
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports

Generalized neural closure models
with interpretability
Abhinav Gupta  & Pierre F. J. Lermusiaux  *

Improving the predictive capability and computational cost of dynamical models is often at the heart
of augmenting computational physics with machine learning (ML). However, most learning results
are limited in interpretability and generalization over different computational grid resolutions, initial
and boundary conditions, domain geometries, and physical or problem-specific parameters. In the
present study, we simultaneously address all these challenges by developing the novel and versatile
methodology of unified neural partial delay differential equations. We augment existing/low-fidelity
dynamical models directly in their partial differential equation (PDE) forms with both Markovian and
non-Markovian neural network (NN) closure parameterizations. The melding of the existing models
with NNs in the continuous spatiotemporal space followed by numerical discretization automatically
allows for the desired generalizability. The Markovian term is designed to enable extraction of its
analytical form and thus provides interpretability. The non-Markovian terms allow accounting for
inherently missing time delays needed to represent the real world. Our flexible modeling framework
provides full autonomy for the design of the unknown closure terms such as using any linear-,
shallow-, or deep-NN architectures, selecting the span of the input function libraries, and using either
or both Markovian and non-Markovian closure terms, all in accord with prior knowledge. We obtain
adjoint PDEs in the continuous form, thus enabling direct implementation across differentiable
and non-differentiable computational physics codes, different ML frameworks, and treatment of
nonuniformly-spaced spatiotemporal training data. We demonstrate the new generalized neural
closure models (gnCMs) framework using four sets of experiments based on advecting nonlinear
waves, shocks, and ocean acidification models. Our learned gnCMs discover missing physics, find
leading numerical error terms, discriminate among candidate functional forms in an interpretable
fashion, achieve generalization, and compensate for the lack of complexity in simpler models. Finally,
we analyze the computational advantages of our new framework.

The field of Scientific Machine Learning (SciML1) is burgeoning with innovative methods that combine machine
learning with existing scientifically-derived differential equation models and computational physics schemes. This
is in part because many realistic dynamical models are complex, and often truncated, coarsened, or aggregated
due to computational cost constraints. Machine learning (ML) is then used to learn and represent the neglected
and unresolved terms in a data-driven fashion2–9. Such techniques that express the missing dynamics as functions
of modeled state variables and parameters are referred to as closure models. Most ML closure models (and SciML
results in general) are however often limited both in interpretability as black-box ML models and in generaliza-
tion over different computational grid resolutions, initial conditions, boundary conditions, domain geometries,
and physical or problem-specific parameters. Addressing the challenges of interpretability and generalization is
imperative to justify the costs of training the SciML models using data sets obtained from expensive measure-
ments or generated by solving the complex dynamical models in the first place. The goal of the present study is to
simultaneously address these challenges and learn closure models which are both generalizable and interpretable.

The need for closure modeling arises for a variety of reasons, ranging from computational cost considerations,
preference for simpler models over complex ones due to overparameterization, or lack of scientific understanding
of processes and variables involved in the system of interest. The simpler or the known model is often referred
to as a low-fidelity model, while the complex counterpart in either models or observations is then referred to as
the high-fidelity model, reality, or real-world data. Low-fidelity models can be categorized into three categories:
(i) Reduced-order models, in which the original high-dimensional dynamical system is projected and solved
in a reduced space. While it is computationally cheaper to solve the low-dimensional system, these models
can quickly accumulate errors due to the missing interactions with the truncated dimensions10–12; (ii) Coarse-
resolution models, in which we only resolve the scales of interest. In these cases, the neglected and unresolved

OPEN

Department of Mechanical Engineering, Center for Computational Science and Engineering, Massachusetts Institute
of Technology, Cambridge, MA 02139, USA. *email: pierrel@mit.edu

https://orcid.org/0000-0002-9197-0736
http://orcid.org/0000-0002-1869-3883
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-35319-w&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

scales, along with their interactions with the resolved ones, can lead to unintended or unacceptable effects at
global scales13–17; (iii) Simplistic or speculative models, in which an incomplete representation or understanding
of processes and interactions occurs, and thus uncertainty in the model formulations and even in the relevant
state variables themselves. This can lead to a gross or incorrect approximation of the real-world phenomena18–22.

In2, neural closure models (nCMs) are developed for low-fidelity models using neural delay differential
equations (nDDEs) and data from high-fidelity simulations. The need for time delays in closure parameteri-
zations is rooted in the presence of inherent delays in real-world systems23,24 and theoretically justifed by the
Mori–Zwanzig formulation25–28. Using nDDEs for closure modeling has a number of advantages. They allow
for the use of smaller architectures and account for the accumulation of numerical time-stepping error in the
presence of neural networks (NNs) during training. Additionally, nDDEs are agnostic to the time-integration
scheme, handle unevenly-spaced training data, and have good performance over prediction periods much longer
than the training or validation periods. However, there are other highly-desirable properties, as mentioned above.
Fundamental questions for neural closures include: Can they be interpretable and lead to analytical expressions?
Can they achieve generalization over many conditions and variables, as physics-based models do? How can
they be combined seamlessly with classic numerical schemes? A number of recent approaches have aimed to
address such questions, however, challenges remain especially for partial differential equations (PDEs). This is
often because NNs are used with the discretized ordinary differential equation (ODE) form of the corresponding
PDEs, which makes it inherently difficult to generalize to changes in boundary conditions, domain geometry,
and computational grid. Recently, a few studies have taken steps at addressing these drawbacks. Sirignano et al.8
augment the underlying PDE with a neural network, however, they only learn a Markovian closure. The inputs to
the neural network include the state, its spatial derivatives, and a fixed number of neighboring grid points. They
also provide an accompanying discrete adjoint PDE for efficient training. Saha et al.9 use a radial-basis-functions-
based collocation method to allow for mesh-free embedding of NNs. However, the resulting NNs also only learn
a Markovian closure, do not account for the accumulation of time-integration errors, and lack interpretability.

In the present study, we develop the unified neural partial delay differential equations (nPDDEs) that aug-
ment existing/low-fidelity models in their PDE forms with both Markovian and non-Markovian closures
parameterized with deep-NNs. The neural closure terms then contain instantaneous and delayed contributions.
Their inputs consist of the modeled states, their spatial derivatives, combinations of derivatives, and any other
problem-specific variables and parameters. The melding of the low-fidelity model and deep-NNs in the continu-
ous spatiotemporal space automatically allows for generalizability to computational grid resolution, boundary
conditions, and initial conditions. By design, the closure terms can also provide analytical expressions of the
missing terms, thus leading to interpretability. The resulting nPDDEs are discretized using any numerical method
relevant to the dynamical system studied. Further, we provide adjoint PDE derivations in the continuous form,
thus allowing one to implement across differentiable and non-differentiable computational physics codes, and
also different machine learning frameworks. All our derivations and implementations are done considering
deep-NN architectures, thus automatically encompassing linear- and shallow-NNs, and providing the user or
subject-matter-expert user with the flexibility of choosing the architectural complexity in accord with the prior
information available. We refer to the new methodology as generalized neural closure models (gnCM). Through a
series of experiments, we demonstrate the flexibility of gnCMs to learn closures either in an interpretable fashion,
black-box fashion, or both simultaneously, using the prior scientific knowledge about the problem at hand. The
gnCMs can eliminate erroneous and redundant input terms, or combine them to achieve increased accuracy. We
also demonstrate the generalizability of our learned closures to changes in physical parameters, grid resolution,
initial conditions, and boundary conditions. Our first class of simulation experiments uses nonlinear waves and
advecting shocks problems governed by the KdV-Burgers and classic Burgers PDEs. Our learned gnCM finds
missing terms, discovers the leading truncation error, and a correction to the non-linear advection term. We
find that training on data corresponding to just a few combinations of grid resolution and Reynolds number
is sufficient to ensure that the learned closures are generalizable over a range of grid resolution and Reynolds
number combinations, initial and boundary conditions, and also outperform the popular Smagorinsky subgrid-
scale closure model. Our second class of experiments is based on ocean acidification models, where we learn the
functional form of biological processes and compensate for the lack of complexity in simpler models obtained by
aggregation of components and other simplifications of processes and parameterizations. Finally, we comment
on the computational advantages of our new gnCM framework.

In what follows, we first develop the “Theory and methodology” for the gnCMs. “Application results and
discussion” showcases the generalization and interpretability properties of the gnCMs in experiments with
nonlinear waves, advecting shocks, and ocean acidification, and discusses computational advantages. Finally,
“Conclusions” are provided.

Theory and methodology
The functional form of closure models representing missing dynamics can be derived by the Mori–Zwanzig
formulation25–28, which proves it to be dependent on the time-lagged state dynamics. Many systems are modeled
assuming smooth fields of state variables governed by advection-diffusion-reaction PDEs. Such PDEs implicitly
assume that local information between state variables is exchanged instantaneously at any spatial location. In real-
ity, however, time delays occur for several reasons. First, reactions or changes in populations have non-negligible

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

time scales. Such time delays are captured in more complex models by modeling intermediate state variables. The
time response of lower-complexity models can thus approximate that of high-complexity models by explicitly
introducing delays23,24. Second, time delays arise due to missing subgrid-scale processes and/or truncated modes
in reduced-order models. For all of these reasons, memory-based terms and thus non-Markovian closure terms
are needed to augment low-fidelity models2.

In general, low-fidelity models are also outright missing Markovian terms due to truncation, coarse resolu-
tion, or incomplete and uncertain functional forms of some of the model terms. We will therefore use both
Markovian and non-Markovian terms to close low-fidelity models in their PDE forms. This leads to partial delay
differential equations (PDDEs) that are widely used in ecology, control theory, biology, and climate dynamics,
to name a few application areas29.

In this study, the Markovian and non-Markovian closure terms will be modeled using deep-NNs. To achieve
full interpretability from the learned weights of the NNs of the closure models, we at times consider single-layer
linear-NNs. Closure terms in general depend on the state variables, their spatial derivatives, and combinations
of these belonging to a function library. As the presence of discrete delays can be seen as a special case of dis-
tributed delays, the non-Markovian term is assumed to contain distributed delays and have a maximum finite
time-delay ( τ ). Given a continuous state vector comprising of Ns different states, u(x, t) : R× [0,T] → R

Ns , we
thus consider a dynamical system belonging to domain � of the following form,

where L , FNN , and DNN are nonlinear functions parameterized with ν , φ , and θ , respectively. ν are problem-
specific parameters associated with the physical/biological/chemical phenomenon of interest, while φ and θ are
the NN weights. When compared to PDEs, PDDEs require a history function ( h(x, t) , −τ ≤ t ≤ 0 ) for their
initialization at t = 0 . The operator B represents appropriate boundary conditions such as Dirichlet, Neumann,
etc. which are needed to solve the system uniquely. Furthermore, for ease of notation, we have assumed a one-
dimensional (1D) domain, however, the method directly extends to 2D and 3D domains.

Neural partial delay differential equations.  We now obtain ML schemes that learn PDDEs parameter-
ized using deep-NNs. They are referred to as neural partial delay differential equations (nPDDEs). Without loss
of generality, and for brevity, we limit ourselves to nPDDEs with only a Markovian term and a non-Markovian
term with distributed delays. The low-fidelity model can be considered to be absorbed in the Markovian closure
term. Hence, the nPDDE is of the form,

The two deep-NNs, instantaneous FNN (•;φ) and delayed DNN (•; θ) , remain parameterized by φ and θ , and
for generality, they are considered to be functions of an arbitrary number of spatial derivatives, with the highest
order defined by d ∈ Z

+ . We can rewrite Eq. (2) as an equivalent system of coupled PDDEs with discrete delays,

(1)

∂u(x, t)

∂t
= L

(

u(x, t),
∂u(x, t)

∂x
,
∂2u(x, t)

∂x2
, ..., x, t; ν

)

︸ ︷︷ ︸

Low−Fidelity / Known Model

+ FNN

(

u(x, t),
∂u(x, t)

∂x
,
∂2u(x, t)

∂x2
, ..., x, t;φ

)

︸ ︷︷ ︸

Markovian Closure Term

+

∫ t

t−τ

DNN

(

u(x, s),
∂u(x, s)

∂x
,
∂2u(x, s)

∂x2
, ..., x, s; θ

)

ds

︸ ︷︷ ︸

Non−Markovian Closure Term

, x ∈ �, t ≥ 0 ,

u(x, t) = h(x, t), −τ ≤ t ≤ 0 and B(u(x, t)) = g(x, t), x ∈ ∂�, t ≥ 0,

(2)

∂u(x, t)

∂t
= FNN

(

u(x, t),
∂u(x, t)

∂x
,
∂2u(x, t)

∂x2
, ...,

∂du(x, t)

∂xd
, x, t;φ

)

+

∫ t

t−τ

DNN

(

u(x, s),
∂u(x, s)

∂x
,
∂2u(x, s)

∂x2
, ...,

∂du(x, s)

∂xd
, x, s; θ

)

ds,

x ∈ �, t ≥ 0,

u(x, t) = h(x, t), −τ ≤ t ≤ 0 and B(u(x, t)) = g(x, t) x ∈ ∂�, t ≥ 0.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

Let us assume that high-fidelity data is available at M discrete times, T1 < ... < TM ≤ T  , and at N(Ti)
spatial locations ( xTik ∈ �, ∀k ∈ 1, ...,N(Ti) ) for each of the times. Thus, we define the scalar loss func-

t i o n a s , L = 1
M

∑
M

i=1
1

N(Ti)

∑N(Ti)
k=1

l(u(x
Ti

k
,Ti)) ≡

∫
T

0
1
M

∑
M

i=1

∫

�
1

N(Ti)

∑N(Ti)
k=1

l(u(x, t))δ(x− x
Ti

k
)

δ(t − Ti)dxdt ≡
∫
T

0
1
M

∑
M

i=1
1
|�|

∫

�
l̂(u(x, t))δ(t − Ti)dxdt , where l(•) are scalar loss functions such as mean-

absolute-error (MAE), and δ(•) is the Kronecker delta function. In order to derive the adjoint PDEs, we start
with the Lagrangian corresponding to the above system,

where �(x, t) , µ(x, t) and α(x) are the Lagrangian variables. To find the gradients of L w.r.t. φ and θ , we first solve
the following adjoint PDEs (for brevity we denote, ∂/∂(•) ≡ ∂(•) , and d/d(•) ≡ d(•)),

with initial conditions, �(x, t) = µ(x, t) = 0, t ≥ T . The boundary conditions are derived based on those of the
forward PDDE and they satisfy,

Details of the derivation of the above adjoint PDEs are in the Supplementary information, Sect. SI-1. After solving
for the Lagrangian variables, �(x, t) and µ(x, t) , we compute the required gradients as,

(3)

∂u(x, t)

∂t
= FNN

(

u(x, t),
∂u(x, t)

∂x
,
∂2u(x, t)

∂x2
, ...,

∂du(x, t)

∂xd
, x, t;φ

)

+ y(x, t),

x ∈ �, t ≥ 0,

∂y(x, t)

∂t
= DNN

(

u(x, t),
∂u(x, t)

∂x
,
∂2u(x, t)

∂x2
, ...,

∂du(x, t)

∂xd
, x, t; θ

)

−DNN

(

u(x, t − τ),
∂u(x, t − τ)

∂x
,
∂2u(x, t − τ)

∂x2
, ...,

∂du(x, t − τ)

∂xd
, x, t − τ ; θ

)

,

x ∈ �, t ≥ 0,

u(x, t) = h(x, t), −τ ≤ t ≤ 0 and B(u(x, t)) = g(x, t), x ∈ ∂�, t ≥ 0,

y(x, 0) =

∫ 0

−τ

DNN

(

h(x, s),
∂h(x, s)

∂x
,
∂2h(x, s)

∂x2
, ...,

∂dh(x, s)

∂xd
, x, s; θ

)

ds.

(4)

L = L(u(x, t))+

∫ T

0

∫

�

�
T (x, t)

(
∂tu(x, t)− FNN (•, t;φ)− y(x, t)

)
dxdt

+

∫ T

0

∫

�

µT (x, t)
(
∂t y(x, t)−DNN (•, t; θ)+DNN (•, t − τ ; θ)

)
dxdt

+

∫

�

αT (x)

(

y(x, 0)−

∫ 0

−τ

DNN (h(x, t), ∂xh(x, t), ∂x2h(x, t), ..., ∂xd h(x, t), x, t; θ)dt

)

dx,

(5)

0 =
1

M

1

|�|

M∑

k=1

∂u(x,t) l̂(u(x, t))δ(t − Tk)

− ∂t�
T (x, t)− �

T (x, t)∂u(x,t)FNN (•, t)+

d∑

i=1

(−1)i+1∂xi

(

�
T (x, t)∂∂xi u(x,t)FNN (•, t)

)

− µT (x, t)∂u(x,t)DNN (•, t; θ)+

d∑

i=1

(−1)i+1∂xi

(

µT (x, t)∂∂xi u(x,t)DNN (•, t; θ)
)

+ µT (x, t + τ)∂u(x,t)DNN (•, t; θ)−

d∑

i=1

(−1)i+1∂xi

(

µT (x, t + τ)∂∂xi u(x,t)DNN (•, t; θ)
)

,

x ∈ �, t ∈ [0,T),

0 = −�
T (x, t)− ∂tµ

T (x, t), x ∈ �, t ∈ [0,T),

(6)

0 =

d∑

i=0

d−i−1∑

j=0

(−1)j+1∂xj

(

�
T (x, t)∂∂

xj+i+1u(x,t)FNN (•, t)
)

dθ ∂xi u(x, t)

+

d∑

i=0

d−i−1∑

j=0

(−1)j+1∂xj

(

µT (x, t)∂∂
xj+i+1u(x,t)DNN (•, t)

)

dθ ∂xi u(x, t)

−

d∑

i=0

d−i−1∑

j=0

(−1)j+1∂xj

(

µT (x, t + τ)∂∂
xj+i+1u(x,t)DNN (•, t)

)

dθ ∂xi u(x, t),

x ∈ ∂�, t ∈ [t,T).

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

Finally, using a stochastic gradient descent algorithm, we find the optimal values of the weights φ and θ.

Generalized neural closure models: properties.  The gnCM framework is schematized in Fig. 1. Next,
we discuss some of its properties and variations.

Interpretability For interpretability—especially for the Markovian closure term—we can use a simple NN archi-
tecture with no hidden layers and linear activation. Nonlinearity can still be introduced by having input features
that are nonlinear combinations of the states and their derivatives belonging to a function library. The result is a
linear combination of these nonlinear input features. Along with this, a L1 regularization on the NN weights and
pruning below a threshold helps promote sparsity, thus allowing for redundancy in the input function library. In
practice, one can include as many input test functions as computationally efficient and scientifically meaning-
ful, and then adaptively augment and prune this library during the data-driven learning process, similar to that
demonstrated in30. Although this approach has similarities to SINDy30–32, it is significantly different. SINDy
requires training data to be rich enough to allow for the computation of temporal and spatial derivatives, and
solves a regression problem to discover the governing dynamical system. Some successors of SINDy circumvent
the need for calculating spatio-temporal derivatives from training data by utilizing weak forms33 and NNs to map
coordinates of the problem to the state variable34. Our gnCM method also does not require using the training data
to compute any temporal and spatial derivatives. It further accounts for the accumulation of time-integration
errors during training by numerically solving the PDE augmented with the Markovian closure term and its
corresponding adjoint PDE. Compared to other model discovery methods, gnCM seamlessly incorporates and
simultaneously learns a non-Markovian closure term without simplifying assumptions.

The use of an informative function library along with a simple NN architecture with no hidden layers and
linear activation is also applicable for the non-Markovian term for enhanced interpretability. In fact, in our deri-
vation in the prior section and framework implementation, we keep the possibility of using any general deep-NN
architectures for both Markovian and non-Markovian closure terms. This allows one to introduce an arbitrary

(7)

dθL = −

∫
T

0

∫

�

µT (x, t)∂θDNN (•, t; θ)dxdt +

∫
T

0

∫

�

µT (x, t)∂θDNN (•, t − τ ; θ)dxdt

−

∫

�

µT (x, 0)

∫ 0

−τ

∂θDNN (h(x, t), ∂xh(x, t), ∂xxh(x, t), x, t; θ)dtdx,

dφL = −

∫
T

0

∫

�

�
T (x, t)∂φFNN (•, t;φ)dxdt.

Figure 1.   Overview of the generalized neural closure models (gnCM) framework. The blocks labeled DNN
represent any deep-neural-network architectures. The block labeled

∫
 symbolizes any time-integration scheme.

DDE stands for delay differential equation.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

amount of nonlinearity, especially in cases when no prior information is available about the functional form of
the missing dynamics. The use of deep-NNs comes at the cost of full interpretability. However, even in this case,
some insight can be obtained, for example, by examining the weights of the input layer of the learned deep-NN
to determine the relative importance of different input features. This is showcased in “Experiments 1b: advecting
shock—model discovery and generalization” for the learned non-Markovian closure term.

Generalizability The forward model (Eq. 1 or 2) and the adjoint PDEs (Eq. 5) are discretized and integrated
using numerical schemes35, such as finite differences, finite volumes, collocation methods, etc. This new approach,
where we augment the PDEs with the NN-based Markovian and non-Markovian closures first, before numeri-
cal discretization, ensures that the burden of generalization over boundary conditions, domain geometry, and
computational grid resolution, along with computing the relevant spatial derivatives is handled by the numerical
schemes, and not by the learned deep-NNs. This also automatically makes the learning only dependent on local
features and affine equivariant, similar to numerical schemes.

Backpropagation and adjoint equations With the adjoint method, the adjoint PDEs (Eqs. 5 and 6) are solved
backward in time, and one would require access to u(x, t),∀x ∈ �, 0 ≤ t ≤ T . In the original neural ODEs36,
the proposed adjoint method forgets the forward-time trajectory u(x, t),∀x ∈ �, 0 ≤ t ≤ T ; instead, it remem-
bers only the state at the final time, u(x, T), and then solves for u(x, t) in reverse-time along with the adjoint
PDEs. This approach is known to suffer from inaccuracies and numerical instabilities37,38. Thus, in our cur-
rent implementation, we create and continuously update an interpolation function using the u obtained at
every time step as we solve the forward model (Eq. 2). For memory efficiency, one could also use the method
of checkpointing37–39, or the interpolated reverse dynamic method (IRDM)40. Along with this, using adaptive
time-integration schemes leads to stable and accurate solutions for our forward and adjoint PDEs, especially for
stiff dynamical systems41,42. The inherent inaccuracies and instabilities of using continuous adjoint equations
followed by discretization remain open questions37,38,41–43 and well-known issues in data assimilation44,45. In this
work, we found that the combination of the continuous adjoint method followed by discretization and adaptive
time-integration schemes is successful. Another challenge that can occur is the feasibility of derivation of the
continuous adjoint PDEs followed by discretization, especially for known realistic (low-fidelity) models that are
highly complex and nonlinear. In such cases, the discrete adjoint method, i.e., the approach of deriving the adjoint
equations for the discrete forward model might be more useful46,47. This makes it easier to utilize the vast array
of tools developed by the Automatic Differentiation community over the last several decades48, specifically, the
source-code-transformation (source-to-source) methods49,50. Finally, reduced-space adjoints as well as ensemble
approaches can be used to estimate gradients51.

Application results and discussion
Using four sets of experiments, we now showcase and evaluate the capabilities of our new closure modeling
framework (gnCM) in terms of generalizability over grid resolutions, boundary and initial conditions, and
problem-specific parameters. We also demonstrate the interpretability of the learned closures within PDEs.

In the first and second sets of experiments, we consider problems based on advecting nonlinear wave and
shock PDEs. We find that gnCMs can discriminate and discover processes such as dispersion, the leading trunca-
tion error term, and a correction to the nonlinear advection term, all in an interpretable fashion with the learned
Markovian neural closure. Using both Markovian and non-Markovian neural closure terms, we demonstrate the
generalization of the gnCM over grid resolution, Reynolds number, and initial and boundary conditions, along
with superior performance compared to the popular Smagorinsky closure. In the third and fourth sets of experi-
ments, we consider problems based on coupled physical-biological-carbonate PDEs used to study the threat of
ocean acidification. We utilize the gnCMs to discriminate and discover the functional form of uncertain terms
with interpretability, and to augment a simpler model obtained by aggregation of components and simplifications
of processes and parameterizations, such that, it becomes as accurate as a more complex model.

Our training and evaluation protocol is similar to that in2. We use performance over the validation period
(past the period for which high-fidelity data snapshots are used for training) to fine-tune various training-related
hyperparameters. The final evaluation is based on continuous evolution through the training and validation
periods, followed by longer-term future predictions. We also compare the learned closure with the known true
model. For all the figure, table, and section references prefixed with “SI-”, we direct the reader to the Supplemen-
tary Information.

Experiments 1a: nonlinear waves—interpretable model discrimination.  In the first set of experi-
ments, we consider advecting nonlinear wave PDEs and discover missing/uncertain physical processes, such as
dispersion, in an interpretable fashion, using the learned Markovian neural closure.

Setup: true model, data generation, and low-fidelity model Models for advecting shocks and nonlinear waves
are the backbone of various physical phenomena. The Korteweg de Vries (KdV)–Burgers PDE is often used to
describe weak effects of dispersion, dissipation, and non-linearity in such wave propagation52. Here, considering
a 1D spatial domain, we select this KdV–Burgers PDE as the high-fidelity model (truth),

(8)∂u

∂t
= −6u

∂u

∂x
−

∂3u

∂x3
.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

The data is generated from two solitary waves colliding with each other and that are exact solutions of Eq. (8)
with initial and boundary conditions given by,

where x1 is the location, 2η21 is the amplitude, and 1/η1 is the width of the first soliton wave, whereas x2 is the
location, 2η22 is the amplitude, and 1/η2 is the width of the second soliton wave, initially. The parametric analytical
solution of the above system is given by,

where η1 ≥ η2 , and θ1 and θ2 are given by,

We choose L = 10 , maximum time T = 1.5 , η1 = 1.2 , η2 = 0.8 , x1 = −6.0 and x2 = −2.0.
For the closure learning experiments, we assume we only have prior knowledge about the existence of the

advection term and the low-fidelity model is thus,

Other effects are unknown and need to be discovered. We assume these unknown effects to be mainly Markovian
in nature and that they can be modeled using a linear combination from a library of nonlinear functions com-
prising terms up to 3rd order spatial derivatives:

{
∂2u
∂x2

, ∂
3u

∂x3
, u ∂u

∂x , u
2 ∂u
∂x

}

 . Compared to the true model (Eq. 8),

our library contains two superfluous or redundant terms, ∂
2u

∂x2
 and u2 ∂u

∂x . Of course, it does not contain repetitive
terms.

Numerics All the numerical solutions of low-fidelity model augmented with the gnCM are obtained using finite
difference schemes. For the advection term, 2nd order accurate upwind53 is used, while all other spatial terms
and derivatives are discretized with 4th order accurate central-difference. For time-marching, the Vode scheme54
with adaptive time-stepping is used. Finally, we employ a fine grid with Nx = 200 number of grid points in the
x−direction in order to keep low discretization and truncation errors. Comparison LF-HF: in Fig. 2, we compare
the numerical solution of the low-fidelity model (Eq. 12) with the analytical solution of the high-fidelity model
(Eqs. 8, 9 and 10). The solutions of the two models have the same initial condition, however, their evolutions
are drastically different. With the high-fidelity model, the two solitons interact elastically, i.e., their amplitudes
and shapes are unchanged after the interaction, however, they do experience a phase shift in their positions.
With the low-fidelity model, however, the two solitons do not even come close to interacting with each other.

Training: NN architecture, data, and loss function For the gnCM, we only consider the Markovian term with a
simple neural network with no hidden layer and only linear activation in the output layer, in-effect equivalent to
a linear combination of the inputs. The training data consists of the analytical solution (Eq. 10) sampled at time
intervals of 0.01 until time t = 1.0 , with a validation period from 1.0 ≤ t ≤ 1.25 . In all the experiments, we use
both L1 and L2 regularization for the weights of the neural network, and prune them if their value drops below a

(9)
u(x, 0) = 2η21sech[η1(x − x1)] + 2η22sech[η2(x − x2)],

u(−L, t) = 0,
∂u(x, t)

∂x

∣
∣
∣
∣
x=L

= 0, and
∂2u(x, t)

∂x2

∣
∣
∣
∣
x=L

= 0,

(10)u(x, t) =
8(η21 − η22)(η

2
1 cosh θ2 + η22 sinh θ1)

((η1 − η2) cosh(θ1 + θ2)+ (η1 + η2) cosh(θ1 − θ2))2
,

(11)
θ1 = η1(x − x1 − 4η21t),

θ2 = η1(x − x2 − 4η22t).

(12)
∂u

∂t
= −u

∂u

∂x
.

Figure 2.   Comparison of the numerical solution of the KdV–Burgers equation with only the advection term
(Eq. 12; low-fidelity model; middle plot), with the analytical solution corresponding to the equation with
stronger advection and 3rd order derivative term (Eqs. 8, 9 and 10; high-fidelity model; left plot). The low-
fidelity model is solved on a grid with Nx = 200 grid points. The absolute difference between the two solutions
is provided in the right panel.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

certain threshold (only if the weightage of L1 regularization is non-zero), in order to promote sparsity. The set of
tuned hyperparameters used to generate the results presented next are provided in the supplementary informa-
tion, Sect. SI-2.2. Given the analytical solution data, {utrue(x,Ti), −L ≤ x ≤ L}Mi=1 , the loss function is based on
time and space averaged mean-absolute-error (MAE), L = 1

M

∑M
i=1

∫ L
−L

1
2L |u

pred(x,Ti)− utrue(x,Ti)|dx , where
M = 100 is the number of high-fidelity solution states at different times available for training.

Learning results We perform six repeats of the experiment with exactly the same set of hyperparameters, and the
learned model with the mean and standard deviation of the weights is as follows,

The true coefficients corresponding to the learned u ∂u
∂x and ∂

3u
∂x3

 terms are −5.0 and −1.0 , respectively. The learned
closure is able to recover the true model, and the slight discrepancy in the learned coefficients is to compensate
for the very small discretization and truncation errors. To illustrate this, we compare the root-mean-square-error
(RMSE), L = 1

M

∑M
i=1

√
∑Nx

j=1
1
Nx

(upred(xj ,Ti)− utrue(xj ,Ti))2 , of the learned closure and the true model solved
using the same numerical schemes. The RMSE (mean and standard deviation) obtained for the learned closure
and the true model solved numerically is 0.0063± 0.0014 and 0.0251, respectively. Thus, on average, the learned
closure leads to a smaller RMSE than the error of the numerically-solved true model. We note that this excellent
accuracy in the coefficients of the recovered (learned) model compared to the true model is similar to that
observed in SINDy and its variants for the KdV PDE in32–34.

Sensitivity The learning was sensitive to batch-time, and higher values were especially detrimental to convergence.
This behavior is in general observed when the error between the low- and high-fidelity models is large, e.g., when
there is no low-fidelity model. Using a smaller batch size and regularization weights lead to slightly different
values of the learned coefficients. This is especially noted for the u2 ∂u

∂x term, whose weight tends towards a non-
zero value with a very small magnitude. For a study on the impact of different hyperparameters (encountered
specifically in the nCM framework and SciML in general) on training, we refer to55. In the current set of experi-
ments, the learning framework is able to recover the known true model and, due to this, we do not additionally
focus on demonstrating generalization over initial conditions, boundary conditions, and grid resolution.

Experiments 1b: advecting shock—model discovery and generalization.  In the second set of
experiments, we employ the advecting shock PDE models. First, a gnCM discovers the leading truncation term
and a correction to the nonlinear advection term by interpreting the learned Markovian neural closure. Second,
we utilize both Markovian and non-Markovian gnCM terms trained on data corresponding to just a few com-
binations of grid resolution and Reynolds number, and demonstrate the generalization of the learned closure
model over grid resolution, Reynolds number, initial and boundary conditions, along with superior perfor-
mance compared to the popular Smagorinsky closure model. We further interpret the learned closure by analys-
ing the weights of the learned neural networks, and find the closure to be independent of the Reynolds number
despite it being one of the functional inputs.

Setup: true model, data generation, and low-fidelity model We consider the classic form of the Burgers equation
as the governing high-fidelity model,

where ν is the diffusion coefficient. The data is generated from an analytical solution of this Burgers equation (14)
with initial and boundary conditions,

where the Reynolds number Re = 1/ν and t0 = exp(Re/8) . This solution is given by,

However, when the discrete version of the above Eq. (14) is solved numerically, truncation and round-off errors
occur and the numerical solution incurs discretization errors35,56.

Numerics We solve the Burgers equation (14) numerically with the following schemes: 1st order accurate upwind
for the advection term, 2nd order accurate central-difference for the diffusion term, and Vode scheme for adap-
tive time-stepping. Thus, the leading order truncation error term is given by, −�x

2 u ∂2u
∂x2

+O(�x2) , where �x

(13)∂u

∂t
= −u

∂u

∂x
− (4.9680± 0.0008)u

∂u

∂x
− (1.0105± 0.0002)

∂3u

∂x3
.

(14)∂u

∂t
= −u

∂u

∂x
+ ν

∂2u

∂x2
, 0 ≤ x ≤ L, t ∈ (0,T],

(15)u(x, 0) =
x

1+
√

1
t0
exp

(

Re x
2

4

) , u(0, t) = 0, and
∂u(x, t)

∂x

∣
∣
∣
∣
x=L

= 0,

(16)u(x, t) =
x/(t + 1)

1+
√

t+1
t0

exp
(

Re x2

4t+4

) .

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

is the uniform grid-spacing. The terms in O(�x2) contain spatial derivatives of order 3 and above. Comparison
LF-HF: A comparison of the analytical (Eq. 16) and numerical solution of the Burgers equation is provided in
Fig. 3. One can clearly notice the effects of numerical diffusion and the error in the location of the shock peak
at later times due to truncation errors.

Learning interpretable truncation errors and nonlinear flux corrections.  Training: NN architecture, data, and loss
function First, we only consider a Markovian closure term based on a library composed of second-degree com-
binations of u, ∂u

∂x , and ∂
2u

∂x2
 . The library explicitly omits u ∂u

∂x because it is already known as part of the governing
equation, and u2 because it cannot be part of truncation error due to the absence of any derivative. Hence, the

Markovian closure term is assumed to be a linear combination of {�x
(
∂u
∂x

)2
,�x

3
(
∂2u
∂x2

)2

,�x
2
(
∂u
∂x

∂2u
∂x2

)

,

�x

(

u
∂2u
∂x2

)

} , of which the fourth term is true but unknown leading order truncation error term itself, and other
terms are informed but still expected to be redundant. Each of the terms is multiplied with appropriate powers
of �x , such that the closure terms are dimensionally consistent with the other terms of the Burgers equation. The
4th order accurate central and upwind finite-difference schemes53 are used to compute the spatial derivatives in
the Markovian closure, so as to eliminate additional sources of truncation error from our analysis. The training
data consists of the analytical solution up until T = 4.0 solved in a domain of length L = 1.25 and saved at every
0.01 time-intervals, for three different combinations of Nx (number of grid points in x−direction) and Re. The
chosen ( Nx , Re) pairs, {(100, 50), (150, 750), and (200, 1250)} , are such that the −�x

2 u ∂2u
∂x2

 term is really the lead-
ing source of error. In every epoch, we parse through the training data of each of these pairs, selected in random
order by sampling without replacement. We tune the hyperparameters based on performance in the training
period ( 0.0 ≤ t ≤ 4.0 ) and the validation period ( 4.0 ≤ t ≤ 6.0 ), and these are provided in Sect. SI-2.2. The
Markovian closure model is a simple neural network with no hidden layers and only linear activation in the
output layer, in-effect equivalent to a linear combination of the inputs. Given the analytical solution,
{utrue(x,Ti), 0 ≤ x ≤ L}Mi=1 , the loss function is once again the time and space averaged mean-absolute-error
(MAE), L = 1

M

∑M
i=1

∫ L
0

1
L |u

pred(x,Ti)− utrue(x,Ti)|dx , where M = 400 is the number of high-fidelity solu-
tion states at different times available for training.

Learning results We perform eight repeats of the same experiment with the tuned hyperparameters. The resulting
learned model with the mean and standard deviation of the coefficients is as follows,

For evaluation, we first compare the performance of this learned gnCM w.r.t. using the true leading truncation
error term ( −�x

2 u ∂2u
∂x2

 ) as the closure itself. For both cases, we evolve the Burgers equation with the respective
closure terms up until T = 8.0 (beyond training and validation time-periods), for 35 (Nx ,Re) pairs in the 2D
domain spanned by 50 ≤ Nx ≤ 200 and 50 ≤ Re ≤ 1500 . In Fig. 4 we provide the RMSE(> 2%) error (see Fig. 3
for description). When the true leading truncation error term is used as the closure, we find that increasing Re

(17)

FNN

(

�x

(
∂u

∂x

)2

,�x
3

(
∂2u

∂x2

)2

,�x
2

(
∂u

∂x

∂2u

∂x2

)

,�x

(

u
∂2u

∂x2

)

;φ

)

= (0.133± 0.017)�x

(
∂u

∂x

)2

+ (0.009± 0.023)�x
3

(
∂2u

∂x2

)2

− (0.323± 0.022)�x

(

u
∂2u

∂x2

)

.

Figure 3.   Comparison of the numerical solution of the Burgers equation (with Re = 1000 ) on a low-resolution
grid (Eqs. 14 and 15; low-fidelity model; middle plot), with its corresponding analytical solution (Eq. 16; high-
fidelity model; left plot). The low-fidelity model is solved on a grid with Nx = 50 grid points, and the absolute
difference between the two solutions is provided in the right plot. We also provide a pair of time-averaged
errors, specifically: root-mean-squared-error (RMSE); and RMSE considering only the grid points where the
error is at least 2% of the maximum velocity value, denoted by RMSE(> 2%).

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

and lowering Nx values leads to instabilities in the solution which causes it to explode. On the contrary, in the
learned gnCM case, even though it was not shown any training data in the high Re and low Nx regime, it still
provides a stable solution, and, on average, performs better than its counterpart in the other regions of the
(Nx ,Re) domain. To interpret the learned closure further, we rewrite it by substituting, ∂

∂x

(
u ∂u
∂x

)
=

(
∂u
∂x

)2
+

(

u ∂2u
∂x2

)

in Eq. (17),

Thus, the learned gnCM contains the �x
(

u ∂2u
∂x2

)

 term with a coefficient of correct sign but slightly smaller
value—in absolute value—in comparison to that of the true leading truncation error term. Along with that, the
other significant term, �x ∂

∂x

(
u ∂u
∂x

)
 , corresponds to a first-order Taylor series correction to the nonlinear advec-

tion term, and can help with mitigating the resolution error highlighted earlier. Finally, it is remarkable that the
important �x ∂

∂x

(
u ∂u
∂x

)
 term was missing from the input features; however, to our surprise, it is still accounted

for indirectly in the learned closure, utilizing the redundant terms present in the input feature library. This
highlights a noteworthy learning capability of the gnCM.

Learning generalizable and interpretable closures.  Training: NN architecture, data, and loss function Keeping the
Markovian closure term formulation of Sect. SI-2.2, we now add the non-Markovian closure term with inputs,
{u, ∂u

∂x ,
∂2u
∂x2

, ν,�x} , discretized using 4th order finite-difference schemes, and the deep-NN architecture given in
Table SI-1. We utilize a fully-connected deep-NN with four hidden-layers and the non-linear swish activation.
The output of the NN is multiplied with |u| to ensure that the contribution of the non-Markovian closure term is

(18)

FNN

(

�x

(
∂u

∂x

)2

,�x
3

(
∂2u

∂x2

)2

,�x
2

(
∂u

∂x

∂2u

∂x2

)

,�x

(

u
∂2u

∂x2

)

;φ

)

= (0.133± 0.017)�x
∂

∂x

(

u
∂u

∂x

)

+ (0.009± 0.023)�x
3

(
∂2u

∂x2

)2

− (0.456± 0.012)�x

(

u
∂2u

∂x2

)

.

Figure 4.   Performance of four closure models for the Burgers equation (Eqs. 14 and 15) evaluated for various
(Nx ,Re) pairs in the 2D domain spanned by 50 ≤ Nx ≤ 200 and 50 ≤ Re ≤ 1500 . The error provided is the
RMSE (> 2%) (see Fig. 3 for description) computed w.r.t. the corresponding analytical solutions (Eq. 16) for
0.0 ≤ t ≤ 8.0 in a domain of length L = 1.25 . (a) Leading truncation error term, −�x

2
u
∂2u
∂x2

 , as closure. The
white region in the top-left denotes an unconverged numerical solution; (b) Learned gnCM with only the
Markovian term, with the three ’s marking the ( Nx ,Re ) pairs used as training data; (c) Smagorinsky LES model
with Cs = 1.0 ; (d) Learned gnCM with both Markovian and non-Markovian closure terms, with the four ’s
marking the ( Nx ,Re ) pairs used as training data.

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

zero in the right-hand parts of the domain where the shock is yet to reach. As the non-Markovian closure term is
nonlinear, we do not explicitly make the inputs dimensionally consistent with other terms in the Burgers equation.
The overall training and evaluation setup are as in “Learning interpretable truncation errors and nonlinear flux
corrections”, however, this time four pairs of (Nx ,Re) are used such that all four combinations of high and low Nx
and Re are contained in the training data. The chosen pairs were, {(50, 750), (200, 750), (50, 1250), (200, 1250)} .
The tuned set of hyperparameters is provided in Sect. SI-2.2. The time-delay, τ = 0.075 , is based on the optimal-
time delay established for the Burgers equation experiments in2.

Learning results We perform seven repeats of the experiment with exactly the same set of tuned hyperparameters.
The learned coefficients for the Markovian term are different than those in Eq. (17) due to the presence of the
non-Markovian term, however, once again, the most weightage is given to the �x

(
∂u
∂x

)2 and �x
(

u ∂2u
∂x2

)

 terms.
Upon inspection, the weights of the input layer of the deep-NN in the non-Markovian term being multiplied
with ν were consistently found to be particularly small ( O(10−4) ), indicating that the learned closure is independ-
ent of ν . For one of the experiment runs, we show in Fig. 4 the performance for (Nx ,Re) pairs in the 2D domain
spanned by 50 ≤ Nx ≤ 200 and 50 ≤ Re ≤ 1500 , and compare it with that of the popular Smagorinsky model
used for subgrid-scale turbulence closure in large eddy simulations (LES). To the Burgers equation (14), this
model introduces a dynamic turbulent eddy viscosity ( νe ) resulting in,

where νe = (Cs�x)2
∣
∣ ∂u
∂x

∣
∣ and Cs is the Smagorinsky constant. As the rectangle formed by the training (Nx ,Re)

pairs is only a subset of the rectangle in which we evaluate the learned closure, we are testing both interpolation
and extrapolation performance w.r.t. changing the physical parameter governing the model and grid resolution.
We find that the learned gnCM clearly outperforms the Smagorinsky model. It should be noted, that in Fig. 4d,
the bottom-right corner (low Re and high Nx region) has inherently small errors even without the presence of
a closure. Further, the amount of error between low-fidelity and high-fidelity solutions is different for the four
training data (Nx ,Re) combinations; for example, (50, 1250) (coarsest resolution, higher Re) should incur the
most error. Thus, we notice a differential in the impact of learned gnCM in reducing the error at and around
different training data (Nx ,Re) pairs.

As claimed earlier, we expect the learned gnCM to be also generalizable over different boundary conditions.
We tested this by modifying the boundary conditions. The analytical solution (Eq. 16) used in training corre-
sponded to Neumann boundary conditions on the right edge of the domain. This was changed to a zero Dirichlet
boundary condition. Furthermore, the length of the domain was decreased to L = 1 , and Nx = 50 number of
equally-spaced grid points were used in our low-fidelity model with Re = 1000 . Since no closed-form analyti-
cal solution exists for the Dirichlet boundary conditions case, we solve the system with Nx = 1000 grid points
and use that as the true solution for comparing the performance of our learned closure. In Fig. 5, we find that
the learned gnCM is able to keep the errors remarkably low throughout the time period encompassing training,
testing, and prediction.

Sensitivity In general, the quality of learning was less sensitive to the batch-time hyperparameter, however,
higher values led to more interpretable closures. Using lower-order finite-difference schemes for the closure
inputs did not compromise the performance of the learned closures, however, it did lead to a decrease in inter-
pretability. Sensitivity to other hyperparameters was similar to that observed in Experiments-1a.

Experiments 2a: ocean acidification—interpretable model discrimination.  In the third set of
experiments, we consider coupled physical–biological–carbonate PDE models that are used to study ocean acid-
ification (OA). We utilize the Markovian neural closure model to interpretably discriminate between candidate
functional forms of uncertain Zooplankton mortality term.

Setup: True model, data generation, and low-fidelity model OA models are used to study and predict essential
carbonate chemistry and biological production cycles, and their interplay with global warming. A plethora of
biogeochemical models have been proposed. They differ in their complexity, or ability to resolve different bio-
logical processes. A set of parameter values and functional forms that might work in a particular ocean region
may not apply anywhere else. As an additional source of complexity, there may be seasonal variability in these
functional forms57–59.

For this set of experiments, the high-fidelity model is similar to the Hadley Centre Ocean Carbon Cycle
(HadOCC) model60, where the biological part is a modified version of four components [nutrients (N), phy-
toplankton (P), zooplankton (Z), and detritus (D)] developed in61 for the Gulf of Maine, along with dissolved
inorganic carbon (DIC) and total alkalinity (TA) for the carbonate part. The NPZD model is,

(19)
∂u

∂t
= −u

∂u

∂x
+ ν

∂2u

∂x2
+

∂

∂x

(

νe
∂u

∂x

)

,

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

where UP is the phytoplankton growth, regulated by nitrogen limitation based on Michaelis–Menten kinetics
(f(N)) and photosynthetically active radiation (f(I)), and GZ the zooplankton grazing, each given by,

and MZ(Z) is the to-be-learned zooplankton mortality. In these equations, the concentration of biological vari-
ables is measured in nitrogen (mmol N m−3 ), z is depth, and the other parameters are: µmax , maximum growth
rate of phytoplankton; KN , half-saturation constant; α and β , light-growth slope and inhibition coefficient; I0 ,
photosynthetically active radiation (PAR) at the sea surface; kW , attenuation coefficient of water; gmax , zooplank-
ton maximum grazing rate; KP , half-saturation constant for zooplankton grazing; γ , assimilation coefficient; mz ,
zooplankton mortality coefficient; mp , phytoplankton mortality coefficient; � , active respiration zooplankton
expressed as a fraction of grazing; and ε , remineralization rate of detritus. The carbon in the system is coupled
with the nitrogen by fixed carbon–nitrogen ratios, CP , CZ , and CD,

(20)

dN

dt
= −UP + �GZ + εD,

dP

dt
= UP − GZ −mPP,

dZ

dt
= γGz −MZ(Z),

dD

dt
= (1− γ − �)GZ +mPP +MZ(Z)− εD,

(21)

UP = µmaxf (N)f (I)P, f (N) =
N

N + KN
,

f (I) = (1− exp(αI/µmax)) exp(−βI/µmax)

I(z) = I0 exp(−kWz), GZ =
gmaxZP

2

P2 + K2
P

,

Figure 5.   Solution of the Burgers equation with and without the learned generalized neural closure model
(gnCM) for Re = 1000 , a low-resolution grid ( Nx = 50 ), and zero Dirichlet boundary condition on the right
edge. For each case, we also provide the pair of time-averaged errors (see Fig. 3 for description).

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

and neither DIC nor TA has any effect on the biology because phytoplankton growth is not carbon limited. The
last term in the DIC equation represents the precipitation of calcium carbonate to form shells and other hard
body parts, which subsequently sink below the euphotic zone, also known as “hard flux”. This flux is modeled
to be proportional (and additional) to the uptake of carbon for primary production. The chemistry dictates the
decrease in total alkalinity by two molar equivalents for each mole of carbonate precipitated. In general, since
TA is measured in mmol C kg−1 (or µ mol C kg−1 ), we divide the right-hand-side (RHS) of the TA equation
by the density of sea-water ( ρw ). Moreover, the units of DIC concentration are mmol C m−3.

The above biological and carbonate models are often coupled with physical models to introduce both spatial
and temporal components. For our experiments, we use a 1-D diffusion-reaction PDE with vertical eddy mix-
ing parameterized by the operator ∂/∂z(Kz(z,M)∂/∂z(•)) , where Kz is a dynamic eddy diffusion coefficient. A
mixed layer of varying depth ( M = M(t) ) is used as a physical input to the OA models. Thus, each biological
and carbonate state variable B(z, t) is governed by the following non-autonomous PDE,

where Kzb and Kz0 are the diffusion at the bottom and surface, respectively, γt is the thermocline sharpness, and
Dz is the total depth. The 1-D model and parameterizations are adapted from62 and63. They simulate the sea-
sonal variability in upwelling, sunlight, and biomass vertical profiles. The dynamic mixed layer depth, surface
photosynthetically-available radiation I0(t) , and biomass fields B(z, t) are shown in Fig. 6. The radiation I0(t)
and total biomass concentration, Tbio(z, t) , affects SB and the initial conditions.

To generate data, we first initialize the N state with the depth-varying total biomass concentration and the P,
Z, and D states with zero concentrations, and then run a one-month spin-off of just the NPZD model without
the diffusion term and a constant sea-surface solar radiation in order to determine the stable equilibrium of the
biological states. These equilibrium states form the initial conditions for the respective states in the NPZD-OA
model. To initialize DIC, we multiply the equilibrium state for N with the nitrogen-to-carbon ratio that is con-
sidered nearly equal to the value of CP . TA is often assumed to have a dependence on salinity and biological
processes64. The contribution from salinity (S in PSU) is modeled using a linear relationship optimized for the

Gulf of Maine, TA =

{
(198.10+ 61.75S)/1000 , S < 32.34
(744.41+ 44.86S)/1000 , S ≥ 32.34

 (Dr. P.J. Haley Jr., pers. comm.), while the biological

impact is given by Eq. (22). We assume a stationary salinity profile described using a sigmoid function
S(z) = A+ K−A

(C+Q exp(−Bz))1/ν
 with A = 31.4 PSU , K = 32.8 PSU , C = 1.0 , Q = 0.5 , B = 0.25 , and ν = 2.0 . Thus,

we can initialize TA based on salinity and evolve it using Eq. (22) coupled with Eqs. (23, 24).
For the low-fidelity model, we assume that we have only prior knowledge about the existence of a linear

zooplankton mortality term, i.e., MZ(Z) =
mZ
2 Z . For the high-fidelity model, however, the true zooplankton

mortality contains an additional quadratic dependence, i.e., MZ(Z) =
mZ
2 (Z + Z2).

Numerics We use a 2nd order central difference scheme for the spatial discretization ( Nz = 20 ), and dopri565
scheme for time integration with adaptive time-stepping. Comparison LF-HF: in Fig. 6-left- and -mid-columns,
we provide a year-long simulation for the NPZD-OA model with quadratic (truth) and linear (prior) Z mortality
terms, respectively. We notice the low Z concentration and enhanced P bloom in the former case. Figure 6-right-
column provides the absolute difference between the two cases. Values of the model parameters are provided
in Sect. SI-2.

Training: NN architecture, data, and loss function For the gnCM—we only consider the Markovian term—belong-
ing to a linear combination of a library of popular mortality functions66, {Z,Z2, Z2

1+Z , expZ} . Compared to the
true zooplankton mortality term, our library contains three superfluous or redundant terms, Z, Z

2

1+Z , and expZ ,
noting that the Z term is already a part of the low-fidelity model and completely known. For the Markovian term,
we use again a simple NN with no hidden layers and linear activation in the output layer. Using weight constraints
for the output layer, we enforce biomass conservation in the N, P, Z, and D equations and couple with DIC and
TA equations as in the known system (Eqs. 20 and 22). Architectural details are given in Table SI-1 and the tuned
set of training hyperparameters in Sect. SI-2.2. The training data consists of the true/high-fidelity model solution
sampled at time intervals of 0.1 day, until t =30 days, { {Btrue(z,Ti)}B∈{N ,P,Z,D,DIC,TA}}

M
i=1 , i.e., a M = 300 high-

f ide l i t y s o lut ion s t ate s . We us e an MAE-b as e d loss f unc t ion , L = 1
M

∑
M

i=1

∫
D

0
1
D√

∑

B∈{N ,P,Z,D,DIC,TA}
1
σB
|Bpred(z,Ti)− Btrue(z,Ti)|dz . Here, σB ’s are hyperparameters to scale the impor-

(22)

d(DIC)

dt
= −CP

dP

dt
− CZ

dZ

dt
− CD

dD

dt
− γcCPUP ,

d(TA)

dt
= −

1

ρw

dN

dt
−

2γcCPUP

ρw
,

(23)
∂B

∂t
=SB +

∂

∂z

(

Kz(z,M(t))
∂B

∂z

)

,

(24)Kz(z,M(t)) =Kzb +
(Kz0 − Kzb)(arctan(−γt(M(t)− z))− arctan(−γt(M(t)− Dz)))

arctan(−γtM(t))− arctan(−γt(M(t)− Dz))
,

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

15

Vol.:(0123456789)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

tance of different state variables based on their magnitudes. After multiple hyperparameter tuning experiments,
values of σN = 1, σP = 0.25, σZ = 1, σD = 1, σDIC = 2, σTA = 0.1 , were found to aid in learning.

Learning results In seven repeats of the experiment with exactly the same hyperparameters, the learned mod-
els consisted of no contribution of the closure to the N, P, and TA equations, while for the Z, D, and DIC
equations the contributions were found—with mean and standard deviation—to be (−0.02996± 0.00014)Z2 ,
(0.03001± 0.00013)Z2 , and (−0.05603± 0.00136)Z2 , respectively. For reference, the true contribution of the
zooplankton quadratic mortality term to the Z, D, and DIC equations are given as −0.02998Z2 , 0.02998Z2 , and
−0.05621Z2 , respectively.

Sensitivity Multiple experiments were done to study the effects of hyperparameters, such as batch-time, batch-
size, regularization factors, etc., and the convergence to the true model was the most severely compromised when
increasing batch-time and changing the loss-scaling for individual state variables.

Experiments 2b: ocean acidification—model complexity.  In the last set of experiments, we again
consider the coupled physical–biological–carbonate PDE models, however, this time we utilize the full general-
ized neural closure model to augment a simpler model obtained by aggregation of components and other sim-
plifications of processes and parameterizations, such that, it becomes as accurate as the more complex model.
Simultaneously, we also discriminate between the candidate functional forms of the uncertain Zooplankton
mortality term in an interpretable fashion.

Setup: true model, data generation, and low-fidelity model The high-fidelity model and the data are those used
in Experiments-2a, where we model the intermediate state of detritus, thus capturing processes such as remin-
eralization and quadratic zooplankton mortality, i.e., MZ(Z) =

mZ
2 (Z + Z2) . The low-fidelity model is the less

complex three-component NPZ model,

coupled with the carbonate system using fixed carbon-nitrogen ratios, CP , and CZ,

and with the 1-D diffusion-reaction PDE (23). The goal of these experiments is to use the gnCM to simultaneously
learn the functional form of the zooplankton mortality term using the Markovian closure term, and account for
the missing intermediate state of detritus through the non-Markovian closure term.

Numerics The numerical schemes used are as those of Experiments-2a. Comparison LF-HF: Since the high-
fidelity NPZD-OA model resolves more processes, the concentrations of N + D (aggregated state), P, Z, DIC,
and TA differ significantly from the N, P, Z, DIC, and TA of the low-fidelity NPZ-OA model, as shown in Fig. 7.

Training: NN architecture, data, and loss function Our Markovian closure consists of a linear combination of
a library of popular mortality functions66, {Z,Z2, Z2

1+Z , expZ} . Once again, compared to the true zooplankton
mortality term, our library contains three redundant terms, Z, Z2

1+Z , and expZ , where the Z term is already a
part of the low-fidelity model and completely known. Additionally, we use a deep-NN for the non-Markovian
closure term, with N(z, t), P(z, t), Z(z, t), and I(z, t) as the input; the inclusion of the photosynthetically active
radiation, I(z, t), makes this closure term non-autonomous. The architecture for the fully-connected deep-NN
used in the non-Markovian closure term is provided in Table SI-1, and it consists of two hidden-layers with the

(25)

dN

dt
= −UP + (1− γ)GZ +mPP +

mZ

2
Z,

dP

dt
= UP − GZ −mPP,

dZ

dt
= γGz −

mZ

2
Z,

(26)

d(DIC)

dt
= −CP

dP

dt
− CZ

dZ

dt
− γcCPUP ,

d(TA)

dt
= −

1

ρw

dN

dt
−

2γcCPUP

ρw
,

Figure 6.   Solutions (in each column, concentration profiles of N, P, Z, D in mmol N m−3 , DIC in mmol C m−3 ,
and TA in mmol C kg−1 , all vs. time in days) of the OA model used in Experiments-2a, corresponding to
different functional forms for the zooplankton mortality term. Left-column: the top panel shows the yearly
variation of solar radiation and the subsequent panels depict the states from the NPZD-OA model with
MZ(Z) =

mZ

2
(Z + Z

2) (ground truth), overlaid with the dynamic mixed layer depth in dashed red lines;
middle-column: states from the NPZD-OA model with MZ(Z) =

mZ

2
Z (low-fidelity); right-column: absolute

difference between the corresponding states in the left- and middle- column. For each case, we also provide the
pair of time-averaged errors (see Fig. 3 for description).

◂

16

Vol:.(1234567890)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

Figure 7.   Comparison of the OA models used in Experiments-2b with and without closure models. The parameter
values and concentration units are as in Fig. 6. For the gnCM, the training period is from t = 0 to 60 days, the
validation period from t = 60 to 120 days, and the future prediction period from t = 120 to 364 days. Left-column:
the top panel shows the yearly variation of solar radiation and the subsequent panels depict the aggregated states
from the NPZD-OA model with MZ(Z) =

mZ

2
(Z + Z

2) (ground truth), overlaid with the dynamic mixed layer
depth in dashed red lines. Middle-column: absolute difference between the corresponding states from the NPZ-OA
model with MZ(Z) =

mZ

2
Z (low-fidelity) and those in the left-column (high-fidelity ground truth). Right-column:

absolute difference between the corresponding states from the low-fidelity model augmented with the learned gnCM
and the ground truth. For each case, we also provide the pair of time-averaged errors (see Fig. 3 for description).

17

Vol.:(0123456789)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

non-linear swish activation. We do not include the states DIC(z, t) and TA(z, t) among the inputs in order to
preserve one-way coupling between the biological and carbonate system. Along with this, biomass conservation
and coupling of the carbonate system by nitrogen conversion (as in Eqs. 25 and 26) is maintained in the non-
Markovian closure terms by manipulating the channels of the output layer. On the other hand, in the Markovian
layer, these constraints are imposed by constraining the weights of the output layer. To help with learning, we
further impose the condition that the contribution of the Markovian closure term to the P equation is exactly
equal to zero. See Table SI-1 for implementational details of these constraints.

The training data consists of solving the NPZD-OA model with M(Z) = mZ
2 (Z + Z2) , and the solution

sampled at time intervals of 0.1 day until t = 60 days , {{Btrue(z,Ti)}B∈{N+D,P,Z,DIC,TA}}
M
i=1 , i.e., M = 600 high-

fidelity solution states at different times. Performance of the learned model in the validation interval of
60 days ≤ t ≤ 120 days is used to tune the hyperparameters, provided in Sect. SI-2.2. We again use a MAE based
l o s s f u n c t i o n , L = 1

M

∑M
i=1

∫ D
0

1
D

√
∑

B∈{N ,P,Z,DIC,TA}
1
σB
|Bpred(z,Ti)− Btrue(z,Ti)|dz  , w i t h

σN = 1, σP = 0.25, σZ = 1, σDIC = 2, σTA = 0.1 (similar to those used in experiments-2a). A time delay of
τ = 2.5 days was used for the non-Markovian closure term based on the optimal delay value study performed
in2.

Learning results In nine repeats of the experiment with exactly the same set of hyperparameters, the mean and
standard deviation of the learned contribution of the Markovian closure term to the Z equation is given by,
(−0.03000± 0.00067)Z2 . For reference, the true contribution of the quadratic mortality term to the Z equation
is −0.02998Z2 . Due to the weight constraints, the contribution of the Markovian closure term to other equations
is exactly zero. We evaluate the performance of the learned neural closure model for long predictions, spanning
over 1 year (365 days). The comparison with true/high-fidelity data for one of the experiments is provided in
Fig. 7. Overall, the learned closure keeps the errors low throughout the 1-year time period, apart from a slight
increase observed for the OA states after ∼ 200 days.

Sensitivity Multiple experiments were done to study the effects of hyperparameters, such as batch-time, batch-
size, regularization factors, etc., and their effects were similar to those observed in previous experiments. How-
ever, when using larger neural network architectures for the non-Markovian term, this led to high variability in
the learned coefficients of the Markovian term on repeats of the experiments with the same set of hyperparam-
eters. This is probably because of the increased expressive power of the non-Markovian term, which overshadows
the significance of the learned Markovian term.

Remarks and discussion.  Computational advantages In2, through a flop-count analysis, we proved that
the additional computational cost due to the presence of neural closure models is of similar or lower complex-
ity than the existing low-fidelity model. However, in our current generalized framework, we have additional
computational advantages. First, the size of the neural network architecture is completely independent of the
number of discretized state variables and only dictated by the number of local features to be used as inputs to the
gnCM terms. Second, as the same neural networks are applied locally at every grid point, it is directly possible
to use batches of the size of the number of grid points. It has been reported that larger batch sizes could lead to
performance speed-ups in forward pass through neural networks during the inference stage67. Estimating the
leading flop-count order for training is non-trivial due to the presence of a number of operations ranging from
time-integration of the forward model and adjoint PDEs; automatic differentiation through the neural networks;
creation and use of interpolation functions; the integral to compute the final derivatives; the gradient descent
step, etc. All these operations lead to training costs that are non-negligible. However, the generalizability and
interpretability of our learned gnCMs over boundary conditions, initial conditions, domain, problem-specific
parameters, etc., help justify the one-time training cost.

Lack of prior knowledge As showcased in the prior experiments and summarized in the corresponding sensi-
tivity studies, the lack of prior knowledge about the missing dynamics could manifest in many different ways.
This includes no known low-fidelity model, dynamics of the known low-fidelity model very different from the
high-fidelity model/data, no knowledge of potential candidate terms to create input function libraries, or even
no information on the most relevant state variables themselves. To allow compensation for this lack of prior
knowledge, our gnCM framework is derived and implemented for any deep-neural-network (DNN) architectures
for both Markovian and non-Markovian closure terms (Fig. 1). Our flexible modeling framework provides full
autonomy for the design of the unknown closure terms such as using linear-, shallow-, or deep-NNs, selecting
the span of the function libraries, and using either or both Markovian and non-Markovian closure terms. All
these decisions are made by the subject matter expert/user depending on the problem at hand. For example, in
all our experiments, fully-connected deep-NNs were utilized for the non-Markovian closure terms, because in
general, no prior knowledge is available for the same. Further, our framework could be extended to allow for the
adaptive increase of the input function library, for example using the algorithm proposed in30.

Non-Markovian term In the current derivation of the gnCM framework, due to the mathematical constructs, the
non-Markovian term does not account for the possibility of memory decay contribution of the DNN (•) function
under the integral w.r.t. t − s in Eq. (1). However, memory decay or other variations can be a desired property
for some problems. To allow for this, one can split the integral in Eq. (1) into contiguous parts and multiply
each of them with different weights. An alternate option is to consider discrete delays utilizing recurrent neural

18

Vol:.(1234567890)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

networks as for the discrete-nDDEs in2 and so implicitly incorporate the desired memory decay. In general, the
need for the non-Markovian closure term for a given problem should be determined by the subject matter expert.
However, in many cases, we anticipate the need for non-Markovian closure term to be imperative, especially
when the high-fidelity model/data accounts for intermediate state variables not modeled in the known low-
fidelity model, as in our “Experiments 2b: ocean acidification—model complexity”. Finally, it is also desirable
to allow learning an adaptive optimal delay ( τ in Eq. (1)), instead of treating it as a hyperparameter. For such a
possibility, we refer to Appendix E in68 where we derive the theory for learning the optimal delay for the nCM
framework (2; DDE counterpart for gnCM).

Conclusions
In the present study, we develop neural closure models that are generalizable over computational grid resolution,
boundary and initial conditions, domain geometries, and problem parameters, and also provide interpretability.
These generalized neural closure models (gnCMs) are based on neural partial delay differential equations (nPD-
DEs) that augment existing/low-fidelity models in their PDE forms with both Markovian and non-Markovian
closures parameterized with deep-NNs. The melding in the continuous spatiotemporal space is then followed
by numerical discretization. This ensures that the burden of generalization, along with computing the relevant
spatial derivatives, is carried by the numerical schemes, and not by the learned NNs. The space-time continu-
ous form of the gnCMs also makes it easy to interpret the learned closures. For efficient training, we derive the
adjoint PDEs in the continuous form and discretize them with adaptive time-integration schemes and employ
interpolation functions constructed during forward integration to increase numerical stability and accuracy.
This enables implementation across differentiable and non-differentiable computational physics codes, and dif-
ferent machine learning frameworks, all while being agnostic to the numerical methods. It further removes any
requirements on the availability of regularly spaced training data in both space and time, and also accounts for
errors in the time-evolution of the states in the presence of NNs during training. Finally, all our derivations and
implementations consider deep-NN architectures for both Markovian and non-Markovian terms, thus automati-
cally encompassing linear- and shallow-NNs, and providing the user or subject-matter-expert with the flexibility
of choosing the architectural complexity in accord with prior knowledge.

Through a series of four sets of experiments, we demonstrate the interpretability and generalizability of our
learned gnCMs. Our first two sets of simulation experiments are based on advecting nonlinear waves and shocks
governed by the KdV-Burgers and classic Burgers PDEs, where the low-fidelity models are either missing terms
or contain errors due to unresolved subgrid-scale processes. When presented with a function library contain-
ing terms of spatial derivatives of different orders and their combinations, grid-resolution, and the Reynolds
number as inputs to the closure terms, our learned gnCMs eliminate redundant terms and discover missing
physics, leading truncation error terms, and a correction to the nonlinear advection, all in an interpretable
fashion. The correction to the nonlinear advection term, despite being absent from the input function library,
is still accounted for and learned indirectly. Further, by analyzing the deep-NN weights, we also notice the
learned closure terms to be independent of the Reynolds number. We find that training on data corresponding
to just 3–4 combinations of a number of grid points and Reynolds number is sufficient to ensure that the learned
closures are generalizable over large ranges of grid resolutions and Reynolds numbers, initial and boundary
conditions, and also outperform the popular Smagorinsky closure model. Our last two sets of experiments are
based on one-dimensional, non-autonomous ocean acidification PDE models, that couple physical, biological,
and carbonate states, processes, and interactions. In these experiments, the low-fidelity models have uncertainty
in the functional form of certain biological processes and lack complexity due to a missing intermediate state
variable. The learned gnCMs simultaneously discriminate between candidate functional forms of the uncertain
Zooplankton mortality term with the Markovian part of the closure, and account for the missing intermediate
state and processes with the non-Markovian part. In terms of computational advantage, our new framework
naturally lends itself to batching across computational grid points during the forward pass through the NNs in
the closure terms, thus leading to potential performance speed-ups.

The gnCMs allow learning both Markovian and non-Markovian closure parameterization with deep-NNs
at the PDE level, thus addressing the issues of generalizability and interpretability that are often the bottleneck
when it comes to using machine learning for computational science and engineering problems. The generaliz-
ability and interpretability properties also make it easier to justify the often computationally expensive training
stage, thus enabling wider adoption.

Data availability
The codes and data used in this work are available in the GitHub repository: https://​github.​com/​mit-​mseas/​
gener​alized_​nCMs.​git.

Received: 20 January 2023; Accepted: 16 May 2023

References
	 1.	 Rackauckas, C. et al.SciML Scientific Machine Learning Software. https://​sciml.​ai/.
	 2.	 Gupta, A. & Lermusiaux, P. F. J. Neural closure models for dynamical systems. Proc. R. Soc. A 477(2252), 1–29. https://​doi.​org/​10.​

1098/​rspa.​2020.​1004 (2021).
	 3.	 Pan, S. & Duraisamy, K. Data-driven discovery of closure models. SIAM J. Appl. Dyn. Syst. 17(4), 2381–2413 (2018).
	 4.	 Pawar, S., Ahmed, S. E., San, O. & Rasheed, A. Data-driven recovery of hidden physics in reduced order modeling of fluid flows.

Phys. Fluids 32(3), 036602 (2020).
	 5.	 San, O. & Maulik, R. Neural network closures for nonlinear model order reduction. Adv. Comput. Math. 44(6), 1717–1750 (2018).

https://github.com/mit-mseas/generalized_nCMs.git
https://github.com/mit-mseas/generalized_nCMs.git
https://sciml.ai/
https://doi.org/10.1098/rspa.2020.1004
https://doi.org/10.1098/rspa.2020.1004

19

Vol.:(0123456789)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

	 6.	 Wan, Z. Y., Vlachas, P., Koumoutsakos, P. & Sapsis, T. Data-assisted reduced-order modeling of extreme events in complex dynami-
cal systems. PloS one 13(5), 197704 (2018).

	 7.	 Wang, Q., Ripamonti, N. & Hesthaven, J. S. Recurrent neural network closure of parametric POD-Galerkin reduced-order models
based on the Mori–Zwanzig formalism. J. Comput. Phys. 410, 109402 (2020).

	 8.	 Sirignano, J., MacArt, J. F. & Freund, J. B. DPM: A deep learning PDE augmentation method with application to large-eddy simula-
tion. J. Comput. Phys. 423, 109811 (2020).

	 9.	 Saha, P. & Mukhopadhyay, S. A deep learning approach for predicting spatiotemporal dynamics from sparsely observed data. IEEE
Access 9, 64200–64210 (2021).

	10.	 Feppon, F. & Lermusiaux, P. F. J. The extrinsic geometry of dynamical systems tracking nonlinear matrix projections. SIAM J.
Matrix Anal. Appl. 40(2), 814–844. https://​doi.​org/​10.​1137/​18M11​92780 (2019).

	11.	 Feppon, F. & Lermusiaux, P. F. J. Dynamically orthogonal numerical schemes for efficient stochastic advection and Lagrangian
transport. SIAM Rev. 60(3), 595–625. https://​doi.​org/​10.​1137/​16M11​09394 (2018).

	12.	 Sapsis, T. P. & Lermusiaux, P. F. J. Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty.
Phys. D Nonlinear Phenom. 241(1), 60–76. https://​doi.​org/​10.​1016/j.​physd.​2011.​10.​001 (2012).

	13.	 Laizet, S., Nedić, J. & Vassilicos, C. Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a
single square grid. Int. J. Comput. Fluid Dyn. 29(3–5), 286–302 (2015).

	14.	 Yeung, P. et al. Effects of finite spatial and temporal resolution in direct numerical simulations of incompressible isotropic turbu-
lence. Phys. Rev. Fluids 3(6), 064603 (2018).

	15.	 Dauhajre, D. P., McWilliams, J. C. & Renault, L. Nearshore Lagrangian connectivity: Submesoscale influence and resolution sen-
sitivity. JGR: Oceans 124(7), 5180–5204 (2019).

	16.	 McWilliams, J. C. Submesoscale currents in the ocean. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2189), 20160117 (2016).
	17.	 McWilliams, J. C. Submesoscale surface fronts and filaments: Secondary circulation, buoyancy flux, and frontogenesis. J. Fluid

Mech. 823, 391 (2017).
	18.	 Fennel, W. & Neumann, T. Introduction to the modelling of marine ecosystems: (with MATLAB programs on accompanying

CD-ROM). in Oceanography. Vol. 72. (Elsevier, 2014).
	19.	 May, R.M. Stability and Complexity in Model Ecosystems. Vol. 1. (Princeton University Press, 2019).
	20.	 Nowak, M. A. Evolutionary Dynamics: Exploring the Equations of Life (Harvard University Press, 2006).
	21.	 Lermusiaux, P. F. J. et al. Quantifying uncertainties in ocean predictions. Oceanography 19(1), 92–105. https://​doi.​org/​10.​5670/​

ocean​og.​2006.​93 (2006).
	22.	 Lermusiaux, P. F. J. Adaptive modeling, adaptive data assimilation and adaptive sampling. Phys. D: Nonlinear Phenom. 230(1),

172–196. https://​doi.​org/​10.​1016/j.​physd.​2007.​02.​014 (2007).
	23.	 Glass, D. S., Jin, X. & Riedel-Kruse, I. H. Nonlinear delay differential equations and their application to modeling biological network

motifs. Nat. Commun. 12(1), 1–19 (2021).
	24.	 Tokuda, I. T., Akman, O. E. & Locke, J. C. Reducing the complexity of mathematical models for the plant circadian clock by dis-

tributed delays. J. Theor. Biol. 463, 155–166 (2019).
	25.	 Chorin, A. J., Hald, O. H. & Kupferman, R. Optimal prediction and the Mori–Zwanzig representation of irreversible processes.

PNAS 97(7), 2968–2973 (2000).
	26.	 Gouasmi, A., Parish, E. J. & Duraisamy, K. A priori estimation of memory effects in reduced-order models of nonlinear systems

using the Mori–Zwanzig formalism. Proc. R. Soc. A 473(2205), 20170385 (2017).
	27.	 Stinis, P. Renormalized Mori–Zwanzig-reduced models for systems without scale separation. Proc. R. Soc. A 471(2176), 20140446

(2015).
	28.	 Whitney, H. Differentiable manifolds. Ann. Math. 37, 645–680 (1936).
	29.	 Wu, J. Theory and Applications of Partial Functional Differential Equations Vol. 119 (Springer, 2012).
	30.	 Kulkarni, C.S., Gupta, A. & Lermusiaux, P.F.J. parse regression and adaptive feature generation for the discovery of dynamical

systems. in Dynamic Data Driven Application Systems. DDDAS 2020. Vol. 12312. Lecture Notes in Computer Science (Darema, F.
Blasch, E., Ravela, S. & Aved, A. eds.). 208–216. https://​doi.​org/​10.​1007/​978-3-​030-​61725-7_​25 (Springer, 2020).

	31.	 Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynami-
cal systems. PNAS 113(15), 3932–3937 (2016).

	32.	 Rudy, S., Alla, A., Brunton, S. L. & Kutz, J. N. Data-driven identification of parametric partial differential equations. SIAM J. Appl.
Dyn. Syst. 18(2), 643–660 (2019).

	33.	 Messenger, D. A. & Bortz, D. M. Weak sindy for partial differential equations. J. Comput. Phys. 443, 110525 (2021).
	34.	 Both, G.-J., Choudhury, S., Sens, P. & Kusters, R. Deepmod: Deep learning for model discovery in noisy data. J. Comput. Phys.

428, 109985 (2021).
	35.	 Chapra, S.C. & Canale, R.P. Numerical Methods for Engineers. Vol. 1221. (McGraw-Hill, 2011).
	36.	 Chen, T.Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D.K. Neural ordinary differential equations. in Advances in Neural Informa-

tion Processing Systems. 6571–6583 (2018).
	37.	 Gholami, A., Keutzer, K. & Biros, G. Anode: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs. arXiv preprint:

arXiv:​1902.​10298 (2019).
	38.	 Zhuang, J., Dvornek, N., Li, X. Tatikonda, S., Papademetris, X. & Duncan, J. Adaptive checkpoint adjoint method for gradient

estimation in neural ODE. in International Conference on Machine Learning. 11639–11649. (PMLR, 2020).
	39.	 Griewank, A. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optim. Methods

Softw. 1(1), 35–54 (1992).
	40.	 Daulbaev, T. et al. Interpolation technique to speed up gradients propagation in neural ODEs. Adv. Neural Inf. Process. Syst. 33,

11 (2020).
	41.	 Zhang, H. & Zhao, W. A memory-efficient neural ordinary differential equation framework based on high-level adjoint differentia-

tion. in IEEE Transactions on Artificial Intelligence (2022).
	42.	 Enriquez, M. The Effects of Coupling Adaptive Time-Stepping and Adjoint-State Methods for Optimal Control Problems. PhD Thesis.

(Rice University, 2011).
	43.	 Li, S. & Petzold, L. Adjoint sensitivity analysis for time-dependent partial differential equations with adaptive mesh refinement. J.

Comput. Phys. 198(1), 310–325 (2004).
	44.	 Robinson, A.R., Lermusiaux, P.F.J., & Sloan III, N.Q. Data assimilation. in The Global Coastal Ocean-Processes and Methods. Vol.

10. The Sea (Brink, K.H. & Robinson, A.R. eds.). Chap. 20. 541–594. (Wiley, 1998).
	45.	 Robinson, A.R. & Lermusiaux, P.F.J. Data assimilation for modeling and predicting coupled physical–biological interactions in

the sea. in Biological-Physical Interactions in the Sea. Vol. 12. The Sea (Robinson, A.R., McCarthy, J.J., Rothschild, B. J. eds.). Chap.
12. 475–536. (Wiley, 2002).

	46.	 Lermusiaux, P. F. J. et al. Progress and prospects of U.S. data assimilation in ocean research. Oceanography 19(1), 172–183. https://​
doi.​org/​10.​5670/​ocean​og.​2006.​102 (2006).

	47.	 Moore, A. M. et al. Synthesis of ocean observations using data assimilation for operational, real-time and reanalysis systems: A
more complete picture of the state of the ocean. Front. Mar. Sci. 6(90), 1–6. https://​doi.​org/​10.​3389/​fmars.​2019.​00090 (2019).

	48.	 Bücker, M., Hovland, P. et al.Community Portal for Automatic Differentiation. https://​www.​autod​iff.​org/.

https://doi.org/10.1137/18M1192780
https://doi.org/10.1137/16M1109394
https://doi.org/10.1016/j.physd.2011.10.001
https://doi.org/10.5670/oceanog.2006.93
https://doi.org/10.5670/oceanog.2006.93
https://doi.org/10.1016/j.physd.2007.02.014
https://doi.org/10.1007/978-3-030-61725-7_25
http://arxiv.org/abs/1902.10298
https://doi.org/10.5670/oceanog.2006.102
https://doi.org/10.5670/oceanog.2006.102
https://doi.org/10.3389/fmars.2019.00090
https://www.autodiff.org/

20

Vol:.(1234567890)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

	49.	 van Merriënboer, B., Wiltschko, A.B., & Moldovan, D. Tangent: Automatic Differentiation Using Source Code Transformation in
Python. arXiv preprint arXiv:​1711.​02712 (2017).

	50.	 Van Merriënboer, B., Breuleux, O., Bergeron, A. & Lamblin, P. Automatic differentiation in ml: Where we are and where we should
be going. Adv. Neural Inf. Process. Syst. 31, 1 (2018).

	51.	 Geer, A. Learning earth system models from observations: Machine learning or data assimilation?. Philos. Trans. R. Soc. A
379(2194), 20200089 (2021).

	52.	 Shi, Y., Xu, B. & Guo, Y. Numerical solution of Korteweg-de Vries–Burgers equation by the compact-type CIP method. Adv. Diff.
Equ. 2015(1), 1–9 (2015).

	53.	 Rahul, K. & Bhattacharyya, S. One-sided finite-difference approximations suitable for use with Richardson extrapolation. J. Comput.
Phys. 219(1), 13–20 (2006).

	54.	 Brown, P. N., Byrne, G. D. & Hindmarsh, A. C. VODE: A variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10(5),
1038–1051 (1989).

	55.	 Jalan, A., Gupta, A. & Lermusiaux, P.F.J. Neural closure models for chaotic dynamical systems (2023) (in preparation).
	56.	 Lermusiaux, P.F.J. Numerical Fluid Mechanics. https://​ocw.​mit.​edu/​cours​es/​mecha​nical-​engin​eering/​2-​29-​numer​ical-​fluid-​mecha​

nics-​spring-​2015/​lectu​re-​notes-​and-​refer​ences/ (MIT OpenCourseWare, 2015).
	57.	 Lermusiaux, P.F.J., Evangelinos, C., Tian, R., Haley Jr, P.J., McCarthy, J.J., Patrikalakis, N.M., Robinson, A.R. & Schmidt, H. Adap-

tive coupled physical and biogeochemical ocean predictions: A conceptual basis. in Computational Science—ICCS 2004. Vol. 3038.
Lecture Notes in Computer Science. 685–692. ISBN 978-3-540-22116-6. https://​doi.​org/​10.​1007/​978-3-​540-​24688-6_​89 (Springer,
2004).

	58.	 Tian, R.C., Lermusiaux, P.F.J., McCarthy, & Robinson, A.R. A generalized prognostic model of marine biogeochemical-ecosystem
dynamics: Structure, parameterization and adaptive modeling. in Harvard Reports in Physical/Interdisciplinary Ocean Science 67.
(Department of Earth and Planetary Sciences, Harvard University, 2004).

	59.	 Gupta, A. & Lermusiaux, P. F. J. Bayesian learning of coupled biogeochemical-physical models. In Progress in Oceanography. https://​
doi.​org/​10.​1016/j.​pocean.​2023.​103050. https://​arxiv.​org/​abs/​2211.​06714 (2023). In press

	60.	 Palmer, J. & Totterdell, I. Production and export in a global ocean ecosystem model. Deep Sea Res. Part I Oceanogr. Res. Pap. 48(5),
1169–1198 (2001).

	61.	 Tian, R. et al. Model study of nutrient and phytoplankton dynamics in the Gulf of Maine: Patterns and drivers for seasonal and
interannual variability. ICES J. Mar. Sci. 72(2), 388–402 (2015).

	62.	 Eknes, M. & Evensen, G. An ensemble Kalman filter with a 1-D marine ecosystem model. J. Mar. Syst. 36(1–2), 75–100 (2002).
	63.	 Newberger, P. A., Allen, J. S. & Spitz, Y. H. Analysis and comparison of three ecosystem models. J. Geophys. Res. Oceans (1978–2012)

108(C3), 19477 (2003).
	64.	 Artioli, Y. et al. The carbonate system in the north sea: Sensitivity and model validation. J. Mar. Syst. 102, 1–13 (2012).
	65.	 Hairer, E., Norsett, S. P. & Wanner, G. Solving Ordinary Differential Equations I (Springer, 1993).
	66.	 Franks, P. J. S. NPZ models of plankton dynamics: Their construction, coupling to physics, and application. J. Oceanogr. 58(2),

379–387 (2002).
	67.	 Kochura, Y., Gordienko, Y., Taran, V., Gordienko, N., Rokovyi, A., Alienin, O. & Stirenko, S. Batch size influence on performance

of graphic and tensor processing units during training and inference phases. in International Conference on Computer Science,
Engineering and Education Applications. 658–668. (Springer, 2019).

	68.	 Gupta, A. Scientific Machine Learning for Dynamical Systems: Theory and Applications to Fluid Flow and Ocean Ecosystem Modeling.
PhD Thesis (Massachusetts Institute of Technology, Department of Mechanical Engineering, 2022).

Acknowledgements
We are grateful to the members of our MSEAS group for their collaboration and insights, especially Mr. Aman
Jalan. We thank the members of our MURI ML-SCOPE research team for many useful discussions. We also
thank the three anonymous reviewers for their useful comments.

Author contributions
A.G. conceived the idea of extending the existing neural closure models using neural partial delay differential
equations; augmentation of closure terms in the continuous spatio-temporal space followed with numerical
discretization for generalizability and interpretability; derived the adjoint PDE; implemented the neural network
architectures and the simulation experiments; interpreted the computational results; and wrote a first draft of the
manuscript. P.F.J.L. supervised the work; provided ideas; interpreted the results; and edited and wrote significant
parts of the manuscript.

Funding
We are grateful to the Office of Naval Research for partial support under grant N00014-20-1-2023 (MURI ML-
SCOPE) to the Massachusetts Institute of Technology.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​35319-w.

Correspondence and requests for materials should be addressed to P.F.J.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1711.02712
https://ocw.mit.edu/courses/mechanical-engineering/2-29-numerical-fluid-mechanics-spring-2015/lecture-notes-and-references/
https://ocw.mit.edu/courses/mechanical-engineering/2-29-numerical-fluid-mechanics-spring-2015/lecture-notes-and-references/
https://doi.org/10.1007/978-3-540-24688-6_89
https://doi.org/10.1016/j.pocean.2023.103050
https://doi.org/10.1016/j.pocean.2023.103050
https://arxiv.org/abs/2211.06714
https://doi.org/10.1038/s41598-023-35319-w
https://doi.org/10.1038/s41598-023-35319-w
www.nature.com/reprints

21

Vol.:(0123456789)

Scientific Reports | (2023) 13:10634 | https://doi.org/10.1038/s41598-023-35319-w

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

http://creativecommons.org/licenses/by/4.0/

	Generalized neural closure models with interpretability
	Theory and methodology
	Neural partial delay differential equations.
	Generalized neural closure models: properties.

	Application results and discussion
	Experiments 1a: nonlinear waves—interpretable model discrimination.
	Experiments 1b: advecting shock—model discovery and generalization.
	Learning interpretable truncation errors and nonlinear flux corrections.
	Learning generalizable and interpretable closures.

	Experiments 2a: ocean acidification—interpretable model discrimination.
	Experiments 2b: ocean acidification—model complexity.
	Remarks and discussion.

	Conclusions
	References
	Acknowledgements

