Downloaded from https://royal societypublishing.org/ on 18 August 2021

PROCEEDINGS A

royalsocietypublishing.org/journal/rspa

l.)

Research

updates

Cite this article: Gupta A, Lermusiaux PFJ.
2021 Neural closure models for dynamical
systems. Proc. R. Soc. A 477: 20201004.
https://doi.org/10.1098/rspa.2020.1004

Received: 7 January 2021
Accepted: 16 July 2021

Subject Areas:
computer modelling and simulation, artificial
intelligence, differential equations

Keywords:

delay differential equations,
reduced-order-model, turbulence closure,
ecosystem modelling, data assimilation,
machine learning

Author for correspondence:
Pierre F. J. Lermusiaux
e-mail: pierrel@mit.edu

Neural closure models for
dynamical systems

Abhinav Gupta and Pierre F. J. Lermusiaux

Department of Mechanical Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

AG, 0000-0002-9197-0736; PFJL, 0000-0002-1869-3883

Complex dynamical systems are used for predictions
in many domains. Because of computational costs,
models are truncated, coarsened or aggregated. As the
neglected and unresolved terms become important,
the utility of model predictions diminishes. We
develop a novel, versatile and rigorous methodology
to learn non-Markovian closure parametrizations
for known-physics/low-fidelity models using data
from high-fidelity simulations. The new neural closure
models augment low-fidelity models with neural delay
differential equations (nDDEs), motivated by the
Mori-Zwanzig formulation and the inherent delays
in complex dynamical systems. We demonstrate
that neural closures efficiently account for truncated
modes in reduced-order-models, capture the effects
of subgrid-scale processes in coarse models and
augment the simplification of complex biological and
physical-biogeochemical models. We find that using
non-Markovian over Markovian closures improves
long-term prediction accuracy and requires smaller
networks. We derive adjoint equations and network
architectures needed to efficiently implement the
new discrete and distributed nDDEs, for any time-
integration schemes and allowing non-uniformly
spaced temporal training data. The performance of
discrete over distributed delays in closure models is
explained using information theory, and we find an
optimal amount of past information for a specified
architecture. Finally, we analyse computational
complexity and explain the limited additional cost
due to neural closure models.

1. Introduction

Most models only resolve spatio-temporal scales,
Electronic supplementary material is available processes and field variables to a certain level of accuracy
online at https://doi.org/10.6084/m9.figshare.

€.5545185.

because of the high computational costs associated
with high-fidelity simulations. Such truncation of scales,
processes or variables often limit the reliability and

THE ROYAL SOCIETY

PUBLISHING

© 2021 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2020.1004&domain=pdf&date_stamp=2021-08-18
mailto:pierrel@mit.edu
https://doi.org/10.6084/m9.figshare.c.5545185
https://doi.org/10.6084/m9.figshare.c.5545185
http://orcid.org/0000-0002-9197-0736
http://orcid.org/0000-0002-1869-3883

Downloaded from https://royal societypublishing.org/ on 18 August 2021

usefulness of simulations, especially for scientific, engineering and societal applications where
longer-term model predictions are needed to guide decisions. There are many ways to truncate
high-fidelity models to low-fidelity models. Examples abound and three main classes of
truncations are: evolving the original dynamical system in a reduced space, e.g. using reduced-
order-models (ROMs) [1,2]; coarsening the model resolution to the scales of interest [3,4]; and
reducing the complexity or number of state variables, components and parametrizations [5-7].
In many applications, the neglected and unresolved terms along with their interactions with
the resolved ones can become important over time, and a variety of modelling techniques have
been developed to represent the missing terms. Techniques that express these missing terms as
functions of modelled state variables and parameters are referred to as closure models. A main
challenge is that no one closure approach to date is directly applicable to all four main classes of
model truncations. Another is that closure models are only well defined for either linear problems
or simple cases. Finally, they can easily become ineffective in the face of nonlinearities.

Owing to the explosion of use of a variety of machine learning methods for solving or
simulating dynamical systems, a number of data-driven methods have been proposed for the
closure problem. Most of them attempt to learn a neural network (NN) as the instantaneous
map between the low-fidelity solution and the residual of the high- and low-fidelity solution,
or their residual dynamics [8-12]. They often use recurrent networks such as long-short term
memory networks (LSTMs), gated recurrent units (GRUs), etc., with justification based on the
Mori-Zwanzig (MZ) formulation [13-15] and embedding theorems by Whitney [16] and Takens
[17]. These approaches do not however take into account accumulation of numerical time-
stepping error in the presence of NNs during training. Moreover, one requires either access
to the equations describing the high-fidelity model or frequent enough and uniformly spaced
high-fidelity data to be able to compute the time derivative of the state with a high level of
accuracy. Such a requirement on the training data can be a luxury in a lot of scenarios. The
requirement of very frequent snapshot data of the system is also true for methods which achieve
model discovery using sparse-regression and provide interpretable learned models [8,18,19].
All of the above issues are addressed by using neural ordinary differential equations (nODEs;
[20]) and some researchers recently used nODEs for closure modelling. Some directly learn
the ODE system from high-fidelity simulation data without using the available low-fidelity
models [21], which could lead to the requirement of bigger NNs. Others combine nODEs with
model discovery using sparse-regression [22] or only learn the values of parameters in existing
closure models [23]. Nearly all existing studies primarily only attempt to address the closure
for ROMs. Finally, the existing machine learned closure models are not yet used for long-term
predictions, i.e. forecasting significantly outside of the time period to which the training data
belonged to.

In the present study, we propose a new neural delay differential equations (nDDEs)-based
framework to learn closure parametrizations for low-fidelity models using data from high-fidelity
simulations and to increase the long-term predictive capabilities of these models. Instead of using
ODEs, we learn non-Markovian closure models using delay differential equations (DDEs). We
base the theoretical justification for using DDEs on the MZ formulation [13-15] and the presence
of inherent delays in many dynamical systems [24], especially biological systems [25,26]. We refer
to the new modelling approach as neural closure models. We demonstrate that our methodology
drastically improves the predictive capability of low-fidelity models for the main classes of
model truncations. Specifically, our neural closure models efficiently account for truncated modes
in ROMs, capture the effects of subgrid-scale processes in coarse models and augment the
simplification of complex mathematical models. We also provide adjoint equation derivations and
network architectures needed to efficiently implement nDDEs, for both discrete and distributed
delays. In the case of distributed delays, we propose a novel architecture consisting of two
coupled NNs, which eliminates the need for using recurrent architectures for incorporating
memory. We find that our nDDE closures substantially improve nODE closures and outperform
classic dynamic closures such as the Smagorinsky subgrid-scale model. We explain the better
performance of nDDE closures based on information theory and the amount of past information

YOOLOZOZ L ¥ 205§ 204g edsy/jeuinof/bioBuiysigndiaposiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

being included. Our first two classes of simulation experiments use the advecting shock problem
governed by Burger’s partial differential equation (PDE), with low-fidelity models derived
either by proper-orthogonal-decomposition Galerkin projection (POD-GP) [27] or by reducing
the spatial grid resolution. Our third class of experiments considers marine biological models
of varying complexities [28-30] and then their physical-biogeochemical extensions, with low-
fidelity models obtained by aggregation of components and other simplifications of processes
and parametrizations. Finally, we analyse computational complexity and explain the limited
additional computational cost due to the presence of neural closure models.

2. Closure problems

The need for closure modelling in dynamical systems arises for a variety of reasons. They often
involve computational costs considerations, but also include the lack of data to resolve complex
real processes, the limited understanding of fundamental dynamics, and the inherent nonlinear
growth of uncertainties due to model errors and predictability limits (e.g. [31-34]). In this section,
we examine three main classes of low-fidelity models that can require closure modelling.

(a) Reduced order modelling

Let us consider a nonlinear dynamical system with state variable u € RN and the full-order-model
(FOM) dynamics governed by

dz(:) — Lu(t) + h(u(t)), with u(0) = ug, @.1)
where L e RN*N is the linear, and h(-): RN — RN the nonlinear, part of the system. We are
mainly interested in dynamical systems whose solution could be effectively approximated on
a manifold of lower dimension, V € R™ c RN (e.g. [35]). Ideally, the dimension of this manifold
is much smaller than that of the system, i.e. m < N. For the classic Galerkin-based reduced-order
modelling, a linear decomposition of the form

u(t)~ii + Va, 2.2)

is used, where i € RN is a reference value, the columns of V =[vy, ..., vm] € RN*" a basis of the
m-dimensional subspace V, and a € R" the vector of coefficients corresponding to the reduced
basis. A popular choice for this basis is the POD that defines the subspace such that the manifold
V preserves the variance of the system as much as possible when projected on V for a given m. The
reference value (i1) is then commonly chosen as the mean of the system state, in order to prevent
the first reduced coefficient from containing the majority of the energy of the system and to help
stabilize the reduced system [36].

Now, substituting equation (2.2) into equation (2.1), and projecting the result on the
orthonormal modes V, then we obtain the following set of ordinary differential equations for
the coefficients a:

% =VTLVa+ VTh(ii 4+ Va) + VT Lii, with a(0) = VT (ug — ii). (2.3)

This m-dimensional system, with m < N, is computationally much cheaper than the original
FOM equation (2.2). This method of dimensionality reduction is commonly referred to as the
POD-GP method. It can suffer from a number of issues. First, the truncated modes can play an
important role in the dynamical behaviour of the system, and neglecting them can thus lead
to a very different forecast [1]. Second, the error in the reduced state may be simply too large
for truncation, i.e. the POD reduction is not efficient. Third, if steady POD are employed, they
may quickly become irrelevant for the evolving system state [35,37,38]. To address these issues,
several methods try to represent the effect of the truncated modes. The most common approaches
introduce a nonlinear parametrization of the coefficients (e.g. [39]) in equation (2.3), however,
they are not yet generally applicable to all classes of closures.

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

A geometric interpretation of the goal of closure modelling for ROMs is provided in the
electronic supplementary material (Section SI-1).

(b) Subgrid-scale processes

A key decision while setting up any numerical simulation is the selection of spatio-temporal
resolution, which is in general limited by the computing power available. Using a coarse
resolution (low-fidelity) model may however lead to a number of undesired artefacts, such as
missing critical scales and processes for longer-term predictions or numerical diffusion that causes
unintended or unacceptable results [40,41]. These artefacts become especially important in the
case of ocean models. For example, present-day global observing systems and global model
solutions only resolve open-ocean mesoscale processes (O(10 — 100 km)), but the submesocale
(subgrid-scale) processes do have global consequences, in relation to the mechanisms of energy
dissipation in the general circulation, vertical flux of material concentrations, and intermediate-
scale horizontal dispersal of materials [42—44]. The neglected and unresolved scales along with
their interactions with the resolved ones are then at the core of closure parametrizations. Most
present oceanic models consist of a nonlinear system of PDEs, each of a nonlinear advection
type, supplemented by other possible diagnostic nonlinear equations and boundary conditions.
There is however no unique way of defining such parametrizations and multiple approaches such
as non-dimensional analyses, physical balance hypotheses, statistical correlation constraints and
other empirical methods are commonly employed to develop closure models. Similar statements
can be made for atmospheric, Earth system and climate models [45]. For all these applications, a
general approach for subgrid-scale closures would thus be most useful.

(c) Simplification of complex dynamical systems

Owing to incomplete understanding and limited measurements, it is common when modelling
real dynamical systems in nature and engineering that the dynamics cannot be accurately
explained just by using conservation laws and fundamental process equations. We refer to such
systems as complex dynamical systems. The number of candidate models and equations can
then be almost as large as the number of modellers. The resulting models also vary greatly
in terms of their complexity. More complex models can capture key processes and feedbacks.
Complexity is increased by adding more parameters and parametrizations to the existing
components (state variables) of the dynamical model, but at some point, it quickly becomes
inevitable to add and model new components to capture the underlying real processes accurately,
hence further increasing model complexity [29,46,47]. This is common, for example, in marine
ecosystem models, where simpler models only resolve the broad biogeochemical classes, while
more complex models capture detailed sub-classes [6,7]. Increasing the number of components
however can come at great computational cost, can increase the overall uncertainty and can
lead to loss of accuracy or stability due to the nonlinearities. Also, the unknown parameters for
models with more components are calibrated from available data and the optimization process
and parameter estimation quickly become challenging with the increase in complexity, due to the
simultaneous explosion in the number of unknown parameters [48]. Thus, instead of adding more
unknown parametrizations or increasing the number of components, one might use adaptive
models [49,50] and in general the present neural closure models with time delays to incorporate
the effects of missing processes in low-complexity models, enabling them to adapt and emulate
the response from high-complexity models.

3. Theory and methodology

In this section, we develop the theory and methodology for learning data-assisted closure models
for dynamical systems. We first review the MZ formulation [13-15] which derives the exact
functional form of the effects of truncated dynamics for common reduced models. Unfortunately,

YOOLOZOZ L ¥ 205§ 204g edsy/jeuinof/bioBuiysigndiaposiefos H

Downloaded from https://royal societypublishing.org/ on 18 August 2021

apart for very simple linear dynamical systems, the use of this formulation is challenging without
making unjustified approximations and simplifications. We then discuss the presence of delays
in complex dynamical systems, and their impact on modelling [25]. Motivated by the MZ
formulation and the presence of delays, we finally derive the new nDDEs and neural closure
models, including adjoint equations and network architectures, for both discrete and distributed
delays.

(@) MZformulation and delays in complex dynamical systems
Without loss of generality, the full nonlinear dynamical system model is written as

dug(f)
dt

The full-state vector is u = ({ux}), k € § =9 U 4l, where R is the set corresponding to the resolved
variables (e.g. coarse field or reduced variables), and il the set corresponding to the unresolved
variables (e.g. subgrid field or complement variables), which as a union, §, form the set for
full space of variables. We also denote u = {ii, i1}, where it = ({u}), k€ R and it = ({ux}), kel
Similarly, 1o = {ilo, fip}, with itg = ({gr}), € R and 119 = ({ugx}), k € Ll.

The MZ formulation allows rewriting the above nonlinear system of ODEs as

=Ry (u(t),t), withu(0)=ug, ke3. 3.1)

3 . o
—ug(uo, £) = Ry(i(uo, £)) + Fr(uo,) + J Ky(@(ug, t —s),8)ds, ke, (3.2)
ot ——— —— 0
Markovian Noise
Memory

where Ry is as in the full model dynamics (equation (3.1)). Importantly, the above equation is an
exact representation of equation (3.1) for the resolved components. A derivation is provided in
the electronic supplementary material (Section SI-2). Equation (3.2) provides useful guidance for
closure modelling. The first term in equation (3.2) is the Markovian term, dependent only on the
values of the variables at the present time, while the closure consists of two terms: the noise term
and a memory term that is non-Markovian. We can further simplify equation (3.2) by applying the
P projection and using the fact that the noise term lives in the null space of P for all times, which
could be easily proved. For ROMs with initial conditions devoid of any unresolved dynamics, i.e.
iip =0 and thus up =ilg, we then retain the exact dynamics after the projection step, noticing in
this case that Puy(ug, t) = uy(iig, t), Vk € R,
t

%uk(ﬁo, t) = PRy (ii(tig, t)) + P JO Ki(ii(ihg, t —s),5)ds, keR. (3.3)
Hence, for such systems, the closure model would only consider the non-Markovian memory
term. The above derivation of the MZ formulation has been adapted from [12,14,15].

The MZ formulation clearly shows that a non-Markovian closure term requiring time-lagged
state information is theoretically needed to model the unresolved or missing dynamics. This
theoretical basis directly applies to the first two classes of low-fidelity dynamical systems (§2),
ROMs and coarse resolution models. For the third category, the simplification of complex
dynamical systems, we emphasize biological and chemical systems. Many are modelled using
ODEs, with one state variable per biological or chemical component. Such ODEs implicitly
assume that information between state variables is exchanged instantaneously. In reality,
however, there are often time delays for several reasons. First, changes in populations or
reactions have non-negligible time scales (e.g. [24,51,52]). Such time scales are introduced in more
complex models by modelling intermediate state variables. Hence, the time response of lower-
complexity models can be comparable with that of high-complexity models only by explicitly
introducing delays [25,26,52,53]. Second, many reactive systems are modelled assuming smooth
concentration fields of state variables governed by PDEs with fluid flow advection and / or mixing,
leading to advection—diffusion-reaction PDEs [54,55]. In that case, simplified models still require
time delays due to the neglected reactive or biogeochemical dynamics but now also due to

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

truncated modes and/or subgrid-scale processes of numerical models. For all of these reasons,
the need for memory-based closure terms is clearly justified to represent complex dynamical
systems.

There are some results for data-assisted/data-driven closure modelling based on the MZ
formulation. Some schemes create a coupled system of stochastic differential equations using
appropriate hidden variables for approximate Markovization of the non-Markovian term [56,57].
Others use a variational approach to derive nonlinear parametrizations approximating the
Markovian term [58]. Schemes using machine learning to learn non-Markovian residual of the
high- and low-fidelity dynamics limit themselves to specific functional forms for the residual
term, a simple Euler time-stepping scheme, and very frequent and uniformly spaced training
data [8,11,12]. They also lack the rigorous use of the theory for time-delay systems [59].

(b) Neural delay differential equations

The non-Markovian closure terms with time-lagged state information lead us to DDEs [60].
DDEs have been widely used in many fields such as biology [61,62], pharmacokinetic—
pharmacodynamics [63], chemistry [64], economics [65], transportation [66], control theory [67]
and climate dynamics [68,69], etc. Next, we summarize the state of the art for learning and solving
differential equations using NNs and develop theory and schemes for neural DDEs including
adjoint equations for backpropagation.

The interpretation of residual networks as time integration schemes and flow maps for
dynamical systems has led to pioneering development of nODEs [20]. A nODE parametrizes an
ODE using an NN and solves the initial value problem given by

du(t)
dt

=fN(u(t), t;0), te(0,T], with u(0)=1u,, (3.4)

where fnN is the prescribed NN and 6 are the weights. Starting from the initial conditions, the
nODE (equation (3.4)) is integrated forward in time using any time-integration scheme, and
then gradients are computed based on a loss function using the adjoint sensitivity method.
The gradient computation boils down to solving a second ODE backwards in time. Using
standard backpropagation for equation (3.4) has however several issues: it would be very
memory expensive as one needs to store the state at every time step; its computational
cost would increase when using higher-order time-integration or implicit schemes; and it
might become infeasible if the forward time-integration code does not support automatic
differentiation. The adjoint method, however, provides a backpropagation for nODEs [20]
that is memory efficient and flexible as it treats the time-integration scheme as a ‘black-box’.
In our case, we need to incorporate state-delays. Though extending the nODE framework
to incorporate DDEs comes under the ambit of universal differential equations (UDEs) [70],
deeper investigations are warranted. First, the UDEs are presently implemented using the
Julia library DiffEqFluxjl [71], which can perform automatic adjoint equation solves, but
other popular open-source languages such as Python and R, and ML-Frameworks such as
TensorFlow [72], PyTorch [73], etc., would require explicit derivation and coding of the
corresponding adjoint equations. Second, we need to study two different types of DDEs, the
discrete and distributed delays, which it turns out require different architectures. Next, we thus
develop the theory and schemes for efficient implementation of nDDEs in any programming
language.

(i) Discrete delays
The most popular form of DDEs is

du(t)
dt

= Fu(®), u(t — 1), ..., ult —), £), te(0,T], with u(t)=h(t), t <0, (3.5)

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

where 11, ..., tx are K number of discrete-delays (discrete DDEs). Instead of a single initial value
as in the case of ODEs, DDEs require specification of a history function, k(t). Owing to the presence
of a given fixed number of delays, we can parametrize the above system by replacing the time-
derivative function with potentially any type of NN. For example, to use fully-connected NNs we
would concatenate all the delayed states vertically to form the input vector, or concatenate them
horizontally to form an input matrix for a convolutional NN. However, recurrent NN (RNN)
architectures, such as simple-RNNs, LSTMs, GRUs, etc., are ideal and most efficient for our need
due to the time-series nature of the delayed states. We can assume that the discrete delays are
evenly spaced (this is not a hard requirement as we can easily extend schemes to irregularly
spaced discrete-delays using ODE-RNNSs [74], but for brevity we make this assumption) and use
an RNN with weights 6. Hence, our new discrete-DDE system can be written as,

? =fraN@@), u(t — 1), ..., ut —), t;0), te€(0,T], withu(t)=hn(t), t<0, (3.6)
where frnn(e; 0) is the recurrent architecture. We refer to this parametrization of discrete DDEs as
discrete-nDDE. The graphical representation of equation (3.6) in time-discretized form is depicted
in figure 1a. Let data be available at M times, T < --- < Tjs < T. We then optimize the total loss
function given by, £ = fg Zfi 1 l(u(t))s(t — T;) dt, where [(e) are scalar loss functions such as mean-
squared-error (MSE), and §(t) is the Kronecker delta function. To perform this optimization with
any gradient descent algorithm, we need the gradient of the loss function w.r.t. the weights of the
RNN, 6. Using the adjoint sensitivity method [75] to compute the required gradients, we start by
writing the Lagrangian for the above system

T 0
L= £0u(0) + || ATO)dh0) — et ut =)., =), o) e+ | T 00t = i)
(3.7)

where A(t) and pu(t) are the Lagrangian variables. In order to find the gradients of L w.r.t. 6, we
first solve the following adjoint equation (for brevity we denote, 3/3(e) = d(,) and d/d(e) =d(4)),

M
AT (1) = Z Qupl()5(t — T — AT (D3 fran(ult), ult — o), . .., u(t — %), ;6)
i=1
K
=Y T+ 1) et +), u(t — 11+ 7)), . ult — Tk + 7)), E+ 750), t€[0,T)
i=1

At)=0, t=>T.

(3.8)
Details of the derivation of the above adjoint equation (3.8) are in the accompanying electronic
supplementary material. Note that equation (3.8) needs to be solved backward in time, and one
would require access to u(t), 0 <t <T. In the original nODE work [20], equation (3.6) is solved
backward in time and augmented with the adjoint equation (3.8), so as to shrink the memory
footprint by avoiding the need to save u at every time step. Solving equation (3.6) backward
can however lead to catastrophic numerical instabilities as is well known in data assimilation
[76,77]. Improvements have been proposed, such as the ANODE method [78], but they are not
applicable in the case of DDEs. In our present implementation, in order to access u(t), 0 <t<T,
while solving the adjoint equation, we create and continuously update an interpolation function
using the u obtained at every time step as we solve equation (3.6) forward in time. To be more
memory efficient, we can, for example, use the method of checkpointing [79], or the interpolated
reverse dynamic method [80]. After solving for A, we can compute the required gradients as

T
dgL=— L AL(6)3g fran (u(t), u(t — 11), . .., u(t — %), £;0) dt. (3.9)

Finally, using any gradient descent algorithm, we can find the optimal values of the weights 6.

YOOLOZOZ L ¥ 205§ 204g edsy/jeuinof/bioBuiysigndiaposiefos H

Downloaded from https://royal societypublishing.org/ on 18 August 2021

Figure 1. Graphical representation of the time discretized neural delay differential equations (nDDEs). The blocks labelled RNN
and DNN represent any recurrent or deep neural-network architectures, respectively. The block labelled | symbolizes any time-
integration scheme. (a) Discrete-nDDE, (b) distributed-nDDE. (Online version in colour.)

(ii) Distributed delays

In some applications, the delay is distributed over some past time period [81],

du(t) t=n .

T u(t), g(u(r),t)dr,t), te(0,T], withu(t)=h(t), t=<O0. (3.10)
f*'[z

It should be noted that the discrete DDEs can be written as a special case of distributed DDEs

using dirac-delta functions. We can approximate the two functions f and g using two different

NN, and rewrite the above equations (3.10) as our new coupled discrete DDEs,

d
ZY) = fan(u(), y(#), £0), te(0,T]
d
zi(:) =ann(ult =7t = 1i¢) —gnn(ut -) = 2;¢), 1€ (0, T] (3.11)
with u(t)=h(t), w©<t<0, andy(0)= J_tl ennN(h(b), £ ¢) dt,

where fan(e; 0) and gnN(e; @) are the two NNs parametrized by 6 and ¢, respectively. We refer
to this parametrization of distributed DDEs as distributed-nDDE. The graphical representation of
the above system (equations (3.11)) in time-discretized form is depicted in figure 1b. Interestingly
in the case of distributed-delays, we obtain a novel architecture consisting of two coupled NN,
which enables us to incorporate memory without the use of any recurrent networks such as RNN,
LSTMs, GRUs, etc. We can consider fyn as the main network, and gnn as the auxiliary network.
Again, we define a scalar loss function given by £ = fg f\il l(u(t))s(t — T;) dt for the available
data at M times, T1 < - - - < Ty < T. The Lagrangian for the above system is,

T
L= L(u(®)) + L AT dru() — fan (), y(0), £6)) dt

T
+ JO wl (O@sy(t) — gnn(u(t — 71), ¢ — 71;¢) + SNN(U(Et — 2), £ — T2;¢)) dt

—T

0 1
[T - hoya+aT (50 - | ot sorar), 6.12)

where A(t), u(f), y (t) and « are the Lagrangian variables. In order to find the gradients of L w.r.t.
the parameters of the two NNs, we first solve the following coupled adjoint equations backward

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

in time,
M
AT ()= dupl(®)s(t — Ti) — AT (Hdumfan(u®), y(b), t;0)
i=1
— 1T (t+ T)dumeNN (), £ ¢) + 1T (t + 2)dumgNn(u(t),), t€[0,T) (3.13)
dipn” (1) = =27 (O3 fan(u(®), y(8), £0), t€[0,T)
and Af)=0 and wT(®)=0, t>T.

Details of the derivation of the above adjoint equation (3.13) are in the electronic supplementary
material. For accessing u values while solving the adjoint equations, we use the same approach
as for our discrete-nDDE (§3(b)((i))). After solving for A and x, we can compute the required
gradients as

T
doL.= — JO AT (1) fan (), y(8), 0) i

T
and dpL=— Jo 1T () (0pgNN(u(t — 1), t — 11;) (3.14)

— dpgNN(u(t — T2), t — T2;9))dt — T (0) J_ 1 dpgNN(h(t), £; @) dt.

-1

Finally, using any gradient descent algorithm, we can optimize the NNs fyn and gnn, and find
the optimal values of the weights 6 and ¢.

(c) Neural closure models

Now that we have the framework for representing DDEs using NNs, we can replace the non-
Markovian memory term in equation (3.3) using nDDEs to obtain a hybrid closure model, which
could be trained using data from high-fidelity simulations or real observations. The modified low-
fidelity dynamical system with the nDDE closures, which approximates the high-fidelity model,
would be given by

dii(t . AN A N . N N
B _ pReae)) + froanit) it — 1), it —), 56) with Q) =70, t<0
ot —_— (3.15)
Low-fidelity Neural closure
using discrete-delays, or by,
a(r) . . =n . A .
= PR(u(t)) + fNn u(t),J gnN(i(r), T;¢)dr, 160) with u(0)=ip, t=<0
ot —_— f—1 (3.16)

Low-fidelity
Neural closure

using distributed-delays. The initial conditions at t =0, ii, can be used for t <0 as well, as an
approximation. Apart from the NN architectures, the amount of delay to be used also becomes a
hyperparameter to tune. These novel neural closure models provide extreme flexibility in designing
the non-Markovian memory term in order to incorporate subject matter expert insights. At the
same time, we can also learn the unknown parts of the Markovian low-fidelity model using
nODEs if the need arises. Next, we will compare the performance and advantages of using no-
delays (nODEs), discrete-delays (discrete-nDDEs) and distributed-delays (distributed-nDDEs) in
closure terms for various low-fidelity dynamical systems.

4. Application results and discussion

After presenting the main classes of low-fidelity dynamical models that require closure (§2), we
derived a novel, versatile and rigorous methodology for learning and modelling non-Markovian
closure terms using nDDEs (§3). The resulting neural closure models have their underpinning in

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

the MZ formulation and the presence of inherent delays in models of complex dynamical systems
such as biogeochemical systems. Now, we evaluate the performance and advantages of these new
neural closure models over those of neural ODEs (Markovian).

We run experiments encompassing each of the classes of low-fidelity models (§2). For each
experiment, we follow the same training protocol for nODEs (no-delays) and the two nDDEs,
discrete-nDDE (discrete-delays) and distributed-nDDE (distributed-delays), closure models. The
training data are regularly sampled from high-fidelity simulations in all experiments, but
this is not a requirement. We use performance over the validation period (past the period
for which high-fidelity data snapshots are used for training) to fine tune various training-
related hyperparameters. The final evaluation is based on much longer-term future prediction
performance, well past these periods. As the field of scientific machine learning (SciML; [82])
is relatively new, the metrics for performance evaluation vary greatly. On the one hand, many
learning studies randomly sample small time sequences from a given period for which high-
fidelity data are available, and then split them into training, validation and test sets [21]. As the
training, validation and test sets belong to the same time domain, hence, the learned networks
are only evaluated for their interpolation performance and predicting the unseen data becomes
easy for them. On the other hand, for the few studies where the training and test (prediction)
periods do not overlap, the prediction period is often much shorter than the training period
[83]. In the present work, we consider a more stringent evaluation. First, our validation period
does not overlap the training period. Second, our future prediction period is equal to or much
longer than the training and validation periods, and has no overlap with either. Hence, we
strictly measure the out-of-sample/generalization performance of the learned network for its
extrapolation capabilities into the future. Of course, other evaluation metrics are possible and
there is indeed a need for standardization of evaluation procedures in the SciML community. In
the rest of the paper, for all the figure, table and section references prefixed with ‘SI-’, we direct
the reader to the electronic supplementary material.

(a) Experiments 1: advecting shock—reduced order model

For the first experiments, neural closure models learn the closure of POD-GP-based reduced order
model of the advecting shock problem. The FOM for this problem is given by Burger’s equation

ou n ou 9%u
— 4+uUu—=v—,
at ax 32x

where v is the non-dimensional diffusion coefficient. The initial and boundary conditions are

(4.1)

X
1+ /Tty exp(Re(x2/4)) ’
where Re=1/v and ty = exp(Re/8). Let the POD of the state variable u(x,) be given by, u(x, t) =
i(x) + it ui(x)a;(t), then we obtain the reduced-order equations as outlined in §2a,

day. <_81_4 > < ol > <_8uj > < u; >
=—\Uo Up) — A\ Uj——, U) — A\ U——, U) — a;a; (Uj——, Uk

u(x,0)=

u(0,t)=0 and u(L,t)=0, (4.2)

dr ax ax ax ax
9% 92u;) _
+ Vo gk +a; vt) with a(0) = ((u(x, 0) — u(x)), ur(x)). (4.3)

We solve the FOM (equations (4.1) and (4.2)) for Re = 1000, L = 1 and maximum time T =4.0. The
singular value decomposition of this solution form the POD modes for the ROM. We only keep the
first three modes, which capture 60.8% of energy, and evolve the corresponding coefficients using
equation (4.3), thus requiring a closure. The high-fidelity or true coefficients are obtained solving
the FOM (equation (4.1)) with initial conditions without the contribution from the unresolved
modes, i.e. u(x,0) = u(x) + 21‘3:1 1;(x)a;(0), and projecting the obtained solution onto the first three
modes. For comparison, we also present the true coefficients in figure 2, which is what the ROMs
with neural closure are trying to match. For this true data generation, we solve the FOM using an

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

(@) coefficients (b) coefficients
LOTN nODE (no-delays) LOIN discrete-nDDE
05 \\ 0N g7 R 05 \\ S
. / ¥ sassesssssne B / Y ~
) \ ~ - / \ Tesentess vy
< ' L < i N i
0 i b 0 ry AL
/ e, ~ / Ao,
-0.5 N T T, o == -0.5 1N e T
L enn i, 4 LR S T
-1.0 . . —_— true coeff. 1 -1.0 bz
0 1 2 3 4 5 6 POD-GP coeff. 1 1 2 3 4 5
t learned coeff. 1 t
s true coeff. 2 .
training 3
ming POD-GP coeff. 2 traming |
. learned coeff. 2 (d)
(© coefficients true coeff. 3 error
LS e B - POD-GPcoeff.3 . (.3] e
< distributed-nDDE leamed cott. 3 B ——POD-GP <
i N - ¥ § - HODE -
0.5 w !y ™ o (.| ——discrete-nDDE P
1 Ve ree e T g 7 e distributed-nDDE e
QN O I s = r’ /’l',
,\ 5] J PR
< \&.-":Ellllllll..lly 2 0.1 f”‘,
-0.5 5 e — a 5
Ny = ~_ -~ 5 /4
- ~ . o
1o - 0 bttt
0 1 2 3 4 5 0 1 2 3 4 5 6
t t
training training
« >

Figure 2. Comparison of the true coefficients (solid) with the coefficients from the POD-GP ROM (dashed-dot) and from
the POD-GP ROMs augmented with the three different learned neural closure models at the end of training (dashed). For
each neural closure, the training period is from t = 0 to 2.0, the validation period from t = 2.0 to 4.0 and the future
prediction period from t = 4.0 to 6.0. (a) Neural ODEs with no-delays (nODE); (b) neural DDEs with discrete-delays (discrete-

nDDE); and (c) neural DDEs with distributed-delays (distributed-nDDE). (d) Evolution of root-mean-squared-error (RMSE(t) =

\/ (1/3) ZL |a,fmd(t) — a}’“e(t)|2) of coefficients from the four different ROMs. These results correspond to the architectures
detailed in the electronic supplementary material, table SI-1. (Online version in colour.)

explicit Runge-Kutta (RK) time-integration of order (4)5 (dopri5; [84]) with adaptive time-stepping
(storing data at time steps of At=0.01) and grid spacing of Ax=0.01, using finite-difference
schemes (upwind for advection and central difference for diffusion).

Our three test periods for the advecting shock ROM (equation (4.3)) with three modes are as
follows. For training our neural closure models, we only use the true coefficient values up to time
t =2.0. For validation (used only to tune hyperparameters), we use true coefficient values from
t =2.0 to t =4.0. Finally for testing, we make a future prediction from ¢ = 4.0 to final time T = 6.0.
We compare the three different closures: nODE (no-delays), discrete-nDDE and distributed-nDDE
with architecture details presented in the electronic supplementary material, table SI-1. The
architectures are not exactly the same for the three cases, but they are set up to be of comparable
expressive power. Mostly, we employ a bigger architecture for the no-delays case in order to
help it compensate the lack of past information. We also ensure that the networks are neither
under-parametrized nor over-parametrized. Along with the classical hyperparameters such as
batch size, number of iterations per epoch, number of epochs, learning rate schedule, etc., we also
have the delay values (ty, . . ., tx for discrete-nDDE; and 71, 7 for distributed-nDDE) as additional
hyperparameters to tune. We chose to use six discrete delays for the discrete-nDDE in the present
experiments. The values of other hyperparameters are given in the electronic supplementary

material, Section SI-4.2. For evaluation, at each epoch, we evolve the coefficient of the learned

system ({aPred(T;) = {afred(T,-)}izl}?i 1) using the RK time-integration scheme mentioned earlier,

and compare them with the true coefficients ({atr“e(T,-)}f\il) using the time-averaged L, error,

YOOLOZOZ L ¥ 205§ 204g edsy/jeuinof/bioBuiysigndiaposiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

L=(1/M) Zf\i 1 (\/ Zle |a£red(Ti) — aime(Ti)lz), which is also our loss function for training. The
error for the time period f = 0-2.0 forms the training loss, the error for t =2.0-4.0 the validation
loss and the error for t = 4.0-6.0 the prediction loss.

The performance of the three neural closure models after 200 epochs (the stochastic gradient
descent nearly converges, see the electronic supplementary material, figure SI-2a) is evaluated
by comparison with the true coefficients and with the POD-GP coefficients spanning training,
validation and future prediction periods. Results are shown in figure 2. The details of the
architectures employed are in the electronic supplementary material, table SI-1. We find that using
no-delays (nODE), discrete-delays (discrete-nDDE) and distributed-delays (distributed-nDDE)
perform equally well for the training period, exactly matching the true coefficients. As soon as one
enters the validation period, all the neural closure models start to slightly diverge, with the nODE
diverging the most by the end of the prediction period. Importantly, both nDDE closures maintain
a great improvement over just using the POD-GP model, and showcase a better performance
than the nODE closure, even though the latter had a deeper architecture with significantly more
trainable parameters. We also find that the performance of the distributed-nDDE closure is a
little better than that of the discrete-nDDE closure for the prediction period. In a similar set of
experiments, Maulik et al. [21] (section 3.1, “Advecting Shock’) used nODE and LSTM to learn
the time evolution of the first three high-fidelity (true) coefficients without using the known
physics/low-fidelity model. As a result, they required bigger architectures and more time samples
for training data than we do. This confirms our benefits of learning only the unknown closure
model. Due to the highly nonlinear nature of NNs, analytical stability analyses are not direct.
Nonetheless, we provide empirical stability results by reporting the evolution of the root-mean-
square-error (RMSE) (figure 2). We find that both discrete-nDDE and distributed-nDDE closures,
due to the existence of delays, may have a stronger dissipative character and thus show better
stability at later times than the POD-GP and the nODE closure.

One might expect the distributed-delay (distributed-nDDE) to always perform better than the
discrete-nDDE closure because of the presence of the integral of the state variable over a delay
period instead of the state variable at specific points in the past. The former thus seemingly
contains more information, but there is in fact no guarantee for this being true in all cases. We can
derive an intuition for this from information theory. According to the data processing inequality
[85], let X and Y be two random variables, then,

I(g(X);Y) <I(X;Y), (4.4)

where [is the mutual information and g is any function which post-processes X. Now, if X is
composed of K random variables, X = {X3, ..., Xk}, and g(X) = X1 + - - - + Xk, then,

IXy + -+ X V) <I({X1, ..., Xk} Y). (4.5)

If we consider the effect of the integral of the state variable over the delay period in the case of
distributed-nDDE as a data processing step, this might actually be decreasing the information
content compared with the discrete-nDDE closure. We use ‘might’, even though equation (4.5) is
a strong bound, because in the present experiments we only use six delay values for the discrete-
nDDE, while the integral in the distributed-nDDE is computed using many past state values,
and also the architectures are different. Hence, a direct comparison using the data processing
inequality (equation (4.5)) is not possible, but it provides us with a plausible explanation.

In addition to the results just illustrated, we completed many other Experiments-1 to assess
the sensitivity of our framework to various hyperparameters. In all cases, the time period
corresponding to the training data should be at least equal to one characteristic time scale of
the dynamics, otherwise the prediction performance deteriorated, as shown in the electronic
supplementary material, figure SI-3a and discussed in the electronic supplementary material,
Section SI-4.3. Adding the neural closure to the low-fidelity model improved its matching with
the high-fidelity data in nearly all cases. Its performance deteriorated with increasing the length
of the time sequences used to form the batches, and also with increasing the batch size (the

YOOLOZOZ L ¥ 205§ 204g edsy/jeuinof/bioBuiysigndiaposiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

number of iterations per epoch is a dependent hyperparameter as mentioned earlier). This also
led to an increase in training time. Depth of the networks affected the performance significantly,
with shallower networks performing poorer than deeper networks as expected, however, the
incremental gain in performance starts to taper off after certain depths (see the electronic
supplementary material, figure SI-3b and Section SI-4.3). Using an exponentially decaying
learning schedule over a constant learning rate tremendously improved learning performance
and reduced the number of epochs needed. Further, training times slightly increased when using
more delay times in the case of discrete-nDDE. In general, we found that the training time for
discrete-nDDEs was similar to that for distributed-nDDEs. Such behaviours by machine learning
methods are difficult to anticipate in advance but they should be mentioned.

Overall, in the Experiments-1, we find that using memory-based neural closure models as we
derived from the MZ formulation is advantageous over just a Markovian closure. Using the new
nDDEs as closure models helps maintain generalizability of the learned models for longer time
periods, and significantly reduces the longer-term prediction error of the ROM.

(b) Experiments 2: Advecting shock—subgrid-scale processes

In the second experiments, we again use the advecting shock problem governed by Burger’s
equation (equation (4.1)), but we now reduce the computational cost of the FOM by coarsening the
spatial resolution, again leading to the need of a closure model (§2b). For the high-fidelity /high-
resolution solution, we employ a fine grid with the number of grid points in the x-direction
Ny =100, while for the low-fidelity /low-resolution solution, we employ a four times coarser
grid with Ny =25. A comparison of high- and low-resolution solutions solved using exactly
the same numerical schemes and data stored at every time step of At=0.01 is provided in
figure 3. We observe that by decreasing the resolution, we introduce numerical diffusion and
error in the location of the shock peak at later times. The goal of the neural closure models
in these experiments is thus to augment the low-resolution model such that it matches the
sub-sampled/interpolated high-resolution solution at the coarse (low-resolution) grid points.
For training our neural closure models for the low-resolution discretization with N, =25, we
use the same training regiment as in Experiments-1 (§4a), with architecture details presented
in the electronic supplementary material, table SI-1. In order to exploit the fact that each grid
point only affects its immediate neighbours over a single time step, we use one-dimensional
convolutional layers for these experiments. For the nODE, we again employ a deeper architecture
with more trainable parameters, and for the discrete-nDDE, six discrete delay values are again
used. The values of the other hyperparameters are in the electronic supplementary material,
Section SI-4.2. The validation period is from t=1.25 to 2.5, and the future prediction period
from t=2.5 to 5.0. We have chosen a prediction period of the combined length of training
and validation periods. For time-integration, we use the Vode scheme [86] with adaptive time-
stepping. The true data are generated by interpolating the high-resolution solution onto the

low-resolution grid ({{u'"®(xx, Ti)}kN;TZS}?i 1), as shown in figure 3¢, and we use the time-averaged

Ly error, £=(1/M)), (\/ 21721:25 [uPred (x;., T;) — utrue(xy, Ti)lz), as the loss function.

The performance of the three neural closure models after 250 epochs (the stochastic gradient
descent nearly converges, see the electronic supplementary material, figure SI-2b) is evaluated
by taking the absolute difference with the high-resolution solution interpolated onto the low-
resolution grid (figure 3c) spanning training, validation and prediction periods. We further

benchmark our performance against the popular Smagorinsky model [87] used for subgrid-scale
turbulence closure in large eddy simulation (LES). For Burger’s equation (4.1), it introduces a
dynamic turbulent eddy viscosity (v.) leading to

ou ou 9%u 8<8u>, 46)

ou du_ w8 (du
ot Mo = Vo Tax (Max

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

(a) high-res solution

(b) low-res solution

0.50 0.50
0.38 0.38
¢ 025 0.25
0.12 0.12
0 0
0 02 04 06 038 1.0
X
() s |difference|
L, error = 0.24
0.50 RMSE (>2%) = 0.11 0.50
0.38 0.38
025 0.25
0.12 0.12
0 0
0 02 04 06 0.8 1.0 0 02 04 06 0.8 1.0
x X

Figure 3. Comparison of solutions of Burger's equation (equation (4.1)) for different grid resolutions. (a) solution for a high-
resolution grid with number of grid points, Ny = 100; (b) solution for a low-resolution grid with N, = 25; (c) high-resolution
solution interpolated onto the low-resolution grid. (d) Absolute difference between fields in panels (b,c). We also provide a pair
of time-averaged errors, specifically: L, error; and RMSE considering only the grid points where the error is at least 2% of the
maximum velocity value, denoted by RMSE(>2%). (Online version in colour.)

where v, = (Cs Ax)?|9u/dx| and C; is the Smagorinsky constant. Results are shown in figure 4. The
details of the architectures employed are in the electronic supplementary material, table SI-1. As
shown by the error fields of the baseline (figure 3d) and closure models (figure 4), and by the
corresponding pairs of averaged error numbers (see figures), all closures improve the baseline.
However, the nODE and Smagorinsky closures only lead to a 55-60% decrease in error, while
the nDDE closures achieve a 80-90% decrease. Despite the deeper architecture for the nODE,
both the discrete-nDDE and distributed-nDDE (with smaller architectures) again achieve smaller
errors, for the whole period of t =0-5.0. This means that they have lower numerical diffusion,
thus capturing the targeted subgrid-scale process. As opposed to the findings of Experiments-1
(figure 2), in the present Experiments-2, the discrete-nDDE performs slightly better than the
distributed-nDDE in the prediction period.

We now study the effect of changing the amount of past information incorporated in
the closure model on the time-averaged L, error. For this, we fix 71 =0 for the distributed-
nDDE closure, and vary the values of only 1, keeping the architecture the same (electronic
supplementary material, table SI-1). First, for the time-averaged training loss (not shown), we
found no discernible trend and differences were mostly due the stochastic gradient descent.
Second, for the validation period, figure 52 shows the statistical summary of the validation losses
(time-averaged L, error) between the last epochs 200-250, for different delay-period lengths.
In order to ensure statistical soundness of the results, 10-15 repeats of the training were done,
and the results aggregated for each delay-period length. Results indicate that the validation loss
first decreases and then increases as we incorporate more-and-more past information, starting
from a very small delay period. For a specified architecture, neither too little nor too much past

YOOLOZOZ L ¥ 205§ 204g edsy/jeuinof/bioBuiysigndiaposiefos H

(a)
—
N (b)
o .
I3V
1))
>
D
5
< gX
0 E
— =
= b
o
D
P
o
(@)
=
2 ©
5 A
>
o
>
L)
S)
8 Ef
o) =X
S
=
a8
=
e
e
o (d)
Y A
i)
o} E
o =)

Figure 4. Solutions of Burger’s PDE on the low-resolution grid with different closure models (/eft column), and their absolute
differences (right column) with the high-resolution solution interpolated onto the low-resolution grid (figure 3c). For the trained
neural closure models, the training period is from t = 0 to 1.25, the validation period from t = 1.25 to 2.5, and the prediction
period from ¢t = 2.5 to 5.0. For each closure, we also provide the pair of time-averaged errors (see figure 3 for description).
(a) Smagorinsky LES model with (; = 1.0; (b) neural closure model with no-delays (nODE); (c) neural closure model with
discrete-delays (discrete-nDDE); (d) neural closure model with distributed-delays (distributed-nDDE). These results correspond

prediction

training

prediction

training

prediction

training

low-res with LES model

0.50
0.38
0.25
0.12
0
0 02 04 06 08 1.0
X
low-res with nCM (nODE)
5
4 0.50
3 0.38
0.25
2 0.12
0
1
0
0 02 04 06 08 1.0
X
low-res with nCM (discrete-nDDE)
5
4 0.50
3 0.38
0.25
2 0.12
0
1
0
0 02 04 06 08 10
x
low-res with nCM (distributed-nDDE)
5
4 0.50
3 0.38
0.25
2 0.12
0

1

0
0 02 04 06 08 1.0

X

0

0

|difference|

L, error = 0.109
RMSE (>2%) = 0.05

0
0 02 04 06

X

|difference]|

L, error = 0.104
RMSE (>2%) = 0.045

0.8

02 04 06 08

X

|difference|

L, error = 0.025
RMSE (>2%) = 0.013

02 04 06
X

|difference|

L, error = 0.03
RMSE (>2%) = 0.024

02 04 06
X

0.8

to the architectures detailed in electronic supplementary material, table SI-1. (Online version in colour.)

1.0

1.0

1.0

0.50
0.38
0.25
0.12

0.50
0.38
0.25
0.12

0.50
0.38
0.25
0.12

0.50
0.38
0.25
0.12

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

(@) o (®) o
validation loss validation loss

0.30 7 o 2.0
‘5 =
= 025 5]
N EN 1.5 e |
~ 0.20 ~
3 3
£ 0.15 2 10
z 2
5 0.10 z
£ L E 05
= 0.05 =

000250075 0125 0.2 0.3 0 1.0 2.5 5.0
T, T

Figure 5. Variation of distributed-nDDE closure validation loss (time-averaged L, error) averaged over the last 50 training epoch
for Experiments-2 and -3a. All the experiments have 7; = 0 and different 7, (horizontal axis). Note that ; = 0 corresponds to
the nODE closure. We use boxplots to provide statistical summaries for multiple training repeats done for each experiment. The
box and its whiskers provide a five-number summary: minimum, first quartile (Q1), median (orange solid line), third quartile (Q3)
and maximum, along with outliers (black circles) if any. (a) Experiments-2 and (b) Experiments-3a. (Online version in colour.)

information is helpful: there is likely an optimal amount of information to incorporate. The initial
improvement in the performance of the closure models as the delay period is increased is due
to the increase in information content about the recent past. However, a particular network
architecture of finite size will have a limit on capturing the increasing information content
effectively due to its limited expressive power, thus leading to a decrease in performance when
too much information is provided. An estimate of the range of delay period lengths to consider
can be obtained from properties of the given dynamical system such as the main time scales,
e.g. advection and diffusion times scales in the present system, and main decorrelation times
of state variables. Overall, from figure 51, we can notice the optimal delay period length to be
around 0.075. Similar trends between performance of neural closure models and delay period
lengths were also found in Experiments-1 (not shown). Some published studies attempt to derive
analytical expressions for the optimal memory length, making many approximations in the
process [8,88]. A final option is to learn the delay amount as a part of the training process itself,
however, this requires modified adjoint equations.

We conducted again a series of Experiments-2 to assess the sensitivity to the various other
hyperparameters, and found similar trends (not shown here) as in the Experiments-1. Finally, we
noticed that using the dopri5 [84] time-integration scheme severely impaired the learning ability
in the Experiments-2.

Overall, these results demonstrate the superiority of using our new memory-based closure
models in capturing subgrid-scale processes.

() Experiments 3a: 0-D marine biological models

For our third experiments, we use neural closure models to incorporate the effects of missing
processes and state variables in lower-complexity biological models, thus targeting the third class
of closure modelling (§2c). Marine biological models are based on ODEs that describe the food-
web interactions in the ecosystem. They can vary greatly in terms of complexity [29]. The marine
biological models used in our experiments are adapted from Newberger et al. [30]. They were
used to simulate the ecosystem in the Oregon coastal upwelling zone. They provide hierarchical
embedded models compatible with each other. We employ the three-component NPZ model
(nutrients (N), phytoplankton (P) and zooplankton (Z)) and the five-component NNPZD model
(ammonia (NHy), nitrate (NO3), P, Z and detritus (D)) in a zero-dimensional setting (0-D; only

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

temporal variation). The low complexity NPZ model is given by

dN PN

A EP+I'Z+ RuyZ(1 —exp 4P,

dt NTK, TEPH 24 RuyZ(1—exp)

dp PN

— =G——— — 8P — RpZ(1 —exp™"P), 4.7
ar N+K, mZ(exp) 4.7)
dz

< = Rm(1 =)z~ exp 4Py =TIz with N(©0)=Tpo, P(0)=0 and Z(0)=0,

with G representing the optical model,

al

=Vim (V2, + a212)1/2
where z is depth and I(z) models the availability of sunlight for photo-chemical reactions. The
parameters in equations (4.7) and (4.8) are: ky, light attenuation by sea water; «, initial slope of
the P — I curve; Iy, surface photosynthetically available radiation; V,;;, phytoplankton maximum
uptake rate; K, half-saturation for phytoplankton uptake of nutrients; =, phytoplankton-
specific mortality rate; R;;, zooplankton maximum grazing rate; A, Ivlev constant; y, fraction
of zooplankton grazing egested; I', zooplankton-specific excretion/mortality rate; and Ty, total
biomass concentration. In the NPZ model (equation (4.7)), the nutrient uptake by phytoplankton
is governed by a Michaelis-Menten formulation, which amounts to a linear uptake relationship
at low nutrient concentrations that saturates to a constant at high concentrations. The grazing
of phytoplankton by zooplankton follows a similar behaviour: their growth rate becomes
independent of P in the case of abundance, but proportional to available P when resources are
scarce, hence zooplankton grazing is modelled by an Ivlev function. The death rates of both P
and Z are linear, and a portion of zooplankton grazing in the form of excretion goes directly to
nutrients.

In the higher complexity NNPZD model, the nutrients are divided into ammonia and nitrates,
which are the two most important forms of nitrogen in the ocean. With the intermediate
of decomposed organic matter, detritus, the NNPZD model captures new processes such as:
phytoplankton cells preferentially taking up ammonia over nitrate because the presence of
ammonia inhibits the activity of the enzyme nitrate reductase essential for the uptake kinetics;
the pool of ammonium coming from remineralization of detritus; and part of this ammonium
pool getting oxidized to become a source of nitrate called the process of nitrification, etc. Overall,
the NNPZD model is given by,

and I(z) = Iy exp(kwz), (4.8)

dNO; NO3 _wNH
=N — PR 4| p
dt NHy =G [Nog, 1K, P
dNH, NH,
=—9QNHy+ 0D+ TZ~G|———"2|P
T s+ eD+Ir2-6 [NH4 n Ku]
dp NO3 _wNH, NH4 —AP
= =G| 2% |P—EP—RuZ(1 -
ar [NO3 K, P +*NH, 1 K, mZ(1 = exp™) 4.9)
dz
4 =Rn(1=7)2(1 - exp APy -rz
%L: =RuyZ(1 —exp ")+ EP — @D
with NO5(0) = Thio/2, NH4(0) = Tpio/2, P(0)=0, Z(0) =0, and D(0) =0,

where the new parameters are: ¥, NHy inhibition parameter; @, detritus decomposition rate and
£2, NH4 oxidation rate.

Solutions of the above two models are presented in figure 6. Different values of the parameters
and initial conditions set these models in different dynamical regimes. From the responses in
time, the present solutions in Experiments-3a are in a stable nonlinear limit-cycle regime. The
N class in the NPZ model is a broader class encompassing NO3, NHy and D from the NNPZD

YOOLOZOZ L ¥ 205§ 204g edsy/jeuinof/bioBuiysigndiaposiefos H

Downloaded from https://royal societypublishing.org/ on 18 August 2021

(a) bio variables (b) bio variables

30

—— nitrate (NO5) ~—— NNPZD (NO, + NH, + D)
25 — ammonia (NH,) —-= NPZ (N) i

—— phyto. (P) —— NNPZD (P)
20 — 700.(2) == NPZ(P)

—— detritus (D) = NNPZD (2)

. == NPZ(2)

concentration
concentration

0 10 20 30 40 50 60
t (days) t (days)

Figure 6. Solutions of the marine biological models used in Experiments-3a (concentrations versus time in days). Parameter
values used are (adapted from [30]): k, = 0.067m~", & = 0.025 Wm~=2d)~", V;, =15d", lo =158.075Wm~2, K, =
TmmolNm™, ¥ =146 (mmolNm—>)~", & =01d~", R, =152d~", A =0.06 (mmolNm~™>)~", y =03, I' =
0.145d", @ = 0.175d", 2 = 0.041d~",z = —25m, and T, = 30 mmol N m . (a): Nitrate-ammonia-phytoplankton-
zooplankton-detritus (NNPZD) model (equation (4.9)); (b): comparison between NO; + NH4 + D, P and Z from the NNPZD
model (solid) with N, P and Z from the nutrient-phytoplankton-zooplankton (NPZ) model (dashed-dot; Eq. (4.9)). (Online version
in colour.)

model. Since the NNPZD model resolves many more processes, the concentrations of NO3 +
NHy4 + D, P and Z differ significantly from the N, P and Z of the NPZ model. The goal of the
neural closure models in these experiments is thus to augment the low-complexity NPZ model
such that it matches the aggregated states of the high-complexity NNPZD model.

For training our neural closure models for the NPZ model, we use the same training
regiment as in Experiments-1 and -2 (§4a,b), with architecture details presented in the electronic
supplementary material, table SI-2. For the nODE, we again employ a bigger architecture, and for
the discrete-nDDE, six discrete delay values are again used. The values of other hyperparameters
are given in the electronic supplementary material, Section SI-4.2. The training period ranges
from t =0 to 30 days, validation period from =30 to 60 days and the prediction period from
t =60 to 330 days. We have chosen a prediction period nine times longer than the training period.
For biological ODE models, there exists invariant knowledge about the system, such as biological
state variables cannot be negative, and the sum of all the states remains constant with time (this
can be verified by summing the ODEs of NPZ or NNPZD models). We enforce the constraints
as follows. The positivity is enforced as a penalization term in the loss function. The constant
total biomass constraint is embedded in the architectures of neural closures by introducing a new
custom layer named BioConstrainLayer. This layer is applied at the end, and expects an input of
size 1. The output of this layer is formed by splitting the input into three with the proportions,
B, —1 and 1 — B, where B is a trainable parameter. This ensures that summing the right-hand
side of the augmented NPZ model does not leave any new residual due to the neural closure
terms. The stiffness of such biological ODE models also poses a challenge in maintaining these
desired properties [89]. The flexibility of our framework however allows the use of appropriate
time-stepping schemes, such as A-stable implicit schemes, etc., to overcome stiffness. The true
data are generated by aggregating the variables of the NNPZD model (N=NO3 + NHy + D, P
and Z; {{B™(T;)}peN,p,2} }ﬁ\i 1)- Finally, we use the dopri5 [84] scheme with adaptive time-stepping
and simulation data were stored at every At = 0.05 days for all our time-integration requirements,
along with a Ly error loss function, £ = (1/M) ng (\/ZBG{N,F,Z} |BPred(T;) — Bm‘e(Ti)|2).

The performance of the three neural closure models augmenting the NPZ is evaluated after
350 epochs of training (the stochastic gradient descent nearly converges, as evident from the
electronic supplementary material, figure SI-2c) by comparison with the aggregated biology
variables from the high-complexity NNPZD model (equation (4.9)) spanning training, validation
and prediction periods. Results are presented in figure 7. The details of the architectures employed

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

are in the electronic supplementary material, table SI-2. When compared with the aggregated
NNPZD variables (true variables), we find again that despite the bigger architecture of the
nODIE, it starts to develop significant errors around t =180 days and quickly gets out-of-phase
thereafter (figure 7a). The discrete-nDDE and distributed-nDDE, both with smaller architectures,
are however able to match the true variables for nearly the whole period of f=0-330days
(figure 7b), with only distributed-nDDE starting to get out-of-phase after ¢ = 270 days (figure 7c) at
the end of the long prediction period. These results are corroborated by the time evolution of the
RMSE and average cross-correlation for the three variables over the prediction period (figure 7d).
From the progression of the time-averaged L loss (here, the error between the variables from the
closure-model-augmented NPZ system, and the true variables), the nODE performs either equally
well or better than both discrete-nDDE and distributed-nDDE during training and validation
periods (electronic supplementary material, figure SI-2c), however, it is not able to maintain long-
term accuracy. We also notice very large spikes in the first half of the training regime, which
are due to weights of the NNs taking values that lead to negative biology variables. As training
progresses, we however do not observe this behaviour anymore because the trainable weight start
to converge towards biologically feasible regimes. In conclusion, using a memory-based closure
for a low-complexity model can efficiently help emulate the high-complexity model.

As for Experiments-2, we conducted a series of Experiments-3a to study the effect of changing
the amount of past information incorporated in the neural closure models. In figure 5b, we show
the variation of the average validation loss (time-averaged L, error) between the last epochs 300
to 350, for different delay-period lengths (r1 =0, and 1 varying in case of distributed-nDDE). In
order to ensure statistical soundness of the results, 10-12 repeats of the training were done, and
the results were aggregated for each delay-period length (excluding the runs which diverged).
We again find an optimal memory length for a specified architecture, however, with more and
more runs failing to converge for longer delay period lengths. For the present system, estimates
of delay period lengths to consider can be obtained from the time scales of biological behaviours
and adjustments, and from the decorrelation times of the biological state variables. Taking into
account the limited effectiveness of a network architecture of finite size for capturing increasing
information content, from figure 5b, we find an optimal delay period length to be around 1 day. We
also conducted a series of Experiments-3a to study the sensitivity to the various hyperparameters,
and found similar trends (not shown here) as in Experiments-1 and -2. For good performance, we
further found that using a small enough time step was critical as well as limiting the number of
internal steps in the dopri5 [84] time-integration scheme, while penalizing negative values in the
loss function did not make much of a difference. Whenever multiple terms are present in the loss
function enforcing different inherent properties of the system, they should be normalized (e.g.
using non-dimensional variables) and given appropriate relative weights.

In general, the ecosystem ODEs are coupled with regional or global ocean modelling systems,
leading to advection—diffusion-reaction PDEs [90]. If highly complex ecosystem models are
employed, a very large number of PDE state variables need to be solved for, rendering the
computations very expensive. A large number of unknown parameter values as well as uncertain
initial conditions then also need to be estimated, requiring specific methods (e.g. [91]). The
available biogeochemical observations are not always sufficient for calibrating these many
unknown parameters and for estimating the initial conditions of high-complexity models. If
the corresponding errors are large, this can lead to integrating models in the wrong dynamical
regimes (e.g. [92]). Finally, in some applications, one is only interested in the aggregated state
variables, but cannot use low-complexity models because their dynamics are too inaccurate for
the goals of the applications. Using neural closure models as shown here, one can increase
the accuracy of the low-complexity models to match the response of high-complexity models
(possibly up to models such as ERSEM [93]) without adding the computational burden of
modelling all the intermediate biological states and processes, while reducing the effects of other
uncertainties listed above. Results of our neural closures in one-dimensional PDEs are showcased
next.

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

bio variables
(@) 5,

—— N(NNPZD)
= = N(NPZ)

* N (learned)

| — P(NNPZD)
- — P(NP2)
! s P (learned)
| —— Z(NNPZD)
- — Z(NPZ)

. Z(learned)

concentration

t (days)

training prediction
« > >

(b) bio variables

—— N(NNPZD)
- — N(NPZ)

+ N (learned)
—— P (NNPZD)
- — P(NPZ)

« P (learned)
—— Z(NNPZD)
- — Z(NPZ)

« Z(learned)

concentration

150
t (days)

training prediction
>

bio variables

~
o
~
2
(=}

~—— N(NNPZD)
- = N(NPZ)

= N(learned)
S —— P(NNPZD)
o - - P(NPZ)

« P (learned)
—— Z(NNPZD)
- — Z(NPZ)

* Z(learned)

N
W

20

concentration
—
W

150
t (days)

training prediction
»e

(d) error

=)

I
=3

«--- distributed-nDDE

correlation

I
=N

o
i

0 50 100

training prediction
< »e

Figure 7. Comparison of the biological variables from the learned NPZ model augmented with the three neural closure models
(dashed), aggregated variables from the NNPZD model (ground truth; solid) and variables from the NPZ model (dashed-dot)
at the end of training. For each neural closure, the training period is from t = 0 to 30 days, the validation period is from t =
30to 60 days, while the prediction period is fromt = 60 to 330 days. (a): Neural closure model with no-delays (nODE); (b): neural
closure model with discrete-delays (discrete-nDDE); (c): neural closure model with distributed-delays (distributed-nDDE); and
(d): performance comparison of different neural closure models. The left plot shows the evolution of root-mean-squared-error
(RMSE), and the right plot shows the average cross-correlation (only for the prediction period) w.r.t. the ground truth. These
results correspond to the architectures detailed in electronic supplementary material, table SI-2. (Online version in colour.)

(d) Experiments 3b: one-dimensional marine biogeochemical models

For our final set of experiments, we extend the ODE models used in Experiments-3a (§4c) to
contain a vertical dimension (thus, one-dimensional) and vertical eddy mixing parametrized by
the operator, 9/9z(Kz(z, M)d/9z(e)), where K; is a dynamic eddy diffusion coefficient. A mixed
layer of varying depth (M = M(t)) is used as a physical input to the ecosystem models. Thus, each

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

biological state variable B(z, t) is governed by the following non-autonomous PDE:

B 5 0 9B
5 S” + P (Kz(Z,M(t))E) , (4.10)
where SP are the corresponding biology source terms, which also makes it stiff. The dynamic
depth-dependent diffusion parameter K; is given by

(Kz, — Ky,)(arctan(—y (M(t) — z)) — arctan(—y (M(t) — D)))
arctan(—yM(t)) — arctan(—y (M(t) — D)) !

Ki(z, M(1)) =K, + (4.11)
where K, and K, are the diffusion at the bottom and surface, respectively, y is the thermocline
sharpness and D is the total depth. The one-dimensional model and parametrizations are adapted
from Eknes & Evensen [94] and Newberger et al. [30]. They simulate the seasonal variability
in upwelling, sunlight and biomass vertical profiles. The dynamic mixed layer depth, surface
photosynthetically available radiation Ip(f) and biomass fields B(z, t) are shown in figure 8a. The
radiation Ip(t) and total biomass concentration, Th;,(z, t), affect SB and the initial conditions.

For these Experiments-3b, we consider 20 grid points in the vertical and use the dopri5 [84]
scheme with adaptive time-stepping. Data are stored at every time step of At=0.1 days for all
our time-integration requirements. Solutions of aggregated states of the high-complexity one-
dimensional NNPZD model (true data) and their absolute difference with the corresponding
low-complexity one-dimensional NPZ model states are provided in figure 8a,b, respectively. For
training our neural closure models for the one-dimensional NPZ model, we use the same training
regiment as in Experiments-1, -2 and -3a (§4a—c). We note that in the one-dimensional NPZ
model, the local mixing across depths occurs only due to the eddy diffusion term, and not to
the biology source terms. Thus, we employ one-dimensional convolutional layers with receptive
fields of size 1. We again use the custom layer, BioConstrainLayer (§4c), to ensure that the sum
of the biology source terms of the augmented one-dimensional NPZ model does not leave any
new residual due to the neural closure terms. Along with this, we define a new custom layer,
called AddExtraChannels, to add additional channels to the input of this layer. We add one for the
depths at different grid points, and the other for the corresponding values of available sunlight
for photo-chemical reactions (I(z, f)). The architecture details for the three closure models used are
presented in the electronic supplementary material, table SI-2. For the nODE, we again employ
a bigger architecture, and for the discrete-nDDE, only four discrete delay values are used. The
values of other hyperparameters are given in the electronic supplementary material, Section SI-
4.2. The training period ranges from t = 0 to 30 days and validation period from t = 30 to 60 days,
both within the first season. The prediction period, however, ranges from t =60 to 364 days: it
is more than 10 times longer than the training period and involves the four seasons. Together,
the three periods span a full year. For loss function, we combine the L, errors, considering all
the biological states computed for individual depths, and then averaged over all the depths and

times, £ = (1/M) Y"1, ((1 NZ) Y (\/ Y Ben,p,zy BP9 (2, T) — BrUe(z, Ti)|2)>-

The performance of the three neural closure models augmenting the one-dimensional NPZ
model is evaluated after 200 epochs of training (the stochastic gradient descent nearly converges,
see the electronic supplementary material, figure SI-2d). The truth fields are the aggregated
biology variables from the high-complexity one-dimensional NNPZD model (equations (4.9) and
(4.10)) spanning training, validation and prediction periods. Results are presented in figure 8. We
find again that despite the bigger architecture for the nODE case, it develops spurious oscillations
around t =250 days. The discrete-nDDE and distributed-nDDE, both with smaller architectures,
however match well with the true variables for nearly the full year of simulation, about 10 months
of which is future prediction. The distributed-nDDE performs slightly better than its counterpart.

In figure 8, we also provide averaged error numbers for the baseline (figure 8b) and the different
closure models, all of which improve the baseline. As in Experiments-3a, we again notice large
spikes in the starting of the training regime, for the same reason as given earlier and similar
trends for hyperparameter sensitivity. We also found that the Experiments-3b were affected by
the choice of loss function. For example, using L, error computed for each biological state vector

YOOLOZOZ L ¥ 205§ 204g edsy/jeuinof/bioBuiysigndiaposiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

—~
S
ok

s solar radiation -~ solar radiation -~ solar radiation
T 20 £ 200 £ 200
z 150 B 1504 E 150
= 0 100 200 300 - 0 100 200 300 T 100 200 300
t (days) 1 (days) 1 (days)
0 true N (NNPZD) true P (NNPZD) o true Z (NNPZD)
-20 300 L 14.0
~ 40 4 F 225 _ 10.5
E ! 3 150 E £ 7.0
760 i 75 - w 35
¥ k 0 0
-80 1
~100
0 100 200 300 0 100 200 300 0 100 200 300
t (days) 1 (days) t (days)
b) 0 | difference N | | difference P | 0 | difference Z |
Ml L
20 { _
5.00 - 4.00 20 4.00
— 40 375 _ 3.00 40 3.00
£ 250 E 200 E 2.00
v =60 1.25 ; 1.00 = -60 1.00
80 0 L, error 0 80 0
X RMSE(>2%) = 0.791
-100 -100
0 100 200 300 100 200 300 200 300
1 (days) 1 (days) 1 (days)
(c) | difference N (with nCM) | | difference P (with nCM) | | difference Z (with nCM) |
0 0 0
5.00 4.00 4.00
- 375 [3.00 ~ 3.00
£ 2.50 2.00 =1 2.00
e 1.25 1.00 v 1.00
L, error = 4.035 0 L, error 0 L, error = 3.366 0
RMSE(>2%) = 1.504 RMSE(>2 RMSE(>2%) = 1185
-100
0 100 200 300 0 100 200 300 0 100 200 300
t (days) t (days) 1 (days)
@) | difference N (with nCM) | | difference P (with nCM) | | difference Z (with nCM) |
0 0
[5.00 r 4.00
_ 375 3.00
E 250 2.00
- 125 1.00
L, error = 2.907 0 o
RMSE(>2%) = 1.129
0 100 200 300 0 100 200 300 0 100 200 300
t (days) t (days) 1 (days)
(e) | difference N (with nCM) | | difference P (with nCM) | | difference Z (with nCM) |
0 0 0
5.00 4.00 4.00
_ | 375 _ 3.00 3.00
E 250 & 2.00 2.00
w 125 @ 1.00 1.00
L, error=2.19 0 N Loerror=0941 0 0
RMSE(>2%) = 0.978 RMSE(>2%) = 0.413
-100
0 100 200 300 0 100 200 300 0 100 200 300
t (days) 1 (days) t (days)

Figure 8. Comparison of the one-dimensional physical-biogeochemical PDE models used in Experiments-3b with and without
closure models. Along with the parameter values mentioned in figure 6, we consider: a sinusoidal variation in/,(t); linear vertical
variation in total biomass Ty, (2) from 10 mmol N m 3 at the surface to 30 mmol Nm— atz = 100 m; K, = 0.0864 (m2d~);
K, = 8.64 (m2d—); y =01m~";and D = —100 m, all adapted from [30,94]. For the neural closure models, the training
period is from ¢ = 0 to 30 days, the validation period from ¢t = 30 to 60 days, and the long future prediction period from t =
60 to 364 days. (a) Top plots show the yearly variation of solar radiation and the bottom plots the aggregated states from the
NNPZD model (ground truth) overlaid with the dynamic mixed layer depth in dashed red lines. In the subsequent plots we show
the absolute difference of the different neural closure cases with the ground truth. (b): NPZ model (without neural closure
model); (c): NPZ model augmented with no-delay neural closure (nODE); (d): NPZ model augmented with discrete-delay neural
closure (discrete-nDDE); and (e): NPZ model augmented with distributed-delay neural closure (distributed-nDDE). For each case,
we also provide the pair of time-averaged errors (see figure 3 for description). These results correspond to the architectures given
in electronic supplementary material, table SI-2. (Online version in colour.)

YOOLOZOZ L ¥ 205§ 204g edsy/jeuinof/bioBuiysigndiaposiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

(containing values for all the depths) and then averaging over the number of biological states and
times deteriorated the quality of learning.

Despite the presence of complex physical processes and relatively large dimensions compared
with the previous experiments, the nDDEs closures were found to effectively match the high-
complexity model and maintain long-term accuracy.

(e) Computational complexity

It is crucial to analyse complexity and in particular the cost of adding a neural closure model to
a low-fidelity model. In this section, we analyse the computational complexity in terms of flop
(floating point operations) count for evaluating the right-hand side of the low-fidelity models,
and for the forward-pass of the neural closure models [95]. We will also comment on the training
costs. The Burger’s PDE considered for Experiments-1 and -2 (§4a,b) has a nonlinear advection
term. Hence, for the POD-GP ROM and the FOM, the upper flops is of the order of the square of
number of resolved modes and of the spatial grid resolution, respectively. In general, for reaction
terms and biogeochemical systems, the number of nonlinear parametrizations present are of the
order of the number of components in the model. Hence, even for Experiments-3a (§4c), the upper
flops is of the order of the square of the number of biological components. For Experiments-3b
(8§4d), the upper flops is also affected by the diffusion terms. Let the number of state variables
in the low-fidelity models be N € N, thus the leading-order computational complexity would be
O(cN?), where c e R* is some constant dependent on the numerical schemes used for spatial
discretization, the exact functional form of the right-hand side, etc.

Now, when neural closure models are added to the low-fidelity models, the time integration
requires a forward pass through the NN. This cost varies with the neural architecture and model
type, here either a fully connected or convolutional, and discrete-nDDE or distributed-nDDE,
respectively. As observed in our experiments, using delays in the closure model enables us to use
shallower networks, with a depth independent of the number of state variables (N). We also found
that the width of the networks was similar to, or smaller than, N. In the case of distributed-nDDEs,
we observed that the width of the auxiliary network (gnn) could be on an average nearly half the
size of the main network (fnN). Let the size of the hidden state for the RNN in discrete-nDDEs
be Nj €N, and the number of neurons in the hidden layers of the main and auxiliary networks
in the case of distributed-nDDEs be N, and N},/2, respectively, with N}, < N. It could be easily
shown that the leading order complexity for a single iteration of RNN would be (’)(N,% + NyN),
which is due to the hidden and input state vectors being multiplied by the weight matrices,
while the application of activation function would be O(Nj) only. As the number of discrete-
delays in discrete-nDDEs are independent of N and O(1), it does not affect the complexity of
the RNN. The complexity of the first hidden layer and/or the output layer of the deep neural-
networks used in discrete-nDDEs and distributed-nDDEs (main network, fnn) will be O(Nj,N)
and O(Nj(N + Ny,/2)), respectively, while for the remaining hidden layers, it will be (’)(N%).
Focusing on the integral of the auxiliary network (gnn) over the delay period in distributed-
nDDEgs, if implemented efficiently, at every time step, we only need to compute the integral twice
over periods of size At, each adjacent to the ends of the present delay period. We can add and
subtract these integrals over At periods to compute the overall integral in a rolling window sense.
Hence, the contribution to the computational cost by the auxiliary network would be O(N;N/2)
(for first hidden layer) and (’)(N,% /4) (subsequent hidden layers). Considering D € N as the depth
for all of the networks considered, the complexity for the forward pass through the discrete-
nDDE closure is O(DN% + DNp,N), while for distributed-nDDE it is O((3/2)N,N + (7/4)DN,%).
These costs were computed considering fully connected layers, however, will only be cheaper
in the case of convolutional layers. Thus, the additional computational cost due to the presence
of neural closure models is of similar or lower complexity than the existing low-fidelity model.

Estimating the computational cost/complexity of training in flops is not common because apart
from time-integrating the forward model and adjoint equations, there are many other operations
such as here: automatic differentiation through the NNs; creation and use of interpolation
functions; the integral to compute the final derivatives; and the gradient descent step, etc.

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

The overall cost also depends on the number of epochs needed for convergence. The present
training cost is of course non-negligible, as with any supervised learning algorithm. However, in
applications where one needs to repeatedly solve a low-fidelity model, investing in a one-time
cost of training a neural closure model can later lead to accuracy close to that of the high-fidelity
model with only a small increase in the computational cost of the low-fidelity model.

5. Conclusion

We developed a novel, versatile, rigorous and unified methodology to learn closure
parametrizations for low-fidelity models using data from high-fidelity simulations. The MZ
formulation [13-15] and the presence of inherent delays in complex dynamical systems
[96], especially biological systems [25,26], justify the need for non-Markovian closure
parametrizations. To learn such non-Markovian closures, our new neural closure models extend
nODEs [20] to nDDEs. Our nDDEs do not require access to the high-fidelity model or frequent
enough and uniformly spaced high-fidelity data to compute the time derivative of the state
with high accuracy. Further, it enables the accounting of errors in the time evolution of the
states in the presence of NNs during training. We derive the adjoint equations and network
architectures needed to efficiently implement the nDDEs, for both discrete and distributed
delays, agnostic to the specifics of the time-integration scheme, and capable of handling stiff
systems. For distributed-delays, we propose a novel architecture consisting of two coupled
deep NNs, which enables us to incorporate memory without the use of any recurrent
architectures.

Through simulation experiments, we showed that our methodology drastically improves the
long-term predictive capability of low-fidelity models for the main classes of model truncations.
Specifically, our neural closure models efficiently account for truncated modes in ROMs, capture
the effects of subgrid-scale processes in coarse models and augment the simplification of
complex biological and non-autonomous physical-biogeochemical models. Our first two classes
of simulation experiments use the advecting shock problem governed by Burger’s PDE, with
its low-fidelity models derived either by POD-GP or by reducing the spatial grid resolution.
Our third class of experiments considers marine biological ODEs of varying complexities and
their physical-biogeochemical PDE extensions with non-autonomous dynamic parametrizations.
The low-fidelity models are obtained by aggregation of components and other simplifications
of processes and parametrizations. In each of these classes, results consistently show that using
non-Markovian over Markovian closures improves the accuracy of the learned system while also
requiring smaller network architectures. Our use of the known physics/low-fidelity model also
helps to reduce the required size of the network architecture and the number of time samples for
the training data. We also outperform classic dynamic closures such as the Smagorinsky subgrid-
scale model. These results are obtained using stringent evaluations: we compare the performance
of the learned system for the training period (during which high-fidelity data snapshots are
used for training) and validation period (during which hyperparameter tuning occurs) as often
done, but we also compare it for much longer-term future prediction periods with no overlap
with the preceding two. We even consider a prediction period reaching 10 times the length of
the training/validation period, thus successfully demonstrating the extrapolation capabilities of
nDDE closures.

In our experiments, we find that just using a few numbers of discrete delays might perform
equally well or better than using a distributed delay, which involves an integral of the state
variable over a delay period. We provide a plausible explanation of this counterintuitive
observation using the data processing inequality from information theory. We also show that there
exists an optimal amount of past information to incorporate for a specified architecture and the
relevant time scales present in the dynamical system, thus indicating that neither too little nor too
much past information is helpful. Finally, a computational complexity analysis using flop (floating
point operation) count proves that the additional computational cost due to the presence of our
neural closure models is of similar or lower complexity than the existing low-fidelity model.

YOOLOZOZ L ¥ 205§ 204g edsy/jeuinof/bioBuiysigndiaposiefos

Downloaded from https://royal societypublishing.org/ on 18 August 2021

The present work provides a unified framework to learn non-Markovian closure
parametrization using DDEs and NNs. It enables the use of the often elusive MZ formulation [13—
15] in its full glory without unjustified approximations and simplifications. Our nDDE closures
are not just limited to the shown experiments, but could be widely extended to other fields
such as control theory, robotics, pharmacokinetic-pharmacodynamics, chemistry, economics and
biological regulatory systems, etc.

Data accessibility. The codes and data used in this work are available in the GitHub repository: https://github.
com/mit-mseas/neuralClosureModels.git.

Authors’ contributions. A.G. conceived the idea of using nDDEs for closure parametrizations; derived the adjoint
equations; implemented the NN architectures and the simulation experiments; interpreted the computational
results; and wrote a first draft of the manuscript. PE]J.L. supervised the work; conceived the ideas to extend
the methodology to capture the effects of subgrid-scale processes in coarse models, and to augment the
simplification of complex mathematical models; interpreted the computational results; and edited and wrote
significant parts of the manuscript.

Competing interests. We declare we have no competing interests.

Funding. We are grateful to the Office of Naval Research for partial support under grant no. N00014-20-1-
2023 (MURI ML-SCOPE) to the Massachusetts Institute of Technology. We also thank MathWorks and the
Mechanical Engineering Department at MIT for awarding a competitive 2020-2021 MathWorks Mechanical
Engineering Fellowship for A.G. Some of the computations were made possible due to the Google Cloud
Platform research credits, which we gratefully acknowledge.

Acknowledgements. We thank the members of our MSEAS group for their collaboration and insights, especially
Mr Aaron Charous. We thank our ML-SCOPE team for many useful discussions, especially Dr Mickaél
Chekroun for his comments on the final draft of the manuscript. We also thank the anonymous reviewers
for their constructive feedback which helped improve the manuscript.

References

1. Kutz JN, Brunton SL, Brunton BW, Proctor JL. 2016 Dynamic mode decomposition: data-driven
modeling of complex systems. Philadelphia, PA: SIAM.

2. Wang Z, Akhtar I, Borggaard], Iliescu T. 2012 Proper orthogonal decomposition
closure models for turbulent flows: a numerical comparison. CMAME 237, 10-26.
(doi:10.1016/j.cma.2012.04.015)

3. Alfonsi G. 2009 Reynolds-averaged navier—stokes equations for turbulence modeling. Appl.
Mech. Rev. 62, 040802. (d0i:10.1115/1.3124648)

4. Lesieur M, Métais O, Comte P. 2005 Large-eddy simulations of turbulence. Cambridge, UK:
Cambridge University Press.

5. Chassignet EP, Verron J. 2012 Ocean modeling and parameterization, vol. 516. Berlin, Germany:
Springer Science & Business Media.

6. Los F, Blaas M. 2010 Complexity, accuracy and practical applicability of different
biogeochemical model versions. |. Mar. Sys. 81, 44-74. (doi:10.1016/j.jmarsys.2009.12.011)

7. Ward BA, Schartau M, Oschlies A, Martin AP, Follows MJ, Anderson TR. 2013 When is
a biogeochemical model too complex? objective model reduction and selection for North
Atlantic time-series sites. Prog. Oceanogr. 116, 49-65. (d0i:10.1016/j.pocean.2013.06.002)

8. Pan S, Duraisamy K. 2018 Data-driven discovery of closure models. SIAM]. Appl. Dyn. Syst.
17, 2381-2413. (doi:10.1137 /18M1177263)

9. Pawar S, Ahmed SE, San O, Rasheed A. 2020 Data-driven recovery of hidden physics in
reduced order modeling of fluid flows. Phys. Fluids 32, 036602. (doi:10.1063/5.0002051)

10. San O, Maulik R. 2018 Neural network closures for nonlinear model order reduction. Adv.
Comput. Math. 44, 1717-1750. (d0i:10.1007 / s10444-018-9590-z)

11. Wan ZY, Vlachas P, Koumoutsakos P, Sapsis T. 2018 Data-assisted reduced-order modeling of
extreme events in complex dynamical systems. PLoS ONE 13, e0197704. (doi:10.1371 /journal.
pone.0197704)

12. Wang Q, Ripamonti N, Hesthaven JS. 2020 Recurrent neural network closure of parametric
POD-Galerkin reduced-order models based on the Mori-Zwanzig formalism. J. Comput. Phys.
410, 109402. (doi:10.1016/j.jcp.2020.109402)

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

https://github.com/mit-mseas/neuralClosureModels.git
https://github.com/mit-mseas/neuralClosureModels.git
http://dx.doi.org/10.1016/j.cma.2012.04.015
http://dx.doi.org/10.1115/1.3124648
http://dx.doi.org/10.1016/j.jmarsys.2009.12.011
http://dx.doi.org/10.1016/j.pocean.2013.06.002
http://dx.doi.org/10.1137/18M1177263
http://dx.doi.org/10.1063/5.0002051
http://dx.doi.org/10.1007/s10444-018-9590-z
http://dx.doi.org/10.1371/journal.pone.0197704
http://dx.doi.org/10.1371/journal.pone.0197704
http://dx.doi.org/10.1016/j.jcp.2020.109402

Downloaded from https://royal societypublishing.org/ on 18 August 2021

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Chorin AJ, Hald OH, Kupferman R. 2000 Optimal prediction and the Mori-Zwanzig
representation of irreversible processes. Proc. Natl Acad. Sci. USA 97, 2968-2973.
(doi:10.1073 /pnas.97.7.2968)

Gouasmi A, Parish EJ, Duraisamy K. 2017 A priori estimation of memory effects in reduced-
order models of nonlinear systems using the Mori-Zwanzig formalism. Proc. R. Soc. A 473,
20170385. (d0i:10.1098 /rspa.2017.0385)

Stinis P. 2015 Renormalized Mori-Zwanzig-reduced models for systems without scale
separation. Proc. R. Soc. A 471, 20140446. (doi:10.1098 /rspa.2014.0446)

Whitney H. 1936 Differentiable manifolds. Ann. Math. 37, 645-680. (doi:10.2307/1968482)
Takens F. 1981 Detecting strange attractors in turbulence. In Dynamical systems and turbulence,
Warwick 1980 (eds D Rand, LS Young), pp. 366-381. Berlin, Germany: Springer.

Brunton SL, Proctor JL, Kutz JN. 2016 Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932-3937.
(doi:10.1073/pnas.1517384113)

Kulkarni CS, Gupta A, Lermusiaux PF. 2020 Sparse regression and adaptive feature
generation for the discovery of dynamical systems. In Int. Conf. on Dynamic Data Driven
Application Systems (eds F Darema, E Blasch, S Ravela, A Aved), pp. 208-216. Berlin, Germany:
Springer.

Chen TQ, Rubanova Y, Bettencourt J, Duvenaud DK. 2018 Neural ordinary differential
equations. In Advances in neural information processing systems, pp. 6571-6583.

Maulik R, Mohan A, Lusch B, Madireddy S, Balaprakash P, Livescu D. 2020 Time-series
learning of latent-space dynamics for reduced-order model closure. Physica D 405, 132368.
(doi:10.1016/j.physd.2020.132368)

Yang Y, Aziz Bhouri M, Perdikaris P. 2020 Bayesian differential programming for robust
systems identification under uncertainty. Proc. R. Soc. A 476, 20200290. (d0i:10.1098/rspa.
2020.0290)

Portwood GD et al. 2019 Turbulence forecasting via neural ODE. (http:/ /arxiv.org/abs/1911.
05180)

Otto A, Just W, Radons G. 2019 Nonlinear dynamics of delay systems: an overview. Phil. Trans.
R. Soc. A 377,20180389. (d0i:10.1098/rsta.2018.0389)

Glass DS, Jin X, Riedel-Kruse IH. 2021 Nonlinear delay differential equations and
their application to modeling biological network motifs. Nat. Commun. 12, 1-19.
(doi:10.1038 /s41467-021-21700-8)

Tokuda IT, Akman OE, Locke JC. 2019 Reducing the complexity of mathematical
models for the plant circadian clock by distributed delays. J. Theor. Biol. 463, 155-166.
(doi:10.1016/j.jtbi.2018.12.014)

Behzad F, Helenbrook BT, Ahmadi G. 2015 On the sensitivity and accuracy of proper-
orthogonal-decomposition-based reduced order models for Burgers equation. Comput. Fluids
106, 19-32. (doi:10.1016/j.compfluid.2014.09.041)

Borja A et al. 2014 Tales from a thousand and one ways to integrate marine
ecosystem components when assessing the environmental status. Front. Mar. Sci. 1, 72.
(doi:10.3389 /fmars.2014.00072)

Fennel W, Neumann T. 2014 Introduction to the modelling of marine ecosystems. Amsterdam, The
Netherlands: Elsevier.

Newberger PA, Allen JS, Spitz YH. 2003 Analysis and comparison of three ecosystem models.
J. Geophys. Res.: Oceans (1978-2012) 108, 3061. (doi:10.1029/2001JC001182)

Lermusiaux PF], Malanotte-Rizzoli P, Stammer D, Carton J, Cummings J, Moore AM. 2006
Progress and prospects of U.S. data assimilation in ocean research. Oceanography 19, 172-183.
(doi:10.5670/ oceanog.2006.102)

Lermusiaux PFJ et al. 2006 Quantifying uncertainties in ocean predictions. Oceanography 19,
92-105. (doi:10.5670/ oceanog.2006.93)

Robinson AR, Haley PJ, Lermusiaux PF], Leslie WG. 2002 Predictive skill, predictive
capability and predictability in ocean forecasting. In Proc. of “The OCEANS 2002 MTS/IEEE’
Conference, Biloxi, MI, 29-31 October, pp. 787-794. IEEE.

Robinson NM, Nelson WA, Costello MJ, Sutherland JE, Lundquist CJ. 2017 A systematic
review of marine-based species distribution models (SDMs) with recommendations for best
practice. Front. Mar. Sci. 4, 421. (d0i:10.3389 / fmars.2017.00421)

Feppon F, Lermusiaux PFJ. 2018 A geometric approach to dynamical model-order reduction.
SIAM]. Matrix Anal. Appl. 39, 510-538. (doi:10.1137 /16M1095202)

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

http://dx.doi.org/10.1073/pnas.97.7.2968
http://dx.doi.org/10.1098/rspa.2017.0385
http://dx.doi.org/10.1098/rspa.2014.0446
http://dx.doi.org/10.2307/1968482
http://dx.doi.org/10.1073/pnas.1517384113
http://dx.doi.org/10.1016/j.physd.2020.132368
http://dx.doi.org/10.1098/rspa.2020.0290
http://dx.doi.org/10.1098/rspa.2020.0290
http://arxiv.org/abs/1911.05180
http://arxiv.org/abs/1911.05180
http://dx.doi.org/10.1098/rsta.2018.0389
http://dx.doi.org/10.1038/s41467-021-21700-8
http://dx.doi.org/10.1016/j.jtbi.2018.12.014
http://dx.doi.org/10.1016/j.compfluid.2014.09.041
http://dx.doi.org/10.3389/fmars.2014.00072
http://dx.doi.org/10.1029/2001JC001182
http://dx.doi.org/10.5670/oceanog.2006.102
http://dx.doi.org/10.5670/oceanog.2006.93
http://dx.doi.org/10.3389/fmars.2017.00421
http://dx.doi.org/10.1137/16M1095202

Downloaded from https://royal societypublishing.org/ on 18 August 2021

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Holmes P, Lumley JL, Berkooz G, Rowley CW. 2012 Turbulence, coherent structures, dynamical
systems and symmetry. Cambridge, UK: Cambridge University Press.

Feppon F, Lermusiaux PFJ. 2018 Dynamically orthogonal numerical schemes for
efficient stochastic advection and Lagrangian transport. SIAM Rev. 60, 595-625.
(d0i:10.1137/16M1109394)

Sapsis TP, Lermusiaux PFJ. 2012 Dynamical criteria for the evolution of the stochastic
dimensionality in flows with uncertainty. Physica D 241, 60-76. (doi:10.1016/
j-physd.2011.10.001)

Matthies HG, Meyer M. 2003 Nonlinear Galerkin methods for the model reduction
of nonlinear dynamical systems. Comput. Struct. 81, 1277-1286. (d0i:10.1016/50045-7949
(03)00042-7)

Laizet S, Nedi¢ J, Vassilicos C. 2015 Influence of the spatial resolution on fine-scale features in
DNS of turbulence generated by a single square grid. Int. J. Comput. Fluid Dyn. 29, 286-302.
(d0i:10.1080/10618562.2015.1058371)

Yeung P, Sreenivasan KR, Pope SB. 2018 Effects of finite spatial and temporal resolution
in direct numerical simulations of incompressible isotropic turbulence. Phys. Rev. Fluids 3,
064603. (d0i:10.1103 /PhysRevFluids.3.064603)

Dauhajre DP, McWilliams JC, Renault L. 2019 Nearshore lagrangian connectivity:
submesoscale influence and resolution sensitivity. JGR: Oceans 124, 5180-5204. (doi:10.1029/
2019JC014943)

McWilliams JC. 2016 Submesoscale currents in the ocean. Proc. R. Soc. A 472, 20160117.
(doi:10.1098 /rspa.2016.0117)

McWilliams JC. 2017 Submesoscale surface fronts and filaments: secondary circulation,
buoyancy flux, and frontogenesis. J. Fluid Mech. 823, 391. (d0i:10.1017 /jfm.2017.294)
Schneider T, Lan S, Stuart A, Teixeira J. 2017 Earth system modeling 2.0: a blueprint for models
that learn from observations and targeted high-resolution simulations. Geophy. Res. L. 44,
12-396. (d0i:10.1002/2016GL071741)

May RM. 2019 Stability and complexity in model ecosystems, vol. 1. Princeton, NJ: Princeton
University Press.

Nowak MA. 2006 Evolutionary dynamics: exploring the equations of life. Cambridge, UK: Harvard
University Press.

Robinson AR, Lermusiaux PF]. 2002 Data assimilation for modeling and predicting coupled
physical-biological interactions in the sea. In Biological-Physical Interactions in the Sea (eds]
McCarthy, BJ Rothschild), vol. 12 of The Sea, ch. 12, pp. 475-536. New York, NY: John Wiley
and Sons.

Lermusiaux PFJ. 2007 Adaptive modeling, adaptive data assimilation and adaptive sampling.
Physica D 230, 172-196. (d0i:10.1016 /j.physd.2007.02.014)

Lermusiaux PFJ, Evangelinos C, Tian R, Haley PJ, McCarthy JJ, Patrikalakis NM, Robinson
AR, Schmidt H. 2004 Adaptive coupled physical and biogeochemical ocean predictions: a
conceptual basis. In Computational Science - ICCS 2004, vol. 3038 of Lecture Notes in Computer
Science (eds M Bubak, GD van Albada, PMA Sloot,] Dongarra), pp. 685-692. Berlin, Germany:
Springer.

Dell’Anna L. 2020 Solvable delay model for epidemic spreading: the case of Covid-19 in Italy.
Sci. Rep. 10, 1-10. (d0i:10.1038 /s41598-019-56847-4)

Kuang Y. 1993 Delay differential equations: with applications in population dynamics. Academic
Press.

Bocharov GA, Rihan FA. 2000 Numerical modelling in biosciences using delay differential
equations. J. Comput. Appl. Math. 125, 183-199. (doi:10.1016/50377-0427(00)00468-4)

Faugeras B, Maury O. 2007 Modeling fish population movements: from an individual-
based representation to an advection-diffusion equation. |. Theor. Bio. 247, 837-848.
(doi:10.1016/j.jtbi.2007.04.012)

Hundsdorfer W, Verwer JG. 2013 Numerical solution of time-dependent advection-diffusion-
reaction equations, vol. 33. Berlin, Germany: Springer Science & Business Media.

Boers N, Chekroun MD, Liu H, Kondrashov D, Rousseau DD, Svensson A, Bigler M, Ghil M.
2017 Inverse stochastic—dynamic models for high-resolution greenland ice core records. Earth
Syst. Dyn. 8,1171-1190. (d0i:10.5194/esd-8-1171-2017)

Kondrashov D, Chekroun MD, Ghil M. 2015 Data-driven non-Markovian closure models.
Physica D 297, 33-55. (d0i:10.1016/j.physd.2014.12.005)

YOOLOZOZ L ¥ 205§ 204g edsy/jeuinof/bioBuiysigndiaposiefos H

http://dx.doi.org/10.1137/16M1109394
http://dx.doi.org/10.1016/j.physd.2011.10.001
http://dx.doi.org/10.1016/S0045-7949(03)00042-7
http://dx.doi.org/10.1080/10618562.2015.1058371
http://dx.doi.org/10.1103/PhysRevFluids.3.064603
http://dx.doi.org/10.1029/2019JC014943
http://dx.doi.org/10.1029/2019JC014943
http://dx.doi.org/10.1098/rspa.2016.0117
http://dx.doi.org/10.1017/jfm.2017.294
http://dx.doi.org/10.1002/2016GL071741
http://dx.doi.org/10.1016/j.physd.2007.02.014
http://dx.doi.org/10.1038/s41598-019-56847-4
http://dx.doi.org/10.1016/S0377-0427(00)00468-4
http://dx.doi.org/10.1016/j.jtbi.2007.04.012
http://dx.doi.org/10.5194/esd-8-1171-2017
http://dx.doi.org/10.1016/j.physd.2014.12.005

Downloaded from https://royal societypublishing.org/ on 18 August 2021

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Chekroun MD, Liu H, McWilliams JC. 2020 Variational approach to closure of
nonlinear dynamical systems: autonomous case. J. Stat. Phys. 179, 1073-1160.
(doi:10.1007 /s10955-019-02458-2)

Richard J-P. 2003 Time-delay systems: an overview of some recent advances and open
problems. Automatica 39, 1667-1694. (doi:10.1016/S0005-1098(03)00167-5)

Diekmann O, Van Gils SA, Lunel SM, Walther H-O. 2012 Delay equations: functional-, complex-,
and nonlinear analysis, vol. 110. Berlin, Germany: Springer Science & Business Media.
MacDonald N. 2008 Biological delay systems: linear stability theory. Cambridge, UK: Cambridge
University Press.

Smith HL. 2011 An introduction to delay differential equations with applications to the life sciences,
vol. 57. New York, NY: Springer.

Koch G, Krzyzanski W, Pérez-Ruixo JJ, Schropp J. 2014 Modeling of delays in PKPD: classical
approaches and a tutorial for delay differential equations. J. Pharmacokinet. Pharmacodyn. 41,
291-318. (d0i:10.1007 /5s10928-014-9368-y)

Roussel MR. 1996 The use of delay differential equations in chemical kinetics. J. Phys. Chem.
100, 8323-8330. (doi:10.1021/jp9600672)

Keller AA. 2010 Generalized delay differential equations to economic dynamics and control.
American-Math 10, 278-286.

Matsuya K, Kanai M. 2015 Exact solution of a delay difference equation modeling traffic flow
and their ultra-discrete limit. (http://arxiv.org/abs/1509.07861).

Kunisch K. 1982 Approximation schemes for the linear-quadratic optimal control problem
associated with delay equations. SIAM]. Control Optim. 20, 506-540. (doi:10.1137/0320038)
Bhattacharya K, Ghil M, Vulis I. 1982 Internal variability of an energy-balance model
with delayed albedo effects. J. Atmos. Sci. 39, 1747-1773. (doi:10.1175/1520-0469(1982)
039<1747:1IVOAEB>2.0.CO;2)

Ghil M, Chekroun MD, Stepan G. 2015 A collection on ‘climate dynamics: multiple scales and
memory effects. Proc. R. Soc. A 471, 20150097. (d0i:10.1098 /rspa.2015.0097)

Rackauckas C, Ma Y, Martensen], Warner C, Zubov K, Supekar R, Skinner D, Ramadhan
A, Edelman A. 2020 Universal differential equations for scientific machine learning. (http://
arxiv.org/abs/2001.04385).

Rackauckas C, Ma Y, Martensen J, Warner C, Zubov K, Supekar R, Skinner D, Ramadhan A,
Edelman A. 2019 Diffeqflux.jl - A julia library for neural differential equations. (http:/ /arxiv.
org/abs/1902.02376).

Abadi M et al. 2015 TensorFlow: Large-scale machine learning on heterogeneous systems. See
www.tensorflow.org/.

Paszke A et al. 2019 Pytorch: an imperative style, high-performance deep learning library.
In Advances in neural information processing systems, 33rd Conference on Neural Information
Processing Systems (NeurIPS 2019), Vancouver, Canada, pp. 8026-8037.

Rubanova Y, Chen RT, Duvenaud D. 2019 Latent odes for irregularly-sampled time series.
(http:/ /arxiv.org/abs/1907.03907).

Calver], Enright W. 2017 Numerical methods for computing sensitivities for ODEs and DDEs.
Numer. Algorithms 74, 1101-1117. (d0i:10.1007 /s11075-016-0188-6)

Robinson AR, Lermusiaux PFJ, Sloan III NQ. 1998 Data assimilation. In The Global Coastal
Ocean-Processes and Methods, vol. 10 of The Sea, ch. 20, pp. 541-594. New York, NY: John Wiley
and Sons.

Wunsch C. 1996 The ocean circulation inverse problem. Cambridge, UK: Cambridge University
Press.

Gholami A, Keutzer K, Biros G. 2019 Anode: Unconditionally accurate memory-efficient
gradients for neural odes. (http:/ /arxiv.org/abs/1902.10298).

Griewank A. 1992 Achieving logarithmic growth of temporal and spatial complexity in
reverse automatic differentiation. Optim. Methods Softw. 1, 35-54. (d0i:10.1080/10556789208
805505)

Daulbaev T, Katrutsa A, Markeeva L, Gusak], Cichocki A, Oseledets I. 2020 Interpolation
technique to speed up gradients propagation in neural ODEs. Adv. Neural Inform. Process.
Systems 33.

Rasmussen H, Wake G, Donaldson J. 2003 Analysis of a class of distributed delay logistic
differential equations. Math. Comput. Modell. 38, 123-132. (d0i:10.1016 /S0895-7177(03)90010-0)
Rackauckas C et al. SciML Scientific Machine Learning Software. See https://sciml.ai/.

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

http://dx.doi.org/10.1007/s10955-019-02458-2
http://dx.doi.org/10.1016/S0005-1098(03)00167-5
http://dx.doi.org/10.1007/s10928-014-9368-y
http://dx.doi.org/10.1021/jp9600672
http://arxiv.org/abs/1509.07861
http://dx.doi.org/10.1137/0320038
http://dx.doi.org/10.1175/1520-0469(1982)039{\T1\textexclamdown }1747:IVOAEB{\T1\textquestiondown }2.0.CO;2
http://dx.doi.org/10.1098/rspa.2015.0097
http://arxiv.org/abs/2001.04385
http://arxiv.org/abs/2001.04385
http://arxiv.org/abs/1902.02376
http://arxiv.org/abs/1902.02376
www.tensorflow.org/
http://arxiv.org/abs/1907.03907
http://dx.doi.org/10.1007/s11075-016-0188-6
http://arxiv.org/abs/1902.10298
http://dx.doi.org/10.1080/10556789208805505
http://dx.doi.org/10.1016/S0895-7177(03)90010-0
https://sciml.ai/

Downloaded from https://royal societypublishing.org/ on 18 August 2021

83.

84.

85.
86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Yuval J, Hill CN, O’Gorman PA. 2020 Use of neural networks for stable, accurate
and physically consistent parameterization of subgrid atmospheric processes with good
performance at reduced precision. (http:/ /arxiv.org/abs/2010.09947).

Hairer E, Norsett SP, Wanner G. 1993 Solving ordinary differential equations I. Berlin, Germany:
Springer.

Cover TM. 1999 Elements of information theory. New York, NY: John Wiley & Sons.

Brown PN, Byrne GD, Hindmarsh AC. 1989 VODE: A variable-coefficient ODE solver. SIAM
J. Sci. Stat. Comput. 10, 1038-1051. (doi:10.1137/0910062)

Maulik R, San O. 2018 Explicit and implicit les closures for burgers turbulence. J. Comput.
Appl. Math. 327, 12-40. (d0i:10.1016 /j.cam.2017.06.003)

Li J, Stinis P. 2019 Mori-Zwanzig reduced models for uncertainty quantification. J. Comput.
Dyn. 6, 39-68.

Burchard H, Deleersnijder E, Meister A. 2005 Application of modified patankar
schemes to stiff biogeochemical models for the water column. Ocean Dyn. 55, 326-337.
(doi:10.1007 /s10236-005-0001-x)

Besiktepe ST, Lermusiaux PFJ, Robinson AR. 2003 Coupled physical and biogeochemical
data-driven simulations of Massachusetts Bay in late summer: real-time and post-cruise data
assimilation. J. Mar. Syst. 4041, 171-212. (d0i:10.1016 /50924-7963(03)00018-6)

Lermusiaux PFJ et al. 2011 Multiscale physical and biological dynamics in the Philippine
Archipelago: predictions and processes. Oceanography 24, 70-89. (doi:10.5670/oceanog.
2011.05)

Ueckermann MP, Lermusiaux PFJ. 2010 High order schemes for 2D unsteady biogeochemical
ocean models. Ocean Dyn. 60, 1415-1445. (doi:10.1007 /s10236-010-0351-x)

Baretta J, Ebenhoh W, Ruardij P. 1995 The European regional seas ecosystem model, a complex
marine ecosystem model. Neth. |. Sea Res. 33, 233-246. (d0i:10.1016/0077-7579(95)90047-0)
Eknes M, Evensen G. 2002 An ensemble Kalman filter with a 1-D marine ecosystem model. J.
Mar. Sys. 36, 75-100. (doi:10.1016/50924-7963(02)00134-3)

Mizutani E, Dreyfus SE. 2001 On complexity analysis of supervised MLP-learning for
algorithmic comparisons. In IJCNN'01. Int. Joint Conf. on Neural Networks. Proc. (Cat. No.
01CH37222), Washington, DC, 15-19 July, vol. 1, pp. 347-352. IEEE.

Erneux T. 2009 Applied delay differential equations, vol. 3. Berlin, Germany: Springer.

YO0LOZOZ LLi Y 205§ 204g edsyjeuinol/BioBulysiigndiaaosiefos

http://arxiv.org/abs/2010.09947
http://dx.doi.org/10.1137/0910062
http://dx.doi.org/10.1016/j.cam.2017.06.003
http://dx.doi.org/10.1007/s10236-005-0001-x
http://dx.doi.org/10.1016/S0924-7963(03)00018-6
http://dx.doi.org/10.5670/oceanog.2011.05
http://dx.doi.org/10.1007/s10236-010-0351-x
http://dx.doi.org/10.1016/0077-7579(95)90047-0
http://dx.doi.org/10.1016/S0924-7963(02)00134-3

	Introduction
	Closure problems
	Reduced order modelling
	Subgrid-scale processes
	Simplification of complex dynamical systems

	Theory and methodology
	MZ formulation and delays in complex dynamical systems
	Neural delay differential equations
	Neural closure models

	Application results and discussion
	Experiments 1: advecting shock---reduced order model
	Experiments 2: Advecting shock---subgrid-scale processes
	Experiments 3a: 0-D marine biological models
	Experiments 3b: one-dimensional marine biogeochemical models
	Computational complexity

	Conclusion
	References

