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Abstract

Klaus Hasselmann’s revolutionary intuition in climate science was to 
use the stochasticity associated with fast weather processes to probe 
the slow dynamics of the climate system. Doing so led to fundamentally 
new ways to study the response of climate models to perturbations, 
and to perform detection and attribution for climate change signals. 
Hasselmann’s programme has been extremely influential in climate 
science and beyond. In this Perspective, we first summarize the main 
aspects of such a programme using modern concepts and tools of 
statistical physics and applied mathematics. We then provide an 
overview of some promising scientific perspectives that might clarify 
the science behind the climate crisis and that stem from Hasselmann’s 
ideas. We show how to perform rigorous and data-driven model 
reduction by constructing parameterizations in systems that do 
not necessarily feature a timescale separation between unresolved 
and resolved processes. We outline a general theoretical framework 
for explaining the relationship between climate variability and 
climate change, and for performing climate change projections. This 
framework enables us seamlessly to explain some key general aspects of 
climatic tipping points. Finally, we show that response theory provides 
a solid framework supporting optimal fingerprinting methods for 
detection and attribution.
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with alternating dominance of positive and negative feedback depend-
ing on the timescale of interest9. Even so, as documented in successive 
assessment reports of the Intergovernmental Panel for Climate Change, 
the scientific community has painstakingly come to an agreement 
regarding the presence of a statistically significant climate change sig-
nal with respect to the conditions prevailing in the nineteenth century 
(climate change is real); and the possibility of attributing such a signal 
to anthropogenic causes (humans are responsible for it).

Attribution of the climate change signal requires being able 
to make a stringent case for a causal link between forcings (such 
as land-use change, change in the atmospheric compositions due 
to human activities, effects of vulcanism and solar variability) and 
the observed climate response. According to Judea Pearl’s causality 
framework10, doing so requires, in turn, comparing the observed state 
of the climate system with the counterfactual realities in which the forc-
ings are selectively switched off. Clearly, we do not have access to coun-
terfactual realities. Instead, we can create reasonable approximations 
of them by performing numerical simulations with climate models 
that have suitably defined protocols for the forcings. Hence, mak-
ing statements on climate change attribution takes into account the 
unavoidable uncertainty due to natural variability and model error11–15.

Over the years, the research focus of climate change science has 
shifted from making statements on globally averaged climate quan-
tities to assessing climate change at regional level, to studying the 
changes in the higher statistical moments and in extreme events, and 
to investigating how climate change can manifest itself in the form  
of critical transitions. The current focus on the study of extremes16 and 
critical phenomena (often referred to as tipping points17,18) has led the 
scientific community to use expressions like climate crisis or climate 
emergency instead of climate change19.

This Perspective is structured as follows. We first give an 
overview of Hasselmann’s programme. We then discuss rigorous 
theory-informed and effective data-driven model reduction strate-
gies to highlight connections and integration between the top-down 
and bottom-up approaches. We then show how response theory for 
non-equilibrium systems20–26 allows one to find explicit formulas and 
to devise experimental protocols aimed at performing climate change 
projections using climate models of different levels of complexity27–30. 
Finally, we show how that linear response formalism provides the math-
ematical and physical backbone behind the optimal fingerprinting 

Introduction
The climate system is multiscale because it features variability over a 
wide range of scales, as a result of the interplay of a diverse array of forc-
ings, instabilities and feedback mechanisms1,2. At different temporal 
and spatial ranges, the dominant role is played by different subsystems3 
(Fig. 1), of which there are five: the atmosphere, the hydrosphere, the 
cryosphere, the biosphere and the land surface. These subsystems 
differ in physical-chemical features, dominant dynamical processes 
and characteristic timescales, and they are coupled through a complex  
array of processes that exchange mass, momentum and energy4,5.

Although the climate system is multiscale, models and phenom-
enological theories are typically developed by focusing on specific 
scales of motion and specific processes6. This is because it is challeng-
ing to construct satisfactory theories of climate dynamics and is virtu-
ally impossible to develop numerical models that accurately describe 
climate processes over all scales. These challenges arise because there 
are major knowledge gaps on the climate system that come from the 
lack of homogeneous, high-resolution and coherent observations, 
owing to several factors: the sheer size and practical inaccessibility of 
the climate subdomains; changes in the technology of data collection 
in the industrial era; and the need to resort to proxy (hence, indirect) 
data for the preindustrial epoch.

Thus, there is a need for a comprehensive framework for under-
standing the multiscale nature of climate variability and climate 
response to forcing. In the latter part of the twentieth century, Klaus 
Hasselmann proposed a coherent scientific angle on the climate sys-
tem, with the goal of understanding climate variability, of detecting 
and interpreting the climate change signal, and of characterizing the 
behaviour of climate models. Our goal in this Perspective is to give a 
critical appraisal of the Hasselmann programme based on ideas and 
concepts from statistical mechanics and functional analysis that have 
gained traction, for the most part, in the past two decades. We also 
propose a comprehensive framework for understanding the multiscale 
nature of climate variability and climate response to forcing, and for 
fundamentally advancing understanding of the ongoing climate crisis.

Separating climate variability from any climate change signal is 
hard7, in part because of the presence of unsteady external forcings 
and non-trivial internal multiscale dynamics. The natural history of 
Earth is characterized by continuously changing conditions. There is 
an interplay of rapid, irreversible transitions and gradual variations8, 
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Fig. 1 | A Mitchell’s diagram depicting a qualitative 
representation of the climate variability across 
a range of scales. The relative role of each climatic 
subcomponent of the acting forcings (on top) 
is indicated. The lower axis shows timescale in 
years. AMV, Atlantic Multidecadal Variability; 
DO, Dansgaard–Oeschger event; e, eccentricity; 
ENSO, El Niño–Southern Oscillation; HE, Heinrich 
event; NAO, North Atlantic Oscillation; o, obliquity; 
p, precession; PDO, Pacific Decadal Oscillation; 
QBO, Quasi-biennial Oscillation; SOCV, Southern 
Ocean centennial variability. Adapted with 
permission from ref. 3, Elsevier.
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method for detection and attribution of the climate change signal. 
Ultimately, we demonstrate the strong link between the three main 
axes of Hasselmann’s research programme.

A brief summary of Hasselmann’s programme
The Hasselmann programme has had great influence on the modern 
development of climate science, both in its everyday practice and its 
more foundational aspects. The fundamental idea is to treat noise 
not like a nuisance one needs to filter out to gather useful informa-
tion, but rather as a key aspect of the climate system one must fully 
explore and appreciate to further its understanding and to link model 
output and observational data. This is key for making progress in 
detecting and attributing the climate change signals at different spa-
tial and temporal scales. We discuss three main axes of Hasselmann’s 
programme. An informative summary of the programme, of some of 
its key developments in climate science, and of some of its implications 
for mathematics and physics at large is given elsewhere31,32. Useful 
accounts of Hasselmann’s work on the occasion of his being awarded 
the 2021 Nobel prize in physics can be found in refs. 33,34.

Stochastic climate models
A key part of Hasselmann’s programme is the separation of the mul-
tiscale system into slow dynamics (the climate) and fast dynamics 
(weather); the fast dynamics are incorporated into models for the slow 
dynamics as noise. The starting point of this journey is Hasselmann’s 
proposal35 to improve modelling of slow climate variables by param-
eterizing the influence of fast weather variables by means of an appro-
priate stochastic forcing. Thus at the core of Hasselmann’s stochastic 
programme lies the derivation of an effective model with improved 
capability to capture the dynamics and statistical properties of the 
slow variables. Following previous work36, we assume that our climate 
model can be written as the following large-dimensional system of 
ordinary differential equations

̇

̇

x x y x

y x y y

f

δ
g

= ( , ), slow climate variables,

=
1

( , ), fast weather variables,
(1)

where x lies in Rd, y lies in DR , f is a smooth mapping from Rd D+  into Rd  
and g is a smooth mapping from Rd D+  into RD.

The parameter δ is aimed at controlling the degree of timescale 
separation between the dynamics of the two sets of variables, and one 
typically assumes 0 < δ ≪ 1. In mathematical language, Hasselmann’s 
programme consists of deriving in the δ → 0 limit an effective reduced 
equation of equation (1) to approximate the statistical behaviour of 
the climate variables. When y follows some fast chaotic dynamics as 
commonly assumed37,38, the reduced equation takes the form of the 
following system of Itô stochastic differential equations (SDEs),

x F x x Wtd = ( ) d + Σ( ) d . (2)t

The terms F and Σ in equation (2) have intuitive interpretations. 
Typically, the deterministic component F (also called the drift term) 
includes the average contribution of f(x,y) to the dynamics of the 
slow variables, after averaging out the fast variables39, but potentially 
may also include other correction terms37. The second term is aimed 
at parameterizing the effects of the fluctuations that remain after 
averaging and takes the form of a state-dependent noise, in which the 
(d × p)-matrix Σ with (possible) nonlinear entries in x is driven by a vector 
of increments dWt (white noise) of a p-dimensional Wiener process Wt.

In the case of climate dynamics, the chaoticity of the dynamics of 
the y variables is usually assumed to derive from the fast fluid dynami-
cal instabilities occurring in the atmosphere and in the ocean2,6,40. 
Such instabilities are usually associated with conversion of energy 
between different forms (such as potential to kinetic) and between 
spatially symmetric and eddy components4,41. The derivation of such a 
limiting SDE in the presence of infinite timescale separation has a long 
history39,42–45 and may be obtained through diverse routes pertaining to 
homogenization44, averaging46 or singular perturbation techniques47,48. 
The Majda, Timofeyev and Vanden-Eijnden (MTV) approach43,49 builds 
on such techniques and provides a modern treatment of the topic in the 
context of climate dynamics, including rigorous results when nonlinear 
self-interactions between the fast waves, for example, can be modelled 
by means of Ornstein–Uhlenbeck processes.

A key message from equation (2) is that the impact of unresolved 
scales of motion on the scales of interest cannot be reproduced by using 
bulk formulas (contributing to the drift term) only. This has practical 
relevance: it is the fundamental motivation behind the development of 
stochastic parameterizations for weather and climate models, some 
of which are used in operational situations50,51.

Physically, getting to the limit (2) allows for interpreting the fast 
weather dynamics as inducing a diffusion process. As such, the under-
standing of the complex nonlinear interactions of, for example, unstable  
modes with (possibly very) stable ones52 — at the core of the chaotic nature 
of many geophysical flows40,53,54 — is replaced by the understanding of  
the interactions between noise and nonlinear effects55–57.

As appealing as such attributes are, the infinite timescale- 
separation assumption underlying equation (2) is often challenged 
in climate applications. An extension of the MTV approach has been 
proposed for the stochastic model reduction valid for slow–fast sys-
tems with a moderate timescale separation58,59. In the section below on 
model reduction, we discuss how to amend Hasselmann’s programme 
in such situations, either by seeking natural extensions to equation (2)  
or stochastic alternatives. In the climate system, there is actually a 
multiplicity of spatiotemporal scales interacting across a wealth of 
processes (Fig. 1), and the Hasselmann ansatz, although inspiring, 
calls for revision.

An important implication of Hasselmann’s approach is the provi-
sion of a probabilistic interpretation of climate dynamics, going beyond 
the study of individual trajectories. Indeed, the SDE (2) can then be 
translated into a Fokker–Planck equation (FPE)60 that describes the 
evolution of the probability distribution of the climate’s states, ρ(x,t), as

ρ ρ∂ = (3)t 0L

where the operator 0L  is defined as

ρ ρ ρ= −∇ ⋅ ( ( ) ) +
1
2

∇ ⋅ ∇(ΣΣ ( ) ) . (4)T
0L F x x

In practice, ρ(x,t) is constructed using an ensemble of trajectories; 
see ref. 61 for a recent summary of the use of ensembles in climate 
modelling. ΣΣT is the non-negative definite noise covariance matrix. 
The unperturbed climate is then given by the stationary solution ρ0(x) 
to the FPE defined by L ρ = 00 0 . Defining stationarity in a multiscale 
system is non-trivial, as the stationary state can critically depend on 
the timescale of interest (Box 1).

When the noise term in equation (2) is sufficiently non-degenerate, 
that is, when, roughly speaking, the noise propagates out in the whole 
phase space through interactions with the nonlinear terms, the prob-
ability density ρ0 is smooth62. In contrast, when Σ = 0, equation (3) 
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becomes the Liouville equation and, in the case of dissipative chaotic 
systems, the probability distribution ρ0 is typically singular with respect 
to the Lebesgue volume in dR  (ref. 63).

Assuming that ∫dxρ0(x) = 1, the reference climatological mean 
for the observable Ψ is ⟨Ψ⟩0 = ∫dxρ0(x)Ψ(x). The function Ψ could be 
in principle any quantity of climatic interest, corresponding to local 
properties or spatially averaged ones. It makes sense to associate 
possible Ψs with essential climate variables (ECVs) — key physical, 
chemical or biological variables that critically contribute to the char-
acterization of Earth’s climate and are targeted for observations64 — or 
the quantities used for defining performance metrics for Earth system 
models (ESMs)65.

Climate response to forcings
A second landmark of the Hasselmann programme deals with the study 
of the response of climate models to perturbations. Aiming at studying 
how a climate model relaxes to steady-state conditions or responds to 
perturbations, such as a sudden CO2 increase, Hasselmann and collabo-
rators heuristically proposed a methodology inspired by the dynamics 
of linear systems66,67. They showed that one can express the variation 
δΨ(t) describing the departure of the model from steady-state condi-
tions (or convergence to it) by performing the convolution of a suitably 

defined causal Green’s function GΨ(t) (GΨ(t) = 0 if t < 0) with the time 
modulation of the acting perturbation f(s):

∫δ t sG t s f sΨ( ) = d ( − ) ( ), (5)
−∞

∞

Ψ

where Ψ describes a climate variable of interest. This approach amounts 
to treating the problem of climate change using response theory. 
An early approach along these lines proposed using the fluctuation– 
dissipation theorem (FDT)68 to express the Green’s functions in terms 
of readily accessible correlations of climate observables in the unper-
turbed state69. Additionally, Hasselmann and collaborators expressed 
the Green’s function GΨ as a sum of exponential terms:

∑G t α λ t( ) = exp( ), (6)
k

k
kΨ Ψ
Ψ

where each of the λk encodes a feedback, with α k
Ψ being the correspond-

ing weighting factor. The Green’s-function-based method was shown 
to have good skill both in performing climate change projections for 
individual model runs after filtering the natural variability67, and in 
studying the carbon cycle in a climate model66. In the section on the 
climate response, we critically revise this approach by discussing how 
a formalism based on use of Green functions allows one to cast the 
problem of climate change as the response of the system’s probability 
distribution or of the statistics of the Ψs to (possibly time-dependent) 
perturbations applied to equation (2)6,70.

Detection and attribution of climate change
Using stochastic climate models, one can make statements on climate 
variability and climate change in terms of probability distributions, by 
computing averages and higher statistical moments. Separating climate 
variability and climate change in the course of our single realization 
of the climate evolution relies on statistically testing departure from 
stationarity on observational time series. Performing causal attribution 
(in Pearl’s sense) of the climate change signal to specific forcings is a 
much harder task because it requires, as mentioned above, comparing 
information from observations and from climate model runs. In the 
1990s, Hasselmann and collaborators proposed the basic conceptual 
framework for performing attribution studies of climate change11–13. 
This framework played a major role in clarifying that we are currently 
experiencing a statistically relevant and physically attributable shift 
from previous climatic conditions14,15. Following ref. 71, the problem 
of attribution can be cast as

͠ ͠R Q∑Y X β X X k N= + = + , = 1, …, . (7)k
p

F

k
p

p k k
p

k
p

k
p

=1

Here Yk is the kth component of an N-component vector Y describ-
ing the observed climate change. As an example, Y could represent the 
2011–2020 average temperature measured at N different locations. 
The goal is to reconstruct it as a linear combination of F regressors or 
fingerprints, that is, externally forced signals X k

p͠ , p = 1, …, F associated 
with F different forcings, plus a vector describing the natural variability 
of the system Rk (refs. 11–13,72,73). The pth fingerprint X k

p͠  is obtained 
as an ensemble average of the climate change signal over (possibly 
many) simulations that are realized by perturbing the reference climate 
by applying exclusively the pth considered forcing. Practically speak-
ing, we can have access to the approximations Xk

p for such fingerprints, 
whereby the difference k

pQ  with respect to the true value is associated 
with our incomplete sampling of the model response and with model 

Box 1

Stationarity and multiscale 
behaviour
The very notion of a stationary reference climate is intimately 
related to considering autonomous dynamics as a starting point 
of our analysis; see equation (1). But boundary conditions and 
external forcings relevant for the climate system do change on 
a variety of timescales3,9; see a careful discussion of the notion 
of statistical balance and stationary state for the climate system 
in a biogeochemical perspective in ref. 280. The conundrum of 
defining stationarity in a multiscale system can be pragmatically 
dealt with by taking advantage of the viewpoint of ref. 295. One 
can extend equation (1) by including, instead of only (x,y), a 
larger set of qualitatively different variables (x1, …, xp) ordered 
by their characteristic timescale, ranging from very slow to very 
fast behaviour. Depending on the timescale of interest (decadal, 
multicentennial or multimillennial climate variability, for example), 
one ends up choosing the relevant set of active climate variables of 
interest, xk (for example, atmosphere, ocean and ice caps), with xℓ,  
1 ≤ ℓ < k determining the boundary conditions, and xm, m > k contributing  
to defining the modified drift and noise law in equation (2). Time- 
dependent forcing terms associated with geological or astrophysical 
processes can be considered as constant (or corresponding to 
stochastic forcing, in cases such as fast solar variability) when 
focusing on climate processes of multimillennial or shorter timescales.  
Indeed, the definition of a climate system and of its evolution 
law depends on the timescale of interest; see ref. 6 for a related 
discussion of the so-called hierarchy of climate models. Hence, 
when referring to a reference stationary ρ0, we are implicitly 
imposing a cutoff on the slow variability of the system.
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error. In many applications, information coming from different climate 
models is bundled together74.

The goal is to perform an optimal inference of the coefficients βp 
given the uncertainties described by Rk and Qk

p, hence the expression 
optimal fingerprinting. Usually, the vector column errors Rk and k

pQ , 
are modelled as independent, normally distributed, stochastic vectors 
with zero mean and covariance matrices C and Ωp, respectively. 
The matrix C is constructed taking into account the correlations of the 
climate variables in the unperturbed climate. A simpler version of  
the theory above assumes Ωp = 0 for all p (ref. 72). In this case, via linear 
algebra, one derives a relatively simple expression for the best esti-
mates for the βs and their uncertainties. As a next step, if one assumes 
that the natural variability simulated by the climate models 
matches that of the observations, and one estimates X k

p͠  as the average 
of L runs from a single climate model under the pth forcing, then, under 
the approximation above, one gets Ωp = C/L (ref. 73).

One speaks of attribution of climate change for the pth fingerprint 
if the confidence interval of βp does not intersect zero and includes the 
value 1. The procedure is truly successful if the confidence intervals 
for the coefficients βp are not too spread out. Optimal fingerprinting 
relies critically on the assumption of linear dependence of the climate 
response to the applied forcings. Additionally, the method, despite its 
great success, has recently been criticized, as it has been suggested 
that uncertainties in the inference are sometimes underestimated75, 
or, more radically, on the basis that the statistical foundations of the 
procedure are not very solid76; see also discussion in ref. 77. In the sec-
tion on detection and attribution of climate change, we describe how 
the equations describing Hasselmann’s optimal fingerprinting method 
can gain new insights when reframed within the response theory of 
dynamical systems, and, in particular, can be derived seamlessly from 
linear response formalism.

Theory-guided and data-driven model reduction
We present in this section the quest for stochastic model reduction, 
in a more general setting than for the slow–fast systems discussed 
above, as framed here within the closure problem from the point of 
view of the Mori–Zwanzig (MZ) expansion. Reduced-order modelling 
is inextricably associated with performing partial observations: that is,  
gaining only a partial, imperfect knowledge of the properties of a 
system. As clarified by the MZ formalism78,79, the effective dynamics 
defining the evolution on the projected space of the variables of inter-
est has three groups of terms — Markovian deterministic, stochastic 
and non-Markovian components — even if the dynamics of the whole 
system is purely deterministic80,81.

In the first two subsections, we review the mathematics behind this 
expansion and the different approaches adopted in the literature to 
approximate its elements, in particular regarding the memory and sto-
chastic terms. However, we argue that, contrary to common belief, there 
are physically relevant regimes for which the three groups of terms do 
not share the same predominance, even in the presence of no timescale 
separation. Thus, although the timescale separation discussed above 
is assumed to be infinite, that assumption can be relaxed.

We then clarify physical situations in which the role of memory 
effects in the reduced model is secondary, whereas that of stochastic 
parameterization is key to recover the multiscale dynamics. In the 
subsection on the Lorenz 1980 (L80) model82, we give an important 
example tied to primitive equations, the fundamental equations 
of atmosphere–ocean dynamics, in regimes for which the absence of 
timescale separation is manifested in each of the model’s variables by 

bursts of fast dynamics, popping out irregularly in time, on top of a 
slow trend motion. There, we review how the proper knowledge of 
the manifold capturing this slow trend motion (tied to Rossby waves) 
enables us to figure out that the dynamics outside of this manifold is 
tied to inertia-gravity waves (IGWs) and that the latter can be efficiently 
parameterized by means of coupled stochastic oscillators, without the 
need of memory terms. Another example is reviewed in the subsection 
on neural turbulence, for the closure problem of forced 2D turbulence. 
There, we discuss how the recent advances on machine-learned param-
eterizations gain access to accurate coarse-grained closures without 
the need for memory or even noise terms. Such results are neverthe-
less subject to the choice of the cutoff scale, as lowering this cutoff is 
inevitably prone at some point to the emergence of such terms. In the 
final subsection, we review, in the context of a data-driven modelling 
problem of coarse-grained oceanic turbulence, the importance of 
the choice of latent variables for simplifying the equation discovery 
problem (in the manner of the MZ method) from time-sequential data 
that have large spatial dimensions.

Mori–Zwanzig decomposition
We consider a dynamical system of the form

.
= ( ), ∈ . (8)NRU F U U

The state vector U can be assumed here to be high-dimensional, 
describing a the state of a group — or subgroup — of climate variables 
(atmospheric variables, streamfunctions and so on). Equation (8) can 
be thought as resulting from discretization of a system of partial dif-
ferential equations (PDEs) describing the motion of geophysical fluids 
or the evolution of other climate variables40. As such, equation (8) does 
not necessarily belong to the class of slow–fast systems such as equa-
tion (1), although the latter can be recast into the general abstract 
setting presented here. We denote by S(t; U) the solution to equation (8) 
emanating from U in RN at some initial time.

We assume that long-term statistics such as power spectral den-
sities or correlations are well defined from equation (8), namely that 
equation (8) possesses an invariant probability distribution μ, also 
known as stationary statistical equilibrium, that satisfies

∫ ∫T
φ S t t φ µlim

1
( ( ; )) d = ( ) d ( ), (9)

T

T

→∞ 0
U U U

for almost every U (in the Lebesgue sense) that lies in the basin of 
attraction of μ, for any sufficiently smooth observable φ. In general, 
φ is a field quantity that represents perturbations of density, pressure, 
electrostatic potential and so on. Note that when a global attractor 
exists, a statistical equilibrium μ satisfying equation (9) is supported 
by the global attractor83 and gives the asymptotic ‘mother’ distribu-
tion of the dynamics over this attractor from which any probability 
density functions (PDFs) are derived (through marginals, for instance). 
We remark that such statistical equilibrium should not be confused 
with the classical notion of thermodynamical equilibrium in statistical 
mechanics.

Given an observable φ : →NR R, recall that the evolution of this 
observable along the flow associated with equation (8) is given by the 
Koopman semigroup, Kt, defined as84

U UK φ φ S t( ) = ( ( ; )), (10)t

that satisfies the Liouville equation K φ K φ∂ =t t tL  with the operator L
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L








∑φ F φ= ( )∂ , (11)

j

N
j

j
=1

U

denoting the Lie derivative along the vector field F, while the F j denote 
the components of the latter.

We are now given a decomposition U = (u,v) in which u denotes a 
vector of p relevant variables, typically those resolved, and v denotes 
the vector collecting the q = N − p neglected ones. We are interested in 
describing the evolution of any sufficiently smooth observable ψ of the 
variable u only, without having to resolve the v equation in equation (8). 
In climate dynamics, this closure problem is motivated, for instance, by 
predicting or simulating a scalar field of interest (such as temperature 
or pressure) over a coarse grid without having to resolve the subgrid 
processes. Within this context, one may think of u as a collection of 
coarse-scale variables, and v as a collection of small-scale ones. In this 
case, equation (8) is an abstract formulation of a slow–fast system; in 
what follows, the variable u is referred to as slow and corresponds to the 
x variables in equation (1), and v is referred to as fast and corresponds 
to the y variables in equation (1).

In operator form, given an observable ψ of the coarse-scale 
variable u only, the problem consists of finding a parameterization 
in the following transport equation of the coefficients depending 
on the unresolved variables v,









∑ψ F t t ψ∂ = ( ( ), ( ))∂ , (12)t

j

p
j

j
=1

u v

in order to describe the time evolution of ψ(u(t)) without having to 
resolve the evolution of the v variables. This PDE, describing how any 
observable ψ of the reduced state space is advected by the flow of equa-
tion (8), is obtained by observing that ∂tψ(u(t)) = ∇uψ ⋅ ∂tu. Thus, the  

key issue we aim at solving is an effective parameterization of the inter-
actions between the coarse-scale and subgrid variables v (via the 
terms F j) for an accurate description of the advection of ψ in terms of 
the resolved variable u only.

To address this closure problem, associated with the cutoff scale 
consisting of retaining the u variable, we introduce the conditional 
expectation operator acting on observables of the full state vector 
U = (u,v)

u u v vu∫Pφ φ µ φ[ ]( ) = ( , ) d ( ) = , (13)

in which μu denotes the disintegration of the invariant probability 
measure μ (ref. 85); roughly speaking, it gives the distribution of the  
v variable on the attractor when the coarse-scale variable is frozen to u.  
The operator P thus corresponds to an averaging with respect to the 
neglected variable v as conditioned on u. Note that µ µ≠ ′u u  for ≠ ′u u  
for complex systems, causing the variable v not to be identically and 
independently distributed (that is, not i.i.d.).

Now, by rewriting the transport equation (12) as K ψ K ψ∂ ( ) =t t tM  
where M F= ∑ ∂j

p j
j=1 , we have that

M M MK ψ K P ψ K ψ P ψ∂ ( ) = + ( − ). (14)t t t t

Here, MP F= ∑ ( )∂j
p j

j=1 u  denotes the averaged advection operator 
with respect to the neglected, unresolved variable v.

By performing the change of variable s ← t − s in the integral term 
of equation (31) in Box 2, we arrive finally at the following equivalent 
formulation of equation (31),

∫ψ P ψ t t s ψ s s η t ψ∂ = ( ( )) + Γ( − ) ( ( ))d + ( ) , (15)t

t

0
M u u

which gives the desired closure of equation (12). The (possibly 
nonlinear) kernel operator Γ(t − s) is typically a time-lagged damping 

Box 2

Derivation of the generalized Langevin equation
In equation (14), the operator

M M u v u∑− = − ∂
=

P F F( ( , ) ( ))
j

p
j j

j
1

accounts for the fluctuations with respect to the conditional average 
and M M−K ψ P ψ( )t  informs on how these fluctuations are transported 
by the flow of equation (8) for any observable ψ of the reduced state 
space. Hence, the operator M M= − =f P f Q f(Id )δ , where Id is the 
identity, encodes the fluctuation terms. It defines the fluctuation 
semigroup etδ that constitutes a key element in the closure of  
equation (12). This closure is obtained by application of the perturba-
tion theory of semigroups in the Miyadera–Voigt variation-of-constants 
formulation249,296,297 to this fluctuation semigroup and the Koopman 
operator given by equation (10). The Miyadera–Voigt formula (29) 
below is also known as the Dyson’s formula in the MZ literature80.

The Miyadera–Voigt perturbation theorem249 gives then that

Mδ δ∫= + −K f f K P f se e d , (29)t
t

t

t s
s

0

for any observable f for which δf is well defined. Note that Petδf = 0 if 
Pf = 0, that is, the orthogonal complement of P is invariant under etδ. 
The fluctuation semigroup etδ gives the solution of the orthogonal 
dynamics equation

Mδ δ∂ =f Q fe e . (30)t
t t

We refer to ref. 298 for the study of the existence of solutions to 
equation (30).

Now let us take M M M= − =f ψ P ψ Q ψ in equation (29) and 
observe that Pf = 0. Then equation (14) becomes

M M

M

δ δ∫

∫

∂ = + +

= + +

−

−

K ψ K P ψ f K P f s

K P ψ K s ψ s η t ψ

e e d

Γ( ) d ( ) ,
(31)

t t t
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t
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0

0

with Mδ=η t ψ Q ψ( ) et  denoting the orthogonal element of the MZ 
decomposition (since M =PQ ψ 0 implying that η(t)ψ lies in ker(P)), 
while Γ(s) defines the operator Ms P η sΓ( ) ( )= .
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kernel, and η(t) is interpreted as an effective random forcing uncor-
related with the time evolution of the resolved variable, u(t), but can 
be strongly correlated in time, as discussed below. In the slow–fast 
system metaphor, the Markovian term PM provides the slow compo-
nent of the dynamics, η(t) is void of slow oscillations, and Γ is intended 
to account for the disparate interactions between the timescales.

Calculating the terms in the MZ decomposition
Equation (15) is called the generalized Langevin equation (GLE)60 or the 
MZ decomposition. Thus, the effective dynamics defining the evolu-
tion of any observable of the reduced state space can be achieved by 
determining the Markovian, stochastic and non-Markovian compo-
nents appearing in equation (15), making the GLE the fundamental 
equation to determine in the MZ approach to closure78–81,86. We clarify 
below a subtle point for applications, namely that not all the terms are 
necessarily needed in this triptych decomposition to derive accurate 
closures for multiscale dynamics even when no timescale separation 
is apparent. In the special case of one-way coupling between the subgrid 
and resolved variables, the non-Markovian component mentioned 
above disappears87. We discuss below a fully coupled model from atmos-
pheric dynamics in which the non-Markovian terms are negligible 
but the stochastic ones are essential to recover the multiscale nature 
of the dynamics from closure.

As elegant it may be, the MZ decomposition is a technically chal-
lenging solution to the closure problem of disparate-scale interactions, 
and various assumptions about the memory kernel Γ are typically made 
to propose approximations to the GLE.

The memory kernel Γ and the ‘noise’ operator η(t) involve the 
implicit knowledge of the fluctuation semigroup esδ, accounting for 
the effects of the neglected variables on the fluctuations with respect 
to the average motion. This operator is difficult to resolve as it boils 
down to solving the orthogonal dynamics equation (equation (30))88.

The noise and memory terms can be extremely complicated to cal-
culate, especially in cases with weak or no obvious timescale separation 
between the resolved and unresolved variables. The approximation of 
these terms thus constitutes the main theme of most research on the 
MZ decomposition.

Many techniques have been proposed to address this problem 
in practice, and they can be grouped into two categories: data-driven 
methods, and methods based on analytical insights tied to the deriva-
tion of the MZ decomposition. Data-driven methods aim to recover the 
MZ memory integral and fluctuation terms based on data, by exploiting 
sample trajectories of the full system. Data-driven methods can yield 
accurate results, but they often require many sample trajectories to 
faithfully capture memory effects89–92. Typical examples include the 
NARMAX (nonlinear auto-regression moving average with exogenous 
input) technique93–95, the rational function approximation proposed 
in ref. 90, the conditional expectation techniques of ref. 92, methods 
based on Markovian approximations by means of surrogate hidden 
variables90,96–99, or kernel-based linear estimators in delay-coordinate100.

Methods based on analytical considerations aim at approximating 
the MZ memory integral and fluctuation terms based on the original 
model’s equations, without using any simulation data. The first effec-
tive method developed within this class can be traced back to the con-
tinued fraction expansion101, which can be conveniently formulated in 
terms of recurrence relations102,103; see also ref. 104. Other theoretically 
guided methods to compute the memory and fluctuation terms in the 
MZ decomposition include optimal prediction methods80,105,106, mode 
coupling techniques107,108, methods based on approximations of the 

orthogonal equations109, matrix function methods110, series expansion 
methods111–115, perturbation methods116 and methods based on Ruelle’s 
response theory117,118. These analytically grounded methods can lead 
to effective calculations of non-Markovian effects in various applica-
tions such as coarse-grained particle simulations119,120 or some fluid 
problems112,113, including intermediate-complexity climate models121. 
However, these calculations are often involved, and they do not general-
ize well to systems with no scale separation81; see, instead, an example 
of scale adaptivity in ref. 122.

To better appreciate the difficulty posed by the lack of timescale 
separation, it is useful to recall that, for instance, a long-range memory 
approximation consisting of keeping the zeroth-order term in a Taylor 
expansion of the memory operator in equation (15) simplifies the 
memory term calculation, but at the price of restrictive conditions. 
Indeed, such a long-range approximation shows relevance if the 
unresolved modes exhibit sufficiently slow decay of correlations 
(t-model105,123), essentially by assuming information about the initial 
value to be sufficient to make predictions. Assuming the unresolved 
modes to have fast decay of correlations, one is left with short-range 
memory approximation schemes. The two cases, of extreme or very 
weak non-locality in time, are two sides of the same coin105. Most of 
the challenging cases for closure lie thus in the intermediate cases106, 
for which there is no neat separation of timescales such as exists in 
climate science6.

Keeping higher-order terms in the Taylor expansion of the memory 
operator is a natural way to handle cases of weak timescale separation. It 
is illuminating in many ways, including to design data-driven methods, 
as explained below. This higher-order approximation approach of the 
memory operator has been retained in ref. 88 and further developed and 
analysed in ref. 114. The approach consists of breaking down the mem-
ory approximation problem into a hierarchy of auxiliary Markovian  
equations.

Denoting by m t( )0  the integral term in equation (15), such a Marko-
vian approximation is accomplished by observing that m t( )=0  

M MM∫ K P Q se d
t

s
t s Q

0
( − )  satisfies the following infinite-dimensional 

system of PDEs88,114

m
m

t
K P Q v t n

d
d

= ( ) + ( ), = 1, …. (16)n
t

n
n

−1 M M

where MQ  is the generator of the orthogonal equation (equation (30) 
in Box 2). Integrating equation (16) backward, that is, from the ‘last’ 
equation to the first one, yields a Dyson series representation of t( )0m  
involving repeated integrals114. In practice, one performs a truncation 
of equation (16), which consists of keeping the first n equations, while 
closing the last equation by using an ansatz in place of t( )nm , such as 
m t( ) = 0n  (ref. 88) or m t( )n  given by Chorin’s t-model, among other 
choices114. Depending on the order of truncation retained and the cor-
responding choice of the ansatz for mn, error estimates with respect 
to the genuine memory integral in equation (15) are available114. How-
ever, the implementation of such Markovian schemes is not trivial, as 
it requires computing MQ( )n to a high order in n, a delicate operation 
especially when the original system is large.

Nevertheless, the layered structure of equation (16) and related 
error estimates provide a strong basis for the design of data-driven 
methods based on Markovianization ideas to approximate the memory 
integral term. Such ideas are commonly used for the mathematical 
analysis of physical models involving integro-differential equations; 
see, for example, refs. 83,124 and references therein.
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The data-driven approach proposed in ref. 125 is intimately related 
to such Markovianization ideas for the MZ decomposition97. The class 
of data-driven models of125 involves also multilayered SDEs of a struc-
ture very similar to that of equation (16) that has been generalized97 
to handle the approximation of more complex memory kernels, from 
a data-driven perspective. The usage of such multilayered SDEs to 
provide approximation of the GLE is further discussed in the next 
subsection.

Efforts to approximate the memory and noise terms should not, 
however, make us lose sight of another key problem, that of approxi-
mating the conditional expectation, namely the Markovian terms in 
equation (15). This is where recent hybrid approaches exploiting the 
original model’s equations and simulated data have shown relevance 
and have indicated that a blind application of data-driven methods can 
lead to uncertain outcomes or incorrect interpretations even when the 
latter are successful126,127.

In that respect, the data-informed and theory-guided variational 
approach introduced in ref. 126 allows for computing approximations 
of the conditional expectation term, MP , by relying on the concept of 
the optimal parameterizing manifold (OPM)126. The OPM is the manifold 
that averages out optimally the neglected variables as conditioned on 
the resolved ones126. The approach to determine OPMs introduced in 
ref. 126 in practice consists of first deriving analytic parametric formu-
las that match rigorous leading approximations of unstable/centre 
manifolds or slow manifolds near, for example, the onset of instability, 
and then to perform a data-informed minimization of a least-square 
parameterization defect to recalibrate the manifold formulas’ param-
eters to handle regimes further away from that instability onset126. 
There, the optimization stage alleviates the small denominator 
problems128 rooted in small spectral gaps129, and makes it possible to 
derive accurate parameterizations in regimes where constraining 
spectral-gap or timescale-separation conditions are responsible for 
the well-known failure of standard invariant/inertial or slow 
manifolds130–132; see refs. 126,129 for examples. In more physical terms, 
this problem is also tied to deficient or excessive parameterization 
of the small-scale energy but dynamically important variables, leading 
to an incorrect reproduction of the backscatter transfer of energy to 
the large scales133–135, and to inverse cascade errors135–137.

For multiscale dynamics, failure to accurately resolve the con-
ditional expectation results typically in a residual that contains too 
many spurious frequencies to be efficiently resolved by data-driven 
methods based on, for example, the aforementioned multilayered 
SDEs. Such multilayered SDEs exploit either polynomial libraries of 
functions or other specified interaction laws97 between the resolved 
and unresolved variables.

In recent years, machine-learning (ML) techniques have been 
used to learn memory terms in MZ decompositions98,99,138–140. These go 
beyond prior efforts involving polynomial libraries of specific interac-
tion laws between the slow and fast variables97,118,125. Thus, one may be 
tempted to use complex neural architectures to learn the MZ terms, 
but this should not be done at the price of physical interpretations and 
understanding. Careful studies in that regard include refs. 98,99. The 
examples discussed below provide other elements for caution.

Variational approach to closure
In the context of subgrid parameterizations, non-locality in time in 
equation (15) means that the subgrid variables exert both reactive 
and resistive forces on the resolved variables; and such attributes 
of the subgrid variables may play an important role in reproducing 

finite-amplitude instabilities and other properties of the resolved 
variables141. In the absence of timescale separation, the subgrid vari-
ables exert fluctuating driving forces on the resolved variables, which 
are conceptually distinct from eddy viscosity (or even negative eddy 
viscosity)142.

We assume thus that F in equation (8) proceeds from a forced fluid 
model, that is, that F(U) = LU + B(U,U) + f where B is a bilinear operator, 
L is a linear dissipative operator, f is a time-independent force (to sim-
plify), and U = (u,v) as above. We are interested in finding an accurate 
closure in the slow and coarse-scale u variable. To achieve this goal, 
the key issue is the parameterization of the u–v and v–v interaction 
terms in the original u equation, that is, the terms accounting for the 
disparate-scale and fast-scale interactions. Denoting by τint the group-
ing of these interaction terms, a convenient way to address this problem 
is by seeking the optimal parameterization, τopt, which is the nonlinear 
vector field of the u variable that solves the minimization problem

∥ ∥ ≫τ τu u v
τ

∫ t t t t Tmin ( ( )) − ( ( ), ( )) d , 1. (17)
T

0
int

2

τopt relates naturally to the conditional expectation (13) F because 
( ) =optτ Fu  minus the linear and u–u interaction terms that project onto 

the coarse-scale variables.
The aforementioned OPM, Φopt, which provides the best 

approximation in a least-square sense of v as a mapping of u, satisfies 
τint(u,Φopt(u)) ≈ τopt(u) (ref. 126), with a small residual error when the 
v–v interaction terms are negligible after averaging in the original u 
equation. At this stage, knowing τopt or Φopt allows us thus to approxi-
mate the average motion of u(t) when averaging is performed over the 
unresolved variable v(t).

The fluctuations carried by v(t) onto the dynamics of u(t) have 
effects that are beyond the averaging approximation. To take them 
into account, the MZ formalism introduced above leads us to revise 
the minimization problem (17) as

≫τ τu u u v
τ

∫ ∫t t s s s t t t Tmin � ( ( )) + Γ( − ) ( )d − ( ( ), ( ))� d , 1. (18)
T t

,Γ 0 0
int

2

Solving this second minimization problem thus consists of 
decomposing the nonlinear interaction term to account for a memory 
function and a fluctuating force, namely

τ τ ru v u u∫t t t t s s s t( ( ), ( )) ≈ ( ( )) + Γ( − ) ( ) d + ( ), (19)
t

int
0

where r(t) is the residual obtained after minimization of equation (18). 
This minimization can be addressed by means of recurrent neural 
networks that allow functional dependence of the ‘past’, such as long 
short-term memory (LSTM) networks138–140. Neural networks enable 
learning of possibly complex functional dependences in τ and of the 
operator Γ, but the resulting learned elements suffer from issues of 
interpretability.

Another approach to going beyond averaging consists of minimiz-
ing equation (18) via Markovianization. This method consists of break-
ing down the memory terms and noise terms by means of SDEs that have 
a multilayer structure (similar to equation (16)). The coefficients of the 
SDEs are learned successively via recursive regressions using surrogate 
stochastic variables that account for the residual errors produced by 
the successive regressions, until a white noise limit is reached96,97. This 
data-driven approach125 has yielded striking results in many fields of 
applications, such as the modelling of El Niño–Southern Oscillation 
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(ENSO)143–145, extratropical atmospheric dynamics146, palaeoclimate147 
and the Madden–Julian Oscillation148–150, to name a few.

These regression-based multilayered SDEs that approximate the 
MZ decomposition (15) benefit furthermore from theoretical insights. 
Intimate connections with the multilayered SDEs derived in refs. 117,118, 
based on Ruelle’s response theory151, were shown151 to hold for a subclass 
of multilayered SDEs considered in refs. 96,97. These connections 
clarify the circumstances of success for multilayered SDEs with linear 
coupling terms between the layers that correspond to approximating 
the memory operator Γ in equation (15) by repeated convolutions of 
exponentially decaying kernels97. The multilayered SDEs of this form 
are particularly relevant for weakly coupled slow–fast systems, and 
the corresponding memory and noise terms relate naturally to the 
Koopman eigen-elements of the ‘unperturbed weather’ Koopman 
semigroup Kt

w whose generator is ∑Gj(v)∂j when g(u,v) = G(v) + εC(u,v) 
in equation (1) with ε small; see ref. 151. The approximation of the MZ 
decomposition (15) via Markovianization thus sheds light on Koopman 
modes84 and the related dynamic mode decomposition152–154, as well as 
on  the principal oscillation pattern method proposed earlier in 
atmospheric sciences by Hasselmann155,156.

As mentioned above, however, depending on the problem, it is 
not always necessary to determine the memory and/or noise terms. 
One should thus always look first at the virtue of solving the minimiza-
tion problem (17), instead of solving the more challenging minimization 
problem (18), which may involve memory or noise terms of negligible 
importance for closure depending, for example, on the cutoff scale 
retained for a given dynamical regime, as discussed in the subsection 
on neural turbulent closures.

An emblematic example is also found in the context of the primi-
tive equations of the atmosphere. It is known that at low Rossby 
number, the conditional expectation that coincides with the balance 
equation (BE) suffices for an accurate closure157. However, once a critical 
Rossby number is crossed, the BE must be seriously amended to capture 
the complex interactions between the Rossby waves and IGWs; the lat-
ter become non-negligible at large Rossby number, as discussed below.

Closure of the atmospheric Lorenz 1980 model
On a timescale of days, atmospheric and oceanic flows constrained 
by Earth’s rotation satisfy an approximately geostrophic momentum 
balance on larger scales, associated with slow evolution, but the flows 
also exhibit fast IGWs dynamics. Central to geophysical fluid dynamics 
are the slow manifold problem158, namely that of identifying the slow 
component (for weather forecast initialization159–162, for example), 
and the problem of characterizing slow–fast interactions. The Lorenz  
63 model163, famous for its chaotic strange attractor, is a paradigm for 
the geostrophic component, whereas the L80 model82 is its paradig-
matic successor, both for the generalization of slow balance and for 
slow–fast coupling. The closure of the atmospheric L80 model has 
Markovian and noise terms but is memoryless, as discussed below.

Unlike other slow–fast systems, this physically based model exhib-
its regimes with energetic bursts of fast oscillations superimposed on 
slow ones in each variable of the model; these fast oscillations greatly 
complicate the parameterization of the regimes164 (Box 3). Regimes 
beyond exponential smallness of the fast oscillations are not only 
part of the L80 model. They have been observed in other primitive 
equation models as conspicuously generated by fronts and jets165,166, 
and in cloud-resolving models in which large-scale convectively cou-
pled gravity waves spontaneously develop167. Regions of organized 
convective activity in the tropics also generate gravity waves that lead 

to a spectrum that contains notable contributions from horizontal 
wavelengths of scales from 10 km to beyond 1,000 km (ref. 168). Such 
IGWs have also been identified from satellite observation of continen-
tal shallow convective cumulus, which forms organized mesoscale 
patterns over forests and vegetated areas169.

The L80 model provides a remarkable paradigm of such regimes 
with a lack of timescale separation at large Rossby numbers, in which 
the solutions have slow and fast components (mixture of high and low 
frequencies, HLF). In these regimes, fast variables are a function of the 
slow variables at the same time instant, thus calling for a revision of slow 
manifold methods158 and the like. The generic elements for solving such 
hard closure problems have been identified only in recent years170. Key 
to the solution is the balance equation (BE) manifold171,172 as rooted in 
earlier works159,173–175. The BE manifold has been shown to provide, even 
for large Rossby number, the slow trend motion of HLF solutions to 
the L80 model as it optimally averages out the fast oscillations; thus it 
approximates the OPM, Φopt, to a high precision164.

For such regimes, the L80 dynamics evolves on this manifold and 
experiences excursions away from it, corresponding to bursts of fast 
oscillations caused by IGWs (Box 3 and Fig. 2a). The residual off the 
BE manifold is mainly orthogonal to it, causing the memory terms to 
be negligible170 and making the stochastic modelling of the η(t) term 
central in the MZ decomposition (15). An inspection of this residual 
in the time domain shows that it is strongly correlated in time, nar-
rowband in frequency and modulated in amplitude (Fig. 2b). Progress 
in characterizing the spectral signature in terms of Ruelle–Pollicott 
resonances and Koopman eigenvalues (and the like176,177) of such time 
series62,178 indicates that such residuals can be efficiently modelled by 
means of a network of Stuart–Landau oscillators (SLOs) of the form

z µ ω z α β z z˙ = ( + i ) − ( + i ) | | + coupling terms

+ white noise terms
(20)j j j j j j j j

2

in which the μj and ωj denote rates of growth and fundamental frequen-
cies, while the αj and βj are positive parameters; see Fig. 2c and ref. 170 
for more details. Remarkably, the BE manifold provides a nonlinear 
separation of variables that makes it possible to decompose the mixed 
HLF dynamics of the L80 model into a slow component captured by 
the BE, and a fast one modelled by a network of SLOs.

For the L80 model, the resulting OPM–SLO closure is written for 
the streamfunction amplitude (the y variable; Box 3) and takes the form

fy y y yy L B ξ
.

= Π ( + ( + Φ ( ) + ) + ) , (21)topt

in which B(u) denotes the bilinear term B(u,u) and f the forcing term 
from the original L80 model, Πy denotes the projector onto the resolved 
variable y, and the stochastic vector ξt is modelled by the auxiliary 
networks of SLOs in equation (20). Through the nonlinear interactions 
of the network of SLOs with the parameterization Φopt(y) of the slow 
motion and the y variable in equation (21), one can accurately recover 
the multiscale dynamics of the L80 model along with its complex bursts 
of fast oscillations caused by IGWs170. Qualitatively, one can say that 
although diagnostically the balanced flow captures most of the variance 
of the L80 model, its prognostics requires a careful representation of 
the fast components associated with the IGWs.

In terms of Hasselmann’s programme, the L80 model shows that 
efficiently modelling regimes with a lack of timescale separation char-
acterized by a mixture of intertwined slow and fast motions requires 
both a good approximation of the OPM capturing the slow motion 
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and to go beyond stochastic homogenization and the like43 to model 
the noise, the use of network of SLOs showing a great deal of promises 
in that respect.

Note that by thinking of the bilinear terms B in equation (21) as 
proceeding from advective terms in the L80 model, one may interpret 
the nonlinear terms involving ξt in the stochastic OPM–SLO closure (21) 
as stochastic advective terms. Other approaches have shown the rel-
evance of such terms for deriving stochastic formulations of fluid flows 
and for emulating the coarse-grained dynamics179–182. In particular, 
homogenization theory can be used to rigorously derive effective slow 
stochastic particle dynamics for the mean part, under the assumption of 
mildly chaotic fast small-scale dynamics38. Interestingly, the route taken 
for deriving equation (21) differs from homogenization techniques. 
Owing to specificities of the L80 dynamics, the approach indicates that 
even for regimes in which the timescale separation is violated, closure 
involving stochastic advection terms may still be relevant.

From a practical viewpoint, the interest of having an accurate 
stochastic closure of the stochastic advective form equation (21) lies in 
its ability to simulate key features of the multiscale dynamics, offline, 
in an uncoupled way to mimic the effects of IGWs. As a result, by simply 
running offline the network of SLOs (20) and plugging its output into 
equation (21) as a random forcing input, one recovers, by integrating 
online equation (21), the multiscale nature of the L80 dynamics through 
interactions with the nonlinear terms170.

The OPM–SLO approach is thus promising for further application 
to the closure of other, more complex, slow–fast systems, in strongly 
coupled regimes. In particular, regimes that have a mixture of fast oscilla-
tions superimposed on slower timescales, as displayed by the L80 model, 

provide a challenging ground for closure in more sophisticated fluid 
problems. Such regimes are known to arise in multilayer shallow water 
models183. In certain regions of the oceans, IGWs account for approxi-
mately half of the near-surface kinetic energy at scales of 10–40 km 
(ref. 184), making IGWs energetic on surprisingly large scales. Thus, 
geophysical kinetic energy spectra can exhibit a band of wavenumbers 
within which waves and turbulence are equally energetic185. We believe in 
the ability of the OPM–SLO approach to show closure skills for such prob-
lems. There, the approximation of the OPM or conditional expectation 
should benefit from recent progress in neural turbulent closures, and 
the fast component of the motion should also benefit from the wealth 
of dynamics that networks of SLOs can embody, as discussed below.

Neural turbulent closures
Lately, much effort has been devoted to learning successful neural sub-
grid parameterizations, that is, subgrid parameterizations built upon 
neural networks, for the closure of fluid models in turbulent regimes such 
as the forced Navier–Stokes equations or quasi-geostrophic (QG) flow 
models on a β-plane186–191. Neural turbulent closures have no memory 
and no noise, but spatially non-local Markovian terms, as we discuss.

These neural closure results are typically obtained with convo-
lutional neural networks (CNNs)192 that are by definition non-local in 
space and aim at parameterizing the subgrid scale (SGS) stress tensor 
in terms of coarse-grained variables. The achievements of these neural 
closures include their ability to provide accurate closures for cut-
offs within the inertial range and for high Reynolds numbers, outper-
forming more standard schemes such as those based on Smagorinsky 
parameterizations191.

Box 3

The L80 model and bursts of inertia-gravity waves
The Lorenz 1980 (L80) model, obtained as a nine-dimensional 
truncation of the primitive equations onto three Fourier modes with 
low wavenumbers82, can be written as
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whose model’s parameters are described in refs. 82,164.
The above equations are written for each cyclic permutation  

of the set of indices (1,2,3), namely, for (i,j,k) in {(1,2,3), (2,3,1), (3,1,2)}.  
The variables (x,y,z) are amplitudes for the three Fourier modes  
of the divergent velocity potential, streamfunction and dynamic  
height, respectively. Transition to chaos occurs as the Rossby 
number ε is increased164,172.

At small ε, the solutions to the L80 model remain entirely slow 
for all time (that is, dominated by Rossby waves) whereas fast 

oscillations emerge spontaneously and are superimposed on such 
slow solutions as the Rossby number is further increased (see the 
figure). In such regimes, the balance equation (BE) manifold on which 
balanced solutions lie171,172 is no longer able to encode the dynamics 
(see the figure), as the dynamics associated inertia–gravity waves 
(IGWs) become transverse to the BE manifold126. These regimes with 
energetic bursts of IGWs lie beyond the parameter range explored 
in ref. 82 (see ref. 299) and beyond other regimes with exponential 
smallness of IGW amplitudes as encountered in the subsequent 
Lorenz 86 model300–302 and the full primitive equations131 at smaller 
Rossby numbers303.

L80 solution
(burst of IGWs)

Balanced
solution

BE manifold
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Obtaining accurate closures is known to be challenging as small 
errors made on the parameterization of the SGS are typically back-
scattered, owing to the inverse cascade, into amplified errors at large 
scales193,194. Disposing of SGS parameterizations at low cutoff levels for 
such turbulent flows with a controlled error is thus of prime importance 
for the closure problem.

The accuracy and stability of closure results reported in186–191 have 
an interesting mathematical interpretation. These results hint at the 
existence of a nonlinear functional relationship of the form (after 
removal of transient dynamics),

τ τ u v ε= ( , ) + , (22)CNN

in which τ denotes the SGS, τCNN denotes the parameterized SGS, u and 
v  denote the coarse-grained velocity variables (not to be confused with 
u and v used above), and the spatiotemporal residual ε is small in a 
mean-square sense.

In equation (22), τCNN denotes the function found by means of CNNs 
trained by minimizing a loss function reminiscent of that involved in 
equation (18). The relation (22) based on the quality of the closure 
results reported in refs. 186–191 thus suggests that τCNN, in the 
respective cases, is close to the conditional expectation τ  (ref. 126), 
namely the best nonlinear functional that averages out the unresolved 
variables as conditioned on the coarse variables. Thus, finding a good 
approximation of τ  is sufficient for an accurate closure of forced 2D 
turbulence problems at high Re, at least for a range of physically and 
computationally interesting cutoffs within the inertial range.

Accordingly, for such turbulent flows and choice of cutoffs, these 
neural closure results seem to rule out the use of memory terms in the 
MZ expansion, thus questioning the need for memory terms in other 
closure studies for similar problems112,127,195. For instance, memory 
terms have been advocated for the closure of Kuramoto–Sivashinsky 
(KS) turbulence in the reduced state space spanned by the unstable 
modes in, for example, refs. 94,127, whereas learning the conditional 
expectation suffices for high-skill closure that retains only the unstable 
modes, and for even more turbulent regimes126.

In a certain sense, one can thus argue that the neural turbulent 
closure results of refs. 186–191 restore some credentials to old ideas 
of the late 1980s196,197 where turbulent solutions to the 2D Navier–
Stokes equations were pursued as trajectories evolving in the phase 
space, within some thin neighbourhood of a finite-dimensional mani-
fold parameterizing the small scales in terms of the large ones126,196. 
Attempts to construct these manifolds based on analytical formulas 
derived from the model’s equations were successful only for cutoff 
wavenumbers within or close to the dissipation range198. The use of 
neural networks thus opens up new perspectives on this old problem. 
The aforementioned results show indeed that data-driven formulas 
of such manifolds are accessible for much lower and computationally 
relevant cutoffs within the inertial range. However, note that lowering 
the cutoff scale is inevitably prone to the emergence of memory and/or 
stochastic terms at some point. Such is the case, for instance, in closing 
KS turbulence when the cutoff scale is chosen such that unstable modes 
are present in the space of scales to parameterize.

Choice of latent variables in a baroclinic ocean model
The MZ framework is conditioned to the choice of resolved and 
neglected variables inherent to that of the reduced state space in which 
a closure is sought. This aspect is actually a key step when dealing with 
the equation discovery problem from time-sequential data that have 
large spatial dimensions, such as in climate applications. Then, one 
typically uses dimensional reduction to compress the original set of 
variables into a few variables aimed at simplifying the computational 
burden of finding the governing equations.

The most common method for dimensionality reduction is prin-
cipal component analysis (PCA), also known as empirical orthogonal 
function (EOF) decomposition199,200. In it, the principal components 
constitute the latent variables. PCA is commonly used to infer, out of 
various climate fields, stochastic differential models that are either 
linear201–204 or include nonlinear terms and various degrees of approxi-
mations of memory terms143–146,205,206. Many other methods of dimen-
sionality reduction could be used at this stage, such as those based on 
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Fig. 2 | Example: Mori–Zwanzig decomposition without memory but with 
a noise term. a, The optimal parameterizing manifold (OPM) that allows 
expression of the x = (x1,x2,x3)  and y = (y1,y2,y3) variables in terms of the 
y variable is the balance equation (BE) manifold (blue dots). It provides the 
slow motion of the Lorenz 1980 (L80) dynamics. The L80 dynamics (black 
curve) evolves onto this manifold and experiences excursions away from it, 
corresponding to bursts of fast oscillations caused by inertia-gravity waves 
(IGWs) (Box 3). The residual off the BE manifold is mainly orthogonal to it, 

causing memory terms to be negligible, and making their stochastic modelling 
central as the η(t) term in the MZ decomposition (15). b, This residual in the 
time domain is strongly correlated in time and can be grouped in pairs that 
are narrowband in frequency and modulated in amplitude with a possible 
combination of ‘tones’ (lower panel). c, Networks of stochastic oscillators (OSCs) 
are well suited to model such properties. Part b adapted with permission from 
ref. 170, National Academy of Sciences.
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nonlinear207,208 or probabilistic209 versions of EOFs, spectral versions of 
EOFs210 and the like176,211, transfer or Koopman operators212,213, Laplacian 
and diffusion maps214–216, or variational encoders217, to name a few.

Whatever the dimensionality reduction method used, the latent 
variables may display a frequency mixture issue as encountered 
above for the L80 model, affecting the timescale one wishes to resolve 
via a reduced model. This issue is encountered, for example, when 
aiming at reduced models on decadal timescales of fully resolved 
wind-driven baroclinic QG models of the ocean. The ocean circulation 
of an eddy-resolving simulation with ~106 spatial degrees of freedom at 
reference model parameters218 is characterized by a robust large-scale 
decadal low-frequency variability with a dominant 17-year cycle, involv-
ing coherent meridional shifts of the eastward jet extension separating 
the gyres (Fig. 3a). On this decadal variability is superimposed an inter-
annual variability caused by the eddy dynamics219. Owing to the highly 
turbulent and multiscale nature of the flow, the capture of the eddies’ 
dynamics on a coarse grid by a reduced model is challenging.

Within the reduced state space of (the first few dominant) principal 
components, this challenge is manifested by the multiscale nature of 
the temporal evolution of principal components: a slow evolution 

(decadal) contaminated by ‘fast’ interannual oscillations due to the 
eddy dynamics (Fig. 3f). Such multiscale features are the main cause 
of, for example, the failure of multilayered SDEs (such as those of 
refs. 96,125) in approximating the memory and noise terms in the 
MZ decomposition, in spite of their successes in other geophysical 
problems as recalled in the subsection on the variational approach to 
closure. The underlying reason is in the set of predictor functions used 
to learn the multilayered SDE ingredients, either responsible for an 
explanatory deficit, or subject to a spectral bias if conventional neural 
networks such as multilayer perceptrons are used220.

This is a case where multivariate signal decomposition 
methods176,221 may offer an alternative, by extracting from data 
frequency-ranked coherent modes of variability. Indeed, such meth-
ods, when effective in separating the slow and fast temporal compo-
nents of the PCs (or analogues), provide a natural ground for modelling 
these temporal components by means of stochastic SLOs such as in 
equation (20), ranked by frequency to be resolved. They are also known 
as multiscale Stuart–Landau models (MSLMs)176. MSLMs have dem-
onstrated skills in modelling challenging Arctic sea-ice datasets that 
have nonlinear trends222,223. The MSLMs provide coarse-grained models 
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Fig. 3 | The time evolution and standard deviation 
of upper-ocean potential vorticity anomalies in 
quasi-geostrophic turbulence and a multiscale 
Stuart–Landau model. a, Instantaneous upper-
ocean potential vorticity (PV) anomaly field 
from a high-resolution simulation (HRS) of a 
baroclinic quasi-geostrophic turbulent model (QG). 
b, Standard deviation of this HRS over a 64 × 26 coarse  
grid. c, Standard deviation as simulated by the 
multiscale Stuart–Landau model (MSLM) reduced 
model over the same coarse grid. d,e, Instantaneous 
upper-ocean PV anomalies from the coarse-grained 
QG model (part d) and its MSLM reduced model 
(part e). f,g, First principal component (PC) (red) 
of the coarse QG (part f) and MSLM (part g) upper-
ocean PV, and its decadal low-frequency variability 
(LFV) content (blue). The MSLM is able to reproduce 
the multiscale temporal variability of the QG coarse-
grained dynamics remarkably well. Part a adapted 
with permission from ref. 293 under a Creative 
Commons licence CC BY 4.0. Parts b–g adapted with 
permission from ref. 219 under a Creative Commons 
licence CC BY 4.0.
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with high closure skill for QG turbulent flows219 (Fig. 3). MSLMs and 
signal decomposition methods are promising for tackling the closure 
of more realistic primitive equation models, and for providing more 
understanding. Furthermore, because MSLMs are made of stochastic 
oscillators, the question arises whether the quasiperiodic Landau view 
of turbulence224, despite having been replaced by the Ruelle and Takens 
vision based on chaos theory225, may be suitable to describe turbulent 
motions if stochasticity is included.

Describing the climate crisis via response theory
We can address the problem of quantifying the climate response to 
forcings by considering how perturbations affect the statistical proper-
ties of ensembles of trajectories that evolve according to a given SDE. 
Hence, we take Hasselmann’s ansatz for a stochastic climate model and 
consider the following d-dimensional Itô SDE

x F x G x

x x W

∑

∑

g t

t g t

d = [ ( ) + ε ( ) ( )]

d + [Σ( ) + ε ( )Γ ( )] d ,

(23)
u

U
u u

u

v

V
v v

v t

=1
1 1

=1
2 2

where the unperturbed dynamics is given by equation (2). Hence, x 
here indicates a vector of slow climatic variables. We consider the case 
of general time-dependent perturbations acting on either the deter-
ministic component (a parametric modulation of the system) or in the 
stochastic component (a perturbation to the noise law) associated 
with, for example, changes in the properties of the unresolved degrees 
of freedom. The U independent perturbations to the drift term are 
embodied by the vector fields Gu, each modulated by a (scalar) ampli-
tude function g t( )u

1  and a small parameter εu . The V independent per-
turbations to the noise term are embodied by the d × p matrices Γv, 
whose amplitude are controlled by the functions g t( )v

2  and the small 
parameters εv.

Note that if one considers a background deterministic dynam-
ics (Σ(x) = 0), and the time-dependent forcing to the drift term is 
non-vanishing, finding the solution ρε(x,t) of the FPE that corresponds 
to equation (23) amounts to studying the properties of the statistical 
equilibrium supported by the system’s pullback attractor226–229. In 
practical terms, such a measure can be constructed by initializing an 
ensemble in the infinitely distant past and letting it evolve according 
to the time-dependent dynamics28. Following ref. 26, let us assume that 
ρε(x,t) can be written as:

∑ ∑ρ t ρ ρ t ρ t( , ) = ( ) + ε ( , ) + ε ( , ) + h . o . t.
u

U
u u

v

V
v v

ε 0
=1

1 1,d
=1

2 1,sx x x x

where h.o.t. denotes higher-order terms. Such an asymptotic expan-
sion is the starting point of virtually all linear response formulas for 
statistical mechanical systems; see refs. 230,231 for a discussion of the 
radius of convergence of the expansion above.

The expected value of Ψ at time t is

x x∫ ρ t δ tΨ = d ( , )Ψ( ) = Ψ + [Ψ]( ) + h.o.t.ρ ε 0
(1)

ε
t

where the linear response is

∙ ∙∑ ∑δ t g t g t[Ψ]( ) = ε ( )( ) + ε ( )( ) (24)
u

U
u u u

v

V
v v v(1)

=1
1 1 d,Ψ

=1
2 2 s,ΨG G

where ‘•’ indicates the convolution product between the forcing ampli-
tudes g u v

1/2
/  and the Green’s functions Gu v

d/s,Ψ
/ , where the combination of 

superscript u and subscript d refers to the impact of perturbations 
acting on the deterministic components of the flow, and superscript 
v and subscript s refer to the impact of perturbations acting on the 
stochastic components (ref. 26) (Box 4). In what follows we consider, 
without loss of generality, observables that have vanishing expectation 
value in the unperturbed state. This condition can be achieved by rede-
fining Ψ as Ψ − ⟨Ψ⟩0. In physical terms, this amounts to considering 
anomalies with respect to the reference climatology.

As discussed in ref. 232, having explicit formulas for the linear 
response of a climate model to perturbation would entail having an 
exact theory for the eddy–mean flow feedback. Obtaining explicit 
formulas would require a fully coherent theory of climate dynamics, 
which is still far from being achieved. Hence, we need to find ways to 
estimate the response operators. The Green’s functions shown in Box 4 
(equation (32)) can be interpreted as lagged correlations between the 
observables L ρΦ = (log )u v

1,d/s
/

0  and Ψ. This indicates a generalization  
of the classical FDT60,68,233. The FDT has been applied to the output of 
climate models to predict the climate response to changes in the solar 
irradiance234 and greenhouse gas concentration235,236, and to study the 
impact of localized heating anomalies237.

Nonetheless, the use of Gaussian or quasi-Gaussian approxima-
tions for ρ0, which leads to using Green–Kubo formulas, leads to poten-
tially large errors in the estimate of the response in a non-equilibrium 
system. Previous work238 contains a rather detailed analysis of the 
reasons that classical FDT methods fail in reproducing the response 
operators: features associated with weak modes of natural variability 
(which are possibly filtered out in data preprocessing targeted for 
near-equilibrium systems) can have an important role in determining 
the response; see also discussion in ref. 239.

A possible way forward is to estimate the Green’s functions for the 
observable(s) of interest from a set of suitably defined simulations. 
For the case of CO2 forcing, it is convenient to perform an ensemble of  
N simulations where the CO2 concentration is instantaneously doubled, 
and the runs continue until the new steady state is obtained27,28,30.  
The Green’s functions are estimated by taking the time derivative of the 
ensemble average of the response of the model to such a forcing, and 
can then be used for performing projections of climate response to 
arbitrary protocols of CO2 increase. See Box 4 for clarifications of how 
this formalism sheds light on various classical notions of sensitivity 
for the climate system.

Figure 4 portrays the application of response theory to an ESM 
where accurate projections are obtained for the globally averaged 
surface temperature and for the strength of the Atlantic Meridional 
Overturning Circulation (AMOC)240,241 for a 1% annual increase of the 
CO2 concentration from preindustrial conditions up to doubling. Note 
the very pronounced weakening of the AMOC and the slow recovery 
after the applied forcing stabilizes, which is discussed below in the 
subsection on tipping points.

Response theory can also be used for other problems of practical 
relevance in climate science, such as estimating the point of no return 
for climate action29 and explaining whether, along the lines of defining 
causal links, one can use a climate observable as a surrogate forcing act-
ing on another observable of interest242,243. Previous work232 contains a 
useful discussion of additional potential uses of response theory in 
a climate context. Response theory can also be used to determine the 
forcing (of given norm) producing the largest response244,245 and to solve 
inverse problems such as determining the forcing needed to achieve 
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a given response. This viewpoint relates to optimal control ideas246. 
A related application pertains to the critical appraisal of geoengineering 
strategies related to the stratospheric injection of aerosols247.

Response, feedback and Koopman modes
Response theory makes it possible to investigate the key features of 
the climate feedback acting on different timescales. We provide a rewrit-
ing of the Green’s functions in terms of individual components spe-
cifically associated with the eigenmodes of the unperturbed 
Kolmogorov operator L*0; see equation (33a) in Box 4. We assume that 

*0L  has a vanishing eigenvalue λ0 = 0 with unitary multiplicity, which is 
tantamount to assuming a unique invariant measure.

Let λ{ }j j
M

=1 denote the M non-zero eigenvalues of finite algebraic 
multiplicity mj, ordered by their real part in decreasing order, that is, 
with λ1 having the largest real part. The λj are either real or come in 
complex conjugate pairs. Namely, if λj is an eigenvalue of the unper-
turbed Kolmogorov operator L*0 with eigenfunction ψ*j , so is e λ tj  of 

LK = et
t *0 relative to the same eigenfunction. With an abuse of language, 

we shall refer to λj and ψ*j  as Koopman eigenvalues and Koopman eigen-
modes (or simply modes), respectively. These have been introduced 
in the discussion of MZ decompositions for the case of deterministic 
evolution, and we adopt here the same terminology, the Kolmogorov 
operator being the analogue to the Koopman generator in the stochas-
tic setting62. The eigenfunctions ψ*j  encode the stochastic system’s 
natural variability, decay of correlations and (temporal) power 
spectra62. Koopman analysis and related methods have demonstrated 
great promise in the past decade in capturing modes of climate variability 
from high-dimensional model and observational data213.

Following refs. 62,248, it was shown26 that, using the Koopman 
mode formalism, it is possible to express the Green’s functions Gu v

d/s,Ψ
/   

introduced in equation (32) as a sum of exponential functions (possibly 
multiplied by polynomials):

∑ ∑t t α t( ) = Θ( ) (Ψ)
1

!
e , (25)u v
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M m

j
u v λ t

d/s,Ψ
/

=1 =0

−1
, / ,s/d

j
jG

ℓℓ

ℓ ℓ

where the coefficients ℓα (Ψ)j
u v, / ,s/d  are discussed in Box 5. In equation 

(25) we neglect the contribution to the response from the essential 
component of the spectrum of *0L  (ref. 26). Making this important sim-
plifying assumption amounts, by and large, to assuming that the 
operator L*0 is quasi-compact249. This is often implicitly assumed when 
performing extended dynamic mode decomposition250. This derivation 
explains why the formula presented in equation (6) allowed for a correct 
interpretation of the climate feedback in refs. 11,66. We stress that the 
λjs do not depend on either the observable or the forcing considered, 
but are instead a fundamental property of the reference unperturbed 
system’s dynamics.

Tipping points
Because any Green’s function for the observable Ψ can be interpreted as 
a correlation function C between Ψ and a suitably defined observable Φ 
(Box 4), it should not come as a surprise that, considering equation (25), 
one has

ℓℓ

ℓ ℓ∑ ∑C t β t( ) = (Ψ , Ψ )
1

!
e , (26)
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M m

j
λ t

Ψ ,Ψ
=1 =0

−1

1 2

j
j

1 2

Box 4

Green’s functions, equilibrium climate sensitivity and transient 
climate response
The Green’s functions Gu v

d/s,Ψ
/  are key tools for computing a system’s 

linear response to perturbations. They can be written as

G LLt t ρ ρ( ) Θ( ) d ( )e Ψ( ) (log( ( ))),u v t u v
d/s,Ψ

/
0 1,d/s

/
0

0∫= x x x
∗

that is,

G t t ρ t x t C t( ) Θ( ) d ( )Ψ( ( ))Φ( ) Θ( ) ( ), (32)u v
d/s,Ψ

/
0 Ψ,Φx x x∫= =

where Θ(t) is the Heaviside distribution, which ensures causality21,28,242. 
The operators L*0, Lu

1,d and Lv
1,s are

L = ⋅ ∇ + ∇F*Ψ Ψ
1
2 ΣΣ : Ψ, (33a)T

0
2

L = −∇ ⋅ ≤ ≤ρ ρ u U( ), 1 , (33b)u
u1,d G

L ρ Σ ρ v V
1
2 : ((Σ Γ Γ ) ), 1 . (33c)v

v
T

v
T

1,s
2= ∇ + ≤ ≤

In equation (33a), L*0 is the Kolmogorov operator, the dual of  
the Fokker–Planck operator L0 associated with the unperturbed 

stochastic differen tial equation given in equation (2), and ‘:’ denotes 
the Hadamard product.

The sensitivity of the system as measured by the observable Ψ with 
respect to the forcing encoded by G t( )u v

d/s,Ψ
/  measures the long-term 

impact of switching on the forcing and keeping it at a constant value, 
which corresponds to choosing a constant (unitary time modulation). 
Hence, such sensitivity can be written as G∫=

∞
S t td ( )u v u v

d/s,Ψ
/

0 d/s,Ψ
/ .

Indeed, such a relationship allows one to write the equilibrium 
climate sensitivity (ECS) — that is, the long-term globally averaged 
surface air temperature increase due to a doubling of the CO2 
concentration304 — in terms of the corresponding Green’s function27,28. 
Response theory also allows writing an explicit formula27 linking 
ECS to the transient climate response — the increase in globally 
averaged surface air temperature recorded at the time at which 
CO2 has doubled as a result of 1% annual increase rate, that is, after 
approximately 70 years305. Intuitively, one has that ECS is larger than 
the transient climate response because of the thermal inertia of the 
climate system, namely the fact that following the forcing due to 
increased CO2 concentration, the system needs some time to adjust 
to its final, steady-state temperature.
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for any pair of observables Ψ1, Ψ2, as proved in ref. 62. It is clear from 
equations (25) and (26) that to have a non-explosive behaviour, one 
must have Re λ( ) < 0j , 1 ≤ j ≤ M. From equations (25) and (26) it is also 
clear that the rate of decay of any Green’s function and that of any lagged 
correlation is dominated for large times by the real part of the sub-
dominant pair of the L*0 spectrum. We refer to Reγ λ= ( )1  as the corre-
sponding spectral gap. The eigenfunctions corresponding to the slowly 
decaying eigenvalues are the rigorous counterpart of the ‘neutral 
climate modes’238,251–253.

If we assume that one parameter η of our system (not to be con-
fused with η in equation (15)) is such that the spectral gap Reγ λ= ( )1  
vanishes as η → ηc, we have that as η nears its critical value ηc

• Any Green function and any lagged correlation decay subexponen-
tially unless the corresponding factors (αs and βs, respectively) 
vanish;

• Owing to the sensitivity formula given in Box 4, one immediately 
derives that the sensitivity of the system increases, consistent 
with earlier results linking the smallness of the spectral gap γ to 
sensitivity of the statistics254.

These two phenomena — critical slowing down and diverging 
sensitivity — are key manifestations of the proximity of tipping points17.  
If the dynamics of the system can be approximated, in a coarse-grained 

sense, by an Ornstein–Uhlenbeck process such as in ref. 204, another 
manifestation of getting to close to a tipping point is the increase in the 
signal’s variance255–257. In more general terms, this feature corresponds 
to an increased sensitivity of the system to background noise26,258.

The AMOC has long been seen as a climatic subsystem with poten-
tial tipping behaviour as a result of changing climate conditions, and, 
specifically, of changes in the hydrological cycle and cryosphere in 
the Atlantic basin240,241,259. Figure 5 shows signs from observations that 
support a nearing of the AMOC to a highly plausible critical transition. 
One finds an increase of the sensitivity and in the variance of an AMOC 
index tied to the sea surface temperature (SST), as well as by a decrease 
of the rate of decay of the index260. Large sensitivity and slow recovery of 
the same large-scale climate driver have already been discussed in a 
modelling context in Fig. 4.

We can learn more about such critical behaviour by taking the 
Fourier transform of the Green’s function given in equation (25):

G ∑ ∑ω
α

ω λ
[ ]( ) =

(Ψ)

(i − )
. (27)u v

j

M m
j

u v

j
d/s,Ψ

/

=1 =0

−1 , / ,s/d

+1

j

F
ℓ

ℓ

ℓ

The poles of the susceptibility are located at ω = −iλj. Equation (27) 
implies the existence of resonances in the response for real frequencies 
ω λ= ( )jIm . Neglecting the possible existence of non-unitary algebraic 
multiplicities, the susceptibility at the resonance j is proportional to 

λ1/ ( )jRe . Hence, as η → ηc, the susceptibility for Imω λ= ( )1  diverges, thus 
implying a breakdown of the response operator. If at criticality 
Im λ( ) = 01 , the static response of the system diverges, indicating a 
saddle-node-like bifurcation phenomenon (turning point). If, instead, 

λ( ) ≠ 01Im , we face an oscillatory unstable phenomenon that is remi-
niscent of a Hopf bifurcation178,261. The viewpoint proposed here allows 
for linking the fundamental features of the tipping phenomenology 
within a coherent framework.

Detection and attribution of climate change
The statistical mechanical tools discussed above allow for performing 
climate change projections for ensembles of trajectories: statements 
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Fig. 4 | Application of response theory to an Earth system model. a,b, Projection 
of globally averaged surface temperature (part a) and Atlantic Meridional Over-
turning Circulation (AMOC) strength (part b) as a result of an annual 1% increase of 
the CO2 concentration from preindustrial conditions up to doubling. Blue curves 
indicate the prediction by application of response theory; thick red curves show 
the ensemble mean of the Earth system model runs (yellow curves). Figure adapted 
with permission from ref. 30 under a Creative Commons licence CC BY 4.0.

Box 5

Non-equilibrium oscillator 
strengths
Equation (27) indicates that the coefficients α (Ψ)j

u v, / ,s/d  weight the 
contributions to the frequency-dependent response coming from 
the eigenmode(s) corresponding to the eigenvalue λj (which has  
in general multiplicity mj) for a given combination of observable  
and forcing. Note that there is a total of M = M1 + 2M2 eigenvalues.  
Of these, M1 are real, and M2 are complex conjugate pairs. Hence,  
the αs are the non-equilibrium, classical equivalent of the well-known 
oscillator strengths discussed in spectroscopy, which weight the 
contributions to the optical susceptibility from each of the allowed 
quantum transitions from the ground states to the accessible excited 
states306,307. Thus, equation (27) provides the basis for a spectroscopy 
of general non-equilibrium systems, and, specifically, of the climate 
system. Resonant terms are associated with tipping phenomena.
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are made in terms of (changes of) the expectation value of general 
observables. Clearly this is a mathematical construction that does 
not fully comply with the requirements of climate science, because, 
as mentioned above, we wish to make statements on the statistical 
properties of the climate signal we are experiencing (we do not have 
access to the hypothetical multiverse comprising other statistically 
equivalent realizations) and possibly link it to acting forcing. Nonethe-
less, linear response theory applied to climate provides solid physical 
and dynamical foundations for detection and attribution via statistical 
techniques.

Let Ψk, k = 1, …, N be a collection of climatic variables. Consider 
also the possibility that the forcing to the climate system comes from 
F different sources, whether anthropogenic or natural. We rewrite 
equation (24) by combining all the U + V = F acting forcings as 

G∙δ t ε g t[Ψ ]( ) = ∑ ( )( )k p
F

p p p
(1)

=1 ,Ψk
, where we have correspondingly sim-

plified the notation for the Green’s functions by removing the distinc-
tion between those referring to deterministic and stochastic 
perturbations to the dynamics. Hence we have that, at first order,

͠∑Y t t X t t( ) = Ψ ( ) − Ψ = ( ) + ( ), (28)k k k
p

F

k
p

k0
=1

R

where Ψk(t) indicates the actual value of the climate variable Ψk at time t,  
the terms ∙X t ε g t( ) = ( )( )k

p

p p p,Ψk
G



 account for the forced variability, and 
t t( ) = Ψ ( ) − Ψk k ρε

tR  is a random vector whose correlations are gov-
erned by the probability distribution ρε

t solving the FPE associated with 
equation (23). If the variables Ψk correspond to anomalies with respect 
to the reference climatology, we have Ψ = 0k 0

.
Equation (28) is already cast into a form that is close to the usual 

mathematical formulation of optimal fingerprinting for climate change 
given in equation (7). Response theory indicates that if we use the 
forced run of a model to perform detection and attribution of climate 
change as simulated by the same model, and if we are in the linear 
regime of response, all the β factors in equation (7) should be unitary, 
apart from uncertainty.

We stress that the linear response theory indicates that the optimal 
fingerprinting procedure could be applied seamlessly for different time 
horizons of the climate change signal and for suitably linearly filtered 
signals (by considering time averages, for example). This suggests 
that one should perform the optimal fingerprinting for different time 
horizons at the same time and check the consistency of the obtained 
results (in terms of confidence intervals for the β factors) across the 
time of the hindcast. Additionally, the fact that linear response theory 
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applies for a large class of forcings and can even be adapted for study-
ing extremes262 explains why optimal fingerprinting finds such a broad 
range of applications, including the analysis of climatic extremes263,264.

Our derivation emphasizes that optimal fingerprinting relies 
strongly on assuming linearity in the response, with values of the β fac-
tors different from unity describing amplified (β > 1) and damped (β < 1) 
response due to nonlinear effects. A more accurate treatment of nonlin-
earities could be achieved by adapting the ‘factor separation’ method, 
which is used in meteorology to disentangle linear and nonlinear compo-
nents of the sensitivity of a system to various forcings265. Such a method 
has been used to evaluate the factors affecting past climate conditions266. 
The consideration of higher-order terms in the response operators267 
could aid the development of fingerprinting methods that go beyond the 
linear approximation. Additionally, it is clear that performing optimal 
fingerprinting without considering the whole portfolio of acting forc-
ings can lead to misattribution of the causes of detected climate change. 
The systematic cross-check proposed above for different time horizons 
might partly take care of these possible criticalities.

The term R t( )k  in equation (28) is not associated with the variabil-
ity of the unperturbed climate — compare with equation (7) — but rather 
is tied to the system’s variability encoded by the probability distribution 
ρt

� ; see also discussions on time-dependent probability measures and 
pullback attractors in refs. 70,226–228,268,269. This allows us to point 
out that the classical formulation of optimal fingerprinting lacks the 
framework to account for changes in variability due to climate change.

The expression for the Green’s function (25) provides useful 
information for better understanding the robustness of the optimal 
fingerprinting method. The model error manifests itself in the dif-
ference between the spectrum of eigenvalues (and eigenfunctions) 
of the Koopman operator of the ‘real’ climate and that of the model 
used for constructing the fingerprints. Additionally, different climate 
models generally feature different Koopman modes and associated 
eigenvalues. Hence, constructing fingerprints by bundling together 
information derived from different models seems not so promising 
in terms of reducing model error.

It is also clear that if only one of the actual climate system or the 
model used for optimal fingerprinting is close to a tipping point, one 
expects major uncertainties and biases because of the qualitative 
mismatch between the leading j = 1 term of all the Green’s functions 
involved, and, hence, between the model fingerprints and the actual 
climate response to the considered forcings. This becomes even more 
critical if more models are used for estimating the fingerprints, because 
heavily spurious information could be added.

Outlook
The emphasis on the role of noise in creating — somewhat counterin-
tuitively — meaningful signal at lower frequencies has led to funda-
mental discoveries such as the mechanism of stochastic resonance, 
which stems from direct application of the Hasselmann paradigm in a 
climate context270–273 and has since had success in many other research 
areas274. Another important area of application of the Hasselmann 
paradigm deals with an age-old problem of dynamical meteorology. 
The fast atmospheric processes due to baroclinic disturbances have 
been interpreted as stochastic forcing impacting the low-frequency 
variability of the mid-latitudes that arises from the transitions between 
competing regimes of circulations, mainly associated with zonal flow 
and blockings275–279.

The joint analysis of climate variability and climate response pre-
sented here assumes that we are considering forced or free fluctuations 

around a stable, balanced state, where overall negative feedbacks 
dominate and control the relaxation processes. Yet the very concept 
of balance might need a critical appraisal when considering ultra-long 
timescales280, because the internal feedback mechanisms of the sys-
tem can change sign when different characteristic timescales are 
considered9. The prevalence of positive feedback indicates processes 
associated with transitions between possibly radically different cli-
mate regimes6,8. In this case too, the stochastic climate modelling 
angle shows great potential. Taking advantage of Fredilin–Wentzell 
theory of noise-induced escapes from attractors281 and of large devia-
tion theory282, it is possible to develop a theory of metastability for 
geophysical flows283,284 and for the climate system285–288. Although 
Gaussian noise is often used in investigations for reasons of practical 
and theoretical convenience, more general classes of noise laws —  
specifically α-stable Lévy processes — are sometimes invoked for 
studying climate transitions in which sudden jumps between com-
peting states are observed289–292. For reasons of space and internal 
coherence, we have chosen not to cover these important research 
areas in this Perspective.

The Hasselmann programme, by construction, omits the problem 
of finding the root causes of the noise that affects the slow climatic 
variables. In this sense, it can be seen as proposing a phenomenologi-
cal theory of climate. As is well known, the noise comes from the fast 
fluid dynamical instabilities occurring at different scales in the atmos-
phere and in the ocean, leading to chaotic behaviour2,6,40. The details of 
the fast processes do in fact matter, precisely because there is no time 
separation one can use to separate the variables of interest from those 
one wants to parameterize, so that the kind of parsimony one would 
derive from the use of homogenization theory cannot be recovered60. 
Conversely, there is no dichotomy between deterministic behaviour 
and stochastic representation, because chaotic dynamics generates 
stochastic processes. To advance towards constructing a theory of 
climate able to account for variability and response to forcing, and able 
to provide useful and usable information to address the climate crisis, 
there is a need to inform the stochastic angle on climate with the key 
details obtained by a multiscale analysis of the dynamical processes. 
This Perspective is a preliminary attempt in this direction.

Published online: 2 November 2023
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