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Abstract
Recent years have seen a surge in interest for leveraging neural networks to parameterize
small-scale or fast processes in climate and turbulence models. In this short paper, we point out
two fundamental issues in this endeavor. The first concerns the difficulties neural networks may
experience in capturing rare events due to limitations in how data is sampled. The second arises
from the inherent multiscale nature of these systems. They combine high-frequency components
(like inertia-gravity waves) with slower, evolving processes (geostrophic motion). This multiscale
nature creates a significant hurdle for neural network closures. To illustrate these challenges, we
focus on the atmospheric 1980 Lorenz model, a simplified version of the Primitive Equations that
drive climate models. This model serves as a compelling example because it captures the essence of
these difficulties.

1. Introduction

Atmospheric and oceanic flows constrained by Earth’s rotation satisfy an approximately geostrophic
momentum balance on larger scales, associated with slow evolution on time scales of days, but they also
exhibit fast inertia-gravity wave oscillations. The problems of identifying the slow component (e.g. for
weather forecast initialization [1–4]) and of characterizing slow-fast interactions are central to geophysical
fluid dynamics, and the former was first coined as a slow manifold problem by Leith [5]. The L63 model [6]
famous for its chaotic strange attractor is a paradigm for the geostrophic component, while the L80 model
[7] is its paradigmatic successor both for the generalization of slow balance and for slow-fast coupling.

The explosion of machine learning (ML) methods provides an unprecedented opportunity to analyze
data and accelerate scientific progress. A variety of ML methods have emerged for solving dynamical systems
[8–10], predicting [11] or discovering [12] them from data. For larger scale problems, much effort has been
devoted lately to the learning of neural subgrid-scale parameterizations in coarse-resolution climate models
[13] but yet the lack of interpretability and reliability prevents a widespread adoption so far [14, 15].

In parallel, the learning of stable neural parameterizations of small scales or neglected variables has
progressed remarkably for the closure of fluid models in turbulent regimes such as the forced Navier–Stokes
equations or quasi-geostrophic flow models on a β-plane; see [16–22].

While neural networks show promise for climate modeling, the full Primitive Equations (PE) remain a
challenge. This study identifies potential hurdles in achieving efficient neural closures for PE. We leverage the
L80 model, a simplified version of the PE, as a illustrative example to highlight these fundamental issues.

In that respect, the L80 model exhibits a fascinating dynamical transition. For small Rossby numbers, its
solutions evolve slowly over time and remain entirely slow, dominated by large-scale Rossby waves [23].
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However, as the Rossby number increases, faster oscillations become superimposed on these slow
background motions [24, 25]. This spontaneous emergence of high-frequency components, linked to
inertia-gravity waves (IGWs) riding on the slower geostrophic flow, significantly complicates the closure
problem in atmospheric models [25, 26].

Multiscale dynamics, characterized by the intricate interplay of slow and fast processes without clear
separation, are not unique to the L80 model. Similar regimes have been observed in fully resolved Primitive
equation (PE) models, where fronts and jets generate complex multiscale interactions [27, 28] as well as in
cloud-resolving models, where large-scale convectively coupled gravity waves emerge spontaneously [29].
Tropical convection regions, where organized activity produces gravity waves with a broad spectrum, ranging
from 10 km to over 1000 km wavelengths [30] provide another instance of such multiscale dynamics. Finally,
inertia-gravity waves have also been observed in continental shallow convection, where they contribute to
organized mesoscale patterns over vegetated areas [31].

Inertia-gravity waves can hold surprising amounts of energy even at large scales. For example, Rocha
et al [32] found that IGWs contribute nearly half of the near-surface kinetic energy in specific ocean regions
at scales ranging from 10 to 40 km. This overlap between wave and turbulence scales in geophysical kinetic
energy spectra creates a challenge: perturbation methods like Wentzel-Kramers-Brillouin (WKB) [33]
become inapplicable across all scales [34].

Such regimes where slow and fast dynamics overlap were shown to constitute critical challenges for
closure methods in the L80 model. Solutions in these regimes blend slow background motion with sudden
bursts of IGWs carrying a significant portion of the total energy. These ‘high-low frequency (HLF)’ solutions
disrupt the expected slaving relationships satisfied at lower Rossby numbers, leading to a major breakdown
in closure techniques relying on a separation between the slow and fast variables [25].

A recent study by [26] proposes a promising solution to closure problems in such HLF regimes without
timescale separation and where slow Rossby variables are influenced by high-frequency waves. This approach
hinges on the Balance equation (BE) [23, 35] as rooted in the works of Monin [36], Charney and Bolin [1,
37], and Lorenz [38], which allows for a nonlinear separation of variables. As demonstrated in [26], the BE
isolates, for large Rossby numbers, the fast, non-geostrophic component of the flow as residual dynamics off
the BE manifold. Building on the BE separation, it was shown in [26] that this fast motion can be effectively
parameterized using networks of nonlinear stochastic oscillators (NSOs). These NSOs are designed to match
the characteristic patterns of variability observed in the fast motion, leveraging the concept of resonances
discussed in [39–41]. The resulting stochastic closure shows then high-accuracy skills in reproducing the
multiscale dynamics.

This work emphasizes the limitations of (standard) neural networks (alone) for achieving such accurate
closures for HLF regimes, highlighting their struggle to simultaneously capture the slow, balanced motion
while restoring the high-frequency oscillations. Section 2 discusses the limitations of neural networks for
parameterizing the L80 model’s slow motion, emphasizing in particular their sensitivity to rare event
statistics (section 3). Section 4 highlights the fundamental challenges faced by neural networks in capturing
both the slow and high-frequency content of the L80 solutions, ultimately hindering accurate closure.

2. Learning slow neural closure: sensitivity

The L80 model, obtained by Lorenz in [7] as a nine-dimensional truncation of the PE onto three Fourier
modes with low wavenumbers, can be written as:

ai
dxi
dt

=−ν0a
2
i xi − c(ai − ak)xjyk + c

(
ai − aj

)
yjxk + ai bixjxk − 2c2yjyk + ai (yi − zi) ,

ai
dyi
dt

=−akbkxjyk − ajbjyjxk + c
(
ak − aj

)
yjyk − aixi − ν0a

2
i yi,

dzi
dt

= g0aixi − bkxj (zk − hk)− bj
(
zj − hj

)
xk + cyj (zk − hk)− c

(
zj − hj

)
yk −κ0aizi + Fi, (1)

whose model parameters are described in [7, 25].
The above equations are written for each cyclic permutation of the set of indices (1,2,3), namely, for

(i, j,k) in {(1,2,3),(2,3,1),(3,1,2)}. The model variables (x,y,z) are amplitudes for the divergent velocity
potential, stream-function, and dynamic height, respectively.

In this model, the square root of the constant forcing F1 can be interpreted as the Rossby number; see
[23] and [25, equation (2.4)]. Transitions to chaos occur as the Rossby number Ro is increased [23, 25]. As
mentioned above, at small Rossby numbers, the solutions to the L80 model are dominated by Rossby waves
and thus remain entirely slow for all time. As identified in [25], when the Rossby number is further increased
beyond a critical Rossby number Ro∗, fast IGW oscillations emerge spontaneously and are superimposed on
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Figure 1. Panel (A): Illustration, for the z3-variable, of the BE manifold’s ability in capturing the L80 model’s slow motion. See
[23] and appendix B for a derivation. Panels (B) and (C): Neural parameterizationsX 3

θ for the x3-variable, as learnt through
random selection (NN1)/predefined selection (NN2). Visualized here as mappings from (y1,y2) onto the unit sphere in R3. Panels
(D): Same visualization adopted for the BE manifold. Panel (E): High-frequency residual ENN1 (t) for x3 (black) given by (5) and
its difference with ENN2 (t) (red).

the slow component of the solutions. For such regimes, the aforementioned BE manifold on which balanced
solutions lie [23, 25, 35] is no longer able to parameterize fully the L80 dynamics since a substantial portion
of it, associated with the IGWs, evolves transversally to the BE manifold [26, figure 3]. These regimes with
energetic bursts of IGWs lie beyond the parameter range explored by Lorenz in his original 1980 article [7]
and beyond other regimes with exponential smallness of IGW amplitudes as studied in subsequent Lorenz 86
models [42–45] and the full primitive equations [46] at smaller Rossby numbers [47].

The HLF solutions considered in this study are obtained for such a critical parameter regime where
Ro> Ro∗. They correspond to those of [26, figure 7]; see appendix A for details. We first analyze the ability
of neural parameterizations to learn the slow motion of the L80 dynamics in the HLF regime. To do so, we
preprocess the target variables x and z to be parameterized by applying a low-pass filter in order to extract
the slow motion. In that respect, a simple moving average is adopted with a window size equal to TGW , the
dominant period of the gravity waves. The results are shown in figure 1(A) for the z3-variable for which we
observe that the low-pass filtered solution almost coincides this way with the BE parameterization
zBE(t) = G(y(t)) with y(t) denoting the y-component of the HLF solution to the L80 model.

The L80 model has an inherent structure that can be exploited for closure. Studies have shown that the
BE manifold, constructed in two steps (parameterizing z as a function of y and then x as a function of y and
the parameterized z), achieves excellent closure across various parameter regimes [23] (see appendix B and
[25] for details). To leverage this existing knowledge and facilitate comparison with the BE manifold, we
design our neural network parameterizations with a similar structure. Specifically, we first learn a
feedforward neural network (multilayer perceptron, MLP) denoted asZθ , which takes the (unfiltered)
variable y as input and predicts the filtered z-variable (equation (2)). Then, we train a second MLP,X θ , that
takes both y and the output ofZθ , (y,Zθ(y)), as input in order to predict the filtered x-variable.

3
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Figure 2. False quasiperiodicity produced by a slow neural closure. Here, the slow neural closure equation (6) is driven byZθ and
Xθ that are trained using a low-pass filtered version of y(t) (blue curve in panel (A)) unlike the closure defined in equation (6)
where the slow neural closure is trained using the unfiltered y-variable.

The structure of our MLPs is standard. Each neural parameterization, e.g. z in terms of y, is sought by
means of an MLP with L hidden layers of p neurons each. It boils down to find

Zθ (y) =Nout ◦NL ◦ · · · ◦N1 ◦Nin (y) , (2)

in whichNin (resp.Nout) constitutes the input (resp. output) layer, whileNk is a mapping from Rp (the space
of neurons) onto itself, given byNk(ξ ) = Ψk(Wkξ + bk) (ξ in Rp) whereΨk is a p-dimensional elementwise
function, i.e. a function that applies a (scalar) activation function to each of its inputs individually, and the
Wk and bk denote respectively the weight matrices and bias vectors to be learnt. In (2), the subscript θ
denotes the collection of these parameters. In this work, the nonlinear activation function is a simple tanh
function, and the input and output layers consist just of linear normalization and reversal operations. It
turns out that NNs with one hidden layer and 5 neurons are sufficient to obtain loss functions with a small
residual; see table 1.

Based on our approach paralleling the BE manifold construction, we learn our neural parameterizations
for the L80 model, through the following consecutive minimizations. First, given a discrete set of time
instants tj, one minimizes

Lθ (z;y) =
∑
j

∥∥∥ztj −Zθ

(
ytj

)∥∥∥2 , (3)

in which z is filtered (in time) while y is not, followed by the minimization of

Lθ

(
x;
(
y,Zθ∗

1
(y)

))
=
∑
j

∥∥∥xtj−X θ

(
ytj ,Zθ∗

1

(
ytj

))∥∥∥2 , (4)

with x filtered and whereZθ∗
1
denotes the optimal parameterization obtained after minimization of (3).

We emphasize the importance of including the unfiltered y-component of the HLF solution in the
training data, even though it contains rapid oscillations. This unfiltered data is indeed crucial for the network
to learn a proper representation of the slow motion. If we replace the unfiltered y-component with a filtered
version (like the blue curve for y3 in figure 2(A), the resulting closure fails. It produces an unrealistic
quasi-periodic behavior that does not resemble even the L80 model’s quasi-periodic behaviors documented
in [23] for nearby parameter settings (see red curves in figure 2).

To assess whether a neural parameterization is successful in capturing the slow motion, we evaluate also
the following high-frequency (HF) residual

EjNN (t) = xj (t)−X j
θ∗
2

(
y(t) ,Zθ∗

1
(y(t))

)
, (5)

in which the xj(t) and y(t) are both unfiltered. For an NN with small residual, EjNN(t) is typically void of slow

oscillations (see figure 1(E) with mean ⟨EjNN⟩ ≈ 0 for each 1⩽ j⩽ 3.
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Table 1. Loss function evaluations for two neural networks. The loss functions (3) for z and (4) for x, are minimized using two neural
networks, NN1 and NN2 providing each a parameterization (Zθ ,Xθ), differing only in the way the training, validation, and testing
sets are selected. In each case, the aspect ratios between these sets are the same.

Epochs 10 50 100 300 500 1000

NN1 loss for z (random) (×10−3) 11.17 9.26 9.26 9.26 9.26 9.26
NN2 loss for z (predefined) (×10−3) 13.70 10.66 9.28 9.05 9.05 9.05
NN1 loss for x (random) (×10−4) 1.76 1.38 1.35 1.33 1.32 1.32
NN2 loss for x (predefined) (×10−4) 1.62 1.37 1.33 1.31 1.31 1.31

Figure 1 illustrates this feature with two neural networks, NN1 and NN2, trained using different strategies
for selecting training, validation, and testing data. Even though both networks achieve good parameterization
results offline (similar to the BE manifold), their underlying structures differ visually from the BE manifold.

To explore these differences, we focus on specific components (X j
θ∗
2
for xj andZ j

θ∗
1
for zj) of the neural

parameterizations. We plot these components as level sets on a three-dimensional sphere to reveal their
geometric properties. This visualization is particularly useful sinceZ j

θ∗
1
andX j

θ∗
2
are scalar fields depending

on three variables. For a given radius, the level sets ofZ j
θ∗
1
(resp.X j

θ∗
1
) on the three-dimensional sphere,

y21 + y22 + y23 = r2, can be visualized as a 2D surface that maps (y1,y2) to zj (resp. xj). Figures 1(B)–(D) show
these level sets for radius r= 1.

Interestingly, these visualizations reveal significant differences in the minimizers (and consequently, the
parameterization formulas) of NN1 and NN2, even though their loss function values differ only by 1%
(table 1) and their high-frequency residuals are similar (red curve in figure 1(E).

These geometric offline differences hide more profound consequences when the neural
parameterizations are used online, for closure. As explained below, the sensitivity of online predictions that
are tied to sampling issues is indeed observed. In that respect, recall that a common practice to train NNs is
to divide the dataset into three subsets. The first subset is the training set, which is used for computing the
loss function’s gradient and updating the network weights and biases.

The second subset is the validation set. It corresponds to the second dataset over which the prediction
skills of the fitted model are assessed. The error on the validation set is monitored during the training process
to provide an unbiased evaluation while tuning the model’s hyperparameters. When the network begins to
overfit the data, the error on the validation set typically begins to rise after an initial decrease. The network
parameters are saved at the minimum. It gives then the ‘final model’ that is tested over the test set that is
typically a holdout dataset not used as a validation nor a training set.

The parameterization NN1 shown in figure 1(A) is learnt through a random selection while NN2 is learnt
through a predefined selection. In each case, ratios for training, testing, and validation are 0.7, 0.15, and 0.15,
respectively. The total length of the training is 700 days. Given the same input and target data, the minimal
values of the loss functions (3) and (4) for NN1 and NN2 are reported in table 1, across epochs. Already after
500 epochs, one observes that the loss function evaluations differ only by 1% between the random or
predefined selection protocol of the training, validation, and testing sets.

We now discuss the sensitivity issue of online predictions driven by such neural parameterizations that
are close in terms of their loss function scoring. This point is illustrated in figure 3. There, we show online
prediction corresponding to a given slow NN-parameterization (X θ∗

2
,Zθ∗

1
) learnt by minimization of the

loss functions (equations (3) and (4)), namely the solution to the slow neural closure

ai
dyi
dt

=−akbkX j
θ∗
2

(
y,Zθ∗

1
(y)

)
yk − ajbjyjX k

θ∗
2

(
y,Zθ∗

1
(y)

)
+ c

(
ak − aj

)
yjyk − aiX i

θ∗
2

(
y,Zθ∗

1
(y)

)
− ν0a

2
i yi.

(6)

This closed equation in the y-variable is obtained by replacing the xℓ-variables in the y-equation of the L80
model (equation (1)) by their neural parameterizations, either NN1 or NN2.

The attractor corresponding to the slow NN1-closure (with random selection) differs clearly from that of
slow NN2-closure (with predefined selection) in spite of convergence and closeness of the loss functions at
their respective minimal value; see figure 3(B). Both predict periodic orbits with different attributes, one
self-intersecting in the (y2,y3)-plane (NN1), the other without intersection point (NN2).

A closer inspection at these topological differences reveals in the time domain that the slow NN1-closure
is able to capture more accurately the low-frequency content of certain temporal patterns exhibited by the
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Figure 3. Sensitivity of the slow neural closures. Here, NN1 and NN2 differ only in their training modalities. NN1 is learnt from
random selection of the training, validation, and testing sets, and NN2 from a predefined selection with the same aspect ratios; see
Text. The corresponding loss functions differ by 1% (see table 1), while the dynamical differences of the online predictions are
substantial.

HLF solutions of the L80 model compared to the slow NN2-closure; blue vs red curves in figure 3(A). We
argue below that such a sensitivity between online solutions takes its root in the rare events tied to the
irregular transitions exhibited by the HLF solutions to the L80 model that spoils the offline learning.

In contrast, at lower Rossby numbers, for regimes devoid of fast oscillations such as shown in figure 4(D)
below corresponding to F1 = 6.97× 10−2 in the L80 model, neural closures of high-accuracy are easily
accessible with skills comparable to those obtained with the BE manifold; see figure 5. As explained below,
the reasons for this success lie in the absence of high-frequencies in the solutions to parameterize and in the
absence of rare events in the statistics of lobe transitions.

3. Irregular transitions, rare events and learning consequences

The significant sensitivity observed in capturing the low-frequency content with nearby neural
parameterizations (as measured by their loss functions) requires further investigation. Since these variations
in figure 3 solely stem from how training, validation, and test sets are chosen, we conduct in this section a
statistical analysis of key features of the L80 dynamics in HLF regimes. Our focus is on the irregular lobe
transitions exhibited by HLF solutions. For comparison, we also analyze lobe transitions in the slow chaotic
regime of figure 4(D), where neural parameterizations perform well and learn the closure effectively.
Notably, figure 5 demonstrates that for the slow chaotic regime, high-accuracy neural closures are readily
achievable, with skills comparable to those obtained using the BE manifold.

To gain a deeper understanding of lobe transition statistics in the slow chaotic and HLF regimes, we
performed high-resolution simulations of the L80 model for each regime. Each simulation spanned a 500
year period, integrating the L80 dynamics with a timestep of 0.75 minutes. This corresponds roughly to an
interval of size 730,000×TGW, where TGW is the dominant period of the gravity waves in the model.

In each regime, the L80 attractor exhibits two lobes. This is shown in the (y2,y3)-projection for the HLF
regime (figure 4(A)) and in the (y1,y3)-projection for the slow chaos regime (figure 4(D)). The latter evokes
the Lorenz 63 ‘butterfly attractor’ [6], consistent with the L80 dynamics devoid of fast motion for this Rossby
number (geostrophic motion). The former attractor, more fuzzy, exemplifies the presence of fast dynamics
riding the slow, geostrophic motion.

In each case, these lobes are essentially separated by the vertical line y3 = 0. Numerical integration of the
L80 model reveals that the visit of the right lobe comes with y3(t) getting greater than some threshold value
yb, while the visit of the left lobe comes with y3(t) getting smaller than ya =−yb. A close inspection of the
solution in the HLF case reveals that the choice of yb = 0.2 constitutes a good one to identify the sojourn of
the dynamics within one lobe from the other. This choice leads furthermore to an interval (−yb,yb) that
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Figure 4. Panel (A): Attractor in the HLF case. Panel (B): The sojourn episodes within one particular lobe are marked by different
colours. Here, the parameters are those used in Lorenz’s original paper [7] except F1 = 0.3027 in equation (1). Panel (C): Lobe
sojourn time distributions. The exponential fit is calculated over 500 yr-long simulation of equation (1) and is shown by the black
curve f(t) = aebt with a= 2292 and b=−6.05× 10−2 with t in day. The inset in panel (C) shows a magnification of the
distribution for the rare and large sojourn times. Panels E and F: Same as panels B and C except that F1 = 6.97× 10−2,
corresponding to the slow chaotic regime shown in panel (D) in which the solutions are void of fast oscillations. In this regime, no
rare event statistics emerge.

Figure 5. The L80 attractor vs. its NN-closure in the slow chaos regime. Here F1 = 6.97× 10−2 in the L80 model, which
corresponds to the slow chaos case shown in figure 4(D) and in [25, figure 7].

provides a good bound of the bursts of fast oscillations crossing the vertical line y3 = 0 in the (y2,y3)-plane
(‘gray’ zone).

To count the transitions from one lobe to the other one thus proceeds as follows. Given our 500 yr long
simulation of y3(t) we first find the local maxima and minima that are above yb and below ya, respectively.
No transition occurs between consecutive such local maxima or minima. A transition occurs only when a
local maximum above yb is immediately followed by a local minimum below ya or vice versa. If a local
maximum is immediately followed by a local minimum, the intermediate time instant at which the trajectory
goes below zero is identified as the transition instant, and the other way around if a local minimum is
immediately followed by a local maximum. These transition times characterized this way allow us to count
the sojourn times in a lobe and display the distribution of these sojourn times shown in figures 4(C) and (F).

These lobe sojourn time distributions reveal a striking difference between the HLF and slow chaotic
regimes. In the HLF case, we observe indeed that the solution can stay in one lobe for a period of time that
can be arbitrarily long (see solution’s segment between t= 763 and t= 893 shown in blue in figure 4(B)
albeit of probability of occurrence vanishing exponentially as shown in figure 4(C). As a comparison, the
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transitions between the attractor’s lobes occur at a much more regular pace in the slow chaotic regime (see
figure 4(E) in which the solutions to the L80 model are void of fast oscillations. In this case, the distribution
of sojourn times drops quickly below a 60 day duration barrier (figure 4(F)).

These rare events, following an exponential distribution, pose a significant challenge for developing
reliable slow neural closures. They introduce diversity in the temporal patterns of the time series, which
contributes to the sensitivity issues observed in figure 3. A random training set might be skewed towards one
lobe duration more than a predefined set, leading to confusion in the learning process for the neural network.

4. The high-frequency barrier to neural closure

Section 3 demonstrated that using neural networks to parameterize the slow dynamics of HLF solutions can
lead to sensitivity issues in online prediction (figure 3). This sensitivity arises from rare events associated
with irregular lobe sojourn durations, as shown in figures 4(B) and (C). In this section, we explore another
challenge: the direct parameterization of the unfiltered x-components of HLF solutions. These components
contain a complex mixture of both slow and fast motions, posing significant difficulties for closure with
neural networks.

To illustrate this point, we learn an MLP for x(t), denoted by Vθ , with (the unfiltered) y(t)-variable of
the L80 model (equation (1)), as input, and the unfiltered x-component, x(t), as output. Note that unlike the
slow NN-parameterizations above, the parameterization Vθ aims at parameterizing x(t) directly as a
nonlinear mapping of y(t) without conditioning on z(t) nor filtering of any sort. The corresponding closure,
called a vanilla NN-closure, consists then of equation (6) in whichX θ∗

2
(y,Zθ∗

1
(y)) is replaced by Vθ∗(y),

obtained after minimization of the following L2-loss function

Lθ (x;y) =
∑
j

∥∥∥xtj −Vθ

(
ytj

)∥∥∥2 , (7)

for which the target variable x(t) is unfiltered, i.e. containing a mixture of fast and slow oscillations. To
address this more challenging problem we use MLPs with a larger capacity either with more neurons and/or
layers.

Interestingly, our experiments show that a neural network with just one hidden layer and 20 neurons
achieves the best closure results. Figure 6 compares simulated time series from four different vanilla
NN-closure settings. The setting with one hidden layer and 20 neurons partially captures the complexity of
the HLF solution’s temporal patterns (figures 7(A) and (B)). However, it entirely misses the high-frequency
content associated with IGWs, as evident from the power spectral density (PSD) comparison in figure 8.

While increasing the complexity of a neural network (more hidden layers or neurons) can reduce the loss
function during training, it does not guarantee better performance in the actual closure. For example, a
vanilla neural network (Vθ) with 5 hidden layers and 20 neurons per layer predicts an unrealistic,
small-amplitude periodic orbit when used online in the neural closure through time-stepping (figure 9(B)).
Additionally, it exaggerates high-frequency content in the solutions it generates offline (see figure 9(C) and
table 2).

Our results highlight the limitations of using a vanilla neural network closure to directly capture the fast
dynamics of the L80 system using the ‘slow’ variable y. This approach relies on potentially complex,
non-linear functions encoded by MLPs, but struggles to represent the system’s multiscale dynamics
accurately. This issue is similar to the spectral bias problem observed in standard neural networks for
function fitting [48], where they prioritize capturing low-frequency features. However, the challenge here is
more complex. The goal is to learn the neglected ‘fast’ variables and their high-frequency content offline, so
the online solution through the NN-closure can reproduce both the mixture of slow and fast motions of the
original system. This includes capturing global geometric features like the attractor’s shape and symmetry. As
shown in figure 7(C), vanilla NN-closures often distort these features compared to the true L80 attractor.

To address the limitations of feedforward neural networks (vanilla NNs) to close the L80 dynamics in
HLF regimes, one route to explore would be to incorporate memory effects using architectures like
Long-Short Term Memory (LSTM) networks [48]. LSTMs have demonstrably achieved model reduction in

8
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Figure 6. Simulated time series from vanilla NN-closures in four different settings. Setting I (same as used for the results shown in
figure 7): one hidden layer with 20 neurons (thick solid line). Setting II: two hidden layers with 5 neurons in each layer (dashed
line). Setting III: two hidden layers with 10 neurons in each layer (light solid line). Setting IV: two hidden layers with 20 neurons
in each layer (dash-dotted line). The corresponding loss function values are given in table 2.

Figure 7. Vanilla NN-closure vs L80 dynamics. Failure to capture the high-frequency content and symmetry of the L80 attractor.
Here, is used the best performing vanilla neural network (NN1) from Setting I in figure 6.

Figure 8. Power spectral density (PSD) comparison. This figure compares the PSD of variables y2 (panel (A)) and y3 (panel (B))
for the L80 model (gray curve) and the best performing vanilla neural network closure (blue curve) from Setting I in figure 6.
While the vanilla closure captures the overall spectral background of the L80 solutions well, it misses the important peaks at
frequencies f GW and f Ro (and their harmonics). These frequencies correspond to inertia-gravity waves and Rossby waves,
respectively.
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Figure 9. Panel (A): This panel shows the neural parameterization (Vθ) with 5 layers and 20 neurons per layer (denoted as NN5)
for variable x1. We use the same visualization style as figures 1(B)–(D). Notice the sharp gradients in the manifold, reflecting
NN5’s attempt to capture the high-frequency details of the HLF solutions. Panel (B): This panel displays the corresponding
solution (Y2,Y3) obtained using the NN5 closure. Panel (C): Compared to the best performing vanilla neural network (NN1)
from Setting I in figure 6, NN5 exaggerates the high-frequency content in the offline parameterization.

Table 2. Loss function evaluations. In this table are reported the loss values corresponding to the vanilla NN-closures shown in figure 6.
Note that the underlying loss function is that defined in equation (7).

Epochs 10 50 100 300 500

Setting I loss (×10−2) 2.62 2.54 2.52 2.49 2.49
Setting II loss (×10−2) 2.74 2.67 2.66 2.64 2.64
Setting III loss (×10−2) 2.72 2.45 2.44 2.43 2.43
Setting IV loss (×10−2) 2.42 2.33 2.32 2.30 2.30

various contexts (e.g. [49–51]). This success can be attributed to theoretical underpinnings from dynamical
systems theory (Takens’ delay embedding theorem [52]) and statistical mechanics (Mori-Zwanzig
formulation [22, 53–56]). Additionally, we mention recent approaches combining Takens’ embedding with
Koopman operator theory and sparse regression to obtain linear representations of nonlinear dynamics [57].

However, as highlighted in [22], memory effects might not be crucial for achieving effcient closure of
solutions in the HLF regime. Studies have shown that using the BE manifold for capturing the geostrophic
motion and a network of stochastic oscillators for IGWs can achieve high accuracy without recurrent
architectures like LSTMs [26]. This, along with the challenges of rare events discussed earlier, raises questions
about whether LSTMs or other recurrent networks are necessary to reproduce the intricate multiscale
dynamics of y using a closed model (like in [26]) built with these components (LSTMs).

10
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5. Discussion

Our findings, particularly the interplay between rare events and the multiscale nature in HLF regimes,
highlight the challenges that machine learning can face for accurate closure of geophysical flows in which
geostrophic and ageostrophic motions interact strongly. As extreme weather events and non-Gaussian
statistics become more prevalent with climate change [58–62], this study underscores that significant hurdles
remain despite the recent advancements in neural parameterizations. Reliable parameterizations that
robustly capture rare events are crucial. In this regard, incorporating rare event algorithms [63–67] could be
beneficial. By simulating rare events offline, these algorithms could improve the sampling of distribution
tails, leading to better trained neural networks.

This study contributes new insights into the challenges of closing the Lorenz 80 model using data-driven
methods, particularly in high Rossby number regimes (Ro> Ro∗). Compared to other Lorenz models, like
the less challenging Lorenz 96 model [68], the L80 system has received less attention for closure tasks.
However, the recent stochastic closure approach by [26] for these demanding regimes provides a valuable
benchmark for future research. We hope this work encourages further exploration of the L80 model as a
meaningful testbed for developing and comparing closure ideas.
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Appendix A. HLF solutions and the slowmotion learning

The high-low frequency (HLF) solutions used in this article are those reported in [26, figure 7]. These
solutions are obtained from the parameters used in Lorenz’s original paper [7] except F1 chosen to be
F1 = 3.027× 10−1 as identified in [25]; see the Materials and Methods section in [26] for details.

As shown in figure 10, for this parameter regime, the HLF solutions contain a mixture of slow and fast
oscillations in each variable x, y, and z of the L80 model that causes serious difficulties for closure [26]. The
dominant frequency of the Rossby wave content in the HLF solutions is fRo = 0.31d−1 (TRo = 3.2d) and that
of the inertia-gravity wave (IGW) content is fGW = 3.76d−1 (TGW = 6.3h).

To learn a neural parameterization of the slow motion, the weights and biases of the NNs are updated
according to a Levenberg-Marquardt (LM) optimization [69]. The LM algorithm is known to be efficient for
small or medium-scaled problems [70, chapter 12], especially when the loss function is just a mean squared
error, which is the case here. This algorithm is sufficient to obtain loss functions with small residuals; see
table 1.
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Figure 10. HLF solutions. Left panel: Hovmöller plot of the streamfunction (averaged over the x-direction). Right panels: a few
corresponding time series. Note the energetic bursts of fast oscillations corresponding to spontaneous bursts of IGWs. A vanilla
NN consists of seeking a feedforward neural network (FNN) mapping the y-components of the L80 model (equation (1)) to the
x-components. These fast energetic bursts are a serious barrier to learning with FNNs. The streamfunction ψ is constructed from
the y-components of the L80 model solution according to ψ(x,y, t) =

∑3
j=1 yj(t)cos(α

1
j x)cos(α

2
j y) where the spatial variables x

and y (not to be confused with x and y in the L80 model) takes value in a square domain [0,L]× [0,L] with L= 4π and the
vectorsαj = (α1

j ,α
2
j ) (j = 1,2,3) are chosen to satisfy the conditions given by [7, Eqs. (16)–(17)]. Following [7], we chose

α1 = (
√
2/2,

√
2/2),α2 = ((

√
2−

√
6)/4,(

√
2+

√
6)/4), andα3 =−(α1 +α2).

Appendix B. The BEmanifold and BE closure

For consistency, we recall from [25] the derivation of the BE manifold that serves as our parameterization
baseline. Mathematically, the BE manifold aims at reducing the L80 model to a 3D system of ODEs, by
means of nonlinear parameterization of the variables x= (x1,x2,x3)T and z= (z1,z2,z3)T, in terms of the
variable y= (y1,y2,y3)T; see [23]. By analyzing the order of magnitudes of the different terms in the
xi-equations and after rescaling following [25], we arrive to the following parameterization of the z-variable
in terms of the rotational y-variable

zi = Gi (y) = yi −
2c2

ai
yjyk. (B1)

Further algebraic manipulations show that under an invertibility condition of a matrixM(y,G(y))
conditioned on the y-variable, one obtains (implicitly) x as a function Φ of y given by

Φ(y) = [M(y,G(y))]−1

 d1,2,3(y,G(y))
d2,3,1(y,G(y)))
d3,1,2(y,G(y)))

 , (B2)

where the di,j,k are given explicitly; see [23, 25]. The function Φ(y) = (Φ1(y),Φ2(y),Φ3(y))T corresponds to
the BE manifold, it is aimed to provide a nonlinear parameterization between x and y when the latter exists.

The BE closure is then

dyi
dτ

=−a−1
i akbkΦj (y)yk − a−1

i ajbjyjΦk (y)+ ca−1
i

(
ak − aj

)
yjyk −Φi (y)− ν0ai yi, (B3)

for which (i, j,k) lies in {(1,2,3),(2,3,1),(3,1,2)}.
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