2 and xj+1 = (a1 + a2)/2 − i(b1 + b2)/2. For each
component corresponding to a real eigenmode, after each RK4 time
step, we simply redefine it to be its real part and ignore the small
imaginary part that may also arise from round-off errors. The same
numerical procedure is adopted to integrate the reduced systems
obtained from invariant manifold reduction as well as the FMT
parameterization used in Appendix D.

APPENDIX D: FAILURE FROM STANDARD MANIFOLD

PARAMETERIZATIONS

In this section, we briefly report on the reduction skills for
the chaotic case of Sec. V C as achieved through application of the

invariant manifold theory or standard formulas used in the inertial
manifold theory. The invariant manifold theory is usually applied
near a steady state. To work within a favorable ground for these the-
ories, we first chose the steady state Yr that is closest to the mean state
Cr at the parameter value r, and we want to approximate the chaotic
dynamics via a reduced system. This way, the chaotic dynamics is
located near this steady state.

To derive the invariant manifold (IM) reduced system, we also
re-write the RB system (61) in the fluctuation variable, but this
time using the steady state Yr, namely, for the δ(t) = C(t)− Yr. The
analog of Eq. (64) is then projected onto the eigenmodes of the
linearized part

Ãδ = Lδ + B
(
Yr, δ

)
+ B

(
δ, Yr

)
(D1)

to obtain

ẇj = λjwj +
9∑

k,`=1

B̃
j

k`wkw`, j = 1, . . . , 9. (D2)

Here,
(
λj, fj

)
denote the spectral elements of Ã, while the interac-

tion coefficients are given as B̃
j

k` =
〈
B
(
fk, f`

)
, f ast

j

〉
with f ∗

j denot-

ing the eigenvector of Ã∗ associated with λ∗
j . Note that unlike

(67), there is no constant forcing term on the RHS of (D2) since
LYr + B

(
Yr, Yr

)
= 0 as Yr is a steady state.

Here also, the reduced state space Hc = span
(
e1, . . . , emc

)
with

mc = 5 as indicated in Table II, for the chaotic regime. The local IM
associated with Hc has its components approximated by (Ref. 12,
Theorem 2)

hn(X) =
mc∑

i,j=1

B̃n
ij

λi + λj − λn

XiXj, n = mc + 1, . . . , 9, (D3)

when <(λi + λj − λn) > 0 for 1 ≤ i, j ≤ mc and n ≥ mc + 1.
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FIG. 7. The IM/FMT reduced systems are derived from Eq. (64) when the fluctuations are either taken with respect to the mean state Cr at r = 14.22 [corresponding to the

point P2 in Fig. 5(d)] (bottom row) or with respect to the closest steady state to Cr (top row). Whatever the strategy retained, the IM/FMT reduced systems fail to predict the
proper chaotic dynamics, predicting instead periodic dynamics for the dimension mc = 5 of the reduced state space than used for the OPM results shown in Fig. 5(B).

The corresponding IM reduced system takes the form given by
(70) in which the components,8`, of the OPM therein are replaced
by the h` given by (D3) for ` = mc + 1, . . . , 9. Unlike the OPM
reduced system (70), here we use the true eigenvalues λj’s at the
parameter r at which the dynamics is chaotic (r = rP2 in the nota-
tions of Fig. 5). To the solution z(t) = (z1(t), . . . , zmc(t)) to this IM
reduced system, one then forms the approximation CIM(t) of C(t)
given by

CIM(t) =
mc∑

j=1

zj(t)fj +
9∑

n=mc+1

hn(z(t))fn + Yr. (D4)

Similarly, we also test the performance of the reduced system when
the local IM (D3) is replaced by the following FMT parameterization
[see (30) in Remark III.2]:

hFMT
n = −

mc∑

i,j=1

B̃n
ij

λn

XiXj, n = mc + 1, . . . , 9. (D5)

Formulas such as (D5) have been used in earlier studies relying on
inertial manifolds for predicting higher-order bifurcations.49

The predicted orbits obtained from reduced systems built
either on the IM parameterization (D3) or the FMT one (D5) are
shown in the top row of Fig. 7 as blue and magenta curves, respec-
tively. Both reduced systems lead to periodic dynamics and thus fail
dramatically in predicting the chaotic dynamics. The small spectral

gap issue mentioned in Remark III.1 plays a role in explaining this
failure but it is not the only culprit. Another fundamental issue for
the closure of chaotic dynamics lies in the difficulty to provide accu-
rate parameterization of small-energy but dynamically important
variables; see, e.g., Ref. 12, Sec. 6. This issue is encountered here,
as some of variables to parameterize for Experiment II contain only
from 0.23% to 2.1% of the total energy.

Replacing Yr by the genuine mean state Cr does not fix this issue
as some of variables to parameterize contain still a small fraction
of the total energy, from 0.36% to 1.5%. The IM parameterization
(D3) and the FMT one (D5) whose coefficients are now determined
from the spectral elements of Ã in which Cr replaces Yr in (D1),
still fail in parameterizing accurately such small-energy variables;
see bottom row of Fig. 7.112 By comparison, the OPM succeeds in
parameterizing accurately these small-energy variables. For Exper-
iment I, inaccurate predictions are also observed from the reduced
systems built either on the IM parameterization (D3) or the FMT
one (D5) (not shown).
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