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 A B S T R A C T

Machine learning techniques are applied to Lagrangian trajectory reconstructions, which are important in 
oceanography for providing guidance to search and rescue efforts, forecasting the spread of harmful algal 
blooms, and tracking pollutants and marine debris. This study evaluates the ability of two types of neural 
networks for learning ocean trajectories from nearly 250 surface drifters released during the Grand Lagrangian 
Deployment in the Gulf of Mexico from Jul-Oct 2012. First, simple fully connected neural networks were 
trained to predict an individual drifter’s trajectory over 24 h and 5 d time windows using only that drifter’s 
previous velocity time series. These networks, despite having successfully learned modeled trajectories in 
a previous study, failed to outperform common autoregressive models in any of the tests conducted. This 
was true even when drifters were pre-sorted into geospatial groups based on past trajectories and different 
networks were trained on each group to reduce the variability that each network had to learn. In contrast, 
a more sophisticated social spatio-temporal graph convolutional neural network (STN), originally developed 
for learning pedestrian trajectories, demonstrated greater potential due to two important features: learning 
spatial and temporal patterns simultaneously, and sharing information between similarly-behaving drifters to 
facilitate the prediction of any particular drifter. Position prediction errors averaged around 60 km at day 
5, roughly 20 km lower than autoregression, and even better for certain subsets of drifters. The passage of 
Tropical Cyclone Isaac over the drifter array as a tropical storm and Category 1 hurricane provided a unique 
opportunity to also explore whether these models would benefit from adding wind as a predictor when making 
short 24 h predictions. The STNs were found to not benefit from wind on average, though certain subsets of 
drifters exhibited slightly lower reconstruction errors at hour 24 with the addition of wind.
1. Introduction

Ocean trajectory prediction is a notoriously difficult problem. Most 
notably, the unsteady nature of oceanic flows often leads to chaotic 
advection (e.g., Aref, 1984; Yang and Liu, 1997; Özgökmen et al., 2001; 
Koshel’ and Prants, 2006), requiring that initial conditions be known 
with considerable accuracy in order to properly initialize forecast mod-
els. At the same time, the minimum number of points in time and 
space that must simultaneously be sampled or numerically resolved 
in order to capture the full complexity of 3-D ocean dynamics far 
exceeds the technical capabilities of modern observing systems. With 
observational data density nowhere near this requirement and with 
model resolutions restricted by computational resource limits, existing 
prediction tools lack the fidelity necessary for predicting chaotic ocean 
behavior (Özgökmen et al., 2009; Bolton and Zanna, 2019). Neverthe-
less, many high-stakes applications such as oil spill response (Poje et al., 
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2014; Özgökmen et al., 2016), search and rescue operations (Isaji et al., 
2005; Serra et al., 2020), and forecasting the spread of harmful algae 
blooms, pollutants, and marine debris (Enriquez et al., 2010; Olascoaga, 
2010; Olascoaga and Haller, 2012; Normile, 2014; Coulin et al., 2017; 
Lermusiaux et al., 2019) rely on ocean forecasting.

Existing approaches to ocean forecasting include data-assimilating 
ocean models (Coelho et al., 2015; Wei et al., 2016; van Sebille 
et al., 2018) and statistical stochastic models (Griffa, 1996; Berloff and 
McWilliams, 2003; Lermusiaux and Lekien, 2005; Haza et al., 2016; 
Feppon and Lermusiaux, 2018; Lu and Lermusiaux, 2021). The problem 
of sparse ocean data plagues both techniques. Ocean general circulation 
models (OGCMs) such as the Hybrid Coordinate Ocean Model (HYCOM; 
Chassignet et al., 2003, 2007) are challenging to initialize without 
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adequate data, especially in three dimensions (Lermusiaux, 2001; Ja-
cobs et al., 2014). Stochastic models contain statistical parameters that 
must be tuned with data if the flow field is to be faithfully replicated. 
Improper tuning hinders performance (Beron-Vera and LaCasce, 2016; 
Mariano et al., 2016). Both of these families of models use data only to 
establish the starting conditions from which the model estimates future 
states using either equations of motion or statistics.

Machine learning (ML) provides a new and different approach to 
ocean modeling wherein rich nonlinear regression models are opti-
mized using existing data to map known information to expected 
output. Such data-driven frameworks allow for the possibility that 
observational ocean data, though sparse, may still contain enough 
information to generalize the problem and train a ML model. Artificial 
neural networks are a family of biologically-inspired ML models that 
map input features to output target values and form the foundation of 
sophisticated ML and deep learning architectures (Qamar and Zardari, 
2023). Artificial neural networks have been used for a variety of 
geophysical and oceanographic problems including weather forecast-
ing (Dueben and Bauer, 2018), hurricane track prediction (Moradi Ko-
rdmahalleh et al., 2016), oil spill prediction (Kubat et al., 1998), 
and eddy tracking (Franz et al., 2018). Hybrid modeling approaches 
integrating theory with machine learning have shown potential for 
ocean forecasting and improving trajectory predictions. Aksamit et al. 
(2020) used long short-term memory recurrent neural networks to 
learn motion corresponding to higher order terms in a reduced-order 
Maxey–Riley drifter model. Nam et al. (2020) took a conventional 
ML approach by using model-derived wind and flow velocity to pre-
dict drifter location. Deep neural operator models have also been 
evaluated for realistic surface ocean forecasting in diverse dynamical 
regimes (e.g., Rajagopal et al., 2023). Others address the problems of 
sub-grid scale model closure schemes (Gupta and Lermusiaux, 2021) 
and model parameterizations (Santos Gutiérrez et al., 2021). Grossi 
et al. (2020) approached the trajectory prediction problem in a data-
only context and showed that fully connected artificial neural networks 
could predict future velocities of hypothetical ocean particles using 
only the previous velocity time series with errors averaging nearly half 
those of traditional autoregressive techniques.

The fully connected artificial neural network (FNN) used by Grossi 
et al. (2020) (hereafter, G20) was an initial experimentation at ap-
plying ML to the Lagrangian prediction problem and therefore had 
a few notable shortcomings. Though those authors tested trajectories 
in a flow field generated by HYCOM and characterized by interacting 
submesoscale and mesoscale dynamics in the Gulf of Mexico (GoM), 
their simulation did not consider any observed Lagrangian trajectory 
data. Further, they predicted only 24 h out, a time period known 
for being dominated by predictable inertial oscillations, while many 
material transport applications would benefit from having forecasts 
on the order of days. The FNN, which only ‘‘saw’’ one trajectory at 
a time, was unable to learn any underlying flow dynamics because 
observing 2D surface dispersion requires 𝑁 ≥ 3 Lagrangian drifters 
simultaneously (Pumir et al., 2000; Berta et al., 2016). Compared to 
traditional OGCMs and stochastic models built upon clean mathemati-
cal formulation of equations of motion or statistical parameterizations, 
classic neural networks provide little to no transparency into what the 
model is learning. This can be at least partially overcome by incorpo-
rating human intuition and domain knowledge – i.e., human expertise 
of the physical system being modeled – into the ML model, but the 
simple FNN by G20 lacked such sophistication. Finally, their training 
set contained few examples by ML standards, making it difficult to learn 
the chaotic nature of ocean dynamics.

Here we address the shortcomings of G20 and build upon that 
previous work in several ways. We first test their FNNs on observed 
ocean drifter trajectories from the GoM and then modify the networks 
to predict five days out instead of 24 h. We then present a more phys-
ically intuitive approach by utilizing a graph neural network (GNN) 
that accepts multiple drifters at a time as input and allows behavioral 
2 
information to be shared between drifters to facilitate the prediction of 
any particular drifter. GNNs were first proposed by Gori et al. (2005) 
for problems that can be described using mathematical graphs consist-
ing of nodes and edges, where edges heuristically quantify relationships 
between data points represented as graph nodes. GNNs receive graphs 
as inputs and are well-suited for problems that can be formulated such 
that nodes contain observations and edges represent relationships or 
connectivity between the observations, as will be described in Sec-
tion 4. Since then, a family of problem-specific GNNs has evolved (e.g., 
Merkwirth and Lengauer, 2005; Scarselli et al., 2009; Zhou et al., 
2018; Bianchi et al., 2019; Wu et al., 2020). Among these is the graph 
convolutional neural network (GCNN) (Gilmer et al., 2017; Hamilton 
et al., 2017; Kipf and Welling, 2017), which operates on the node and 
edge information of graphs in a similar fashion to how convolutional 
neural networks learn features within multispectral images in computer 
vision (Schlichtkrull et al., 2017). Mohamed et al. (2020) advanced 
these concepts further by developing a Social Spatio-Temporal Graph 
Convolutional Neural Network (STN) for predicting pedestrian trajec-
tories in video scenes by learning both spatial and temporal patterns 
in pedestrians’ previous trajectories while also accounting for non-
verbal exchanges of information between people in social settings. 
These authors demonstrated performance improvement over common 
trajectory prediction models for multiple benchmark pedestrian data 
sets. The inspirations behind this STN – learning patterns in both space 
and time, sharing information between elements – make this type of 
model a compelling option for other trajectory prediction problems as 
well. We apply STNs to the drifter prediction problem according to the 
premise that the motion of adjacent drifters can be similar or dissimilar 
due to the underlying flow field, and learning these (dis)similarities 
may facilitate trajectory prediction.

Section 2 describes the drifter data used in this study. Altogether, 
six neural network architectures were evaluated: two FNNs, described 
in Section 3, and four STNs (Section 4). All are summarized in Table 
1 and a side-by-side comparison of the two types of neural networks is 
provided in Table  2. Section 5 contrasts the two methods and discusses 
implications of each. Finally, conclusions are drawn in Section 6 along 
with suggestions for further advances that could be made.

2. Drifter data

The Grand LAgrangian Deployment (GLAD) experiment consisted of 
nearly 300 CODE-style GPS-equipped drifters with 1-m drogue (Davis, 
1985) released near the former Deepwater Horizon site in the north-
ern GoM in summer 2012 (Fig.  1a). Drifter positions were reported 
every 5min and trajectories were later low-pass filtered using a 1 h
cutoff period and interpolated to 15min intervals starting on whole 
hours (Özgökmen, 2013). Initially deployed on the order of 100m apart 
starting 20 Jul 2012, the drifters covered the entire eastern half of 
the GoM basin by 22 Oct, with the majority of drifters staying within 
the northeast quadrant (Fig.  1b). Time snapshots of surface mesoscale 
geostrophic velocities derived from NOAA CoastWatch 0.25◦ satellite 
altimetry throughout the experiment are shown in Fig.  2.1

We utilized 243 drifters from three deployments: two ‘‘S’’ formations 
consisting of 90 drifters – one near the former oil well (blue in Fig. 
1a, hereafter S1) and a second release east of the well (orange, S2) 
– and a pair of ‘‘L’’-shaped deployments to the southwest of S1 and
S2 containing 63 drifters (red, hereafter ‘‘L’’). The formations were 
organized in nodes containing three groups of three drifter triplicates in 
order to capture a range of scales of surface flow dynamics (Berta et al., 
2016). Fig.  1c zooms in on S2 to show the 10 nodes of 3 groups (dots), 
while Fig.  1d zooms in on a group to show the triplicate of drifters 

1 Sea Surface Height Anomalies, Altimetry (S-3A/B, CryoSat2, Jason-2/3, 
SARAL), Delayed, Global 0.25◦, 2012–2019. Retrieved from NOAA CoastWatch 
ERDDAP, 20 March 2023.
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Table 1
Summary of neural networks developed and tested in this study, ordered as presented in the text. 𝑑(...) indicates the change in location (lon, lat) 
between observations, a proxy for velocity which was not normalized by 𝑑𝑡 because 𝑑𝑡 was constant throughout the entire dataset. Similarly, 𝑑2(...) is 
a non-normalized proxy for acceleration: change in 𝑑(...) between observations. All outputs are [𝑑(lon), 𝑑(lat)] pairs.
 Model INPUT TIME SERIES PREDICTION

 Variables Length Increment Length Increment 
 FNN 𝑑(lon), 𝑑(lat) 24 h 3 h 24 h 6 h  
 𝑑(lon), 𝑑(lat) 7 d 1 d 5 d 1 d  
 STN 𝑑(lon), 𝑑(lat), 𝑑2(lon), 𝑑2(lat) 7 d 1 d 5 d 1 d  
 STN with wind 𝑑(lon), 𝑑(lat), 𝑑2(lon), 𝑑2(lat), 𝑢wind , 𝑣wind 7 d 1 d 5 d 1 d  
 𝑑(lon), 𝑑(lat), 𝑑2(lon), 𝑑2(lat), 𝑢wind , 𝑣wind 24 h 3 h 24 h 6 h  
 STN, advanced configuration 𝑑(lon), 𝑑(lat), 𝑑2(lon), 𝑑2(lat); see text 7 d 1 d 5 d 1 d  
Fig. 1. Deployment locations and trajectories of all drifters released during the Grand Lagrangian Deployment (GLAD) experiment, colored according to deployment location. 
Drifters were released between 22–31 Jul 2012 (a) and tracked through 22 Oct (b). Two ‘‘S’’ deployment configurations (blue and orange) consisted of 90 drifters arranged in ten 
nodes (c), with each node containing three triplets of drifters spaced either 100 m or 50 m apart (d). A double ‘‘L’’ configuration (red) contained seven nodes of three triplets, 
totaling 63 drifters. Black ‘‘×’’ in (a) marks the Deepwater Horizon wellhead location.
released 50-100m apart (3 × 3 × 10 = 90 drifters.) The L deployment 
was configured similarly but consisted of seven nodes (3 × 3 × 7 = 63
drifters.)

These three deployments captured a variety of multiscale surface 
dynamics (Poje et al., 2014). Surface geostrophic velocities in the de-
ployment area during the first month of the experiment (Fig.  3) reveal 
3 
that S1 and S2 were released on the edge of an anticyclonic mesoscale 
Lagrangian coherent structure (LCS) (Fig.  3a), but shortly thereafter 
these two groups of drifters ended up in two adjacent mesoscale LCSs 
(Fig.  3b). While mesoscale flows became increasingly relevant as the 
drifters dispersed to cover a larger spatial area, the deployment strategy 
was designed to capture submesoscale dynamics. Trajectories for the 
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Table 2
Comparison of the fully connected neural networks (FNN) and social spatio-temporal graph convolutional 
neural networks (STN). The number of trainable parameters is a function of network size and the lengths 
of the input and output time series.
 FNN STN  
 Sizes: Sizes:  
   1 hidden layer, 20 neurons (24 h)  See Table  3  
   1 hidden layer, 40 neurons (5 d)  
 Number of trainable parameters: Number of trainable parameters:  
  508 (24 h); 1,090 (5 d)  1,637–31,435 (see Table  3)  
 y = 𝑓

(

∑

𝑗 𝐖𝑓
(
∑

𝑘 𝐖x + b
)

+ 𝐁
)
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 𝑛 = number of observed features 𝐷𝑡 = diagonal node degree matrix of 𝐸𝑡  
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0, otherwise

 

 𝐖 = trainable weight parameters 𝐼 = identity matrix  
 𝐁,𝐛 = trainable bias parameters 𝑁𝑓  = number of observed features  
 x = feature vector of observations  
 𝑖, 𝑗 = index of drifters  
 𝑔 = PReLU activation function  
 𝐖(𝑙) = trainable parameters at layer 𝑙  
Table 3
Summary of STNs used in this study. ‘‘STG’’ is the number of spatio-temporal graph 
CNN layers, ‘‘TXP’’ is the number of time-extrapolator CNN layers, and 𝜂 is the learning 
rate. The number of trainable parameters is a function of both the size of the network 
and the lengths of the input and output time series.
 Experiment # STG # TXP 𝜂 # Trainable 

Parameters

 5 d reconstruction 1 1 0.02 1,673  
 5 d reconstruction w/wind 2 5 0.02 1,789  
 5 d reconstruction, advanced config. 1 1 0.02 1,717  
 24 h reconstruction 1 1 0.03 31,415  
 24 h reconstruction w/wind 1 3 0.01 31,435  

first 5 and 30 days, low-pass filtered to remove inertial signals and 
shown in Fig.  4, reveal the dominant submesoscale LCSs early in the 
experiment. The L drifters, released about 100 km southwest of S1, were 
advected by cyclonic submesoscale flow (which some escaped early 
on), while S2 drifters were released at a confluence of at least two sub-
mesoscale LCSs, causing the drifters to bifurcate several times shortly 
after deployment. S1 was least influenced by strong submesoscale 
motions, with mesoscale flows dominating throughout the experiment.

3. Fully connected neural networks

3.1. Neural network configurations

The first objective of this study was to test the simple FNNs de-
veloped by G20 on observed GLAD drifters to determine whether 
similar success could be achieved. In that study, the authors’ intent 
was to develop the simplest possible neural network, rather than the 
best-performing one, in order to minimize the so-called ‘‘black box’’ 
abstractness of the model, to reduce the risk of overfitting, and to allow 
ample room for improvement with more sophisticated architectures. 
Those FNNs are described briefly below but the reader is referred to 
G20 for a more thorough exposition.
4 
To replicate that previous study, we started with FNNs containing 
a single hidden layer with 20 neurons, sigmoid activation functions for 
all hidden and output neurons, gradient descent, and mean-squared-
error cost functions. These FNNs received as input the previous 24 h
time series of zonal and meridional velocity components, upsampled to 
3 h observations for consistency with the previous study, to produce 24 h
zonal and meridional drifter velocities in 6 h increments, from which 
position predictions were derived. Separate FNNs were trained on S1 
and S2 drifters using 3-fold cross validation wherein 60 random drifters 
from the deployment were used for training and the remaining 30 
were used for testing each time. We also employed a rolling window 
technique designed for domains that change in time (Kubat, 1989), 
illustrated in Fig.  5. Each network was initially trained on the first 
days’ worth of data, after which the training set was updated every 3 h
by replacing the oldest observations with the most recent. The models 
were trained further every time the training set was updated. Since the 
test drifter trajectories were predicted over the same time window as 
the training data targets, the model output is more akin to velocity 
reconstructions than forecasts. In a real-world application, this would 
be analogous to using deployed drifters to predict non-existent drifters 
within the same vicinity, as discussed in Section 5.

Velocity predictions were made every day at midnight and com-
pared to both rudimentary persistence, the assumption that the most 
recently observed velocity persists indefinitely until a new observation 
informs otherwise, and to autoregressive integrated moving average 
(ARIMA) models using root-mean-squared error (RMSE): 

RMSE𝑖,𝑗 =
[

1
𝐾𝐿

𝐾
∑

𝑘=1

𝐿
∑

𝑙=1

(

𝑌𝑖𝑗𝑘𝑙 − 𝑌𝑖𝑗𝑘𝑙
)2
]1∕2

, 𝑗 = 1,… , 𝐽 (1)

where 𝑌  is the attribute vector, (̂) indicates predicted values for predic-
tion time 𝑖, 𝐽 daily reconstructions issued throughout the deployment, 
𝐾 predicted attributes, and 𝐿 test drifters. Since ARIMA models are 
best suited for long time series, these were fit to cumulative velocity 
time series (using the auto.arima routine from the ‘‘forecast’’ package 
for R 3.4.2) without discarding old observations. We exclude 𝑗 from 
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Fig. 2. Snapshots of geostrophic surface velocities (vectors, ms−1) derived from satellite altimetry (colors, cm) throughout the entire GLAD experiment. Drifter deployment locations 
added for reference: S1, blue; S2, orange; L, red.
the RMSE averaging because each daily reconstruction was issued by 
a different version of the FNN by virtue of the additional training that 
took place between each reconstruction.

A second objective of this study was to explore enhancements to 
these FNNs that might improve their practicality and performance. To 
accomplish this, the experiment was repeated with three methodolog-
ical changes. First, recognizing that predicting trajectories on hourly 
scales is considerably easier yet less operationally useful than several 
days out, we modified the FNN to consist of a single hidden layer 
containing 40 neurons designed to predict 5 d out using the previous 
7 d of observations in order to better explore the practical utility of 
such an FNN. This meant that each training trajectory for the FNN 
spanned 12 days (see Fig.  5), which introduced a logistical dilemma. 
ML algorithms, as statistical models, require many statistically indepen-
dent examples from which to learn. With that in mind, on one hand, 
advancing the sliding window by 15 min (the sampling frequency of 
the dataset) to generate new examples as the experiment progressed 
would result in significant temporal overlap between examples, since 
each 12-day time series would differ only by 15 min on either end. On 
the other hand, upsampling the data from 15 min (96 observations/day 
per drifter) to daily observations to minimize (though not eliminate) 
the interdependence problem would result in nearly 99% fewer coveted 
training examples and would sacrifice time series resolution. We com-
promised by upsampling the data to hourly observations and advancing 
the rolling window in 1 d increments. This also filtered out inertial 
oscillations that, due to their regular periodicity, were easy to learn 
(see, e.g., Case 2 in G20), although we note that inertial signals can 
be associated with areas of convergence or divergence and heavily 
influenced by strong submesocale vorticity fields.
5 
Another modification was to implement a divide-and-conquer ap-
proach to learning trajectories by systematically sorting drifters accord-
ing to behavior. Rather than train a single FNN on all GLAD drifters 
that collectively captured a wide range of dynamics, we integrated an 
unsupervised hierarchical clustering routine from the Python library 
‘‘scipy’’ (version 1.5.4 for Python 3.8.3) to objectively group drifters 
based on their historic trajectories and then induced separate FNNs 
for each group. At each observation time, the latitudes and longitudes 
of all active drifters for the past 7 d were passed to the clustering 
algorithm, which started with every drifter in its own group and sorted 
using spatial Euclidean distances. A sample clustering for S2 drifters 
within the vicinity of a surface divergence zone is shown in Fig.  6. A 
threshold of 20 drifters per cluster was set to ensure that each group 
had a sufficient number of drifters for training and testing; if any cluster 
had fewer than 20 drifters, we reverted back to a single cluster and 
induced a single FNN. We now present the results of these first two 
FNN experiments.

3.2. Results: Fully connected neural networks

Averaging Eq. (1) over the 𝐽 reconstructions generated through-
out the experiment quantifies RMSE for each time step in the 24 h
reconstruction window (i.e., RMSE for hour 6, 12, . . . , 24): 

RMSE𝑖 =
1
𝐽

𝐽
∑

𝑗=1
RMSE𝑖𝑗 (2)

where 𝐽 = 90 and 86 reconstructions for S1 and S2, respectively, from 
20 Jul to 22 Oct 2012. Fig.  7 summarizes drifter position error for the 
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Fig. 3. Snapshots of geostrophic surface velocities (vectors, ms−1) derived from satellite altimetry (colors, cm) throughout the first 30 days of drifter deployment. Deepwater 
horizon (white ‘‘x’’) and drifter deployment locations added for reference: S1, blue; S2, orange; L, red.
Fig. 4. Selected trajectories of S1, S2, and L drifters for the first five days (panels (a)–(c), respectively; cf. Fig.  2a and Fig.  3a) and the first 30 days (panels (d)–(f); cf. Fig.  2c 
and Fig.  3d). Inertial oscillations have been removed with a 24 h low pass filter. Dots indicate end locations.
FNNs (blue), ARIMA (orange dot-dashes), and persistence (red dashes) 
models for S1 and S2 drifters.

The FNN performed comparably to ARIMA on the S1 drifters with 
prediction error of ≈12 km at hour 24. Both models outperformed 
persistence due to the latter always being tangent to the inertial spiral 
trajectories (Fig.  7a). In contrast, the dynamically variable trajectories 
of S2 were harder for the FNN to learn (Fig.  7b). ARIMA performed 
best on these drifters while the FNN performed similarly to persistence 
but with smaller standard deviation (error bars) throughout the 24 h
6 
prediction window, with maximum mean RMSE ≈15 km. ARIMA’s per-
formance on these drifters can be understood conceptually by recalling 
that training the FNN sought to find an optimal regression for all 
examples, while separate ARIMA regressions were fit to each trajectory 
time series separately. This means that each ARIMA regression was 
completely independent of the others and represented a best-fit regres-
sion for any given time series, while the FNN was affected by every time 
series it was presented with during training. Thus, given the variability 
of S2 trajectories and the relatively small number of examples from 
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Fig. 5. Illustration of the rolling window implementation applied to the FNNs with 7 d input (solid box) and 5 d output (dashed box). Drifter data were upsampled to hourly 
observations (e.g., small ticks) and the time series passed to the FNNs were upsampled again to daily increments (large ticks). See text for full explanation.
Fig. 6. Sample output of the hierarchical clustering algorithm applied to S2 drifters in the vicinity of a divergence zone. All drifters began in their own clusters and were then 
grouped according to spatial distances.
 

which to learn, the final FNN arguably underperformed on any given 
time series compared to the corresponding ARIMA model.

Fig.  8 summarizes the velocity and position prediction error (Eq. (2))
for the FNN trained on the GLAD drifters for a 5 d reconstruction 
window instead of 24 h, along with ARIMA and persistence models. The 
difference in performance between the three models was negligible, 
with all three producing position error ≈83 km on Day 5. We also note 
that the FNN performance on Day 1 was comparable to the S2 24-h 
FNN (Fig.  7b). This mean position error is in agreement with 5-day 
dispersion analyses of GLAD drifters (Poje et al., 2014; Haza et al., 
2014; Huntley et al., 2019), but our error spread suggests the FNNs did 
not learn the velocity field structure well, if at all. Model error cascade 
caused ARIMA and persistence velocity errors to increase recursively 
with prediction day: error from Day 1 influenced the next prediction 
7 
for Day 2 and so on. In contrast, the FNN was trained to predict all days 
simultaneously with minimal error; thus, velocity error was ≈26 m/s 
for Days 1–5.

Averaging Eq. (1) over 𝐼 prediction times quantifies RMSE for 
each reconstruction and evaluates how the models performed over the 
three-month experiment: 

RMSE𝑗 =
1
𝐼

𝐼
∑

𝑖=1
RMSE𝑖𝑗 (3)

This is shown in Fig.  9 for velocity and position with error bars 
indicating one standard deviation from the mean given by Eq. (3). 
Tropical Cyclone (TC) Isaac passed over the domain from 27–30 Aug 
2012; this period is indicated by the gray shading. The reconstructions 
before the storm from all three models exhibited greater variability 
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Fig. 7. Position error (km) for simple FNNs trained on GLAD S1 drifters (a) and S2 drifters (b). FNN error is shown in blue while ARIMA and persistence model errors are shown 
in orange dot-dashes and red dashes, respectively. Error bars indicate one standard deviation from the mean calculated using Eq. (2).
Fig. 8. Average velocity (a) and position (b) errors (cm/s and km, respectively) versus prediction time for 5 d predictions issued by a simple FNN (blue), ARIMA (orange dot-dashes), 
and persistence (red dashes) models. RMSE is calculated using Eq. (2) with error bars showing one standard deviation from the mean.
and larger mean error than after the storm; this is discussed further 
in Section 5.

4. Social spatio-temporal graph convolutional neural network
(STN)

4.1. STN configuration

The STN code was downloaded from GitHub2 under an open-source 
MIT license granting express permission to use and modify the software 
free of charge. The model consists of a spatio-temporal graph (STG) 
network that learns the spatial and temporal patterns in the data 
and a time-extrapolator (TXP) network that extends the time series to 
make predictions. Compared to the FNNs, the STN contained anywhere 
from 3 to 28 times the number of trainable parameters. A high-level 
overview of the STN is provided in Appendix  A but the reader is 

2 https://github.com/abduallahmohamed/Social-STGCNN, retrieved 
November 2020.
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referred to Mohamed et al. (2020) for illustrations and detailed descrip-
tions of the model and its implementation. Optimal topologies of the 
STNs, determined by hyperparameter grid searches, are summarized in 
Table  3.

Input attribute vectors for each drifter were defined as 𝐱 = [𝑑(lon), 
𝑑(lat), 𝑑2(lon), 𝑑2(lat)] to help the model learn highly variable flows 
by including proxies for both velocity, 𝑑(...), and acceleration, 𝑑2(...), 
where 𝑑 indicates the difference between consecutive observations. (As 
with the original pedestrian model, dividing by change in time – 𝑑𝑡 and 
𝑑2𝑡 – was unnecessary given the constant time interval of the drifter 
data.) Qualitative inspections of histograms of all zonal and meridional 
velocities and accelerations for each deployment suggested that the 
distributions of velocity and acceleration were roughly Gaussian, with 
the exception of a more bimodal L meridional velocity distribution. 
Shapiro–Wilks tests for normality confirmed this assessment, indicating 
that predicting Gaussian distribution parameters was reasonable. We 
used the Adam optimization algorithm (Kingma and Ba, 2017) and 
trained the STN to learn the bivariate Gaussian probability density 

https://github.com/abduallahmohamed/Social-STGCNN


M.D. Grossi et al. Ocean Modelling 196 (2025) 102543 
Fig. 9. Average velocity (a) and position (b) errors (cm/s and km, respectively) versus prediction initiation time for the simple FNN (blue), ARIMA (orange dot-dashes), and 
persistence (red dashes) models, averaged over the 5-day prediction window. RMSE is calculated using Eq. (3) with error bars showing one standard deviation from the mean. 
Error bars for ARIMA and persistence are offset slightly to prevent overlapping. The passage of Tropical Cyclone Isaac is shaded in gray.
function (PDF; see Wilks, 2006) given by: 

𝑓 (𝑥, 𝑦) = 1
2𝜋𝜎𝑥𝜎𝑦

√

1 − 𝜌2
exp

[

− 1
2(1 − 𝜌2)

[

(𝑥 − 𝜇𝑥
𝜎𝑥

)2
+
( 𝑦 − 𝜇𝑦

𝜎𝑦

)2

−2𝜌
(𝑥 − 𝜇𝑥

𝜎𝑥

)( 𝑦 − 𝜇𝑦
𝜎𝑦

)

]]

(4)

where the five parameters 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦, 𝜌, corresponding to the means, 
standard deviations, and correlation between 𝑥 and 𝑦, respectively. The 
STN used the previous 7 days of drifter velocity observations as input 
and generated 5 days of separate sets of PDF parameters for zonal and 
meridional velocity components of each drifter at each prediction time 
(Appendix  A.)

We again employed the 3-fold cross-validation technique, this time 
reserving drifters from one full deployment (S1, S2, 𝐿) for validation 
while splitting the remaining trajectories so that the first 70% of the 
time series, corresponding to the first ≈2 months of the experiment, 
became the training data set while the last month of data became the 
test set. This setup reflects an operationally realistic scenario in which 
one would induce a ML model from existing data in hopes of using it on 
new drifter data from the region. While this is a common technique for 
learning time series, it presented unique challenges in this application 
that will be discussed in Section 5. The STNs were initialized using the 
first 7 days’ worth of velocity and acceleration data from the training 
subset of drifters, upscaled to daily observations as discussed earlier. 
As before, the training set was updated every hour by replacing the 
oldest data with newer observations as they became available (Fig.  5), 
the models were further trained on the latest set of training examples, 
and reconstructions were created every midnight.
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The drifter data were represented in the form of fully-connected and 
undirected mathematical graphs, 𝐺 (Fig.  10): 
𝐺 ≡ (𝑉 ,𝐸) (5)

In Eq. (5), 𝑉  contained time-stacked arrays of drifter observations 
and had dimensions (𝑁𝑓 ×𝑇 ×𝑁𝑑 ), where 𝑁𝑓  is the length of the feature 
vector x (e.g., velocity, acceleration), 𝑇  is the number of time snapshots, 
and 𝑁𝑑 is the number of drifters. Similarly, 𝐸 contained time-stacked 
adjacency matrices quantifying the connectivity between each drifter 
over the same time window as 𝑉  and had dimensions (𝑇 × 𝑁𝑑 × 𝑁𝑑 ). 
The connectivity between the 𝑖th and 𝑗th drifter at time 𝑡 was given by: 

𝑒𝑖𝑗𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁𝑓
∑

𝑘=1

1
√

(𝐱𝑘,𝑖𝑡 − 𝐱𝑘,𝑗𝑡 )2
, (𝐱𝑘,𝑖𝑡 − 𝐱𝑘,𝑗𝑡 )2 ≠ 0

0, otherwise

(6)

Thus, each example consisted of a pair of time-stack arrays con-
taining information from every active drifter during the time window 
[𝑡0, 𝑡1,… , 𝑇 ], where 𝑇 = 7 for the input data and 𝑇 = 5 for the output.

The passage of TC Isaac through the GLAD drifter array from 27–30 
Aug 2012 as a tropical storm and Category 1 hurricane (Figs.  11 and 
12) provided an opportunity to test whether the STN would bene-
fit from knowing wind information as well as drifter behavior (e.g., 
Curcic et al., 2016). We time- and space-matched each drifter obser-
vation with 0.25◦ Level 3 gridded 1-day surface (10m) winds from the 
MetOp-A polar orbiting meteorological satellite retrieved from NOAA 
CoastWatch/OceanWatch3 (Fig.  13). Missing data between successive 

3 https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdQAwind1day_
LonPM180.html

https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdQAwind1day_LonPM180.html
https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdQAwind1day_LonPM180.html
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Fig. 10. Visualization of the STN: Input consists of an array of historical time-stacked node and adjacency matrices for drifters 𝑦1 , 𝑦2 ,… , 𝑦𝑛; output contains parameters for the 
bivariate Gaussian probability distribution function 𝜇𝑑lon , 𝜇𝑑lat , 𝜎𝑑lon , 𝜎𝑑lat , 𝜌. See Appendix  A for more details.
Fig. 11. Trajectory of Tropical Cyclone (TC) Isaac over the drifter array from 27–30 Aug 2012 as a tropical storm and Category 1 hurricane. Active drifters during this time are 
shown with an ‘‘×’’, tails indicating positions throughout this time window, and color-coded according to original deployment (S1: blue, S2: orange, 𝐿: red). TC symbols indicate 
Isaac’s location every 12 h starting 00z 27 Aug 2012 just north of Cuba.
satellite swaths (e.g., Fig.  12c) were filled in using simple linear inter-
polation. We then trained both 5-day STNs using the full GLAD time 
series with wind (input: [𝑑(lon), 𝑑(lat), 𝑑2(lon), 𝑑2(lat), 𝑢wind, 𝑣wind]) 
and 24-h STNs using only data from 25–31 Aug.

Finally, we also trained STNs with two additional architectural 
modifications. First, the node array was expanded in time to include the 
last three time steps instead of only one. For example, the first layer in 
the time stack (the first block in Fig.  10) included [𝑑(lon)0, 𝑑(lon)−1, 
𝑑(lon)−2, . . . ], the next time layer [𝑑(lon)−1, 𝑑(lon)−2, 𝑑(lon)−3, . . . ], 
and so forth. This intentional redundancy was introduced to test for 
any benefit of having time information in the spatial dimension. The 
second modification extended the similarity metric from Eq. (6) to also 
quantify geospatial distance and relative trajectory angle 𝜃 between the 
𝑖th and 𝑗th drifter: 

𝑒𝑖𝑗𝑡 =
𝑁𝑓
∑

𝑘=1

1
√

𝑘,𝑖 𝑘,𝑗 2
+ 1

𝜃𝑖,𝑗
(7)
(𝐱𝑡 − 𝐱𝑡 )
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where the attribute vector 𝐱 now also included latitude and longitude, 
and 
𝜃 = 𝑐𝑜𝑠−1 𝐱̂𝑖 ⋅ 𝐱̂𝑗

|𝐱̂𝑖||𝐱̂𝑗 |
(8)

where (⋅) indicates the dot product, |𝐱̂| is the magnitude of vector 𝐱̂, 
and 𝐱̂ = [𝑑(lon), 𝑑(lat)]. We refer to these as ‘‘advanced configuration’’. 
The units of 𝑒𝑖𝑗𝑡  are non-physical; the idea is to quantify, in a single 
term, the connectivity between drifters according to multiple physical 
intuitions or known relationships. As in Eq. (6), if the denominator of 
either term in Eq. (7) is zero, that term was set to zero.

To summarize, the STN differed from the FNN in a number of 
fundamental ways. The most important difference is the algorithmic 
architecture itself, summarized side-by-side in Table  2. Following from 
this is the number of trainable parameters, which is directly related to 
the complexity of the model. The FNN had about 500–1000 trainable 
parameters, while the STN had 3 to 28 times that many, depending on 
the model configuration (Table  2). In general, the greater the number 
of parameters, the larger the training data set that is needed to train 
the model. Finally, the two models differed in their inputs and outputs. 
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The input to the STN consisted of two arrays, one containing the 
observations from all drifters over time and the other containing the 
time-stacked adjacency matrices (Fig.  10). The input to the FNN, on the 
other hand, was a vector containing the time series of observations from 
a single drifter. Likewise, the STN produced an array of time-stacked 
predictions for each drifter at multiple time steps, while the FNN 
produced a vector for one drifter a time. The FNN directly predicted 
zonal and meridional velocities, while the SNN returned the bivariate 
Gaussian probability distributions from which velocities were sampled 
and trajectories were derived.

4.2. Results: Social spatio-temporal graph convolutional neural networks

Figs.  14 and 15 summarize the predictive performance for each of 
the STNs along with ARIMA and the FNN from Figs.  8 and 9. Subplots 
Fig.  14a–c show models from the 3-fold cross validation with the 
subplot title indicating the deployment that was reserved for testing. 
The final subplot, which shows the average across all three models, 
provides an assessment of how well the network performed on the 
entire data set. Note that, strictly speaking, the STNs with wind are 
not directly comparable to the FNNs, since no FNNs received wind as 
input.

All neural networks, including the FNNs, performed similarly on the
S1 drifters. The best architecture for these drifters was the advanced 
STN (teal dots) which, at Day 5, had an average error about 75% 
that of ARIMA (≈72 km versus 102 km) and with considerably smaller 
standard deviations. Both the no-wind (purple dashes) and advanced 
STNs performed comparably on S2 drifters, with Day 5 RMSE averaging 
≈55 km compared to ≈80 km for both ARIMA (orange dot-dashes) and 
the FNN (blue). On the 𝐿 drifters, all three STN configurations had 
an average Day 5 RMSE ≈60 km, while ARIMA and the FNN models 
both averaged ≈80 km on Day 5. Overall, the advanced STN performed 
the best averaged across all drifters, implying that the added tempo-
ral information was beneficial. Although the mean RMSE was nearly 
identical to that of the no-wind model, the spread (standard deviation) 
was slightly smaller. Adding wind to the model helped in some cases, 
such as with 𝐿 drifters, but not enough to make this network stand 
out among the others, especially considering the increased input data 
requirements. This result can be partially attributed to the fact that 
atmospheric scales are often larger than oceanic scales.

STN RMSE hovered around 40 km during the first month of the ex-
periment and around 30 km thereafter (Fig.  15). Prediction variability, 
as indicated by the standard deviation, also remained fairly constant, 
with spikes around 15 Aug and 28 Aug as TC Isaac passed through. 
There is a notable predictability regime shift after the storm passage: 
prior to the storm, all STN configurations consistently outperformed 
both ARIMA and the FNN both on average and standard deviations. 
After the storm, all models performed similarly on average. To better 
assess any modeling impacts of including wind as a predictor, we 
trained new STNs that, like the previous FNNs, predicted 24 h out 
using the last 24 h as input. These were trained only on data from the 
seven day window 25–31 Aug, which included the passage of Isaac 
(Fig.  16). Separating these into cross validation test sets as before 
shows how different each deployment was. Adding wind as input 
(blue dashes) helped with S1 and 𝐿, at least for the latter half of the 
prediction window, but slightly hindered performance on S2. These 
STNs had larger mean errors, but smaller standard deviations, than 
ARIMA (orange dot-dashes), with the exception of the last few hours 
for S1. ARIMA outperformed all networks on the 𝐿 drifters this time, 
with RMSE at hour 24 around 25 km compared to 45 km for the no-wind 
network (purple dashes) and 40 km with wind.

Lastly, nondimensional Pattern Correlation Coefficients (PCC) were 
computed for each reconstruction to compare the predictive capability 
of the STN, ARIMA, and persistence models to the predictability limit 
of the data set (Robinson et al., 2002): 

PCC =

(

𝑉 − 𝑉 𝑏)𝑇 (𝑉 𝑡 − 𝑉 𝑏)

, 𝑉 = (𝑢2 + 𝑣2)1∕2 (9)

‖𝑉 − 𝑉 𝑏

‖2‖𝑉 𝑡 − 𝑉 𝑏
‖2
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where 𝑉  is the model reconstructed velocity, 𝑉 𝑏 is a background flow 
(here, geostrophic surface velocity presented in Section 2), 𝑉 𝑡 are 
the actual observed values (targets), 𝑇  is the transpose operator, and 
‖ ⋅ ‖2 indicates the 𝐿2 norm. A value of 𝑃𝐶𝐶 = 1 indicates a perfect 
prediction. Summations are taken over all drifters and prediction times, 
as in the RMSE calculations. Fig.  17 shows that PCCGNN averaged 
0.6–0.7 for most of the experiment, with greatest fluctuation early on. 
By this metric, persistence outperformed the STN towards the beginning 
– perhaps because the persistent velocity is not bad initially – and again 
towards the end of the experiment, but the STN outperformed ARIMA 
consistently after the first two weeks.

5. Discussion

Lagrangian drifter deployments in the northern GoM during the 
GLAD experiment provided an opportunity to test the ability of FNNs 
used by G20 to predict observed ocean trajectories. The FNNs per-
formed best with drifters whose trajectories captured inertial oscilla-
tions, such as the first couple of weeks of S1, but given the regularity 
of inertial signals, ARIMA performed just as well in these cases. In 
the absence of inertial oscillations, whether due to stronger surface 
forcing, such as in S2, or when filtered out of the trajectories, the 
FNNs performed no better than persistence. The FNNs also offered no 
improvement whatsoever over persistence or ARIMA when configured 
to make more useful 5-day predictions (Fig.  8). The longer ARIMA 
predictions tended to become unstable and converge to the time series 
mean due to the high degree of variability; thus, since the FNNs 
performed similarly, the best that can be said of the simple FNNs is that 
they often learned nothing more than the mean flow. They were clearly 
unable to learn anything meaningful about observed surface dynamics 
(Figs.  2 and 3).

While G20 intentionally sought the simplest neural network possible 
to explore using ML for predicting realistic ocean trajectories, the 
dismal performance on real-ocean scenarios can be attributed to their 
simplicity, particularly their inability to remember previous time series 
states or to take into account surrounding information from the drifter’s 
‘‘neighborhood’’, since they only saw one drifter at a time. Far more 
sophisticated STNs attempted to address these limitations and explore 
whether incorporating physical intuition and domain expertise into a 
ML model might offer more potential (e.g., Faghmous et al., 2014). 
These models treated all deployed drifters at any given time as a 
single example and used an adjacency matrix to exchange information 
between the drifters. This allowed for objectively grouping drifters by 
similar behavior without needing clustering routines. Overall, these 
networks performed somewhat better than the previous FNNs and 
even slightly better than ARIMA in some cases. The original adjacency 
matrix only calculated Euclidean distances between 𝑑(lon) and 𝑑(lat)
for each drifter. We tried adding two additional terms: the actual spatial 
distance between two drifters (since drifters might behave similarly 
but be far apart) and relative angle between the drifters (drifters 
moving in parallel are more similar than orthogonal trajectories.) This 
modification, along with introducing temporal information into the 
spatial feature array, performed well overall but not appreciably better 
than the original configuration (see Fig.  14). Nevertheless, the successes 
of the models compared to the FNNs are rooted in using these distances 
to weigh how much information should be shared between two or more 
drifters.

Introducing wind as an additional attribute had less of an impact 
overall than one might expect, but drogues are specifically designed 
to decouple the drifter’s motion from overlying wind forcing to al-
low the drifter to move with the prevailing 1m ocean current. Both 
test tank (Davis, 1985) and field (Poulain and Gerin, 2019; Poulain 
et al., 2022) experiments have found the CODE drifter to be mini-
mally affected by winds less than 15m s−1. Thus, the characteristically 
calm GoM summer winds that averaged <5m s−1 throughout most of 
the GLAD experiment were arguably too weak to impact the motion 
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Fig. 12. Daily MetOp-A surface winds (10m) before spatial interpolation during the passage of TC Isaac from 27–30 Aug 2012. TC symbols indicate the storm’s location twice a 
day (hours 00z and 12z). Compare these subplots to Fig.  11 for the location of the drifter array relative to the observation swaths.
Fig. 13. Daily average of wind magnitude (m/s) over the entire drifter array throughout the GLAD experiment with the passage of TC Isaac highlighted in gray.
of these 1-m drogued drifters. This would imply that the zonal and 
meridional wind velocities, having little to no direct relationship to 
the direction of drifter motion, were irrelevant predictive attributes for 
most of the experiment. Yet, this decoupling has also been shown to 
break down during high-wind events (Lodise et al., 2019), which may 
explain the slightly improved 24 h STN reconstructions during TC Isaac 
for the S1 and 𝐿 drifters, but more analysis is needed to conclude this 
definitively. It is also important to note that changing the input time 
series length from 7 days to 24 h increased the number of trainable 
parameters by an order of magnitude (Table  3), making it substantially 
more challenging to train these networks. In general, the more trainable 
parameters in a neural network, the greater the number of training 
12 
examples needed to train it. The inability for us to obtain more data 
likely impacted the trainability of these 24-h models.

While the neural networks did not benefit from receiving wind as 
input, winds may have indirectly impacted the overall predictability of 
the trajectories by advecting most drifters offshore where submesoscale 
dynamics are less dominant, causing the trajectories to collectively 
exhibit less variability than on the continental shelf. Fig.  9 shows that 
all three reconstructions leading up to and during the storm exhibited 
larger mean error than after the storm. Noting that ARIMA errors were 
similar in magnitude at the very beginning of the experiment (e.g., 
7 Aug in Fig.  9) to post-storm (1 Sep onward), we hypothesize that 
the wind modified trajectories enough to impact their predictability. 
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Fig. 14. Average position error (km) versus prediction time for all social spatio-temporal graph convolutional neural networks, simple fully connected neural network, and ARIMA 
models. RMSE is calculated using Eq. (2) with error bars showing one standard deviation from the mean. During 3-fold cross validation, one deployment was set aside for testing. 
Panels (a)–(c) show the results of these three models, while (d) shows the average over all test sets.
Fig. 15. Average position error (km) versus prediction initiation time for all social spatio-temporal graph convolutional neural networks, simple fully connected neural network, 
and ARIMA models. RMSE is calculated using Eq. (3) with error bars showing one standard deviation from the mean. The passage of TC Isaac is shaded in gray.
The FNNs’ comparatively larger error during this early period can be 
attributed to the minimal training they had undergone and to the fact 
that, by their very nature, the FNNs served as single best-fit regressions 
13 
for all trajectories, while ARIMA regressed each trajectory indepen-
dently. We also note that average wind speeds over the experimental 
domain increased from ≈3 m/s during July and early August before 
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Fig. 16. Average position error (km) versus prediction time for social spatio-temporal graph convolutional neural networks trained only on data from 25–31 Aug 2012, with and 
without wind included as input. ARIMA model is included in orange. RMSE is calculated using Eq. (2) with error bars showing one standard deviation from the mean. During 
3-fold cross validation, one deployment was set aside for testing. Panels (a)–(c) show the results of these three models, while (d) shows the average over all test sets.
the storm to 5–6 m/s during the months of September and October 
(Fig.  13). Further investigation is needed to determine the extent to 
which the drifters were impacted by winds during the experiment, but 
the lack of high resolution observational data over the GoM makes this 
challenging.

Little spatial variation of RMSE was observed throughout the exper-
iment, but predictions from the beginning of the experiment showed 
larger spread of prediction error overall. A possible explanation for 
these larger error spreads initially is the greater variability of subme-
soscale surface dynamics that were sampled while the drifters were 
closer together, but this is difficult to determine from our setup, since 
scales of motion cannot be discerned from velocity PDFs alone. It 
can be said, however, that submesoscale dynamics are harder to learn 
than mesoscale and the data set contained far fewer examples of 
submesoscale because the drifters dispersed within days to weeks. Error 
distributions for all prediction days show that the variability increased 
throughout the prediction window as the predicted and actual trajecto-
ries diverged (Fig.  18). The largest change in distributions was observed 
between prediction days 1 and 2, while days 4 and 5 were most similar, 
indicating that the later prediction times contributed most to the error 
spread seen in Figs.  14 and 15.

Though the simultaneous deployment of hundreds of drifters in an 
experiment like GLAD was unprecedented in oceanography, the number 
of examples this data set produced remains very small by ML standards. 
Both S1 and S2 contained 90 drifters, but the bifurcation events of
14 
S2 caused the same number of drifters to sample larger dynamic 
variability, a reality that is not uncommon in oceanography. Assuming 
all drifters remained online throughout the entire 90 day experiment, 
utilizing the full 15 min sampling frequency, and taking into account 
that each example required 12 days of observations, less than 7500 
examples were available for the STN, for which every moment in time 
constituted a single example. In reality, GPS battery failure caused 
drifters to drop out permanently at various times during the experiment 
while the drifter array simultaneously dispersed throughout the GoM 
basin capturing increasingly diverse and ever-evolving surface dynam-
ics (Fig.  19a). Drifter density – calculated by dividing the number of 
active drifters by the area of the convex hull enclosing the cluster of 
drifters at a given time – started at just over 300 drifters per 100 km 2

and decreased to 2 drifters per 100 km 2 by the end of the experiment. A 
linear regression analysis indicated no statistical relationship between 
RMSE and drifter density due to dispersion (𝑟2 ≈ 0, Fig.  19b.)

The method by which we divided the data into training, testing, 
and validation subsets for the STNs (as in Fig.  5) created unique 
challenges for this task. Splitting time series into training and testing 
sets is customary in ML, but the drifter time series continuously evolved 
over this time period. While we could have included observations from 
the entire time series in our training set to better capture the full 
time variability, this approach is difficult to justify with operational 
applications in mind. These trajectories by the third month were vastly 
different than the first month, primarily because the scales of motion 
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Fig. 17. Pattern Correlation Coefficient (PCC, dimensionless) comparing the predictive capability of the STN (green), ARIMA (orange), and persistence (maroon) prediction models 
to the predictability limit of the problem based on the model predicted velocity, background geostrophic flow velocity, and ground truth information. Summation in Eq. (9) is 
over all drifters and prediction times. PCC = 1 indicates an ideal scenario.
Fig. 18. RMSE distributions from the STN for prediction days 1–5. Distributions include all drifters and reconstructions.
being sampled changed in time as the drifters dispersed from being 
within a few kilometers of each other to covering the entire eastern 
GoM. Considerations like this are crucial for engineering ML models 
for chaotic ocean applications. The reconstructions overall might be de-
scribed qualitatively as ‘‘hit-or-miss’’, with examples of both good and 
bad predictions existing throughout the experiment. STN performance 
as a function of training time reached an asymptote given the available 
data. We argue that, like all ML architectures, it would benefit from 
additional training data.

We structured our experimental setup with operational applications 
in mind. The ongoing rolling window training process, for example, 
provides a form of domain adaptation that can be invaluable in con-
stantly changing domains like ocean surface dynamics. Possible appli-
cations include the need to monitor and predict the spread of spilled oil 
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in a marine environment. Deploying thousands of drifters throughout 
a geographic area remains nearly impossible in normal conditions, let 
alone alongside first responders in an emergency response. Our method 
allows for the localized deployment of as few as 200 drifters (though 
more is always better) among which a STN can reconstruct additional 
tracer trajectories. While one would need to acquire 7 days of data 
before 5 days could be reconstructed, this could be overcome by using 
shorter term models to predict hours in the interim. While we evaluated 
our models by comparing single predicted trajectories for each drifter 
to the real trajectories, any number of possible trajectories can be 
generated from the PDF output for a given drifter in an operational 
setting if one is interested in ensemble predictions. Since the model 
outputs standard deviation, one also benefits from having an estimate 
of uncertainty for each drifter and for any given trajectory prediction. 
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Fig. 19. Number of active drifters per geospatial area (drifters per 100 km2) throughout the GLAD experiment colored by mean RMSE (km; panel a) and RMSE versus drifters 
per area (b) with 𝑟-squared regression showing this relationship is not statistically significant (𝑟2 ≈ 0). The passage of Tropical Cyclone Isaac is marked in gray. The 𝑥-axis in (b) 
is reversed to correspond more closely to the trend over time.
This information could be incorporated into predicted trajectories by 
including degrees of certainty based on the model-produced standard 
deviations. Alternatively, instead of producing line trajectories, one 
could create probability clouds that show the spread of possible scenar-
ios, which may be more useful in forecasting the dispersion of spilled 
oil or harmful algal blooms. For more analytical uncertainty analyses, 
one could integrate clustering capabilities (e.g. Dutt et al., 2018; Haley 
et al., 2023; Lermusiaux et al., 2024) or conformal prediction tech-
niques (Huang et al., 2023a; Zargarbashi et al., 2023) with our GNNs 
so that predictions are accompanied by uncertainty estimates.

Using STNs for true temporal forecasting (as opposed to our re-
constructions over the same time window as the training trajectories) 
would require more data and, most likely, training techniques such 
as transfer learning, where models are pre-trained on a big dataset 
and then fine-tuned with data from the specific problem of interest. 
One might, for example, pre-train our STN on historical trajectories 
from NOAA’s Global Drifter Array program and then fine-tune it on 
local drifters such as those from the GLAD experiment. Whether this 
approach would create a model capable of forecasting new trajectories 
is an area of future work. Related to this is the ability to use a trained 
STN in another oceanic region. This, too, is an ideal use case for transfer 
learning.

Finally, we comment on the possibility of interpreting the decision-
making process of the STN. While CNNs are among the most inter-
pretable of neural networks – one can visualize the internal convo-
lutions and discover regions of high or low activation throughout 
the network – GNNs, like most neural networks, including the TXP 
component of our model, remain much more difficult to interpret due 
to the many nonlinear transformations that the data undergo within the 
networks. And while our GCNN treats graphs like images, mathematical 
graphs do not have features like shapes, object edges (in the artistic 
sense of the term), or color patterns that humans gravitate to when 
interpreting images. Nevertheless, one can still visualize the internal 
convolutions of the STG component of our model using techniques such 
as graph kernel analysis (Feng et al., 2022) and neuron analysis (Xu-
anyuan et al., 2023) or tools like GNNExplainer (Ying et al., 2019) 
or GraphLIME (Huang et al., 2023b). All of these approaches seek to 
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identify subgraphs of importance, or local areas of activation within 
the graph. Neural network interpretation remains an area of active 
research and is beyond the scope of this paper. Model interpretation 
of this nature is left to future work.

6. Conclusions

We have built upon previous work by G20 who developed simple 
fully connected neural networks to learn oceanic particle trajectories 
in a variety of representative flows. The authors found that their time 
series FNNs produced prediction errors that were nearly half those of 
conventional ARIMA models for particles in realistic flows, but the 
flow field was generated by an ocean circulation model and the study 
did not include any observed trajectories. Here we tested the ability 
of these same FNNs to predict observed oceanic trajectories using an 
array of Lagrangian drifters released in the Gulf of Mexico in 2012. 
The GLAD experiment was separated into three separate deployments, 
each capturing distinct surface dynamics.

We found that FNNs did not outperform ARIMA in this application. 
In the best case scenario (S1), the average error was the same as that 
of ARIMA. FNNs trained to issue 5 d reconstructions, which are often 
more useful in operational oceanography, performed even worse than 
the 24 h networks, with RMSE being the same as both ARIMA and per-
sistence models, despite introducing into the pipeline an unsupervised 
clustering algorithm to group drifters spatially and inducing separate 
FNNs for each cluster. The idea was to facilitate learning by restricting 
the range of dynamics each FNN needed to learn. The results of this 
first part implied that single-layer FNNs were too simplistic to learn 
real ocean trajectories that often exhibit chaotic behavior.

We then considered a more sophisticated social spatio-temporal 
graph convolutional neural network, originally developed by Mohamed 
et al. (2020) for predicting pedestrian trajectories in social scenes. The 
STN had two main advantages over the simple FNNs that helped it 
outperform both ARIMA and the FNN in many (but not all) cases. First, 
it learned patterns in both time and space, combined these patterns into 
a single feature embedding, and then extrapolated into the future. Sec-
ond, it shared information between drifters according to how similarly 
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pairs of drifters behaved. We also tested sensitivity to including wind 
as input and found that wind helped most with S1 drifters and to a 
lesser extent with the 𝐿 deployment drifters when predicting on hourly 
timescales but did not help at all with predicting on daily timescales. 
This study showed that incorporating known physical relationships 
and connectivity into ML architectures can provide improvement over 
simple FNNs for predicting ocean trajectories, but the problem remains 
an open challenge.

Future directions include expanding the data set to incorporate 
drifter data from other localized experiments, which may allow the 
use of attention to learn the adjacency matrix relationships rather 
that predefining them. This could also investigate the transferability of 
this model to different geographic regions and times of year. Transfer 
learning could be applied in a couple ways: our STN trained in the 
GoM on GLAD drifters could be tailored to a new region by fine-tuning 
it with drifter data local to that region; alternatively, a STN could be 
pre-trained on a much larger global data set, such as the NOAA Global 
Drifter Program, and then transferred to and fine-tuned in one or more 
local regions of interest. A spatio-temporal statistical analysis of trajec-
tories predicted by the trained neural networks would also be valuable, 
as this would highlight how trajectories vary in time and space, and if 
their physical and statistical properties are oceanographically plausible. 
Extending the networks to provide uncertainty estimates and clustering 
capabilities would also be very useful (e.g., Dutt et al., 2018; Haley 
et al., 2023; Huang et al., 2023a; Zargarbashi et al., 2023; Lermusiaux 
et al., 2024), especially for practical applications and decision making. 
Related to this is the topic of model interpretability, which is of 
great interest to applied machine learning. Techniques and tools for 
machine learning model interpretability could be applied for the STN 
to attempt to discern and facilitate its decision-making process (e.g., 
Gupta and Lermusiaux, 2023). Other types of models such as recurrent 
neural networks or long short-term memory networks may help with 
remembering time series states without introducing as many trainable 
parameters as the STN. These may prove more suitable given the 
amount of training data available. Finally, the impact of wind warrants 
further exploration by comparing predictive performance on drogued 
versus undrogued drifters.
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Appendix A. The social spatio-temporal graph convolutional neu-
ral network (STN): a description

Much of the following can be found in any introductory textbook on 
machine learning methods that includes a discussion on convolutional 
neural networks. Specific details about the STN are from Mohamed 
et al. (2020), to which the reader is referred for more information. 
Other relevant sources are cited where appropriate.

The STN model has three tasks: (1) learn spatial patterns from a 
cluster of drifters, (2) learn patterns in the observed trajectory time 
series of these drifters, and (3) make predictions for where these 
drifters will move next. These are accomplished using two convolu-
tional neural networks (CNNs), the first of which is designed to learn 
the spatial and temporal behaviors, and the second to issue forecasts. 
Mohamed et al. (2020) aptly call these the spatiotemporal and time-
extrapolator CNNs, respectively, and illustrate them in their Fig. 2. 
The spatiotemporal CNN maps input observations to desired output 
features and then combines stacked time snapshots of observed drifter 
locations with a calculated drifter ‘‘connectivity’’ based on behavioral 
similarities between all combinations of drifters. The second CNN then 
operates on the time dimension of the feature embedding produced 
by the spatiotemporal CNN to generate forecasts for each drifter. We 
now break apart this summary to explain each step in more detail 
by working backwards starting with a description of a convolutional 
neural network, then a graph neural network, and finally the social 
spatiotemporal component. Details about our specific implementation 
are included throughout.

A.1. Convolutional neural network (CNN)

CNNs originate in the field of computer vision and are well-suited 
for learning multi-dimensional data. Consider a two-dimensional image 
𝐼 of size (ℎ×𝑤), represented by a matrix of pixel values corresponding 
to grayscale intensities, and let this be the input to a CNN. Like with 
any neural network, CNNs can have one or many layers; let each layer 
be denoted by bracketed superscript 𝑙. A convolutional layer contains 
one or more square matrices 𝑊 , called kernels, of dimensions (𝑓 [𝑙] ×
𝑓 [𝑙]), where customarily 𝑓 [𝑙] < ℎ[𝑙−1], 𝑤[𝑙−1]. The elements of 𝑊  are 
trainable parameters initialized to small random numbers. ‘‘Trainable’’ 
here means the parameters are adjusted throughout the training process 
as the algorithm converges on the optimal values, as in any regression 
process. The model convolves the input array with the kernel by sliding 
the kernel over the image and applying a nonlinear transformation 𝑔:

𝑧[𝑙] =
ℎ𝑓
∑

𝑖=1

ℎ𝑤
∑

𝑗=1
𝑊 [𝑙]

𝑖,𝑗 ∗ 𝑥[𝑙−1]𝑖,𝑗 + 𝑏[𝑙] (A.1a)

𝑎[𝑙] = 𝑔[𝑙](𝑧[𝑙]) (A.1b)

where the ‘‘ * ’’ operator indicates element-wise multiplication, indices 
(𝑖, 𝑗) correspond to the kernel matrix 𝑊 , 𝑥 is the layer input (this is 𝐼
for the first layer), and 𝑏[𝑙] is a trainable bias. For the drifter application 
we use the so-called parametric rectified linear unit (PReLU) function, 
first introduced by He et al. (2016), as the nonlinear transfer function 
throughout the model: 

𝑔(𝑥) =
{

𝑐[𝑙]𝑥 for 𝑥 < 0
𝑥 for 𝑥 ≥ 0

(A.2)

where 𝑐[𝑙] is a trainable parameter.
The output of Eq.  (A.1) is an embedding or feature image whose 

values are composed of the convolution at every position of the sliding 
kernel. For image processing applications, this feature image is some-
times interpretable; the kernel may, for example, learn edge detection 
for specific geometric patterns or orientations. Multiple features can be 
learned simultaneously by simply introducing additional kernels and 
applying Eq.  (A.1) separately for each kernel. We train the STN to learn 

https://data.gulfresearchinitiative.org
https://data.gulfresearchinitiative.org
https://data.gulfresearchinitiative.org
https://doi.org/10.7266/N7VD6WC8
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the bivariate Gaussian probability density function (PDF) parameters 
𝜇𝑑𝑥, 𝜇𝑑𝑦, 𝜎𝑑𝑥, 𝜎𝑑𝑦, 𝜌, corresponding to the means, standard deviations, 
and correlation between 𝑑𝑥 and 𝑑𝑦 (Eq. (4)).

Some comments on dimensionality are necessary here. First, CNN 
input need not be only two dimensional, as in the example above. A 
color image having 𝑁𝑐 = 3 color channels can be represented by an 
array of size (𝑁𝑐 × ℎ×𝑤). In this case, the convolution filter 𝑊  will be 
a volume with dimensions (𝑁 [𝑙]

𝑐 × 𝑓 [𝑙] × 𝑓 [𝑙]) and Eq.  (A.1) is summed 
over the third dimension as well. The key is that the resulting feature 
image summarizes in a single matrix patterns detected across all 𝑁𝑐
channels of the original image. While a given kernel will always return 
a 2D array, if 𝑁𝑘 kernels are used, the 𝑁𝑘 outputs are stacked into 
a 3D feature array. Bias 𝑏[𝑙], by convention, has dimensions (𝑁 [𝑙]

𝑘 ×
1 × 1 × 1). Second, the feature array in the example above will have 
dimensions [𝑁 [𝑙]

𝑘 × (ℎ[𝑙−1] −𝑓 [𝑙] +1)× (𝑤[𝑙−1] −𝑓 [𝑙] +1)] as a result of the 
convolution operation. This ‘‘shrinking output effect’’ can be eliminated 
by surrounding input 𝑥 with 𝑝 rows and columns of zeros to preserve 
the size of the image during convolution, where 𝑝[𝑙] = (𝑓 [𝑙] − 1)∕2 is 
called padding. Finally, kernels need neither be square nor of size >1. 
Their shape and size is up to the engineer and ultimately depends on 
the task at hand, as will be seen below.

The CNNs within the STN employ two techniques to facilitate 
learning. Batch normalization is a method of normalizing the output 
of each network layer before passing it through the next layer (Ioffe 
and Szegedy, 2015). Similar to normalizing data before presenting it to 
a neural network, batch normalization helps deep networks optimize 
weights connecting interior layers by re-scaling intermediate feature 
arrays within the network. Second, residual blocks within the network 
help minimize exploding or vanishing gradient problems that are com-
mon in deep neural networks. Residual blocks allow layer activations 
(e.g., 𝑥 in Eq. (A.1a)) to pass deeper into the network by skipping 
intermediate layers (He et al., 2015). While theory dictates that training 
error should decrease monotonically as the number of layers of a 
network increases, this is not always true in practice. In the event that 
layers deep within a network end up being superfluous, the training 
algorithm can have a hard time finding parameters for these layers 
and, as a result, error will begin to increase as training continues. In 
this scenario, residual blocks learn the identity function for these extra 
layers, allowing the engineer to add layers to the network in hopes 
of improving performance without the risk of hampering the training 
process.

A.2. Graph CNN (GCNN)

Graph neural networks were first introduced by Gori et al. (2005) 
and have since evolved into their own family of neural networks (Merk-
wirth and Lengauer, 2005; Scarselli et al., 2009; Zhou et al., 2018; 
Bianchi et al., 2019; Wu et al., 2020) that include graph convolutional 
neural networks (e.g., Gilmer et al., 2017; Hamilton et al., 2017; Kipf 
and Welling, 2017). Let a graph 𝐺 be defined as a set of vertices 𝑉
linked by edges 𝐸: 
𝐺 ≡ (𝑉 ,𝐸) (A.3)

We graphically represent a set of 𝑁𝑑 drifters by compiling 𝑇  tempo-
ral snapshots of feature observations 𝐱 = [𝑑(lon), 𝑑(lat), 𝑑2(lon), 𝑑2(lat)]
for each drifter into an array 𝑉  with dimensions (𝑁𝑓 × 𝑇 ×𝑁𝑑 ), where 
𝑁𝑓  is the number of observed features.

A second edge array 𝐸 encapsulates some relationship between 
linked vertices. Mohamed et al. (2020) use the similarity between nodes 
𝑖 and 𝑗 based on the 𝐿2 distance of their feature vectors 𝐱 for this 
adjacency relationship: 

𝑒𝑖𝑗𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

𝑁𝑓
∑

𝑘=1

1
√

(𝐱[𝑘],𝑖𝑡 − 𝐱[𝑘],𝑗𝑡 )2
, (𝐱[𝑘],𝑖𝑡 − 𝐱[𝑘],𝑗𝑡 )2 ≠ 0

0, otherwise

(A.4)
⎩

18 
Eq. (A.4) produces an (𝑁𝑑 × 𝑁𝑑 ) adjacency matrix quantifying 
the connectivity between every combination of drifters in the time 
snapshot. Stacking 𝑇  adjacency matrices as before generates an edge 
array 𝐸 with dimensions (𝑇 × 𝑁𝑑 × 𝑁𝑑 ). Graph 𝐺𝑡 from Eq. (A.3) 
can therefore be thought of as representing temporal snapshots of the 
oceanic flow captured by the drifters and the compilation of stacked 
graphs 𝐺𝑇  as collectively summarizing the evolution of these flow 
dynamics over some time 𝑇 .

CNNs are easily adaptable to multidimensional data represented in 
mathematical graph form. The GCNN takes as input both a vertex array 
𝑉  and an edge array 𝐸. The edge array is systematically normalized at 
each time step 𝑡 by 

𝐸𝑡 = 𝐷
− 1

2
𝑡 𝐸𝑡𝐷

− 1
2

𝑡 (A.5)

where 𝐸𝑡 = 𝐸𝑡 + 𝐼 , 𝐼 is the identity matrix, and 𝐷𝑡 is the diagonal node 
degree matrix of 𝐸𝑡. Each 𝐸𝑡 is then combined with its corresponding 
𝑉𝑡 by computing the dot product to generate a modified array 𝑉  having 
the same dimensions as 𝑉  but whose values have been adjusted by 
information coming from other nodes. Defining the vertex and edge ar-
rays as node and adjacency arrays and combining them in this manner 
incorporates the ‘‘social’’ component into the STN. Its implementation 
in the pipeline is noted in the next section.

A.3. Social spatio-temporal GCNN

The first notable contribution of the STN model is the custom 
spatio-temporal unit (STU) that contains two components:

1. A spatial convolution subunit operates on the features dimension 
of the input graph. Convolving with 𝑁𝑘 kernels of size (𝑁𝑓×1×1)
with no padding produces an embedding graph 𝑎 (from Eq. 
(A.1)) with dimensions (𝑁𝑘 × 𝑇 × 𝑁𝑑 ), where 𝑁𝑘 = 5 now 
represents the PDF parameters from Eq. (4) for each drifter. The 
embedding graph is then combined with the adjacency array 𝐸
as described in Section A.2 resulting in a modified feature graph 
𝑉  having dimensions (𝑁𝑘 × 𝑇 ×𝑁𝑑) where the elements at each 
time step have been modified to incorporate information from 
nearby drifters.

2. A temporal convolution subunit operates across the time dimen-
sion of the output graph from the spatial convolution subunit 
using 𝑁𝑘 kernels of size (𝑁𝑘 × 3 × 1) to convolve three temporal 
snapshots for a single drifter at a time. This layer applies the 
necessary padding to preserve the size of the time dimension 
and produces a new output graph with the same dimensions as 
before (𝑁𝑘×𝑇 ×𝑁𝑑 ) where each element has been adjusted again 
to incorporate information about the adjacent time steps. For 
simplicity, the output here can also be denoted 𝑉  since we need 
only to differentiate between it and the original graph 𝑉 .

The rationale behind these choices of convolution methods bears 
explanation. Recalling that the convolution operation extracts patterns 
across all channels and projects them onto a new single channel feature 
matrix, it follows that the choice of a (𝑁𝑓 × 1 × 1) kernel in the 
spatial convolution subunit is intended to look across the observations 
dimension (i.e., the features) for patterns that occur in all of the 
observed variables. This unit-size kernel prevents information from 
being pooled between drifters or time steps and is an example of a so-
called ‘‘network-in-network’’ (Lin et al., 2013). Note that padding is not 
necessary to preserve the shape of the original array here. These 𝑁𝑓
kernels ultimately learn the Gaussian PDF of the spatial observations 
based on samples from the distribution by producing 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦, 𝜌 (see 
Eq. (4).) The temporal convolution subunit, on the other hand, looks for 
patterns across the new parameters and convolves three consecutive 
time steps at a time for each drifter. These kernels essentially learn 
the temporal trends in adjacent time steps. Note that the feature array 
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𝑉  is not necessarily physically interpretable at this point beyond the 
description just presented.

The social component of the STN is implemented in between these 
two STU subunits by combining 𝑉  with 𝐸. 𝐸 is essentially a weight 
matrix where, following from Eq. (A.4), larger 𝑒𝑖𝑗 indicates greater 
connectivity allowing more information to be ‘‘transferred’’ between 
drifters 𝑖 and 𝑗. The general equation for the STN can be given by: 

𝑓 (𝑉 (𝑙), 𝐸) = 𝑔(𝐷− 1
2 𝐸𝐷− 1

2 𝑉 (𝑙)𝐖(𝑙)) (A.6)

where 𝐖(𝑙) contains the trainable parameters at layer 𝑙 and 𝑔 is the 
PReLU activation function described above (Eq. (A.2)). Thus, a message 
passing operation of the GNN performs neighbor averaging whereby 
information is shared between similarly behaving drifters, as it was 
in the original pedestrian problem for people walking together. This 
‘‘social’’ sharing of information is the second notable contribution of 
this architecture as it relates to the drifter prediction problem.

The final task of the STN is to forecast the PDF parameters into 
the future. This is done with a second time-extrapolating CNN. Instead 
of convolving over the features dimension to look for patterns present 
in each channel, this CNN convolves over the time dimension using 
kernels of size (3 × 𝑇 × 3) and padding 𝑝 = 1 to preserve the array di-
mensions. The number of kernels used here corresponds to the number 
of future time steps 𝑇forecast one wishes to predict. The final output is 
of size (𝑁𝑘 × 𝑇forecast ×𝑁𝑑 ).

We close by pointing out that an important aspect of CNNs is that 
they only require the number of channels to be constant across every 
example. Thus, a CNN trained to learn single-channel grayscale images 
can process an image of any dimensions, as long as it has a single color 
channel. Because the STN operates on both features and time, these 
dimensions must be the same across all examples. The big advantage 
here is that the STN is not sensitive to the number of drifters, provided 
each drifter contains the same number of observed variables and covers 
the same period of time. Further, the STN is entirely insensitive to the 
order in which the drifters are included in 𝑉 , provided 𝐸 is constructed 
with the drifters in the same order as they appear in 𝑉 . These two 
factors make it easy to train the STN on real data sets where the number 
of active drifters is seldom constant throughout an entire experiment.

Data availability

Data will be made available on request.
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