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Abstract

Spatial prediction tasks are key to weather forecasting, studying air pollution
impacts, and other scientific endeavors. Determining how much to trust predictions
made by statistical or physical methods is essential for the credibility of scientific
conclusions. Unfortunately, classical approaches for validation fail to handle
mismatch between locations available for validation and (test) locations where we
want to make predictions. This mismatch is often not an instance of covariate shift
(as commonly formalized) because the validation and test locations are fixed (e.g.,
on a grid or at select points) rather than i.i.d. from two distributions. In the present
work, we formalize a check on validation methods: that they become arbitrarily
accurate as validation data becomes arbitrarily dense. We show that classical and
covariate-shift methods can fail this check. We instead propose a method that
builds from existing ideas in the covariate-shift literature, but adapts them to the
validation data at hand. We prove that our proposal passes our check. And we
demonstrate its advantages empirically on simulated and real data.

1 Introduction

Researchers are often interested in making predictions in a spatial setting. For instance, scientists
predict sea surface temperature (SST) for weather forecasting and climate research [Minnett, 2010],
predict air pollution at population centers to better understand the effect of pollution on health
outcomes such as kidney disease [Remigio et al., 2022], or predict the prevalence of an invasive
species for ecological management [Barbet-Massin et al., 2018]. Characterizing the reliability of
these predictions is key to understanding their suitability for downstream applications; e.g., Minnett
[2010] describes acceptable SST error tolerances for weather forecasting. Estimates of prediction
accuracy can also be used to choose between several predictive methods, as in Shabani et al. [2016].

In the spatial setting, predictive methods need not always arise from a statistical or machine learning
approach built using training data. The predictive method is often a complex physical model provided
by a third party [Remigio et al., 2022, Minnett, 2010, Gupta et al., 2018]. Or it could combine physics
and data-driven models [Banzon et al., 2016, Werner et al., 2019, Özkaynak et al., 2013].

In any of these cases, it is common to estimate the performance of a predictive method by using a set
of validation data. More precisely, we are ultimately interested in predicting a response at what we
call test sites; in the SST example above [Minnett, 2010], the test sites are points on a grid (often
called a map), or in the air pollution example [Remigio et al., 2022], the test sites are 28 counties
in the US Northeast. We can make predictions at the test sites, but we do not have access to direct
observations of the responses there. We do have observed responses in the validation data, which
we assume were not used in forming the predictive method being evaluated; in the SST example,
scientists have SST observations taken by boats and buoys as validation data. So our aim is to estimate
the average loss (i.e. risk) at the test sites using the validation data. We will see that many popular or
natural approaches fail at this task.
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One widely used approach, called the holdout,1 estimates the test risk by taking the empirical average
of the validation loss. When the validation and test data are independent and identically distributed
(i.i.d.) from the same distribution, the holdout has a rigorous justification [Devroye, 1976, Langford,
2005]. But in spatial problems, the validation and test sites need not be similarly dispersed, all data
may be spatially correlated, and the test sites are often fixed rather than random; recall the grid or
point prediction examples above. Indeed, Roberts et al. [2017] have observed problems with the
holdout in practice. In the special case where the predictive method is data-driven, some authors
[e.g. Telford and Birks, 2005] have suggested choosing holdout validation sites far from the training
data sites. But we expect this proposal to still suffer from the problems just mentioned, and in fact
simulation studies suggest it can misestimate test risk [Ploton et al., 2020, De Bruin et al., 2022].

Another natural idea is to use covariate-shift approaches to handle potential mismatch between
validation and test sites [Sarafian et al., 2020, De Bruin et al., 2022]. However, the covariate-shift
literature generally assumes validation sites are drawn i.i.d. from one distribution, test sites are i.i.d.
from another, and the density ratio between these two distributions exists and is bounded. For both
the grid and point examples, these last two assumptions are inappropriate.

In what follows, we lay out a precise formulation of the prediction validation task in the spatial
setting (Section 2). We formalize a desirable property for test-risk estimators: that, if arbitrarily
dense validation data accrues in a region including the test points, the test-risk estimate should
become arbitrarily accurate (Section 3). We prove that both the holdout estimator and an estimator
advocated in the covariate-shift literature [Loog, 2012, Portier et al., 2023] fail to satisfy this spatial
consistency property (Section 4). We propose to build on the k-nearest neighbor estimator [Loog,
2012]. In particular, Loog [2012] and Portier et al. [2023] advocated fixing k = 1 for covariate-shift
problems. We instead derive an upper bound on the error of the general-k estimator for estimating
test risk (Section 5.1); crucially, our bound is conditional on the test and validation sites. We prove
that choosing k adaptively by optimizing our upper bound yields a spatially consistent estimator
(Section 5.2). Unlike covariate-shift results [e.g. Portier et al., 2023], our results are directly applicable
to problems where the test sites are most reasonably thought of as fixed. We illustrate the accuracy
and practicality of our proposed method in simulated and real data analyses (Section 6), with tasks in
both grid and point prediction. We discuss further related work in Appendix B.

2 Estimating Test Risk in a Spatial Problem

We now formalize risk estimation at test points in a spatial setting. We assume each data point occurs
at a spatial location S ∈ S, where the spatial domain (S, dS) is a metric space. Each data point
has observed covariates X ∈ X and a response Y ∈ Y . The covariates are a fixed spatial field,
χ : S → X ; i.e., the covariates at a point are specified by evaluating χ at the point’s spatial location.

2.1 Test risk of a spatial predictive method

We assume we have access to a predictive method h : (S,X )→ Y . We define hχ : S → Y to be the
prediction made by h at the location S: hχ(S) = h(S, χ(S)). We suppose that practitioners would
like to use h to predict the response at a set of test sites where the response is unknown. We collect the
M test test data points, including true (but unobserved) responses, in Dtest = (Stest

m , X test
m , Y test

m )M
test

m=1.

To quantify quality of a predictive method, we need a loss. We assume the loss is bounded, as is often
the case for practically-bounded responses; cf. temperature, pressure, or other physical quantities.2

Assumption 2.1 (∆-bounded Loss). The loss is a non-negative, bounded function, ℓ :Y ×Y → [0,∆].

Due to practical considerations such as measurement error, the response at a test point is usefully
modeled as random. To summarize loss over this randomness, it is standard to consider expected
loss (a.k.a. risk) at the testing data. To define this expectation, we need to make assumptions about
the data-generating process. It is typical in the non-spatial setting to assume responses are i.i.d.
conditional on covariates. In the spatial setting, the i.i.d. assumption is inappropriate since it ignores

1The name originally referred to “holding out” data for validation, with the remainder of available data going
toward training. While we maintain the naming convention, we emphasize that in our setup there need not be any
training data. Minnett [2010], Gupta et al. [2018], Duan et al. [2019], among many others, use this approach.

2Loss is also bounded for classification error or robust regression cases such as Tukey’s biweight loss.
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spatial location. We instead assume that the response variable may be a function of the spatial location
it is observed at, the covariates at that location, and i.i.d noise:

Assumption 2.2 (Data Generating Process: Test Data). Let j = test. Let χ : S → X be a fixed
function. For 1 ≤ m ≤ M j , Xj

m = χ(Sj
m) and Y j

m = f(Sj
m, X

j
m, ϵ

j
m) with f : S × X → Y and

ϵjm
iid∼Pϵ real-valued random variables.

Assumption 2.2 implies the response is i.i.d. given the spatial location. For example, Assumption 2.2
would cover the case where measurement errors on sensors are independent, but the locations of the
sensors are not. A widely studied special case of Assumption 2.2 considers additive, homoskedastic
noise: namely, Y ⊂ R and Y j

m = f(Sj
m, X

j
m) + ϵjm. Assumption 2.2 is more general; for example,

it allows the noise to be scaled by a continuous, deterministic function of S: Y j
m = f(Sj

m, X
j
m) +

g(Sj
m)ϵjm. Before defining risk, we first define the average loss of the predictive method at a particular

location in space, S: eh(S) := E[ℓ(f(S, χ(S), ϵ), hχ(S))|S]. Finally, we average over all spatial
locations of interest, which we assume is a finite set.

Definition 2.3. Given test points (Stest
m )M

test

m=1, let Qtest := (1/M test)
∑M test

m=1 δStest
m

, with δS a Dirac mea-
sure at S. For predictive method h, let the test risk of h be RQtest(h) := (1/M test)

∑M test

m=1 eh(S
test
m ).

2.2 Estimating test risk

To estimate test risk, we assume we have access to N val validation data points, collected in
Dval = (Sval

n , Xval
n , Y val

n )N
val

n=1. We assume practitioners did not make use of either the validation
or test response data when constructing the predictive method. As an example, the common holdout
estimator uses the empirical average of validation loss:

R̂Hold(h) := (1/N val)
∑N val

n=1
ℓ(Y val

n , hχ(Sval
n )). (1)

For validation data to provide information about test risk, we need regularity assumptions. First, we
make a standard assumption that validation data follows the same data-generating process as test data.
And second, we assume a form of smoothness across the spatial locations.

Assumption 2.4 (Data Generating Process: Validation Data). Assumption 2.2 remains true when we
take j = val, with the same f, χ, and Pϵ as for j = test.

Assumption 2.5 (L-Lipschitz). For some L ≥ 0, for all S, S′ ∈ S, |eh(S)−eh(S′)| ≤ LdS(S, S′).

Assumption 2.5 often arises naturally. For example, consider Y ⊂ [0, 1], S = (Rd, ∥ · ∥2), squared
loss, and homoskedastic and additive noise. Suppose f(S, χ(S)) is LY -Lipschitz and hχ is Lh-
Lipschitz. Then Assumption 2.5 holds with L = 2(LY + Lh); see Proposition D.1.

3 We Want Consistent Estimators

Once we have an estimator of test risk, it remains to check if that estimator performs well. We next
formalize one natural check on performance: namely, estimators should become arbitrarily accurate
if given validation data that is arbitrarily dense in the spatial domain. This check is analogous to
traditional consistency in the i.i.d. data setting.

To that end, note that the fill distance is a measure of discrepancy between two sets of points, Ψ1 and
Ψ2.3 It is the maximum distance from a point in Ψ2 to the nearest point in Ψ1.

Definition 3.1 (Cressie 2015, §5.8, Wendland 2004, Definition 1.4). Let (S, dS) be a metric space
and Ψ1,Ψ2 ⊂ S. The fill distance of Ψ1 in Ψ2 is ζ(Ψ1; Ψ2) := supS2∈Ψ2

infS1∈Ψ1
dS(S1, S2).

In the spatial statistics literature, infill asymptotics describes cases where data are gathered over a
compact spatial domain in such a way that the fill distance of the data to its domain tends to 0 [Cressie,
2015, §5.8]. We say an estimator is consistent for the test risk under infill asymptotics if – for any
Qtest, χ, and h satisfying our assumptions above – the estimator converges in probability to RQtest(h).

3The fill distance is not a distance in the mathematical sense since it is asymmetric and can equal 0 in cases
when its two arguments are not exactly equal.
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Definition 3.2 (Consistency of Test Risk Estimation Under Infill Asymptotics). Fix a predictive
method h and a test measure Qtest. Take Assumptions 2.1, 2.2, 2.4 and 2.5. Consider an infinite
sequence of validation sets of increasing size: (Dval

N )∞N=1, D
val
N = (Sval

n , Xval
n , Y val

n )Nn=1 such that
when N ′ < N , the first N ′ points of Dval

N are Dval
N ′ . Suppose limN→∞ ζ(Sval

1:N ,S) = 0. Let R̂N be
an estimator constructed from the validation data Dval

N . We say that the estimator R̂N is consistent for
the test risk under infill asymptotics if for all ϵ > 0, limN→∞ Pr(|R̂N −RQtest(h)| ≥ ϵ) = 0.

That is, as validation data fills the spatial domain, the estimator should converge to the test risk – no
matter the composition of test sites. Our assumption that fill distance tends to zero is generally weaker
than an assumption that the validation sites are drawn i.i.d. from a distribution with Lebesgue density
supported on the spatial domain. Reznikov and Saff [2015, Theorem 2.1] showed an implication
relationship between these assumptions in a much more general setting, and Vacher et al. [2021,
Lemma 12] discuss the special case for the unit cube. Next, we present a finite-sample version of this
implication, with an advantage relative to past work that we keep track of all constants.

Proposition 3.3 (Independent and Identically Distributed Data Satisfies an Infill Assumption). Sup-
pose that S = [0, 1]d, Sval

n
iid∼P for 1 ≤ n ≤ N val, and P has Lebesgue density lower bounded by

c > 0 over [0, 1]d. Let Bd = πd/2/Γ(d/2 + 1) be the volume of the d-dimensional Euclidean unit
ball. For any δ ∈ (0, 1) there exists an n0 such that for all N val ≥ n0 with probability at least 1− δ

ζ(Sval
1:N val , [0, 1]

d) ≤
(

4d

cN valBd

(
log 6dN val

Bdδ

))1/d
. (2)

We prove Proposition 3.3 in Appendix D.2. The right side of this bound is O((logN val/N val)1/d),
and so the fill distance converges to zero in probability under these assumptions.

Consistency under infill asymptotics is a minimal desirable property. Like traditional consistency,
we emphasize that Definition 3.2 is just a single check among many. For instance, often practitioners
will be interested in extrapolation far from observed data, which is not modelled by infill asymptotics
and will need to be considered separately. Our only supposition here is that we will generally prefer
test-risk estimators that satisfy consistency under infill asymptotics to those that do not.

4 Current Estimators Exhibit Inconsistency

Even though consistency under infill asymptotics is a minimal desirable property, we next prove that
principle existing test-risk estimators fail to satisfy it in realistic problems.

Inconsistency of the Holdout. We state our result and then discuss the realism of the example.

Proposition 4.1 (Inconsistency of holdout). There exists a set of test points and a data-generating
process satisfying infill asymptotics such that R̂Hold is not a consistent estimator of the test risk.

While the holdout estimator of test risk is consistent for i.i.d. test and validation data [Devroye, 1976,
Langford, 2005], we can construct examples showing Proposition 4.1 by observing that R̂Hold has no
dependence on the test task. So unless all test tasks have the same risk (which will be true only in
unusually simplistic spatial settings), it cannot estimate them all consistently. The holdout estimator
will generally exhibit non-trivial bias since it averages loss across the validation sites when we really
care about loss at the test sites. See Appendix D.3.1 for a formal proof and also an example where
the holdout converges to ∆, the maximum possible error under the loss bound.

Nearest Neighbor Estimator. Because of the assumed regularity in the error function (Assump-
tion 2.5), it is natural to estimate the error at a test site using nearby validation points. Loog [2012]
proposed risk estimators using k-nearest neighbors in the context of covariate shift. Both Loog [2012]
and Portier et al. [2023] advocated for the use of 1-nearest neighbor (1NN) in the covariate-shift
setting, with the latter providing theoretical justifications under standard covariate-shift assumptions.
However, we show the 1NN estimator exhibits inconsistency in our spatial setting.

We first review a general k-nearest neighbor estimator, which we revisit later. Define the k-nearest
neighbor radius of a point S∈S asτk(S) :=inf{a∈R :|Sval

1:N val∩B(S, a)|≥k}, where B(S, a) is the
ball of radius a centered at S. The k-nearest neighbor set4 of a point S ∈ S is Ak(S) :={1≤ n≤

4We will state our results for the version of nearest neighbors where ties are resolved by including all
equidistant points. However, our analysis holds for arbitrary tie-breaking methods.
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N val :Sval
n ∈B(S,τk(S))}. As long as 1 ≤ k ≤ N val, Ak(S) contains at least k points: the k nearest

neighbors to S in the validation set. It may be larger than k if multiple points are equidistant from S.
Definition 4.2. The k-nearest neighbor (kNN) test-risk estimator is defined by R̂NN,k(h) :=∑N val

n=1 w
NN,k
n ℓ(Y val

n , hχ(Sval
n )), where wNN,k

n := (1/M test)
∑M test

m=1 1{Sval
n ∈Ak(Stest

m )}/|Ak(Stest
m )|.

Loog [2012] proposed weighting the loss function in this way when training a model under covariate
shift. Portier et al. [2023] analyzed a similar approach, in which validation points are sampled with
probabilities corresponding to the weights in Definition 4.2, for mean estimation. Portier et al. [2023]
made standard covariate shift assumptions of i.i.d. validation sites, i.i.d. test sites, and a bounded
density ratio between the validation and test distributions.

Inconsistency of 1NN. We again state our result and then develop intuition.
Proposition 4.3 (Inconsistency of 1NN). There exist a set of test points and a data-generating
process satisfying infill asymptotics such that R̂NN,1(h) is not a consistent estimator of the test risk.

For intuition, recall that—unlike in the covariate-shift setting—test points in the spatial setting
are commonly fixed rather than arising i.i.d. from a distribution. Consider the simple case where
Qtest = δS for some S ∈ S. Using k = 1 leads us to estimate the error using a single validation
point, which is inconsistent due to observation noise at the validation point. Where the problem with
the holdout estimator was bias, the problem with 1NN is variance. In Appendix D.3.2 we prove
Proposition 4.3 and show 1NN has large error when applied to classification point prediction tasks.

Inconsistency of Nearest Neighbors When k Is a Function of the Number of Validation Points.
In fact, we can prove a more general result: that any nearest-neighbor test-risk estimator where the
number of neighbors depends (only) on the number of validation points is inconsistent under infill
asymptotics, regardless of type of dependence.
Proposition 4.4 (Inconsistency of kNN depending on number of validation points). Let (kn)∞n=1 be
any sequence of natural numbers. Define the sequence of estimators R̂N val to be the nearest neighbor
risk estimators using N val validation points and kN val neighbors. Then there exists a data-generating
process satisfying infill asymptotics, a test set containing a single point, a predictive method h
resulting in an error function satisfying the Lipschitz assumption, and an ϵ, δ > 0 such that with
probability at least 1−δ, ∀N val, |R̂N val(h)−RQtest(h)| ≥ ϵ.

See Appendix D.3.5 for a proof. There are two cases. (1) If the number of neighbors is bounded, the
estimator suffers from non-vanishing variance as in the 1NN case. Or (2) the number is unbounded,
so there exists a sequence of validation sites that accumulates slowly enough around each test site to
lead to non-vanishing bias. Inconsistency of both 1NN and the holdout can be seen as corollaries of
Proposition 4.4; for 1NN, choose: ∀n, kn = 1. For the holdout, choose: ∀n, kn = n.

5 A Consistent Estimator

We next provide a novel bound on the test risk estimation error of kNN. We propose using a kNN
estimator with k chosen by optimizing our bound. We show that our proposed estimator is consistent
for test risk under infill asymptotics. We here focus on error estimation; in Appendix C we provide
promising results for model selection and discuss open challenges.

5.1 Our Bound and Estimator

In light of the examples in Section 4, we propose to trade off the larger variance of small k and larger
bias of large k by optimizing a bound depending on the validation set. Crucially, we adapt k using
the actual locations of the test and validation sites, as Proposition 4.4 suggests such adaptivity is
necessary. To that end, we first derive a bound on the test-risk estimation error as a function of k and
the locations of test and validation sites. To state our bound, it will be useful to define the kth-order
fill distance5 of a set Ψ1 in a set Ψ2 as the maximum distance from a point in Ψ2 to its kth nearest
neighbor in Ψ1: ζk(Ψ1; Ψ2) = supS2∈Ψ2

infA⊂Ψ1,|A|=k supS1∈A dS(S1, S2).

Theorem 5.1 (Bound on Estimation Error in Terms of Fill Distance). Consider a validation set Dval

of size N val and a test set Dtest of size M test. Take the k-nearest neighbors test-risk estimator from
5We assume in this definition that all spatial locations are distinct. If not, Ψ1 should be treated as a multi-set.
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Definition 4.2. Choose δ ∈ (0, 1) and k such that 1 ≤ k ≤ N val. Let ρk := ζk(Sval
1:N val , S

test
1:M test) and

βδ := ∆
√

1
2 log

2
δ . Take Assumptions 2.1, 2.2, 2.4 and 2.5. Then, with probability at least 1− δ,

|RQtest(h)− R̂NN,k(h)| ≤ Lρk + βδ∥wNN,k∥2 ≤ Lρk + βδ

√
max

1≤n≤N val
Qtest(B(Sval

n , ρk))/k, (3)

where B(S, r) denotes the ball of radius r centered at S. See Assumptions 2.1 and 2.5 and Defini-
tion 2.3 for ∆, L, Qtest respectively.

We prove Theorem 5.1 in Appendix D.4. We use the right-hand side of the first inequality algorith-
mically, and the right-hand side of the second inequality to gain intuition for cases under which the
bound is small, as well as in proofs. The first term on the far-right-hand side in Equation (3) is a
worst-case upper bound on the bias of our estimator; it is large if the average loss varies quickly
in space or if validation data is not available near test data. Larger k may increase the first term.
The second term comes from applying a tail bound; if most of the weight is put on a few validation
points, the resulting estimator has high variance and this term is large. Sufficiently large k will
decrease the second term. If we can find a k such that both (a) the distance from each test point to
its k nearest neighbors is small and (b) no validation point has too much impact on our estimator,
R̂NN,k(h) provides a good estimate for RQtest(h).

Theorem 5.1 is closely related to Portier et al. [2023, Prop. 4]. While there are technical differences
in the proof and algorithm (and the risk that is bounded), the substantive distinction is that we state
our bound directly in terms of the fill distance, instead of upper bounding this distance again as done
in Portier et al. [2023]. We can therefore avoid making assumptions about the distributions of the
sites; we instead highlight the fill distance of the validation set as an essential quantity in controlling
the accuracy of nearest neighbor risk estimation.

Selection Procedure with Unknown Lipschitz Constant. If the Lipschitz constant of the average
loss, L, can be upper bounded, for example by knowledge about how quickly varying the spatial
processes involved in the analysis are, then k can be selected by minimizing the first upper bound in
Equation (3). Since the bound is conditional on the validation and test sites, the bound still holds
with the same probability for k selected by this minimization. However, it will generally be the case
that the Lipschitz constant is unknown. We therefore suggest choosing the number of neighbors by
minimizing the upper bound from Theorem 5.1 with 1 in place of the Lipschitz constant:

k⋆T ∈ argmink∈T ρk + βδ∥wNN,k∥2. (4)

For computational efficiency, we focus on choosing k as a power of 2: T = T2 := {2i}⌊log2 N val⌋
i=1 . We

call the resulting estimator spatial nearest neighbors (SNN).

5.2 Our Method is Consistent

We show that SNN is consistent under infill asymptotics.

Corollary 5.2 (Our Method is Consistent under Infill Asymptotics). Let S = [0, 1]d. Take Assump-
tions 2.1, 2.2, 2.4 and 2.5. Let ρ̃ := ζ(Sval

1:N ,S). Let k⋆T2
∈ argmink∈T2

ρk + βδ∥wNN,k∥2 with
δ = min(1, r) and r ∈ [cρ̃, Cρ̃] for some constants (possibly depending on dimension) c, C > 0.
Then the k⋆T2

-nearest neighbor risk estimator is consistent under infill asymptotics.

See Appendix D.5 for a proof of Corollary 5.2. Corollary 5.2 states that selecting the number of
neighbors by minimizing an upper bound on our error in estimation leads to an estimator that is
consistent regardless of the test data, as long as the validation data are dense on the unit cube. In
Appendix D.5.4, we provide a computationally efficient algorithm for calculating an r satisfying the
condition cρ̃ ≤ r ≤ Cρ̃, and we prove the correctness of this algorithm.

6 Experiments

Our theory suggests the holdout exhibits substantial bias in many tasks. And we expect 1NN to exhibit
substantial variance in many point prediction tasks. Our experiments confirm these observations.
While there exist tasks where either the holdout or 1NN performs similarly to SNN, there are
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Figure 1: Error for test risk estimation in the grid prediction task (left) and point prediction task
(right) across methods (holdout in blue, 1NN in orange, our SNN in green); lower values correspond
to better performance. The vertical axis shows the absolute difference between the estimated test risk
and empirical test risk. Each box plot shows the median, inter-quartile range, and outliers based on
100 synthetic datasets. The horizontal axis tracks increasing validation set sizes. Numbers above the
upper box indicate the number of outliers falling above the vertical limit.

also many tasks where each performs much worse than SNN. Since SNN performs well across all
experiments, we prefer SNN when a new task arises.

Ground Truth. In a traditional machine learning prediction task, analysts ask how well a predictive
method predicts the observed response at a set of covariates, so the observed response would form the
ground truth. Since here we instead judge evaluation methods, we must ask how well the evaluation
method estimates test risk (Definition 2.3); that is, the true test risk now forms ground truth. From
Assumption 2.4, the true test risk requires an integral over the (unknown) noise Pϵ. Accessing
ground-truth responses is often easy; by contrast, it is highly unusual to access even a high-quality
approximation of the integral for test risk (much less the exact test risk) in a real task. Therefore we
devise a series of workarounds. First, we consider realistic tasks with simulated data. Second, we
consider a realistic task with a semi-simulated data set, where we control the noise distribution by
constructing it from bootstrapped residuals that arise from real data. Third, we use fully real data to
construct a ground truth by considering an unrealistic task. Finally, we consider fully real data and a
realistic task by forfeiting access to ground truth.

6.1 Test Risk Estimation on Fully Synthetic Data

We set up two fully synthetic experiments: a grid prediction task and a point prediction task. Based
on our analyses above, we expect the holdout to struggle with the former and 1NN to struggle with
the latter; our experiments confirm this intuition. See Appendix E.3 for full experiment details.

Validation Data, Test Data, and Ground Truth. In both experiments, we vary N val ∈
{250, 500, 1000, 2000, 4000, 8000}. We use a truncated squared loss: ℓ(a, b) = max((a− b)2, 1.0).
For the grid task, the test sites comprise a 50 × 50 grid of equally spaced points in [−0.5, 0.5]2
(orange points in Figure 3). We generate the validation sites via a sequential process that leads to
clustering (blue points in Figure 3). For the point task, there is a single test site at (0, 0). Validation
sites are i.i.d. uniform in [−0.5, 0.5]2. For both tasks, we generate covariates and responses condi-
tional on the sites: Y j

i = f(χ1(Sj
i ), χ

2(Sj
i )) + η(Sj

i ) + ϵji , ϵ
j
i

iid∼N(0, σ2). We generate η, χ1, χ2, f
according to independent Gaussian processes (GPs); we describe our kernel and parameter choices in
Appendix E.3.1. We plot examples of the generated data in Figures 4 and 6. We make draws from the
data-generating process to form an unbiased Monte Carlo estimate of the test risk, R̂Qtest(h), and use
this estimate as ground truth; see Appendix E.3.5 for details.

Spatial Predictive Method. To arrive at our spatial predictive method, we generate training data
according to the same distribution as the validation data. Since real-world analyses are often missing
potentially relevant covariates, we retain only the first covariate (and not the second) as a realistic
form of misspecification. We fit a GP regression, with zero prior mean and the same kernel used in
data generation; we predict using the posterior mean.

Results. We expect our SNN estimator to be consistent in all tasks. In the grid task, we expect the
variance of 1NN to be low since there are many test points spread across the domain. And we expect
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Figure 2: Signed errors in estimating the test risk for (left to right)
the bootstrapped experiment with geographically weighted regres-
sion; the same task with GP regression; the flat price prediction
task; and the wind speed prediction task. The holdout (blue), 1NN
(orange), and SNN (green) appear left to right in each plot.

Table 1: Test risk estimates for
the 5-metros task. Rows corre-
spond to predictive methods and
columns to estimators. We re-
port two standard error intervals
for holdout. For each estimator,
we bold the predictive method
with lower estimated test risk.

GWR Spatial GP

Hold. 0.83
±0.03

0.90
±0.04

1NN 0.61 0.44
SNN 0.53 0.61

the bias of the holdout to be high since the test and validation points have noticeably different spatial
arrangement. Our results in the grid task (Figure 1, left) agree with our intuitions; the errors of 1NN
and our SNN decrease much more rapidly across the values of N val than the holdout.

Given the single test point in the point task, we expect the high variance of 1NN to be an issue with
substantial probability. Figure 1 (right) agrees with our intuition; the error of our SNN estimator
decreases much more rapidly across the values ofN val than 1NN. In this case, we find that the holdout
errors decrease rapidly as well. We also plot the (signed) relative difference of each estimator to the
empirical test risk in Figures 5 and 7 (Appendix E.3).

In Tables 2 and 3 (Appendix E.3), we show k, the number of nearest neighbors selected by SNN for
each of the two tasks. In the grid task, the k selected was at most 4 in all cases we considered. In the
point task, the value of k selected increased with N val, though it always remained over an order of
magnitude smaller than N val.

6.2 Air Temperature Task with Bootstrapped Residuals

We next consider a real task on a semi-synthetic dataset. We find that 1NN performs poorly; while
the holdout performs best, SNN performs well. Full details can be found in Appendix E.4.

Data and Ground Truth. Our test task is prediction of monthly average air temperature in January
2023 at the 5 largest urban areas in the United States (New York City, Los Angeles, Chicago, Miami,
and Houston), based on available weather station data in the same month [Menne et al., 2018]. Loss
is truncated absolute error (in °C). To access ground truth test risk, we create a partially synthetic
response variable. We first fit Gaussian process regression (GPR) to all the available weather station
data. We build 100 synthetic datasets by calculating the residuals of the posterior mean of this model,
sampling a residual value for each weather station and point we want to predict at and adding these to
the mean prediction of the model. Because we then have access to samples from the distribution of
response values at the test sites under this data-generating process, we can obtain a (accurate estimate
of) ground truth test risk of a predictive method on this partially synthetic response (Appendix E.4.7).

Spatial Predictive Methods. We train two predictive methods on this data: GPR and a geographically
weighted regression (GWR) based on MODIS-Aqua [Wan et al., 2021] land surface temperature
measurements, inspired by Hooker et al. [2018]. We use 50% of the weather station locations for
training the predictive methods and the remaining 50% for validation (3211 observations in each).

Results. The error in estimating the predictive performance of both methods is shown in Figure 2 (far
and mid left) for 100 different datasets with different samples of the residuals (but the same training
and validation split). Given the point prediction task, we expect 1NN (orange, middle) to have a high
variance; the figure confirms our intuition. The estimates given by SNN (green, right) and the holdout
(blue, left) are much closer to the ground truth. In this case, the holdout has a small bias, and its
variance is substantially lower than SNN. So, in this case, the holdout typically returns slightly better
estimates of the error than SNN. If many more weather stations were used for validation, we expect
that the SNN would eventually outperform the holdout estimate.
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6.3 Property Sales in England and Wales

Here and in Section 6.4, we define somewhat unrealistic tasks to access ground truth on fully real
data. Here we find that 1NN and SNN perform similarly well while the holdout exhibits a large bias.
Appendix E.5 contains additional details and figures for this experiment.

Data and Ground Truth. We consider prediction of the price of a flat in England and Wales based
on location, loosely following Hensman et al. [2013] but using data from 2023 [HM Land Registry,
2023]. We make 100 datasets by sampling a training dataset of 40,000 points from flat sales outside
London, a test set consisting of 1,000 flat sales within London, and a validation set consisting of the
remaining sales in 2023 (31,484 outside London, 21,179 in London). The loss is truncated mean
absolute error. In Appendix E.5.3, we justify how we can form a high-quality estimate of ground-truth
test risk by: assuming a form of independence, using a bounded loss, and applying Hoeffding’s
inequality.

Spatial Predictive Method. We fit a Gaussian process regression model with variational inference as
in Hensman et al. [2013] with minor modifications; we use a sum of two Matérn 3/2 kernels. We use
the non-stochastic version of variational inference in GPR [Titsias, 2009] to avoid known difficulties
with tuning hyperparameters in the stochastic version [Ober et al., 2024], and 2000 inducing points.

Results. Because the model is trained using data only outside London, we expect it to make larger
errors predicting flat sales in London than outside London. As a result, we expect the holdout to have
a large bias. We expect both 1NN and SNN to perform similarly: since the test sites are sampled
randomly within London, we expect them to have different nearest neighbors and so variance of 1NN
should be reasonably small. The mean absolute error of each method, relative to the estimate of the
ground truth, is shown in Figure 2 (mid right). As expected, the holdout substantially underestimates
the test risk, while the other estimators perform reasonably well.

6.4 Wind Speed Prediction

In this next experiment with an unrealistic task but fully real data, we find that both the holdout and
1NN perform poorly while SNN performs well. Full details are in Appendix E.6.

Data and ground truth. Our test task is predicting the average wind speed on a typical day in January
at Chicago O’Hare airport, from daily historical weather station data [Menne et al., 2012]. There
are 775 historical weather station observations at the Chicago O’Hare site in January months. We
split the remaining weather stations (at a station level) into a training and validation set consisting of
962 training stations and 241 validation stations. Each station has a different number of observations
depending on how complete the historical record of average daily wind speed data is at this site.
Typically the training set consists of on the order of 580,000 measurements and the validation set
around 126,000 measurements. We perturb the location labels of each measurement at each weather
station by a tiny amount to avoid ties when running nearest neighbors. The test set contains all of
January rather than just a particular date so that we can form a high-quality estimate of ground truth.
To form ground truth, we also assume that average wind speed decorrelates in time quickly. The loss
is truncated (root) mean square error. See Appendix E.6.3 for more details.

Spatial Predictive Method. We use LightGBM [Ke et al., 2017] to make predictions.

Results. We expect 1NN to have a high variance because the task is point prediction. Figure 2 (right)
confirms this. The holdout has large bias for this task while SNN exhibits low bias and low variance.

6.5 Air Temperature Prediction with Real Response

We finally consider a case with real data and a real task. Although we cannot access ground truth, we
show that the holdout, 1NN, and our SNN give very different estimates of test risk and can differ in
model selection. Given all the previous results, we suggest using SNN. See Appendix E.4 for full
details and also a grid-prediction task where all estimators are in agreement.

Data and Models Fit. The data, test task and models considered are the same as in Section 6.2, but
the actual response values are used for training and validation.

Results. Table 1 shows a large discrepancy in test risk estimates across estimators. We see that 1NN
chooses a different predictive method (spatial GP) than the holdout or our SNN does.
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A Broader Impact Statement

This paper identifies potential failure modes of existing validation techniques in a spatial setting
and suggests practical improvements, with supporting theory and empirics. We hope that our work
can play a part in improving the reliability of prediction assessment and thereby help improve the
credibility of scientific analyses.

B Extended Related Work

B.1 Validation versus Cross-Validation

While we expect our work to have implications for cross validation (CV), we focus on validation here
since (1) we do not assume training data exists or is easy to change (for example in the case of a large
physical model) and (2) CV presents additional subtle challenges. The holdout is broadly applicable
to any predictive method (whether data-driven, physical, or a combination thereof). However, in the
cases when data is scarce and a data-driven predictive method is used, cross-validation is commonly
believed to make more efficient use of the data. CV is widely used in spatial analyses; among
many examples are Wang et al. [2022], Valavi et al. [2021], Kianian et al. [2021]. However, the
interpretation of the error estimates given by cross-validation is subtle even in the classical i.i.d. setting
[Bates et al., 2023]. We focus on the validation setting in this work due to its broad applicability and
clear interpretation, though extensions to cross-validation, as well as a theoretical understanding of
how the resulting error estimate relate to predictive performance is a promising direction for future
work.

B.2 Covariate Shift

In covariate shift, it is generally assumed that Sval
n

iid∼ P val, Stest
m

iid∼ Q and U ℓ
i |Sℓ

i
iid∼ µ for ℓ ∈

{val, test}. Moreover, it is typically assumed the density ratio dQ
dP exists and is bounded, although

there is recent work relaxing this assumption in the context of non-parametric regression [Kpotufe
and Martinet, 2021, Pathak et al., 2022]. Mean estimation seeks to estimate E[U test

1 ]. Taking
(U test

m |Stest
m ) = ℓ(Y test

m , hχ(Stest
m )), this is the same task we consider, but with the (stronger) assumption

that covariates are independent and identically distributed with a bounded density ratio between the
test and validation distributions. This assumptions is not appropriate for validation with many spatial
datasets, with particularly simple examples being when the task of interest requires prediction at a
single spatial location, or on a regular grid. Our assumptions are essentially a conditional formulation
of mean estimation under covariate shift. Many methods proposed for addressing mean estimation
under covariate shift, including all the approaches we describe below, are based on re-weighting
validation points, then applying the holdout approach described earlier with these weights.

The kernel mean matching algorithm provides a solution under standard covariate shift assumptions
with a bounded density ratio and assuming the average loss as a function of space eh lives in
a reproducing kernel Hilbert space (RKHS) and has small norm [Gretton et al., 2009]. Yu and
Szepesvári [2012] provide a finite sample bound for this method, showing that under the assumptions
outlined above, with high probability kernel mean matching can estimate the RQ(h) with error
Op(

1√
M test +

1√
N val

). Recently, Portier et al. [2023] considered the mean estimation problem under
covariate shift, but relaxed the RKHS assumption to instead assume that the average loss is Lipschitz,
the same assumption we take. Their estimator is built on nearest neighbor regression, and they
advocate the use of 1-nearest neighbor. Compared to this work, the primary advantage of our analysis
is that it removes the assumption that the sites are independent and identically distributed, making
it directly relevant to tasks like grid prediction. Moreover, in the more general setting we consider,
1-nearest neighbor is not always consistent (Proposition 4.3), and using more neighbors can be
beneficial. We provide a method for selecting the number of neighbors that has similar statistical
properties as their approach for grid prediction, but retains consistency for a wider class of problems
where using a single neighbor is no longer consistent.

B.2.1 Covariate Shift in the Context of Spatial Validation

Several recent works have applied the covariate shift framework to spatial problems. Sarafian et al.
[2020] considered a weighted estimator motivated by importance weighting to address covariate
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shift. This suggests taking the weights to equal the density ratio of the test sites to the validation
sites (which is assumed to exist) [Shimodaira, 2000]. The density of the test sites was assumed to be
known and a kernel density estimate was used to estimate the density of the validation sites. While
Sarafian et al. [2020] observe this estimate is unbiased if the density ratio is known, in practice the
estimator will be biased due to error in estimating the density ratio. While this estimator might be
consistent with regularity assumptions on the densities, the assumption that the densities exist and
have a bounded ratio is restrictive for many spatial tasks – for example, if we care about the quality of
predictions at a few specific locations. De Bruin et al. [2022] consider a similar estimator to Sarafian
et al. [2020], but normalize the weights to sum to 1 (which may not be the case for the weights given
directly by density estimation).

B.3 Predictive Validation for Spatial Data

While our analysis focuses on variants of the holdout we also discuss methods for spatial cross-
validation, as they can often be adapted to cases with held-out data.

B.3.1 Limitations of the Holdout Approach

The holdout has been empirically shown to under-estimate error for models trained with data more
similar to the validation data than to the test data in several works; the review paper of Roberts et al.
[2017] provides a detailed description of this phenomenon in the context of ecological statistics.
Despite concerns raised in previous works, the holdout is widely used in spatial application areas for
comparing methods and indicating the reliability of a given method.

B.3.2 Spatial Stratification Approaches

Concerns over the quality of the holdout estimate have led to the development of validation ap-
proaches based on evaluating the loss of a model on held-out data far from the data used to train the
model [Telford and Birks, 2005]. Cross-validation strategies for spatial datasets often also focus on
evaluating a model on data that are far (in the spatial domain) from the data used to train the model.
Spatially stratified blocking approaches are described in Lieske and Bender [2011] and Roberts et al.
[2017], and several software packages make these cross-validation methods readily accessible in
common statistical programming languages, especially R [Valavi et al., 2019, Mahoney et al., 2023].
Similarly, variants of leave-one-out cross-validation in which points close to the point on which error
will be assessed are also held-out during training have been developed for sequential data [Burman
et al., 1994] and adapted to the spatial setting [Telford and Birks, 2009, Le Rest et al., 2014]. Several
simulation studies support claims that spatial buffering provides more realistic estimates of model
risk than the standard cross-validation [Roberts et al., 2017, Mahoney et al., 2023]. However, other
simulation studies have shown that using spatially disjoint regions to train the model and to validate
the model can lead to over-estimation of generalization error when the available data covers most of
the space in which we are interested in making predictions [Ploton et al., 2020, De Bruin et al., 2022].
While simulation studies show the strengths, and some of the limitations, of ensuring validation data
are far in space from training data as a method for validating a predictive method, there is not clear
theory establishing under what assumptions it allows for accurate evaluation of the risk, or consistent
model selection. Roberts et al. [2017] offers some useful heuristics for when spatial stratification is
preferable to the holdout. Racine [2000] provides a sketch for the consistency of the leave-one-out
method described above for model selection in linear models with stationary sequential data, but we
are not aware of a detailed proof clarifying the underlying assumptions about mixing of the process,
extensions to non-linear models or extensions to the spatial setting.

B.3.3 Other Approaches for Spatial Validation

Other heuristics for estimating the error have emerged in the ecological statistics literature. De Bruin
et al. [2022] also consider model based approaches based on non-parametric regression of the residual
with a Gaussian process (kriging) to estimate the error of the model. The square of this regressor
is then used as a plug-in estimator for estimating the squared loss. This approach is proposed as a
heuristic, and it is not clear whether it is consistent, especially if the likelihood of the model fit to the
residuals is misspecified, which will certainly be the case in practice. Milà et al. [2022], Linnenbrink
et al. [2023] considered the distance between each validation site and its k-nearest neighbors in the
training sites, and attempted to make the distribution of these distances similar to the distribution
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between the test sites and the training sites. However, it is not clear what assumptions on the data
are needed for such a method to reliably estimate the generalization error of a method. Meyer and
Pebesma [2021] emphasized that the validity of estimates of the generalization error of a spatial
model depends on how similar the validation data are to the training data, relative to how similar
test data are to the training data, and suggested only providing error estimates over an area that is
judged to not be significantly more different from the training data than the available validation data
are from the training data. The infill assumption we make in this work provides a particularly simple
formalization of this idea, since it means that we have validation data close to every test point, and so
we are able to reasonably estimate the error at each test point. Meyer and Pebesma [2022] provide a
recent discussion of challenges of evaluating predictions made on a regular grid (map prediction)
as well as other recent references for proposed spatial validations approaches. The point prediction
problems we consider are analogous to the local error estimates they advocate for, while the grid
prediction problems we consider are a form of global estimate.

B.3.4 Aspects of the Problem we do not Consider

If a statistical prediction method is used, there is a question of how to partition data between data
used for training and validation, which is a central consideration in, for example Milà et al. [2022],
Linnenbrink et al. [2023]. In contrast, we focus on the case when a validation set is already decided
upon. This allows our approach to be applied to physically-driven prediction methods, statistical
methods and combinations thereof. Moreover, this allows our approach to be applied to models that
have already been built when validation data becomes available and rebuilding the predictive method
with a new training set would be expensive.

B.4 Non-exchangeable Conformal Prediction

Tools have been developed for providing confidence intervals for prediction with data that are not
exchangeable using variants of conformal prediction [Tibshirani et al., 2019, Mao et al., 2022, Barber
et al., 2023]. Particularly relevant to our work is Mao et al. [2022], who construct confidence intervals
at a specific location based on the error at its k-nearest neighbors in the validation set. This is
conceptually the same as the approach we take in mean estimation, but they focus on confidence
intervals instead of risk estimation. They derive consistency results for the coverage of the intervals
under an infill asymptotic setting, but do not show finite sample bounds which we prove in this work,
making our results more quantitative. Finally, we give a theoretically-grounded method for choosing
the number of neighbors by minimizing an upper bound on the error of the estimator, whereas it is
unclear how to choose the number of neighbors in their approach.

C Error Estimation for Model Selection

A practitioner will commonly select a predictive method within some collection by choosing the
method with lowest estimated test risk. We consider two cases.

(1) Fixed predictive methods. So far we have focused on the setting where predictive methods are
fixed in advance. As we accrue validation data, the consistency of SNN ensures it will eventually
choose the predictive method with lowest test risk. Without consistency, holdout and 1NN cannot be
trusted to choose the best predictive method.

(2) Proportional training and validation data. If we consider the special case where the predictive
method is fit using training data (vs., say, a physical model), it is common for a practitioner to have a
single set of available data that they then partition into training data and validation data; for instance,
a fixed percentage of the total data may go to training. In this case, the predictive method changes
as the validation set grows. Nonetheless, we can still be sure to eventually choose the predictive
method with the lowest risk if the test-risk estimate has a faster rate of convergence in the number of
validation data points than the convergence rate of the predictive method in the number of training
points.

We are not able to formally characterize how SNN performs in model selection. But we provide
rigorous results on rates of convergence of SNN that give suggestive guidance. In particular, (a) we
first consider the case of a grid prediction task, where test sites are arranged on a grid. In this case,
we are able to give a rate of convergence for both 1NN and SNN (Corollaries D.16 and D.17). If the
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validation data are i.i.d. our rate is faster than the minimax optimal convergence rate for predicting a
Lipschitz function in the presence of additive, homoskedastic noise. Our result shows the same rate
of convergence as Portier et al. [2023, Prop. 4], who considered test data that was i.i.d. instead of
on a grid. Our result is suggestive that both nearest neighbor methods may perform well at model
selection for validating maps (grid prediction).

(b) Second, we provide finite-sample bounds and asymptotic characterizations for general (non-grid)
Qtest (Corollary D.14). In this case, when validation data is i.i.d., up to logarithmic factors, we show
that SNN converges at the optimal rate of convergence for Lipschitz functions (Corollary D.18).
Since in this case, the SNN convergence rate is not strictly faster than the training convergence rate, it
might be difficult to select between statistical methods that converge at the optimal regression rate.
But we would still expect to be able to select between (i) a statistical method that converges at the
optimal rate and (ii) one that does not (for example a misspecified parametric model). Since the
holdout and 1NN may not even be consistent, we could not rely on them to select the better model
even in this latter, easier case.

D Proofs of Claims

We now present results and proofs not included in the main text. We essentially follow the order
of results in the main text. Section Appendix D.1 gives sufficient conditions for Assumption 2.5
to hold for a homoskedastic, additive noise model and squared loss for responses taking values in
[0, 1], mentioned in Section 2.2. Appendix D.2 focuses on the proof of Proposition 3.3, first recalling
several properties of covering numbers that will be used in the result. In Appendix D.3 we restate
and prove our Propositions 4.1, 4.3 and 4.4, which show limitations of existing validation methods
in the spatial setting we study. In Appendix D.4 we prove a general result upper bounding the error
in estimating the risk using k-nearest neighbors, as well as an upper bound on the error for k⋆T2

.
Appendix D.5 establishes the consistency of spatial nearest neighbors. Appendix D.6 discusses issues
related to model selection and proves rates of convergence for spatial nearest neighbors.

D.1 Lipschitz Constant for Lipschitz Response and Predictive Method

While assuming the average loss is Lipschitz continuous as a function of space is mathematically
convenient, it is perhaps more natural to make assumptions about the spatial field we are trying
to make predictions about, as well as the predictive method we are using to make prediction. The
following proposition gives an example of how Lipschitz continuity of the processes involved can
imply Assumption 2.5.
Proposition D.1. Consider Y ⊂ [0, 1] and squared loss. Suppose fχ(S) := f(S, χ(S)) is LY -
Lipschitz and hχ is Lh-Lipschitz. Let (S,X, Y ) be generated as in Assumption 2.2, with Y =
f(S,X) + ϵ. Then eh(S) := E[(Y − hχ(S))2|S] is 2(LY + Lh)-Lipschitz.

Proof. Let S, S′ ∈ S and ϵ, ϵ′ be the associated noise random variables. Then,

|eh(S)− eh(S′)| = E[(fχ(S) + ϵ)− hχ(S))2 − (fχ(S′) + ϵ′)− hχ(S′))2] (5)

= fχ(S)2 − fχ(S)2 + hχ(S)2 − hχ(S′)2, (6)

where we have used that E[ϵ] = E[ϵ′] = 0, ϵ, ϵ′ are independent from h and E[ϵ2] = E[(ϵ′)2]. Then,

fχ(S)2 − fχ(S′)2 + hχ(S)2 − hχ(S′)2 = (fχ(S) + fχ(S′))(fχ(S)− fχ(S′)) (7)

+ (hχ(S) + hχ(S′))(hχ(S)− hχ(S′))

≤ 2|fχ(S)− fχ(S′)|+ 2|hχ(S)− hχ(S′)| (8)

≤ 2(LY + Lh)dS(S, S
′). (9)

The first inequality uses that Y ⊂ [0, 1] and the second the Lipschitz assumptions on f and h.

Therefore, at least in the case of squared loss with bounded response and predictive method values
and a homoskedastic additive noise model, smoothness of the average response surface (as a function
of space) together with smoothness of the predictive method imply Assumption 2.5. We expect to
hold for other losses that are Lipschitz functions of the response and prediction.
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D.2 Proof that Independent and Identically Distributed Data Implies Infill Asymptotic with
High Probability

The purpose of this section is to prove Proposition 3.3. We begin by recalling this proposition:

Proposition 3.3 (Independent and Identically Distributed Data Satisfies an Infill Assumption). Sup-
pose that S = [0, 1]d, Sval

n
iid∼P for 1 ≤ n ≤ N val, and P has Lebesgue density lower bounded by

c > 0 over [0, 1]d. Let Bd = πd/2/Γ(d/2 + 1) be the volume of the d-dimensional Euclidean unit
ball. For any δ ∈ (0, 1) there exists an n0 such that for all N val ≥ n0 with probability at least 1− δ

ζ(Sval
1:N val , [0, 1]

d) ≤
(

4d

cN valBd

(
log 6dN val

Bdδ

))1/d
. (2)

Our proof is similar to earlier proofs in Reznikov and Saff [2015, Section 5.2] and essentially follows
the stackoverflow response [https://mathoverflow.net/users/36721/iosif pinelis] keeping track of
numerical constants. Essentially, the idea is that were the fill distance to be large, there must be a ball
of large radius that doesn’t contain any points in the sample of location. But because the probability
of a point in the sample falling in any ball is bounded below in terms of the volume of the ball, this
must be improbable as the sample size grows.

D.2.1 Preliminary Definitions and Lemmas Related to Nets and Covering Number

In order to formalize the proof of Proposition 3.3 sketched above idea, we recall the definition of a
net and covering number, as well as some standard properties of covering numbers.

Definition D.2 (Net, Covering Number). Let A ⊂ Rd be a compact set. Any finite set C ⊂ Rd such
that

A ⊂
⋃
S∈C

B(S, ϵ) (10)

where B(S, ϵ) denotes the d-dimensional closed Euclidean ball of radius ϵ ≥ 0 centered at S is
referred to as an ϵ-net of A. The ϵ-covering number of A, denoted by N(ϵ, A) is the minimum
cardinality of an ϵ-net of A.

Because A is compact for any ϵ the ϵ-covering number of A is finite, and will generally increase as
ϵ→ 0.

We now recall how covering number behaves under affine transformations of the underlying space.
For sets A,B and a scalar α, we define A+B = {a+ b : a ∈ A, b ∈ B} and αA = {αa : a ∈ A}.
Proposition D.3. For any compact A ⊂ Rd and c ∈ Rd, N(ϵ, A) = N(ϵ, A+ {c}). For any α > 0,
N(ϵ, A) = N(αϵ, αA).

Proof. The first claim is shown by noting that if C is an ϵ-net of A then C + {c} is an ϵ-net of
A + {c} so that N(ϵ, A + {c}) ≤ N(ϵ, A). Applying a symmetric argument implies the reverse
inequality.

For the second claim, let C be an ϵ-net for A. Then,

αA ⊂ α
( ⋃

S∈C

B(S, ϵ)

)
=
⋃
S∈C

B(αS, αϵ) =
⋃

S′∈αC

B(S′, αϵ), (11)

and so αC is an αϵ-net of αA. It follows that N(αϵ, αA) ≤ N(ϵ, A). The opposite inequality is
obtained via the same argument applied with α′ = 1

α , A
′ = αA and ϵ′ = αϵ.

In the proof of Proposition 3.3 we apply a union bound over all elements in a net for the unit cube.
We therefore need a result telling us that this net does not contain too many elements.

Lemma D.4 (Covering number of Unit Cube). Let ϵ ∈ (0, 1]. Then N(ϵ, [−1, 1]d) ≤ 1
Bd

(
6
ϵ

)d
where Bd = πd/2

Γ( d
2+1)

is the volume of the d-dimensional unit sphere.
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Proof. By the upper bound in Wainwright [2019, Lemma 5.7],

N(ϵ, [−1, 1]d) ≤ 1

Bd
vol

([
−2

ϵ
,
2

ϵ

]d
+B(0, 1)

)
. (12)

For any S = S1 + S2 ∈ [− 2
ϵ ,

2
ϵ ]

d + B(0, 1) with S1 ∈ [− 2
ϵ ,

2
ϵ ]

d and S2 ∈ B(0, 1), by the triangle
inequality for infinity norm,

∥S∥∞ ≤
2

ϵ
+ 1 ≤ 3

ϵ
, (13)

where we first used that points in the unit ball have infinity norm not more than 1 and then used that
ϵ ≤ 1. Therefore,

vol

([
−2

ϵ
,
2

ϵ

]d
+B(0, 1)

)
≤ vol

([
−3

ϵ
,
3

ϵ

]d)
=

(
6

ϵ

)d

. (14)

D.2.2 Main Proof

We again recall Proposition 3.3 for convenience when reading the proof.
Proposition 3.3 (Independent and Identically Distributed Data Satisfies an Infill Assumption). Sup-
pose that S = [0, 1]d, Sval

n
iid∼P for 1 ≤ n ≤ N val, and P has Lebesgue density lower bounded by

c > 0 over [0, 1]d. Let Bd = πd/2/Γ(d/2 + 1) be the volume of the d-dimensional Euclidean unit
ball. For any δ ∈ (0, 1) there exists an n0 such that for all N val ≥ n0 with probability at least 1− δ

ζ(Sval
1:N val , [0, 1]

d) ≤
(

4d

cN valBd

(
log 6dN val

Bdδ

))1/d
. (2)

Proof of Proposition 3.3. For some τ ∈ (0, 1) (to be selected later) let C be a minimal cardinality
τ/2-net for [0, 1]d. If B(S, τ/2) contains a validation point for all S ∈ C, then for any S′ ∈ [0, 1]d,
by the triangle inequality,

min
1≤n≤N val

dS(S
′, Sval

n ) ≤ min
1≤n≤N val

(
min
S′∈C

dS(S
′, S) + dS(S

val
n , S)

)
≤ τ. (15)

Therefore the probability that the fill distance is large (> τ) is less than the probability that there
exists an element of the net such that no validation point is close to it (within radius τ/2):

Pr(ζ(Sval
1:N val , [0, 1]

d) > τ) ≤ Pr(∃S ∈ C : Sval
n ̸∈ B(S, τ/2)∀1 ≤ n ≤ N val). (16)

The probability of any particular validation point falling in a ball centered at any point of radius
contained in the τ/2 can’t be too small since P has density that is bounded below: For any S ∈ [0, 1]d

P (B(S, τ/2)) =

∫
S′∈B(S,τ/2)

dP

dλ
(S′)dλ(S′) ≥

∫
S′∈B(S,τ/2)∩[0,1]d

cdλ(S′) ≥ cvol(B(S, τ/2))

2d
,

(17)

where λ denotes Lebesgue measure and in the final inequality we have used that since S ∈ [0, 1]d, at
least one quadrant of B(S, τ/2) is contained in [0, 1]d.

Returning to Equation (16) and taking a union over all elements in the net:

Pr(ζ(Sval
1:N val , [0, 1]

d) > τ) ≤ N(τ/2, [0, 1]d)max
a∈A

Pr(Sval
n ̸∈ B(a, τ/2)∀1 ≤ n ≤ N val) (18)

≤ N(τ/2, [0, 1]d)max
a∈A

(1− P (B(a, τ/2)))N
val

(19)

≤ N(τ/2, [0, 1]d)

(
1− c

2d
Bd

(τ
2

)d)N val

, (20)

whereBd = πd/2

Γ( d
2+1)

is the volume of the d-dimensional unit sphere. Equation (19) uses Equation (17).
We now upper bound the terms in Equation (20).
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Applying, Proposition D.3 and Lemma D.4

N(τ/2, [0, 1]d) ≤ 1

Bd

(
6

τ

)d

. (21)

Using the inequality (1− x) ≤ e−x,(
1− c

2d
Bd

(τ
2

)d)N val

≤ exp

(
− c

2d
N valBd

(τ
2

)d)
. (22)

Combining Equations (20) to (22),

Pr(ζ(Sval
1:N val , [0, 1]

d) > τ) ≤ 1

Bd

(
6

τ

)d

exp

(
− c

2d
N valBd

(τ
2

)d)
(23)

Now choose τd = 4d

cN valBd
log 6dN val

Bdδ
. For all N val larger than some n0, τ < 1 because

limN val→∞
4d

cN valBd
log 6dN val

Bdδ
= 0, and so this choice satisfies our earlier assumption. For this

choice of τ
1

Bd

(
6

τ

)d

exp

(
− c

2d
N valBd

(τ
2

)d)
=

1

τdN val δ =
cBdδ

4d log 6dN val

Bdδ

≤ δ c

2d log 3dN val

δ

, (24)

where in the final inequality we use that Bd ≤ 2d since the unit ball is contained in the unit cube.

For all N val ≥ δec/2
d

3d
the right-hand side is less than δ; but δ < 1, c ≤ 1 and so this holds for all

N val ≥ 1.

D.3 Proof of Inconsistency of Existing Methods

In this section, we restate and prove our results on limitations of existing methods for validation.
These results were stated in Section 4 in the main text.

D.3.1 Inconsistency of the Holdout

We begin by focusing on the holdout. As sketched in the main text, the holdout does not depend on
the particular test set, and therefore cannot approximate the test risk well for point prediction tasks
unless the average loss at both points is the same.
Proposition 4.1 (Inconsistency of holdout). There exists a set of test points and a data-generating
process satisfying infill asymptotics such that R̂Hold is not a consistent estimator of the test risk.

We prove the strong result.
Proposition D.5 (Counterexample to the consistency of holdout). Consider a single test point
(S,X, Y ) satisfying Assumption 2.2. Suppose the test risk at such a point (Definition 2.3 with
M test = 1) is not constant as a function of S. Then there exists a test set (of size one) such that R̂Hold
is not a consistent estimator of the test risk on that test set.

Proof. Because eh(S) is not a constant S contains at least two elements S, S′ such that eh(S) ̸=
eh(S

′). Let Q = δS and Q′ = δS′ . There there exists some γ > 0 such that
|RQ(h)−RQ′(h)| = |eh(S)− eh(S′)| > 2γ. (25)

If R̂Hold is not consistent for RQ(h), we are done. Otherwise, by the definition of consistency, for all
N ≥ N0 with probability at least 1/2,

|(R̂Hold)
(N)(h)−RQ(h)| < γ. (26)

where we use (R̂Hold)
(N) to denote the estimator constructed using the first N validation points, Dval

N .
By the reverse triangle inequality,

|(R̂Hold)
(N)(h)−RQ′(h)| ≥ |RQ(h)−RQ′(h)| − |(R̂Hold)

(N)(h)−RQ′(h)|. (27)
Combining Equation (26) and Equation (27), for all N ≥ N0 with probability at least 1/2

|(R̂Hold)
(N)(h)−RQ′(h)| > 2γ − γ = γ, (28)

which implies the holdout is not consistent for RQ′(h).
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Proposition D.6. Let ℓ(a, b) = max(1, |a − b|). There exists a data-generating process, test set
containing a single site and predictive method satisfying infill asymptotics such that the holdout
converges in probability to 0, while RQtest = 1.

Proof. Consider S = [0, 1], h ≡ 0, Y = S, Stest = 1 and

Sval
m =

{
Um m is prime,
0 m otherwise.

(29)

with Um independent and identically distributed uniform variables. By the infinitude of primes, there
are infinitely many m such that Sval

m is uniformly distributed and, for example by Proposition 3.3, this
implies that Sval

m satisfies the infill assumption. On the other hand, by the prime number theorem, as
M test →∞, the density of primes in the natural numbers tends to 0, and so

R̂Hold(h) =
1

M test

M test∑
m=1

Sval
m =

1

M test

M test∑
m=1
prime

Um ≤
|{m : 1 ≤ m ≤M test,m prime}|

M test → 0, (30)

and RQtest(h) = 1.

D.3.2 Inconsistency of 1-nearest neighbor Estimator

We now turn to 1-nearest neighbor risk estimation and restate and prove Proposition 4.3:

Proposition 4.3 (Inconsistency of 1NN). There exist a set of test points and a data-generating
process satisfying infill asymptotics such that R̂NN,1(h) is not a consistent estimator of the test risk.

We again actually prove a strong result

Proposition D.7. Assume any test point satisfies Assumption 2.2. Assume there exists a constant
c > 0 such that for any test point (S,X, Y ), Var[ℓ(Y, hχ(S))|S] ≥ c. Next, consider an infinite
sequence of validation sets as in Definition 3.2. Suppose there exists an S′ ∈ S such that for any
r > 0 and N val > 0, |{1 ≤ j ≤ N val : dS(Sval

j , S′) = r}| ≤ 1. Choose any Qtest such that
Qtest({S′}) > 0. Then there exists a δ ∈ (3/4, 1) and a C(δ) > 0 such that, for each N val, with
probability at least 1− δ, |RQtest(h)−(R̂NN,1)

(N val)(h)| ≥ C(δ). Here (R̂NN,1)
(N val) denotes the 1NN

estimator associated to the first N val data points and δ. C(δ) and δ do not depend on N val or other
properties of the sequence of validation data.

The technical condition |{1 ≤ n ≤ N val : dS(Sval
j , S′) = r}| ≤ 1 ensures that the 1NN set for each

point contains exactly 1 point. That is, there are no ties. This condition would be satisfied for the
infinite sequence of validation sets with probability one if, for instance, the validation points were
chosen i.i.d. from a uniform measure on a compact set; cf. Proposition 3.3. Alternatively, it can be
removed if any form of tie-breaking that selects a single nearest neighbor is used in defining the
estimator.

The idea of the proof is that if the loss has a non-vanishing variance, then the one nearest neighbor
procedure results in an estimator with a non-zero variance for point prediction. Therefore, it cannot
converge in probability to the actual risk, which is deterministic.

D.3.3 Preliminary Result

We begin by proving a result that says that if a bounded random variable has a second moment
bounded below by C, then it cannot be close to zero most of the time. We will apply this inequality
to the second moment of the difference between the 1-nearest neighbor estimator and the test risk to
in our proof of Proposition 4.3.

Proposition D.8. Let U be a random variable with U ∈ [−A,A] almost surely and E[U2] ≥ C > 0.
Then for any δ ∈ (1− C

A2 , 1) with probability 1− δ

|U | ≥ A

√
1− 1− C

A2

δ
. (31)
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Proof. Because U ∈ [−A,A], A2 − U2 is a non-negative random variable. Applying Markov’s
inequality, for any t > 0,

Pr(A2 − U2 ≥ t) ≤ A2 − E[U2]

t
≤ A2 − C

t
. (32)

Take t = A2−C
δ which is greater than 0 because δ ∈ (1− C

A2 , 1). Then Equation (32) becomes,

Pr

(
A2 − U2 ≥ A2 − C

δ

)
≤ δ. (33)

Taking complements, with probability at least 1− δ

A2 − U2 <
A2 − C

δ
. (34)

Rearranging implies that with probability at least 1− δ

U2 > A2 − A2 − C
δ

. (35)

For δ ∈ (1− C
A2 , 1) this bound is non-vacuous (strictly greater than zero). Taking square roots, which

is monotone, for any such δ with probability at least 1− δ

|U | > A

√
1− 1− C

A2

δ
. (36)

D.3.4 Proof of Inconsistency of 1-nearest neighbor

We return to our proof of Proposition 4.3. The idea will be to consider a point prediction task and
then apply Proposition D.8 to show that with some fixed probability, the 1-nearest neighbor estimator
is a fixed distance away from the test risk, even as N val increases.

Proof of Proposition 4.3. Because expectation minimizes the squared error to a random variable over
all constant functions

E|RQtest(h)− (R̂NN,1)
(N val)(h)|2 ≥ E|(R̂NN,1)

(N val)(h)− E[(R̂NN,1)
(N val)(h)]|2. (37)

Because the ϵval
n are independent the variance of (R̂NN,1)

(N val) is additive

E|(R̂NN,1)
(N val)(h)− E(R̂NN,1)

(N val)(h)|2 =

N val∑
n=1

(wNN,1
n )2E[ℓ(Y val

n , hχ(Sval
n ))− eh(Sval

n )] (38)

≥ V
N val∑
n=1

(wNN,1
n )2. (39)

where 0 < V < ∆2/4 is the assumed lower bound on the variance of ℓ(Y val
n , hχ(Sval

n ))−eh(Sval
n ) and

we have left implicit the dependence of the weights on N val. Also, |{1 ≤ n ≤ N val : dS(S′, Sval
n ) =

r| ≤ 1, implies S′ has exactly one 1-nearest neighbor in Sval
1:N val , call the index of this neighbor n(S′).

Then
N val∑
n=1

(wNN,1
n )2 ≥ (wNN,1

n(S′))
2 ≥ Qtest({S′})2. (40)

Combining Equation (39) and Equation (40)

E[|RQtest(h)− (R̂NN,1)
(N val)(h)|2] ≥ V Qtest({S′})2. (41)

We now apply Proposition D.8 with U = |RQtest(h) − (R̂NN,1)
(N val)(h)| to conclude that for δ ∈

(1− V Qtest({S′})2
∆2 , 1) with probability at least 1− δ

|RQtest(h)− (R̂NN,1)
(N val)(h)| ≥ ∆

√
1− 1− V Qtest({S′})2

∆2

δ
> 0. (42)

As neither δ nor the right hand side of Equation (42) depend on N val, 1-nearest neighbor is not
consistent under infill asymptotics.
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Proposition D.9. Consider Y = {0, 1} and ℓ(a, b) =
{
0 a = b

1 otherwise
, S = [0, 1]d and Sval

m
iid∼ µ,

where µ is any measure with density with respect to Lebesgue measure. Fix any S ∈ S and any
predictive method h and let Qtest = δS . Then,

|R̂NN,1(h)−RQtest(h)| ≥ min(E[Y test], 1− E[Y test]). (43)

In particular, if E[Y test] = 1/2, then one-nearest neighbor risk estimation has error 1/2.

Proof. Because Sval
m

iid∼ µ, and µ has Lebesgue density, the nearest neighbor to S is almost surely
unique. This implies that R̂NN,1(h) ∈ {0, 1}. Therefore,

|R̂NN,1(h)−RQtest(h)| ≥ min
a∈{0,1}

|a− E[Y test]| = min(E[Y test], 1− E[Y test]). (44)

D.3.5 Inconsistency of Nearest Neighbors with Number of Neighbors Depending On Number
of Validation Points

We now restate and prove Proposition 4.4, which states that nearest-neighbor risk estimation with the
number of neighbors depending (only) on the number of validation points is inconsistent under infill
asymptotics, regardless of type of dependence.

Proposition 4.4 (Inconsistency of kNN depending on number of validation points). Let (kn)∞n=1 be
any sequence of natural numbers. Define the sequence of estimators R̂N val to be the nearest neighbor
risk estimators using N val validation points and kN val neighbors. Then there exists a data-generating
process satisfying infill asymptotics, a test set containing a single point, a predictive method h
resulting in an error function satisfying the Lipschitz assumption, and an ϵ, δ > 0 such that with
probability at least 1−δ, ∀N val, |R̂N val(h)−RQtest(h)| ≥ ϵ.

Proof. The idea is that either 1.) (kn)
∞
n=1 has a bounded sub-sequence, in which case along this

sub-sequence, the R̂N val(h) can have a variance bounded below by 0, and so by Proposition D.8 these
estimators are bounded away from the test risk with fixed probability. Or 2.) the number of neighbors
used tends to infinity, in which case we can find a sequence of data that accumulates more slowly
around the test site, leading to many neighbors far from the point being used in the estimator, and
therefore non-negligible bias.

We split into these two cases, and give an example showing in either case R̂N val can be inconsistent.

Case 1: lim infn→∞ kn <∞.
Consider a data-generating process with no covariates, Sval ∼ U(0, 1), Stest = { 12}, Yn|Sn =

ϵn ∼ U(−1/2, 1/2), h = 0 and ℓ(y, y′) = |y − y′|. Because lim infn→∞ kn < ∞, there exists a
C > 0 such that (kn)∞n=1 contains a bounded sub-sequence (k̃n)

∞
n=1 with k̃n ≤ C for all C > 0.

Since the limit superior of a sub-sequence cannot be larger than of the full sequence

lim sup
N val→∞

Var(R̂N val(h)) ≥ lim sup
n→∞

Var(R̃n(h)). (45)

where R̃n denotes the sub-sequence of R̂N val where the number of validation points runs along the
sub-sequence corresponding to (k̃n)

∞
n=1.

Almost surely, for any N val the test point 1/2 has exactly kN val -nearest neighbors, because the
probability that two validation points are equidistant from 1/2 is 0. Since a countable union of almost
sure events is also an almost sure event, with probability 1 for all N val the test point at 1/2 has exactly
kN val neighbors. Therefore, with probability 1, for all N val the vector of weights wNN,k has exactly
kN val non-zero entries, each with value 1/kN val . We condition on this probability 1 event moving
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forward. In this case,

Var(R̂N val) = Var(

N val∑
n=1

wNN,k|ϵn|) (46)

=
1

k2
N val

kNval∑
i=1

Var(|ϵ̃i|) (47)

=
1

48kN val
(48)

where (ϵ̃)
kNval

i=1 are the subset of (ϵn)N
val

n=1 corresponding to the kN val nearest neighbors to 1/2. The
factor of 48 comes from the variance of a uniform random variable on [0, 1/2].

For all N val corresponding to the bounded sub-sequence (k̃n)
∞
n=1, we conclude

Var(R̃n(h)) ≥
1

48C
. (49)

Therefore,

lim sup
N val→∞

Var(R̂N val(h)) ≥ 1

48C
. (50)

Applying Proposition D.8 to the random variable |R̂N val(h)−R(h)| we conclude there exists an ϵ, δ
such that with probability at least 1− δ,

lim sup
N val→∞

|R̂N val(h)−R(h)| ≥ ϵ. (51)

Case 2: lim infn→∞ kn =∞.
Consider the data generating process, Yn|Sn = Sn on [0, 1] with Stest = {0} and ℓ(y, y′) = |y−y′|

and h = 0. We then have R(h) = 0. We will construct a sequence of validation sites Sval such
that for each N val less than kN val/2 of the validation sites fall in the interval [0, 1/4). For any such
sequence (supposing such a sequence exists for the moment),

|R̂N val(h)−R(h)| = |R̂N val(h)| ≥ 1

kN val
· kN val

2

1

4
≥ 1

8
. (52)

All that remains is to construct such a sequence that also satisfies infill asymptotics. Define the
function ψ : N→ (0, 1) by

ψ(i) =
i− 2⌊log2 i⌋+1

2⌊log2 i⌋+1
. (53)

This corresponds to the dyadic sequence (1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, . . . ). The essential
properties of this function for our application is that the image of the function is dense on (0, 1) and
for any i at least i/2 of (ϕ(j))ij=1 are in the interval (0, 1/2].

Algorithm 1 Algorithm defining (Sval
n )∞n=1

while True: do
if j < kn and n− j > j then
Sval
n = 1

2 − 1
2ψ(j)

j ← j + 1.
else
Sval
n = 1

2 + 1
2ϕ(n− j)

n← n+ 1.
end if

end while

The validation points are defined algorithmically via Algorithm 1. Because kn is unbounded, the first
condition must be called infinitely often, and so j eventually takes on all natural numbers in this loop.
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Because n− j > j each time the first condition is called, n− j is incremented if and only if j is not
incremented n− j also takes on all natural numbers in this loop. Therefore, (Sval

n )∞n=1 is a dense set
in [0, 1] because 1

2 − 1
2ψ(N) is dense on [0, 1/2] and 1

2 + 1
2ψ(N) is dense on [1/2, 1]. We conclude

this sequence satisfies the infill asymptotics.

For any N val, the number of validation points less than 1/2 is not more than kN val by induction and
using the first condition in the if statement. Of the points placed in (0, 1/2) at most half of them
are in (0, 1/4], by our earlier observation that for any i at least i/2 of (ψ(j))ij=1 are in the interval
(0, 1/2]. Therefore, not more than kN val/2 points are in [0, 1/4) for any N val.

D.4 General Nearest Neighbor Bound and Selecting the Number of Neighbors

In this section, we prove two results giving bounds on the performance of nearest neighbor risk
estimation that will be the basis of later results. The first, already stated in the main text, is a general
bound for any k.

Theorem 5.1 (Bound on Estimation Error in Terms of Fill Distance). Consider a validation set Dval

of size N val and a test set Dtest of size M test. Take the k-nearest neighbors test-risk estimator from
Definition 4.2. Choose δ ∈ (0, 1) and k such that 1 ≤ k ≤ N val. Let ρk := ζk(Sval

1:N val , S
test
1:M test) and

βδ := ∆
√

1
2 log

2
δ . Take Assumptions 2.1, 2.2, 2.4 and 2.5. Then, with probability at least 1− δ,

|RQtest(h)− R̂NN,k(h)| ≤ Lρk + βδ∥wNN,k∥2 ≤ Lρk + βδ

√
max

1≤n≤N val
Qtest(B(Sval

n , ρk))/k, (3)

where B(S, r) denotes the ball of radius r centered at S. See Assumptions 2.1 and 2.5 and Defini-
tion 2.3 for ∆, L, Qtest respectively.

The second result we will show is specific to SNN and relates the error incurred by using k⋆T2
to the

error of the minimizer of the bound from Theorem 5.1:

Proposition D.10 (Minimization over Powers of Two). Let T = {1, . . . , N val} and T2 =

{2i}⌊log2 N val⌋
i=1 . Fix δ ∈ (0, 1). Define k⋆T2

∈ argmink∈T2
ρk + βδ∥wNN,k∥2 with βδ = ∆

√
1
2 log

2
δ .

Define CL = max(1, L). Under Assumptions 2.1, 2.2 and 2.5 with probability at least 1− δ

|RQtest(h)− R̂NN,k⋆
T2
(h)| ≤

√
2CL

(
min
k∈T

ρk + βδ

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk))

k

)
, (54)

where B(S, r) denotes the ball of radius r centered at S.

D.4.1 Preliminary Result: Hoeffding’s Inequality

We begin by recalling Hoeffding’s inequality, which will be used to control tail probabilities of the
sum of the weighted losses being far from its expectation.

Lemma D.11 (Hoeffding’s Inequality, [Hoeffding, 1963, Theorem 2]). Let (Zi)
ℓ
i=1 be independent

random variables and (ai)
ℓ
i=1 and (bi)

ℓ
i=1 be sequences of real numbers such that ai ≤ Zi ≤ bi

almost surely. Then for all t > 0

Pr

(∣∣∣∣∣
ℓ∑

i=1

Zi −
ℓ∑

i=1

E[Zi]

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− 2t2∑ℓ

i=1(bi − ai)2

)
. (55)

Equivalently, for any δ ∈ (0, 1) with probability at least 1− δ∣∣∣∣∣
ℓ∑

i=1

Zi −
ℓ∑

i=1

E[Zi]

∣∣∣∣∣ ≤ ∥b− a∥2
√

1

2
log

2

δ
. (56)

where a, b ∈ Rℓ have entries ai and bi respectively.
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D.4.2 Proof of General Nearest Neighbor Risk Estimation Bound

We again recall and prove Theorem 5.1. The idea is to apply triangle inequality to split the error into
a bias term and a sampling error term. The sampling error term is then controlled with Lemma D.11
since the loss is bounded. The bias term is controlled using Assumption 2.5.

Theorem 5.1 (Bound on Estimation Error in Terms of Fill Distance). Consider a validation set Dval

of size N val and a test set Dtest of size M test. Take the k-nearest neighbors test-risk estimator from
Definition 4.2. Choose δ ∈ (0, 1) and k such that 1 ≤ k ≤ N val. Let ρk := ζk(Sval

1:N val , S
test
1:M test) and

βδ := ∆
√

1
2 log

2
δ . Take Assumptions 2.1, 2.2, 2.4 and 2.5. Then, with probability at least 1− δ,

|RQtest(h)− R̂NN,k(h)| ≤ Lρk + βδ∥wNN,k∥2 ≤ Lρk + βδ

√
max

1≤n≤N val
Qtest(B(Sval

n , ρk))/k, (3)

where B(S, r) denotes the ball of radius r centered at S. See Assumptions 2.1 and 2.5 and Defini-
tion 2.3 for ∆, L, Qtest respectively.

Proof. By the triangle inequality,

|RQtest(h)− R̂NN,k(h)| ≤
∣∣RQtest(h)−

N val∑
n=1

wNN,k
n eh(S

val
n )
∣∣

︸ ︷︷ ︸
τ1

(57)

+
∣∣∣ N val∑
n=1

wNN,k
n (ℓ(f(Sval

n , χ(Sval
n ), ϵval

n ), hχ(Sval
n ))− eh(Sval

n )
∣∣∣︸ ︷︷ ︸

τ2

. (58)

The first term, τ1 is a bias term, while the second term, τ2 is a sum of N val independent variables
with expectation zero. Using Assumption 2.1, we apply Hoeffding’s inequality (Lemma D.11) to
bound τ2: for any δ ∈ (0, 1) with probability at least 1− δ

τ2 ≤ ∆∥wNN,k∥2
√

1

2
log

2

δ
. (59)

By Hölder’s inequality and because the weights are non-negative and sum to one,

∥wNN,k∥2 ≤
√
∥wNN,k∥1∥wNN,k∥∞ =

√
max

1≤n≤N val
wNN,k

n . (60)

Recalling the definition of wNN,k (Definition 4.2) and that each Ak(s) contains at least k points by
construction,

wNN,k
n =

1

M test

M test∑
m=1

1

|Ak(Stest
m )|1{S

val
n ∈ Ak(Stest

m )} ≤ 1

k

1

M test

M test∑
m=1

1{Sval
n ∈ Ak(Stest

m )}. (61)

By the definition of ρk,

Sval
n ∈ Ak(Stest

m )⇒ Stest
m ∈ B(Sval

n , ρk) (62)

and so

1{Sval
n ∈ Ak(Stest

m )} ≤ 1{Stest
m ∈ B(Sval

n , ρk)}. (63)

Substituting this in Equation (61) and using Equation (60)

∥wNN,k∥2 ≤

√√√√1

k
max

1≤n≤N val

1

M test

M test∑
m=1

1{Stest
m ∈ B(Sval

n , ρk)} =
√

max
1≤n≤N val

Qtest(B(Sval
n , ρk))

k
.

(64)
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It remains to bound the bias term, τ1. Define αk
nm = 1

|Ak(Stest
m )|1{Sval

n ∈ Ak(Stest
m )}. Recalling the

definition of wNN,k and rearranging the order of summation

τ1 =

∣∣∣∣∣∣ 1

M test

M test∑
m=1

(eh(S
test
m )−

N val∑
n=1

αk
nmeh(S

val
n ))

∣∣∣∣∣∣ (65)

≤ max
1≤m≤M test

∣∣∣∣∣∣eh(Stest
m )−

N val∑
n=1

αk
nmeh(S

val
n )

∣∣∣∣∣∣ . (66)

Because for any 1 ≤ m ≤M test,
∑N val

n=1 α
k
nm = 1∣∣∣∣∣∣eh(Stest

m )−
N val∑
n=1

αk
mneh(S

val
n )

∣∣∣∣∣∣ =
∣∣∣∣∣∣
N val∑
n=1

αk
mn(eh(S

test
m )− eh(Sval

n ))

∣∣∣∣∣∣ (67)

≤ max
n:αk

mn>0
|eh(Stest

m )− eh(Sval
n )|. (68)

Applying Assumption 2.5 and taking the maximum over m as well,

τ1 ≤ max
n,m:αk

nm>0
LdS(S

test
m , Sval

n ). (69)

The constraint αk
nm > 0 implies that dS(Stest

m , Sval
n ) ≤ ρk and so

τ1 ≤ Lρk. (70)

The result follows from combining Equations (58), (59), (64) and (70).

D.4.3 Proofs Related to Selecting the Number of Neighbors

We now restate and prove a bound that upper bounds the error of risk estimation with SNN (i.e. using
k⋆T2

neighbors) to the minimum of the upper bound from Theorem 5.1 over all k. A key observation
is that because Theorem 5.1 is conditional on the test locations, it can be minimized without the need
to take a union bound over all k in the set we minimize over. We first need a preliminary result, which
holds for minimization over any subset of {1, . . . , N val}.
Proposition D.12 (Minimization of Upper Bound). Let T ⊂ {1, . . . , N val}. Fix δ ∈ (0, 1). Define

k⋆T ∈ argmink∈T ρk + βδ∥wNN,k∥2 with βδ = ∆
√

1
2 log

2
δ . Define CL = max(1, L). Under

Assumptions 2.1, 2.2 and 2.5 with probability at least 1− δ

|RQtest(h)− R̂NN,k⋆
T
(h)| ≤ CL

(
min
k∈T

ρk + βδ∥wNN,k∥2
)

(71)

≤ CL

(
min
k∈T

ρk + βδ

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk))

k

)
, (72)

where B(S, r) denotes the ball of radius r centered at S.

Proof of Proposition D.12. Because the minimization problem does not depend on a quantity that
is treated as random in Theorem 5.1, we may directly apply Theorem 5.1 to k⋆T to conclude with
probability at least 1− δ

|R(h)− R̂NN,k⋆
T
(h)| ≤ Lρk⋆

T
+∆∥wNN,k⋆

T ∥2
√

1

2
log

2

δ
(73)

We split into cases.

Case 1: L ≤ 1 Because L ≤ 1 and by the minimality of k⋆T ,

Lρk⋆
T
+∆∥wNN,k⋆

T ∥2
√

1

2
log

2

δ
≤ ρk⋆

T
+∆∥wNN,k⋆

T ∥2
√

1

2
log

2

δ
(74)

= min
k∈T

ρk +∆∥wNN,k∥2
√

1

2
log

2

δ
. (75)
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Case 2: L > 1 Because L > 1 and the second term is non-negative,

Lρk⋆
T
+∆∥wNN,k⋆

T ∥2
√

1

2
log

2

δ
≤ L

(
ρk⋆

T
+∆∥wNN,k⋆

T ∥2
√

1

2
log

2

δ

)
(76)

= Lmin
k∈T

ρk +∆∥wNN,k∥2
√

1

2
log

2

δ
. (77)

Combining Equations (73), (75) and (77) gives the result.

Proposition D.10 (Minimization over Powers of Two). Let T = {1, . . . , N val} and T2 =

{2i}⌊log2 N val⌋
i=1 . Fix δ ∈ (0, 1). Define k⋆T2

∈ argmink∈T2
ρk + βδ∥wNN,k∥2 with βδ = ∆

√
1
2 log

2
δ .

Define CL = max(1, L). Under Assumptions 2.1, 2.2 and 2.5 with probability at least 1− δ

|RQtest(h)− R̂NN,k⋆
T2
(h)| ≤

√
2CL

(
min
k∈T

ρk + βδ

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk))

k

)
, (54)

where B(S, r) denotes the ball of radius r centered at S.

Proof. Let k⋆T denote a minimizer of the bound on the right hand side, which exists since the
minimization is over a finite set. If k⋆T = 1, we are done since 1 ∈ T2. Otherwise, there exists a
k̃ ∈ T2 such that,

k⋆T /2 ≤ k̃ ≤ k⋆T . (78)

By monotonicity of the kth order fill distance in k,

ρk̃ ≤ ρk⋆
T
. (79)

This also implies,

Qtest(B(Sval
n , ρk̃)) ≤ Qtest(B(Sval

n , ρk⋆
T
)), (80)

since the measure of a subset is never larger than the measure of a set that contains it. Therefore,

min
k∈T2

(
ρk + βδ

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk))

k

)
≤ ρk̃ + βδ

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk̃)))

k̃
(81)

≤ ρk⋆
T
+ βδ

√
2

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk⋆

T
))

k⋆T
(82)

≤
√
2(ρk⋆

T
+ βδ

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk⋆

T
))

k⋆T
) (83)

=
√
2

(
min
k∈T

ρk + βδ

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk))

k

)
. (84)

The result now follows from Proposition D.12.

D.5 Consistency of our Nearest Neighbor Method under Infill Asymptotics

In this section we prove Corollary 5.2, which establishes the consistency of SNN under infill
asymptotics. The idea of the proof is to upper bound the kth order fill distance of the validation points
in the test points to the fill distance of the validation points in [0, 1]d. This allows together with
Theorem 5.1 and Proposition D.10 allows us to derive an upper bound on the error of our method in
terms of the fill distance, from which the result follows.
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D.5.1 Preliminary Lemma: Relating Fill Distances

Proposition D.13. Let A be an ϵ-net for [0, 1]d. Then for k ≤
(

1
2ϵ

)d
ζk(A, [0, 1]d) ≤ 2k1/dϵ+ ϵ. (85)

Proof. Let S ∈ [0, 1]d and τ ∈ (0, 1]. Then,
|A ∩B(S, τ + ϵ)| ≥ N(ϵ, B(S, τ)) (86)

because for any S′ ∈ B(S, τ) ∩ [0, 1]d, there is a point a ∈ A such that d(S′, a) ≤ ϵ and for
any such point, this a must also be in B(s, τ + ϵ) by the triangle inequality. Let C be an ϵ-net of
B(s, τ) ∩ [0, 1]d. Then by the definition of a net and by subadditivity

vol(B(S, τ) ∩ [0, 1]d) ≤ vol(∪c∈CB(c, ϵ)) ≤ |C|Bd
1

ϵd
(87)

Since S ∈ [0, 1]d and τ ≤ 1, at least one orthant of B(s, τ) is contained in [0, 1]d, so

vol(B(S, τ) ∩ [0, 1]d) ≥ 2−dBd
1

τd
. (88)

Combining the previous estimates,

N(ϵ, B(S, τ) ∩ [0, 1]d) ≥
( τ
2ϵ

)d
(89)

Choose τ = 2ϵk1/d ∈ (0, 1). Then
|A ∩B(S, τ + ϵ)| ≥ k. (90)

As S was arbitrary, this holds for all S ∈ [0, 1]d, and so for all S ∈ [0, 1]d, there are k points in A in
B(S, 2ϵk1/d + ϵ).

D.5.2 Bound on Loss Depending on Fill Distance

We now present and prove an upper bound on the error of SNN that depends on the fill distance of
the validation set in [0, 1]d. We will derive consistency of the estimator under infill asymptotics as a
corollary of this bound. The bound will also be relevant in later discussion of model selection, where
we are also interested in rates of convergence of estimators.
Corollary D.14 (Bound for Dense Validation Data and General Test Data). Suppose that S = [0, 1]d

and Assumptions 2.1, 2.2 and 2.5. Let k⋆T2
∈ argmink∈T2

ρk + βδ∥wNN,k∥2 with βδ = ∆
√

1
2 log

2
δ .

Then there exists a constant Kd,δ,∆,L such that with probability at least 1− δ
|RQtest(h)− R̂NN,k⋆

T2
(h)| ≤ Kd,δ,∆,Lρ̃

d
d+2 , (91)

where ρ̃ = ζ(Sval
1:N val , [0, 1]

d).

Proof. For all, ρ̃ ≥ 1, the stated bound holds with K = L
√
d+ βδ . Therefore, moving forward, we

assume ρ̃ < 1.

Choose k = min(⌈(γρ̃)− 2d
d+2 ⌉, N val) for some γ ∈ (0, 1/2) to be specified later. Because 2d

d+2 < d

and γ ≤ 1
2 , this k satisfies the conditions of Proposition D.13 so,

ρk ≤ ζk(A, [0, 1]d) ≤ 2min(⌈(γρ̃)− 2d
d+2 ⌉1/d, (N val)1/d)ρ̃+ ρ̃ (92)

≤ 2(1 + γρ̃)−
2

d+2 )ρ̃+ ρ̃ (93)

≤ 4γ−2ρ̃
d

d+2 . (94)
We now apply Theorem 5.1 and Proposition D.10 together with this bound to conclude with probability
1− δ

|RQtest(h)− R̂NN,k⋆
T2
(h)| ≤

√
2CL(4γ

−2ρ̃
d

d+2 +
1√
k
βδ) (95)

≤
√
2CL

(
4γ−2ρ̃

d
d+2 +min

(
γ

d
d+2 ρ̃

d
d+2 ,

1√
N val

)
βδ

)
. (96)

Choosing γ = 1
4 (for example) completes the proof.
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D.5.3 Consistency of Spatial Nearest Neighbors

We now restate and prove that the spatial nearest neighbor procedure we describe is consistent under
infill asymptotics. This follows as a corollary of Corollary D.14 since the infill assumption means
that for any fixed δ, the upper bound in Corollary D.14 tends to zero with the fill distance.

Corollary 5.2 (Our Method is Consistent under Infill Asymptotics). Let S = [0, 1]d. Take Assump-
tions 2.1, 2.2, 2.4 and 2.5. Let ρ̃ := ζ(Sval

1:N ,S). Let k⋆T2
∈ argmink∈T2

ρk + βδ∥wNN,k∥2 with
δ = min(1, r) and r ∈ [cρ̃, Cρ̃] for some constants (possibly depending on dimension) c, C > 0.
Then the k⋆T2

-nearest neighbor risk estimator is consistent under infill asymptotics.

Proof. Take δ = min(1, r). Under infill asymptotics, this tends to zero because r ≤ Cρ̃ and ρ̃ tends
to 0 by assumption. Corollary D.14 (or more precisely Equation (96) which makes the depend of the
bound on δ explicit), with probability at least 1− δ

|RQtest(h)− R̂NN,k⋆
T2
(h)| ≤ Kd,∆,Lρ̃

d/(d+2)

√
log

1

r
(97)

≤ Kd,∆,Lρ̃
d/(d+2)

√
log

1

cρ̃
. (98)

The left hand side of this bound tends to zero with ρ̃, and so R̂NN,k⋆
T2
(h) converges in probability to

RQtest(h).

D.5.4 Computation of An Approximate Fill Distance

The fill distance can be computed exactly by computing the vertices of a d-dimensional Voronoi
diagram with the validation points, then computing the maximum distance from each of these vertices
to a point in the validation set. For problems in 1 or 2 dimensions, this is feasible even with a large
number of validation points, because algorithms for computation of the Voronoi diagram can be done
in nearly linear, O(N val logN val) time in 1 and 2 dimensions [Okabe et al., 2000, Chapter 4]. In
higher dimensions, the worst case complexity of algorithms for computing Voronoi diagrams can be
O((N val)⌊d/2⌋ +N val logN val), and so for large number of points in more the computational cost
can become quite high.

To avoid this computational cost, we instead use a simple space partitioning algorithm when S =
[0, 1]d that is guaranteed to give an approximation to the fill distance r satisfying ρ̃

2
√
d
≤ r ≤ 2ρ̃. The

idea is to split the domain into 2d quadrants and check if each quadrant contains a validation point. If
it does, recurse, otherwise stop and keep track of the side length of each quadrant, call it r. When the
algorithm terminates it must be the case that there exists a partitioning of [0, 1]d into cubes of side
length 2r, with each cube containing at least one validation point. Because this is a partition, each
point in the spatial domain must also be within a cube, and so the fill distance is upper bounded by
the maximum distance between two points in a cube of side length 2r, i.e. ρ̃ ≤ 2r

√
d. Also, when the

algorithm stops, a cube of side length r has been found that does not contain any points. Therefore
the fill distance is lower bounded by the distance from the center of this cube to the closest validation
point, which must be at least r/2. That is, ρ̃ ≥ r/2. Rearranging, we see that

ρ̃

2
√
d
≤ r ≤ 2ρ̃ (99)

as claimed. Finally, we address the computational complexity of this approach. The number of times
we recurse is log2 r, which is O(log 1/ρ̃), which is in turn O(logN val), because the fill distance
cannot decrease faster than the inverse of the covering number of [0, 1]d, which certainly does not
decrease faster than 1/N val.

It remains to consider the complexity of deciding which orthant all of the validation points lie in,
and partioning the points by orthant. This can be done by looping over each of the dimensions,
partitioning the points in the cube based on whether or not that coordinate is on the left or right hand
side of the current cube, which is O(N vald). Therefore, the total computational complexity of this
algorithm is not more than O(N vald logN val), which is nearly linear in N val.
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D.6 Model Selection: Rates of Convergence of Spatial Nearest Neighbors

We now present an extended version of earlier discussion in Appendix C, as well as results on
rates of convergence of spatial nearest neighbors that provides some support to claims regarding
model selection. As a special case, we consider grid prediction (for example for assessing the global
performance of a map constructed using a predictive method). We then discuss rates of convergence
in the more general setting earlier addressed in Corollary D.14.

D.6.1 A Heuristic Discussion of Model Selection with Increasing Amounts of Data

Suppose we have a fixed test task, and two data-driven algorithms for making predictions. We also
suppose we have allocated a fixed percentage of data for training, and the remainder for validation.
Can we use spatial nearest neighbors to select between the two method? As the amount of training
data increases we would hope that both data-driven algorithms produce better predictive methods. We
therefore do not expect consistency to be sufficient to select between the two sequences of predictive
methods: if both are converging to the optimal estimator at (possibly different) rates as the amount of
training data increases, we want our error in estimating the risk of the two methods to converge to
zero faster at a rate faster in the amount of validation data than the rate that the slower converging
method converges to the optimal predictor. This would suggest we should be able to reliably identify
the better sequence of predictive methods as the amount of data increases.

We will assume we are in the additive, homoskedastic error setting so that Y = f(S, χ(S)) + ϵ.
We will assume that the noise is bounded, and that squared loss is used. Finally, we will assume
that training data is also generated following this process. We will also assume that f is Lipschitz
continuous. In this setting, minimax pointwise regression rates are θ((N train)−

1
d+2 ) (cf. Tsybakov

[2008, Theorem 2.3, Corollary 2.2] in one-dimension under a fixed grid design and Tibshirani [2023,
Examples 3.1, 3.2] for a multi-dimensional version with both fixed grid and random design. The latter
assumes Gaussian noise instead of bounded noise). Ideally, we would like a method for performing
model selection to be able to distinguish between a sequence of predictive methods converging
at slower than the minimax optimal rate and a sequence of predictive methods converging at the
minimax rate and to be able to reliably select between two sequences of predictive methods both of
which are converging at the minimax rate, but with different constants.

We will now present some finite sample and asymptotic bounds on the convergence of spatial nearest
neighbors for a fixed hypothesis then return to the question of model selection in light of these results.

D.6.2 Rates of Convergence for Grid Prediction

We first consider the grid prediction task specifically, as this is a common problem in spatial analyses.
For example, one might want to reconstruct air temperature across the continental United States on a
dense grid (map) based on remotely sensed covariates observed on this grid and sparsely observed
weather station data. We consider a test task grid prediction if the data falls on a regular d-dimensional
grid.

Assumption D.15 (Grid prediction). We say that a task is grid prediction if S = [0, 1]d and
Qtest = 1

gd

∑
S∈{i/g:1≤i≤g}d δS for some g ∈ N.

As long as the resolution of the map is high, both 1-nearest neighbor and spatial nearest neighbors
provide reliable estimates of the error.

Corollary D.16 (Bound on Estimation Error for Grid Prediction). With the same assumptions as
Theorem 5.1 and additionally Assumption D.15, with probability at least 1− δ

|RQtest(h)−R̂NN,1(h)|≤Lρ+βδ
√
max( 2d

M test , (8ρ)d). (100)

Also, with probability at least 1− δ

|RQtest(h)−R̂NN,k⋆
T2
(h)| ≤CL

(
ρ+ βδ

√
max( 2d

M test , (8ρ)d)

)
.

with ρ = ρ1, βδ = ∆
√

1
2 log

2
δ and CL = max(1, L).
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See Appendix D.6.5 for a proof. The right-hand side of the bound is small as long as there is a
validation point near each test point and the resolution of the map is high. If the available data for
validation is generated i.i.d. as in Proposition 3.3, then right hand side becomes, up to logarithmic
factors in N val, 1√

M test + (N val)min(−1/2,−1/d)

D.6.3 Statement and Discussion of Result for IID validation data and Grid Prediction

Corollary D.17 (Convergence of Grid Prediction with Independent and Identically Distributed
Validation Data). Suppose that S = [0, 1]d, Sval

n
iid∼ P for 1 ≤ n ≤ N val with N val > 1 and P has

Lebesgue density lower bounded by c > 0. Additionally, take the assumptions of Corollary D.16. Fix
δ ∈ (0, 1) and k ∈ {1, k⋆T2

}. Then there exists a constant Kd,δ,L,∆,c that depends only on d, δ, L, c
and ∆ such that with probability at least 1− δ

|R̂NN,k(h)−RQtest(h)| ≤ Kd,δ,L,∆,c

(
( logN val

N val )min( 1
2 ,

1
d ) + 1√

M test

)
.

Proof. From Proposition 3.3, there exists a constant γ depending on d, L, δ, c,∆ such that with
probability at least 1− δ/2

ρ ≤ γ
(
logN val

N val

)1/d

. (101)

An upper bound on the bound in Corollary D.16 shows that for k ∈ {1, k⋆T2
} with probability 1− δ/2,

|R̂NN,k(h)−RQtest(h)| ≤ γCL max(βδ/28
d/2, 1)

(
ρ+

1√
M test

+ ρd/2
)
. (102)

Combining Equation (101) and Equation (102) via a union bound and using that a+ b ≤ 2max(a, b)
completes the proof.

This matches the bound proven in Portier et al. [2023, Proposition 3] which assumed that the test data
was independent and identically distributed instead of on a regular grid. This rate of convergence is
reasonably fast, particularly in low-dimensions. In particular ignoring the dependence of the bound
on M test, which is reasonable as the number of test points in map prediction is often far larger than
the number of available points for training and validation, it is faster than the minimax optimal rate
of convergence for Lipschitz functions of θ((N train)−1/(d+2)) discussed earlier. We therefore would
expect both spatial nearest neighbors and 1-nearest neighbors to perform well for model selection
for grid prediction tasks if a fixed percentage of the data is used for training, and the remainder for
validation. We emphasize we do not give a formal proof of this, just a heuristic argument suggesting
why this should be the case. To give a formal proof would involve at least ensuring estimates of the
risk estimation procedure hold uniformly over both sequences of predictive methods, and therefore
involve additional assumptions.

D.6.4 General Prediction Tasks

For general Qtest we can combine Corollary D.14 together with Proposition 3.3 to get some sense of
the rate of convergence of the spatial nearest neighbor method if the validation data is independent
and identically distributed form a measure with density lower bounded on [0, 1]d and the test task is
fixed.

Corollary D.18 (Convergence of Spatial Nearest Neighbor with Independent and Identically Dis-
tributed Validation Data). Suppose that S = [0, 1]d, Sval

n
iid∼ P for 1 ≤ n ≤ N val withN val > 1 and P

has Lebesgue density lower bounded by c > 0. Additionally, take the assumptions of Corollary D.14.
Fix δ ∈ (0, 1). Then there exists a constant Kd,δ,L,∆,c that depends only on d, δ, L, c and ∆ such that
with probability at least 1− δ

|R̂NN,k(h)− R̂NN,k⋆
T2
(h)| ≤ Kd,δ,L,∆,c

(
( logN val

N val )
) 1

d+2

. (103)
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Proof. From Proposition 3.3, there exists a constant γ depending on d, L, δ, c,∆ such that with
probability at least 1− δ/2

ρ̃ ≤ γ
(
logN val

N val

)1/d

. (104)

Corollary D.14 implies that there exists a constant K ≥ 0 such that with probability at least 1− δ/2

|R̂NN,k(h)− R̂NN,k⋆
T2
(h)| ≤ Kρ̃ d

d+2 . (105)

Combining Equation (104) and Equation (105) completes the proof.

In this case, again up to logarithmic factors, Corollary D.18 means that SNN converges at the optimal
rate of convergence for Lipschitz functions. This means we do not necessarily expect to be able
to distinguish between two sequences of predictive methods that converge at the minimax rate, but
we might expect to distinguish between two sequences of predictive methods if one converges to
the optimal predictor at much slower than the minimax rate. We again emphasize that we do not
formally show this, and to do so would would involve at least ensuring estimates of the risk estimation
procedure hold uniformly over both sequences of predictive methods, and therefore involve additional
assumptions.

In contrast, both the holdout and 1-nearest neighbor methods are not even always consistent for risk
estimation in this setting, and therefore cannot be expected to reliably perform model selection.

D.6.5 Grid Prediction Proofs

In order to prove the claimed upper bound on grid prediction Corollary D.16 we use Theorem 5.1
together with an upper bound on the number of test points that lie within a ball of radius equal to the
fill distance around any validation point. In order to do this, we will use that all the points in a grid
are well-separated. We therefore begin by recalling the definition of a packing of a set, as well as a
relationship between covering number and packing number.

Definition D.19 (Packing, Packing Number). Let A ⊂ Rd a compact set. A (finite) set B ⊂ A is
called an ϵ-packing of A if for all b, b′ ∈ B, ∥b− b′∥ > ϵ. The ϵ-packing number of a set A, M(ϵ, A)
is the largest cardinality of an ϵ-packing of A.

Proposition D.20 (Packing and Covering Numbers Wainwright 2019, Lemma 5.5). For any A ⊂ Rd

and ϵ > 0,

M(2ϵ, A) ≤ N(ϵ, A) ≤M(ϵ, A). (106)

We now restate and prove Corollary D.16.

Corollary D.16 (Bound on Estimation Error for Grid Prediction). With the same assumptions as
Theorem 5.1 and additionally Assumption D.15, with probability at least 1− δ

|RQtest(h)−R̂NN,1(h)|≤Lρ+βδ
√
max( 2d

M test , (8ρ)d). (100)

Also, with probability at least 1− δ

|RQtest(h)−R̂NN,k⋆
T2
(h)| ≤CL

(
ρ+ βδ

√
max( 2d

M test , (8ρ)d)

)
.

with ρ = ρ1, βδ = ∆
√

1
2 log

2
δ and CL = max(1, L).

Proof. The second inequality follows from the first by Proposition D.12 and because 1 ∈ T2. We
therefore focus on proving the case k = 1.

In light of Theorem 5.1, it suffices to show that for these test location,

M testQtest(B(Sval
n , ρ)) = |B(Sval

n , ρ) ∩ {a/g : 1 ≤ a ≤ g}d| ≤ max
(
2d, 8dρdM test) . (107)
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The set {a/g : 1 ≤ a ≤ g}d is a 1
g+ϵ -packing for any ϵ > 0, and so by the first inequality in

Proposition D.20 and Proposition D.3

|B(Sval
n , ρ) ∩ {a/g : 1 ≤ a ≤ g}| ≤M( 1

(g+ϵ) , B(Sval
n , ρ)) ≤ N( 1

2ρ(g+ϵ) , B(0, 1)). (108)

Applying Wainwright [2019, Lemma 5.7, Equation 5.9] and taking the limit as ϵ→ 0+

lim
ϵ→0+

N( 1
2(g+ϵ)ρ , B(0, 1)) ≤ lim

ϵ→0+
(1 + 4(g + ϵ)ρ)d = (1 + 4gρ)d. (109)

By the binomial theorem and bounding the sum by the number of terms times the largest term

(1 + 4gρ)d ≤ 2d max(1, 4dgdρd) = max(2d, 8dM testρd). (110)

E Additional Experimental Details

In this section, we provide additional details about the data, fitting procedures and validation
procedures used in Section 6. Code used in experiments is available anonymously at: https:
//github.com/DavidRBurt/Consistent-Spatial-Validation. Code is almost all imple-
mented in Python3 [Van Rossum and Drake, 2009] (with a small amount of r). Numpy is also
heavily used for data generation and array manipulation [Harris et al., 2020].

In Appendix E.1 we give an overview of our method for estimating ground truth test risk in all
experiments. In Appendix E.3 we describe details of the synthetic experiment described in Section 6.1.
In Appendix E.4 we provide additional details on the air temperature data and tasks in Sections 6.2
and 6.5. In Appendix E.5 we provide additional details on the UK flat price prediction experiment
described in Section 6.3, while in Appendix E.6 we provide additional details for the wind speed
prediction task presented in Section 6.4.

E.1 Monte Carlo Estimation of Ground Truth Test Risk

We would like to compute the exact test risk across the M test test points:

RQtest(h) := (1/M test)

M test∑
m=1

E[ℓ(Y test
m , hχ(Stest

m ))
∣∣Stest

m , χ]. (111)

In all our examples where we report test risk, we have access to some sample (Y test
m )M

test

m=1 that we will
use to construct an estimator. Our plan is to instead use the empirical test risk R̂Qtest(h) as ground
truth:

R̂Qtest(h) := (1/M test)

M test∑
m=1

ℓ(Y test
m , hχ(Stest

m )). (112)

We would like to know how far off the empirical test risk is from the exact test risk. To that end, we
observe that

R̂Qtest(h)−RQtest(h) = (1/M test)

M test∑
m=1

Zm, where (113)

Zm := ℓ(Y test
m , hχ(Stest

m ))− E[ℓ(Y test
m , hχ(Stest

m ))|Stest
m , χ]. (114)

By construction, if we assume the expectations exist, each random variable Zm has mean zero. We
make two additional assumptions. (1) We assume that the Zm are independent. (2) We assume that
(almost surely) ∀m,Zm ∈ (a, b) for finite a, b ∈ R. If the loss is bounded by ∆, then such an a, b
exist satisfying b− a ≤ ∆; following Assumption 2.1, we use this bound moving forward.

Under these assumptions, we can apply Hoeffding’s inequality to conclude that for any δ ∈ (0, 1),
with probability at least 1− δ,

|R̂Qtest(h)−RQtest(h)| ≤ ∆

√
1

2M test log
2

δ
. (115)
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If we are willing to make the two assumptions above, we next show that we can reach (high
probability) conclusions about the (true) relative quality of different estimators on a particular task
if they pass a check: namely, we check if, for a small δ (e.g. δ = 0.05), the right-hand side of
Equation (115) is smaller than twice the difference between how much closer the “good” estimator
is to the estimate of ground truth than the “bad” estimate. To see why this check is sufficient, first
observe the following two applications of the triangle inequality:

|good− true| ≤ |good− t̂rue|+ |true− t̂rue| (116)

|bad− t̂rue| ≤ |bad− true|+ |true− t̂rue|. (117)

Using these two inequalities, we can write

|bad− true| − |good− true| ≥ |bad− t̂rue| − |good− t̂rue| − 2|true− t̂rue|. (118)

Therefore, to conclude

|bad− true| − |good− true| ≥ 0, (119)

it suffices for

|bad− t̂rue| − |good− t̂rue| ≥ 2|true− t̂rue|. (120)

Under the earlier assumptions, we see that Equation (120) is implied (with high probability) by

|bad− t̂rue| − |good− t̂rue| ≥ 2∆

√
1

2M test log
2

δ
. (121)

When discussing each experiment, we discuss the plausibility of the assumptions needed to make this
argument when justifying our estimated ground truth, as well as specific values for ∆ and M test and
the resulting bound.

E.2 Computational Considerations

E.2.1 Computational Complexity of our Method

We focus on the case S = [0, 1]d with nearest-neighbors implented using a kd-tree. Compu-
tation of the approximate fill distance is already discussed in Appendix D.5.4 and is shown to
be O(dN val logN val). Construction of a kd tree on the validation data is also O(dN val logN val).
Once constructed, finding the nearest neighbor for each test point requires O(logN val) computa-
tions of a d-dimensional Euclidean distance, meaning finding the neighbors is O(dM testk logN val).
Since O(logN val) values of k are tried in selecting k, this leads to a complexity not more than
O(dM testN val(logN val)2). We expect further improvements could be made by storing the nearest
neighbor set for intermediate values of k, but we do not pursue these.

E.2.2 Computational Setup Used

All experiments were run on a CPU cluster with 36 Intel(R) Xeon(R) W-2295 CPU @ 3.00GHz
CPUs and a total of 251 GB of system RAM. In all experiments linear algebra operations operations
were allowed to be multithreaded, and so at times all 36 CPUs were used, even if fewer than 36
parallel jobs were run.

E.2.3 Computational Cost of Synthetic Experiment

Data Generation. Generating the point prediction synthetic data takes around 25 minutes using 10
parallel jobs and has a peak memory usage of around 46GB.

Generating the grid prediction synthetic data takes around 33 minutes using 10 parallel jobs and has
a peak memory usage of around 71GB.

Running Experiment. Running the point prediction task takes around 25 minutes using 10 parallel
jobs and has a peak memory usage of around 32GB.

Running the grid prediction task takes around 27 minutes using 10 parallel jobs and has a peak
memory usage of around 39GB.
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E.2.4 Computational Cost of Bootstrapped Air Temperature Experiment

Data Generation Running the make file to download air station data takes on the order of 30
seconds and not more than 6GB of RAM after some data has been installed manually as described
in the README file in the released code. Fitting the model and computing residuals in order to
generate bootstrapped datasets takes around 10.5 minutes and has peak memory usage around 95GB.

Running Experiment Running the bootstrapped air temperature metro prediction task takes around
66 minutes with 20 parallel jobs and has peak memory usage around 225GB.

Running the bootstrapped air temperature grid prediction task takes around 8.5 hours with 3 parallel
jobs and has peak memory usage around 150GB.

E.2.5 Computational Cost of UK House Price Experiment

Data Processing Downloading and processing the data takes around 7 seconds and has a peak
memory usage of under 3GB.

Running Experiment Running the UK House price prediction task takes around 4.6 hours with 5
parallel jobs and has peak memory usage around 70GB.

E.2.6 Computational Cost of Wind Speed

Data Processing Downloading and processing the data takes around 3.5 minutes and has a peak
memory usage of under 12GB.

Running Experiment Running the wind spped prediction task takes around 8.5 hours with 15
parallel jobs and has peak memory usage around 15GB.

E.2.7 Computational Cost of Real Data Air Temperature Experiment

Time to process the data has been previously described in Appendix E.2.4.

Running Experiment Running all the air temperature tasks takes around 10 minutes and has peak
memory usage around 9GB.

E.2.8 Computational Cost of Model Selection Experiment

Generating data for and running the synthetic model selection experiment takes under a minute of
time and under 4GB of RAM.

E.3 Risk Estimation on Synthetic Data

In this section, we provide additional details and figures for our risk estimation experiment on
synthetic data presented in Section 6.1. Appendix E.3.1 describes the process by which we generate
both datasets considered and shows an example of the covariate and response spatial fields for each
problem (Figures 4 and 6). Appendix E.3.3 describes the procedure used to fit the predictive methods
to each dataset. Appendix E.3.4 describes the implementation of the risk estimation procedures
we compare. Appendix E.3.6 describes the metric reported, and Figures 5 and 7 show the (signed)
relative error of each estimator as we vary the amount of validation data available.

E.3.1 Simulation Data Generating Process Details

For both tasks, 100 datasets are generated following the process outlined below.

Grid data Generation of training and validation sites: The first training point is selected via
generating a point uniformly in [−0.5, 0.5]2, and making this the mean of a Gaussian mixture
component, with standard deviation randomly sampled between 0.05 and 0.15. This mixture is
initially given weight 1, the first training point is then sampled from a Gaussian with this mean and
standard deviation, the and weight of this mixture is increased to 2. Subsequent points are sampled
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Figure 3: The validation sites (blue, clustered) for the first seed of the synthetic grid task. Panels from
left to right and top to bottom represent N val in the sequence (250, 500, 1000, 2000, 4000, 8000).
Test sites (orange, gridded) are constant across panels.

sequentially. For each i between 2 and the total number of training and validation points, a weight
of 1 is assigned to adding a mixture component. The new point is then sampled from either one of
the existing mixture components, or the new mixture component, with probability proportional to
the current weights assigned to each mixture component. The weight of the mixture from which the
points, w(t)

i(t), is then increased as

w
(t+1)
i(t) = w

(t)
i(t) +

1

w
(t)
i(t)

. (122)

This is reminiscent of a Chinese restaurant process [Pitman, 2006, Section 3.1], but the weights are
increased more slowly, leading to more clusters being formed and less large clusters typically.

If a new mixture component is generated, a mean for the mixture component is generated on
[−0.5, 0.5]2, and a standard deviation is selected uniformly on [0.05, 0.15]. Conditional on the
mixture component, the new point is sampled from a Gaussian distribution with the components
mean and standard deviation.

The first 1000 points generated this way are taken to be the training data, and the remaining N val

points generated this way are the validation data. An example of the training and validation data
generated through this process are shown in the top left of Figure 4.

Generation of test data The test data is {(−0.5 + a/29,−0.5 + b/29) : 0 ≤ a, b ≤ 49}. That is, it is
a regular grid on [−0.5, 0.5]2. We generate 50 values of each response variable on each. grid point.

Generation of Covariates

The covariates are generated as a zero-mean Gaussian process with an isotropic Matérn 3/2 covariance
function with lengthscale 0.3 and scale parameter 1. That is, the covariance function is,

kχ(S, S
′) =

(
1 +

√
3∥S − S′∥2

0.3

)
exp

(
−
√
3∥S − S′∥2

0.3

)
. (123)

A small diagonal term (1e-12) is added to the diagonal of the covariance matrix to avoid numerical
linear algebra errors. Sampling is performed using Tensorflow probability [Dillon et al., 2017]. We
generate two covariates spatial processes via this process χ = (χ(1), χ(2)).

Generation of Response Once the sites and covariates have been generated, the response variable is
sampled from a Gaussian process with zero mean. The covariance function of the Gaussian is a sum
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Figure 4: Data for the grid prediction task. An example of a single sample of the training and
validation points (with 1000 training points and 250 validation points) is shown in the top left. The
top right and bottom left show the covariates as a function of space, while the bottom right shows the
mean of the response variable as a function of space.

of two, 2 dimensional isotropic Matérn 3/2 kernels:

k(S, S′) = 0.5

(
1 +

√
3∥S − S′∥2

0.5

)
exp

(
−
√
3∥S − S′∥2

0.5

)
(124)

+
(
1 +
√
3∥χ(S)− χ(S′)∥2

)
exp

(
−
√
3∥χ(S)− χ(S′)∥2

)
. (125)

Independent, identically distributed Gaussian noise is added to the function values with variance 0.1.

Point Prediction Task Generation of training and validation sites: The training and valida-
tion points are sampled independently and identically from a uniform distribution supported on
[−0.5, 0.5]2. 1000 training points are used in all experiments. The number of validation points is
varied in {250× 2ℓ}5ℓ=0.

Generation of test site The test site is fixed to be the origin. We generate 45000 response values at the
origin so that when we compute the empirical risk we expect it to accurately reflect that actual risk.
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Table 2: Value of k⋆T2
chosen by minimizing the bound in the grid prediction task. Because the test

data is well separated, the variance of the estimator is small even when k is small. As a result the
value of k that minimizes the upper bound is generally small, even as the number of validation points
increases.

Number of Validation Points

k⋆
T2

250 500 1000 2000 4000 8000
1 82 85 81 82 66 50
2 15 15 19 18 34 41
4 3 0 0 0 0 9

Generation of covariates: The covariates are generated as a zero-mean Gaussian process with an
isotropic squared exponential covariance function with lengthscale 0.3 and scale parameter 1. That is,
the covariance function is,

kχ(S, S
′) = exp

(
−∥S − S

′∥22
2 · 0.32

)
. (126)

A small diagonal term (1e-12) is added to the diagonal of the covariance matrix to avoid numerical
linear algebra errors. Sampling is performed using tensorflow probability [Dillon et al., 2017]. We
generate two covariates via this process X = (X(1), X(2)).

Generation of response Once the sites and covariates have been generated, the response variable is
sampled from a Gaussian process with zero mean. The covariance function of the Gaussian is a sum
of two, 2 dimensional isotropic squared exponential kernels:

k(S, S′) = 0.5 exp

(
−∥S − S

′∥22
2 · 0.52

)
+ exp

(
−∥χ(S)− χ(S

′)∥2
2

)
. (127)

Independent, identically distributed Gaussian noise is added to the function values with variance 0.1.

E.3.2 Loss Function

We use truncated, squared loss,

ℓ(a, b) = min(1.0, (a− b)2), (128)

which is bounded by 1.0. The empirical risk is calculated as in Equation (112).

E.3.3 Model Fitting

We fit a Gaussian process regression model to using only the first covariate χ(1) to the training
data. The prior is taken to be the same as the data generating process, but with (only) χ(1) in
place of (χ(1), χ(2)) in the second kernel in Equation (125) and Equation (127) for the two datasets
respectively. The mean of the posterior process is used for predictions, and is calculated using
GPFlow [Matthews et al., 2017].

E.3.4 Implementation of Risk Estimation

The holdout is implemented by taking an (unweighted) average of the loss on each validation point.
Both nearest neighbor methods are implemented using scikit-learn [Pedregosa et al., 2011] with
kd-trees and Euclidean distance. For k⋆T2

nearest neighbors, nearest neighbors is performed for all
k that are powers of 2 less than N val, and the value of k with the smallest bound is used for risk
estimation. This is done with δ = r, with r calculated as in Appendix D.5.4, and ∆ = 1. Table 2 and
Table 3 show the values of k chosen for grid and point prediction respectively. For the grid prediction
task, k⋆T2

tends to be small, even as the size of the validation set becomes large. This supported by
Corollary D.16, since even 1-nearest neighbor reliably estimates risk in this setting. For the point
prediction task, k⋆T2

grows with N val.
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Table 3: Value of k⋆T2
chosen by minimizing the bound in the point prediction task. In this task, there

is generally a bias-variance trade-off that must be balanced. As a result the value of k that minimizes
the upper bound increases as the amount of available validation data increases.

Number of Validation Points

k⋆
T2

250 500 1000 2000 4000 8000
16 7 0 0 0 0 0
32 93 33 0 0 0 0
64 0 67 99 14 0 0

128 0 0 1 86 98 0
256 0 0 0 0 2 100

E.3.5 Monte Carlo Estimation of Test Risk

Following the argument in Appendix E.1, we use the empirical test risk Equation (112) in place of
the test risk as ground truth in synthetic experiments. The assumption that (Zm)M

test

m=1 are independent
holds by the description of the data generating process, because the (Ym)M

test

m=1 are conditionally
independent and Zm is a function of Ym. The assumption that Zm is almost surely bounded holds
with ∆ = 1 by our choice of truncated squared loss. Further, in both synthetic experiments, we take
M test = 45000. Combining these gives that with probability at least 0.95

|R̂Qtest(h)−RQtest(h)| ≤
√

1

2× 45000
log

2

0.05
≤ 0.0065. (129)

Figure 1 shows the absolute difference between each estimator and the empirical test risk across 100
seeds. We see that the difference between the estimators is generally larger than twice Equation (129),
and so by the argument in Appendix E.1, we expect our estimate of ground truth to be accurate
enough that the difference in performance of the methods is not simply due to error in estimating the
ground truth.

E.3.6 Metrics Reported and Additional Figures

Figures 5 and 7 show the relative errors of each estimation, calculated as

R̂Qtest(h)− R̂(h)
R̂Qtest(h)

. (130)

From this, we can see that the holdout method has a bias in both cases that does not appear to
go away as the number of validation points increases. In contrast, the 1-nearest neighbor method
primarily suffers due to a variance issue when it fails to converge. We again see in both instances the
k⋆T2

-nearest neighbor approach appears to concentrate around zero error as the number of validation
points increases.

E.4 Air Temperature Tasks

We now provide additional details about data source, pre-processing, model fitting and risk estimation
for the air temperature dataset. These are identical between the real response experiment and the
partially synthetic experiment, except for the bootstrapping procedure described in Appendix E.4.6.
We also provide additional experimental results on a grid prediction task for both the bootstrapped
and original datasets.

E.4.1 Data Sources

The land surface temperature used is from MODIS Aqua [Wan et al., 2021] and is monthly average
land surface temperature on a 0.05 degree grid. We download monthly average weather station data
from the Global Historical Climatology Network [Menne et al., 2018]. Latitude and longitude of
major United States (US) urban areas are from the 2023 US census gazetteer [United States Census
Bureau, 2023]. All of these datasets are produced in large part by US government agencies (NASA,
NOAA and the Census). While we could not find specific license information, we understand these
datasets to be public domain following section 105 of the Copyright Act of 1976.
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Figure 5: The relative error in estimating the empirical risk for each method is plotted against the
number of validation points used for the grid prediction task. The holdout is biased, even for large
N val. The 1-nearest neighbor and k⋆T2

-nearest neighbor estimates both have small relative error for
large N val.

E.4.2 Data Pre-processing

We assign the land surface temperature at the nearest point (using a spherical approximation to dis-
tance between points) to each weather station. The nearest point is found using the scikit-learn
implementation of nearest neighbor algorithm using the ‘ball-tree’ [Omohundro, 2009] and ‘Haver-
sine’ metric. Temperatures are converted to Celsius from Kelvin. We remove all rows where the
Land Surface temperature is not available. We use the weather station data uploaded to GHCNM as
of January 15, 2024. We filter out weather stations outside of the United States (based on the station
ID). We also filter out stations with a non-empty quality control flag or no temperature recorded for
January 2018 (the month we consider). Finally, we remove stations in Hawaii or Alaska to focus on
the continental United States. In total, after this processing, there are 6422 weather stations. We use
70% of the stations for fitting the models, and holdout the remaining 30% estimates. When building
the test sites, we remove points outside the United States based on a reverse geocoding lookup with
Thampi [2015] to the nearest city. This does not create an exact boundary (since it is based on the
nearest city or town and not the country in which the latitude and longitude is based in) but is a good
proxy for whether or not a point is in the United States. Figure 8 of the available weather stations for
model fitting and validation, colored by monthly average temperature in January 2018.

E.4.3 Loss Function

We consider a truncated absolute value as the loss function, ℓ(a, b) = min(5.0, |a− b|). This means
we are primarily interested in the quality of the model predictions when it is relatively close to the
actual response, and do not consider differences in predictions that are, for example, 8 degrees Celsius
versus 10 degrees Celsius wrong meaningfully different. While the choice of 5 degrees is arbitrary,
this is motivated by applications in which we might have some allowable tolerance for the quality of
a prediction beyond which the prediction is no longer useful (and so it doesn’t matter how bad it is).

E.4.4 Model Fitting

Inspired by Hooker et al. [2018], we fit a geographically weighted least squares regression model
using the land surface temperature at day and night. In particular, we fit an affine model, with the
coefficients, β(S) depending on the location that will be predicted at. β(S) is selected by solving the
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Figure 6: Data for the point prediction task. An example of a single sample of the training and
validation points (with 1000 training points and 250 validation points) is shown in the top left. The
top right and bottom left show the covariates as a function of space, while the bottom right shows the
mean of the response variable as a function of space.

weighted least squares problem,

β̂(S) ∈ arg min
(b0,b1,b2)∈R3

ntrain∑
i=1

wi(S)(Y
train
i − (b0 + b1X

train,1
i + b2X

train,2
i ))2, (131)

with Y train
i the temperature at station i, X train,1

i the daytime land surface tempera-
ture X train,2

i the nighttime land surface temperature both at the closest satellite point

to station i and wi(S) = exp(−dhaversine(S,S
train
i )2

2ℓ2 ) and dhaversine the Haversine (great
circle) distance between the points. ℓ ≥ 0 is a parameter, and we select it
from {25.0, 50.0, 75.0, 100.0, 150.0, 200.0, 300.0, 400.0, 500.0, 750.0, 1000.0}km via leave-one-
out cross-validation on the training data with mean squared error. We perform leave-one-out
cross-validation (without additional weighting).

We also consider a simple baseline model fit using only the weather station data. We fit a Gaussian
process with zero prior mean and Matérn 3/2 kernel to the weather stations with covariate the spatial
locations in latitude and longitude converted to radians, and a Gaussian likelihood model. We fit
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Figure 7: The relative error in estimating the empirical risk for each method is plotted against
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Figure 8: Weather stations used in the air temperature prediction task we considered, colored by
average temperature in January 2018 in degrees Celsius.

44



the parameters of the kernel using L-BFGS to attempt to maximize the marginal likelihood of the
parameters. The parameters fit are two lengthscale parameters (one for each spatial dimension), a
kernel scale parameter, and a likelihood variance parameter. The mean is removed from the training
data prior to fitting, the kernel lengthscales are set to to standard deviation of each covariate and
the kernel variance parameter is set to equal the variance of the training response data, and the
likelihood variance parameter is set to equal 0.1-times the variance of the training response variable.
A maximum of 15 iterations of L-BFGS are run.

E.4.5 Risk Estimation Details

The holdout is implemented as in previous experiments (Appendix E.3.4). We estimate the standard
error of the holdout empirically by computing the sample standard deviation of the sum of the losses,

σ̂2 =

 1

N val(N val − 1)

N val∑
j=1

ℓ(Y val
j , hχ(Sval

j ))2

1/2

. (132)

Table 1 reports the holdout estimate ± two standard deviation.

The nearest neighbor methods are implemented using the scikit-learn implementation with
Haversine distance and the ball-tree algorithm. k⋆T2

is selected with δ = 0.1 and ∆ = 5◦C and a
Lipschitz constant of 1◦C/100 km. We use a fixed δ since we only discuss a method applicable to
estimating fill distance on the unit cube, not on a subset of the sphere.

E.4.6 Bootstrapping of Residuals

In order to generate many datasets with a realistic synthetic response variable where we have access
to ground truth we:

1. Fit a Gaussian process regression model to all the available weather station data. We use a
Matérn 3/2 kernel with zero prior mean on the weather station data with the (spatial) mean
temperature removed. Parameters of the kernel are selected via maximum likelihood.

2. Compute the empirical distribution of the residuals of the mean of these predictions.
3. For each seed we then use the same spatial locations and covariates, and generate the

response surface at any point in space by computing the mean of the Gaussian process
regression model fit and adding a sample from the empirical distribution of the residuals of
the actual data.

We can then directly estimate the test risk via generating many Y test at each spatial location (we use
1000 realizations for each city in the 5-metros task) and 1 for each grid point in the grid task (since
the error is averaged over test sites this still results in an estimator that is concentrated) in this manner
and forming a Monte Carlo estimate as in Appendix E.1.

E.4.7 Estimation of Ground Truth in Bootstrapped Experiment

Following the argument in Appendix E.1, we use the empirical test risk Equation (112) in place of the
test risk as ground truth in synthetic experiments. For the assumption that (Zm)M

test

m=1 are independent
to hold it is sufficient for Y test

m to be independent, conditioned on the spatial location at which it is
observed. This holds based on the data generating process used to construct the synthetic responses:
since Y test

m is a noisy observation of the smooth function we fit to the weather stations, plus noise
sampled independently from the distribution of residuals. Because the loss is truncated MAE, the Zm

are surely bounded by 5. We use 10000 samples at each of the 5 test location in estimating the risk.
Using these numbers in Equation (115), we arrive at

|R̂Qtest(h)−RQtest(h)| ≤ 5

√
1

2× 50000
log

2

0.05
< 0.031. (133)

Following the argument in Appendix E.1, we expect our estimate of ground truth to be good enough
to distinguish between the quality of models whose absolute error from the estimated ground truth
differs by more than 2× 0.031 = 0.062. Figure 9 shows these absolute errors. We see that for many
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Figure 9: Absolute error in estimating the truncated mean absolute error in the air temperature dataset
with bootstrapping.

of the seeds, the difference between the performance of 1NN (orange) and SNN and the holdout is
greater than 0.174. Given that the earlier argument is quite conservative (in the sense that Hoeffding’s
inequality is likely to be loose), we therefore can attribute the difference in performance of the
methods to indicate that SNN and the holdout are giving better estimates of the ground truth test risk,
and the observed difference is not due to error in our estimation of the test risk.

For the grid prediction task the assumptions are similar, but M test = 341,628 as this is the number of
points on the map. Because the assumptions are satisfied by construction of the synthetic data (as in
the 5-metro prediction task), with probability 1− δ

|R̂Qtest(h)−RQtest(h)| ≤ 5

√
1

2× 341628
log

2

0.05
< 0.012. (134)

We therefore expect our estimate of ground truth to be very accurate, although we see in Figure 10
that the methods all perform well in estimating the test risk on this task, and so there is likely not a
meaningful difference in which approach is used to perform validation.

E.4.8 Results for Grid Prediction with Bootstrapped Data

Figure 10 shows the results for holdout, 1-nearest neighbor and SNN with the test set each grid point
in the map that is located in the continental United States. All 3 methods lead to reasonably accurate
estimates of the mean absolute error on this prediction task (within 0.1 degrees of the ground truth
error). Based on our theory, we generally expect 1NN and SNN to have small error in grid prediction
tasks (at least with sufficient data and the infill assumption being satisfied), while for the holdout
it depends on the particular predictive method and distribution of test and validation sites. In this
case, it appears for both prediction methods the bias introduced by the use of the holdout is relatively
small.

E.4.9 Results for Grid Prediction with Real Data

Table 4 shows the results for holdout, 1-nearest neighbor and SNN with the test set each grid point in
the map that is located in the continental United States. We see good agreement between all three
method. This is expected for 1-nearest neighbor and SNN based on earlier theory (Appendix D.6.5).

E.5 UK Housing Experiment

We provide additional details for the UK flat price prediction task presented in Section 6.3.

E.5.1 Data Sources and Pre-processing

We download 2023 price paid data for England and Wales from HM Land Registry [2023]. This data
is subject to a UK Open Government License (https://www.nationalarchives.gov.uk/doc/
open-government-licence/version/3/), which requires citation of the data, but allows both
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Figure 10: Error in estimate of mean absolute error of the Gaussian process regression predictions
(left) and the geographically weighted regression predictions (right) for the holdout (blue), 1NN
(oragne) and SNN (green) on a grid prediction task. We see that all 3 methods result in accurate
estimates (within 0.1 degrees Celsius) of the mean absolute error on this task for both prediction
methods, and suspect it is unlikely meaningfully different conclusions would be drawn from use of
any of the methods in this application.

Table 4: Estimates of risk given by each method. All three methods agree reasonably well (within
±2 standard deviation of the estimate given by holdout for both geographically weighted regression
and spatial regression in this task. In particular, all three methods suggest that the geographically
weighted regression method has lower risk on this task.

GWR Spatial GP
Holdout 0.83± 0.03 0.90± 0.04

1NN 0.80 0.88
SNN 0.80 0.88

commercial and non-commercial uses. These records contain postal codes for each property sold, the
type of property sold, town or city, price paid for the property. We use the type of property variable to
filter out all properties that are not flats, and only consider additions (not replacements or deletions)
to the dataset and “standard” price paid data (not repossessions, buy-to-lets or other sales labelled as
non-standard). Noting that a postal code in the UK corresponds to a very small geographic area, we
obtain latitude and longitude data for each sale by looking up the postal code coordinates using the
National Statistics Postcode Lookup [Office Of National Statistics, 2024], which we understand to be
a product of the UK Census and therefore also subject to an Open Government License. We convert
from northing and easting to latitude and longitude using R. We log transform the price variable prior
to model fitting as we expect price paid to be non-negative and highly skewed, and so a Gaussian
(process) prior would otherwise be almost certainly inappropriate.

E.5.2 Model Fitting

We fit hyperparameters of the variational Gaussian process regression by evidence lower bound
maximization.

Model Specification We fit a Gaussian process regression model with prior covariance specified by
a sum of two Matérn 3/2 kernels and a zero prior mean on the mean centered log price paid data. We
use a sum of Matérn 3/2 kernel in place of the sum of RBF kernel used in Hensman et al. [2013] as
we expect there to be places where (log) property prices vary quickly in space, and so the smoothness
properties implicitly assumed in using an RBF kernel may be inappropriate. We use 2000 inducing
points for the variational approximation. The locations of these points are optimized jointly with
model parameters when maximizing the evidence lower bound. We use the closed form for the
optimal variational posterior (given a set of inducing points) provided in Titsias [2009], and perform
maximization of the evidence lower bound using L-BFGS.
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Figure 11: Absolute error of estimates (relative to Monte Carlo estimate of ground truth truncated
mean absolute error) for the holdout (blue), 1NN (green) and our SNN (orange). We see that the
holdout has significantly higher error in estimating the test risk in this task, which is caused by bias
in the estimate provided.

Initialization The locations of the inducing points are initialized by the greedy procedure suggested
in Burt et al. [2020], which is essentially equivalent to a partially pivoted Cholesky decomposition
recommended earlier in the Gaussian process approximation literature [Foster et al., 2009]. The initial
prior variance of both kernels is set to be equal to the variance in the training data; the lengthscales of
one kernel (intended to model regional price trends) are initialized to twice the standard deviation in
the location data (in radians), while the scale of the other kernel (intended to model local trends) is
initialized to half the standard deviation in the location data. The likelihood standard deviation is
initialized to be 0.1× the standard deviation in the log price paid in the training data.

E.5.3 Estimation of Ground Truth

We next describe why we might expect empirical test risk to provide a reasonable estimate of ground
truth in this problem, and in particular we discuss the assumptions that justify the use of empirical test
risk in relation to Appendix E.1. We consider a truncated loss ℓ(a, b) = min(0, 106), and so Zm is
almost surely bounded by 106. The assumption that the (Zm)M

test

m=1 are independent would be implied
by independence of (Ym)M

test

m=1 that is: that given the location at which a flat is sold, any remaining
randomness in the observed sale prices is independent. Concretely, we might think of the randomness
in sales price, ϵtest

m in our model, as coming from aspects of the sale process of the house, such as who
happens to see the advertisement for a house, and we assume these are independent for each house
when constructing our estimate of the ground truth.

If the conditional independence assumption proposed above holds, then following Appendix E.1 we
have that

|R̂Qtest(h)−RQtest(h)| ≤ £1000000

√
1

2× 1000
log

2

0.05
< £43000. (135)

Therefore, under this assumption, we might would expect our estimate of ground truth to be at least
good enough to tell the difference (in the sense of which is closer to the actual ground truth) between
predictors that differ in absolute error from the ground truth estimate by more than 2×£43, 000 =
£86, 000. Figure 11 shows the absolute error of the three methods. We see that the error in the
estimate provided by the holdout is on the order of £150, 000, while the error in 1NN and SNN are
closer to £25000 in most seeds. Given this large difference and earlier discussion, we do not expect
that this error arises from difficulties in estimating the ground truth, but instead arises from actual
differences in the qualities of the estimator.

E.5.4 Risk Estimation Details

Holdout, 1NN and SNN are run as in the air temperature experiments (Appendix E.4.5). In particular,
we use a failure probability of δ = 0.1 for SNN and nearest neighbor calculations are done with
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respect to Haversine distance to account for Earth’s curvature. We use a fixed δ since we only
discuss a method applicable to estimating fill distance on the unit cube, not on a subset of the sphere.
∆ = £1, 000, 000 is used in selecting the number of neighbors as this is an upper bound on the
truncated loss. We use a Lipschitz constant of £1,000/km as £1/km seems implausibly small.

E.6 Wind Speed Prediction Experiment

In this section, we provide additional details for the wind speed prediction experiment discussed in
Section 6.4 of the main text.

E.6.1 Data Sources and Pre-processing

We download daily wind speed readings from weather stations from the Global Historical Climate
Network [Menne et al., 2012]. As this dataset was constructed by NOAA employees, we understand
it to be public domain following section 105 of the Copyright Act of 1976. We filter out weather
stations outside the continental US, as well as any weather stations that do not contain daily average
wind speed readings. We look only at wind speed data from January in the prediction task, and years
2000–2024. There is a weather station at Chicago O’Hare which we remove from the training and
validation data and use as the test set.

For each replicate used to form Figure 10 we split off a training set containing 80% of weather stations,
and a validation set containing the remaining 20%. The number of observations in the training and
validation set varies (because different weather stations may be online for a different number of days
in January in previous years), but this leads to on the order of 580000 training observation and 126000
validation observations. Each training and validation point is a triple containing latitude, longitude
and average wind speed. We perturb the latitude and longitude (in degrees) of validation points by a
Gaussian random variable with standard deviation 10−12, which is essentially equivalent to using
random tie-breaking in the nearest neighbor algorithms. We expect this has a significant impact
on 1NN compared to the version discussed in the paper, because there may be many observations
from the nearest weather station to Chicago O’Hare. While this would unlikely be done in practice,
random tie-breaking, or tie-breaking by selecting the first nearest neighbor according to some other
ordering are common and would lead to similar outcomes as the results presented here (but higher
variance than averaging over all neighbors that are equally close). The latitude and longitude are then
converted to radians for the analysis.

E.6.2 Loss Function

We use truncated mean squared error as the loss function, ℓ(a, b) = min(25, (a− b)2).

E.6.3 Estimation of Ground Truth

Following the argument in Appendix E.1, we use the empirical test risk Equation (112) in place of
the test risk as ground truth in synthetic experiments. The assumption that (Zm)M

test

m=1 are independent.
It is sufficient for Y test

m (the wind daily wind speeds) to be independent, conditioned on the spatial
location at which it is observed. This is likely not the case, as we would expect average wind speed
in consecutive days exhibit at least some dependence. However, if the wind speed decorrelates
reasonably rapidly over time, we would expect similar arguments to hold, possibly with fewer
effective samples.

Because the loss is truncated mean squared error, the Zm are surely bounded by 25m2/s2. We use
775 samples in estimating the risk. Using these numbers, and under the assumption that wind speed
at a location is independent of the wind speed on previous days, in Equation (115), we arrive at

|R̂Qtest(h)−RQtest(h)| ≤ 25m2/s2
√

1

2× 775
log

2

0.05
< 1.22m2/s2. (136)

Comparing to Figure 12, we see that this application of Hoeffding’s inequality is not sufficient
to justify that the estimate of ground truth is accurate enough to attributed the observed better
performance of SNN to (actually) better estimation of the ground truth as opposed to inaccuracies
of our Monte Carlo estimate of the test risk. However, we expect this is largely due to looseness is
Hoeffding’s inequality and, given that a large difference is observed in most seeds, it would be very

49



0

1

2

3

E
rr

or
In

E
st

im
at

e
(m

2
/s

2
)

Figure 12: Absolute error in estimating (approximate) test risk in the wind speed experiment for the
holdout (blue), 1NN (orange) and our SNN (green). It appears that SNN has the smallest error in
estimating the ground truth, although the approximate ground truth we compute via Monte Carlo
estimate is not entirely theoretically justified. However, due to the relatively large differences across
most seeds, we still expect the difference is indicative of better performance of SNN.

surprising if this was only due to error in estimation of the ground truth which is independent across
seeds.

E.6.4 Model Fitting

A gradient boosted machine is fit using LightGBM [Ke et al., 2017] with default parameters expect
for the number of leaves (set to 127) and the number of estimators (set to 100).

E.6.5 Risk Estimation procedures

Holdout, 1NN and SNN are run as in the air temperature experiments (Appendix E.4.5). In particular,
we use a failure probability of δ = 0.1 for SNN and nearest neighbor calculations are done with
respect to Haversine distance to account for Earth’s curvature. We use a fixed δ since we only discuss
a method applicable to estimating fill distance on the unit cube, not on a subset of the sphere. A
Lipschitz constant of 1(m2/s2)/km is used for selecting the number of neighbors.

E.7 Model Selection on Synthetic Data

We next see that SNN and 1NN are able to select the model with lower test risk in a model selection
task, but the holdout systematically picks the wrong model. We repeat the model selection problem
100 times. In each repetition, we have N train = 100 and a max N val = 75. In our analysis, we will
consider validation subsets of size N val ∈ {5ℓ}15ℓ=1. We generate independent test, validation, and
training data as follows; see Figure 13.

U j
i ∼ U([−0.5, 0.5]), Sj

i =
√
U j
i + 0.5, j ∈ {train, val}

Stest
m = m/20− 0.5, 0 ≤ m ≤ 20, ϵji ∼ U([0, 0.1]),
Y j
i = |Sj

i |+ ϵji j ∈ {train, val, test}, (137)

We compare two predictive methods: h0(S) = 0.25 and h1(S) = β⊤
1 S + β0, with (β1, β0) fit by

minimizing the mean absolute residual on the training data. Figure 13 shows the data and predictions
of both models (as functions of space). We use the loss function ℓ(a, b) = |a− b|, which is bounded
for this problem because both the hypotheses and the response variable are bounded on [0, 1].
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Figure 13: Training (blue), validation (orange), and test (green) data for a single seed of the model
selection experiment. The dashed red line depicts predictive method h0, and dashed black shows h1.
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Figure 14: The percentage of times each estimator (correctly) selects the model with lower empirical
test risk (h0), out of 100 seeds as a function of N val. Estimators include the holdout (blue), 1NN
(orange), and our SNN (green).

Across all seeds, h0 has the lower empirical test risk; h1 makes large errors on the test points near 0
because most of the training data is in [0, 0.5]. Since most of the validation data also clusters near 1,
we expect the holdout to struggle due to bias. Our arguments in Appendix C lead us to expect both
SNN and 1NN should perform well on this task when given sufficient validation data.

We say an estimator of the risk, R̂, selects h0 if R̂(h0) < R̂(h1). We plot the percentage of times
each method (correctly) selects h0 as a function of the number of validation points in Figure 14.
When the validation set is small, all estimators select the model with lowest test risk (h0) less than
half the time. For the nearest neighbor methods, we expect that when there are few or no spatial
locations less than 1, weighting cannot fix the estimate. However, when the number of validation
points is large, the nearest neighbor methods consistently (correctly) select h0. By contrast, the
holdout consistently (incorrectly) selects h1, even though h1 has higher test risk. See Appendix C for
full experiment details.

Data Generation The data generation is fully described by Equation (137).
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Model Fitting We consider two models. The first is a constant predictor that predicts 0.25. The
second is an affine model (a linear model with an intercept) fit by minimizing the mean absolute error
from the line to the training points. This is fit using the Scikit-learn quantile regression with the
(default) “HiGHS” solver [Huangfu and Hall, 2015].

Estimation of Risk The validation estimates used are calculated in the same as the synthetic
experiments outlined previously in Appendix E.3.4. We use ∆ = 1 in the bound when selecting
k⋆T2

, even though the absolute value loss used can be larger than 1. We don’t expect this to have a
significant impact on the results, as the upper bound we minimize is already misspecified in a similar
way by not using the actual Lipschitz constant of the function. We again use δ = 0.1 when selecting
k⋆T2

.
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