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Abstract. We propose a flexible machine-learning framework for solving eigenvalue problems of diffusion opera-
tors in moderately large dimension. We improve on existing Neural Networks (NNs) eigensolvers by demonstrating
our approach ability to compute (i) eigensolutions for non-self adjoint operators with small diffusion (ii) eigenpairs
located deep within the spectrum (iii) computing several eigenmodes at once (iv) handling nonlinear eigenvalue
problems. To do so, we adopt a variational approach consisting of minimizing a natural cost functional involving
Rayleigh quotients, by means of simple adiabatic technics and multivalued feedforward neural parametrisation of
the solutions. Compelling successes are reported for a 10-dimensional eigenvalue problem corresponding to a
Kolmogorov operator associated with a mixing Stepanov flow. We moreover show that the approach allows for pro-
viding accurate eigensolutions for a 5-D Schrödinger operator having 32 metastable states. In addition, we address
the so-called Gelfand superlinear problem having exponential nonlinearities, in dimension 4, and for nontrivial
domains exhibiting cavities. In particular, we obtain NN-approximations of high-energy solutions approaching
singular ones. We stress that each of these results are obtained using small-size neural networks in situations where
classical methods are hopeless due to the curse of dimensionality. This work brings new perspectives for the study
of Ruelle-Pollicot resonances, dimension reduction, nonlinear eigenvalue problems, and the study of metastability
when the dynamics has no potential.

1. Introduction

In recent years, the idea of parameterizing the solutions to partial differential equation (PDEs) via a neural
network (NN) has emerged as an influential approach to solve PDEs; e.g. [SS18, HJW18, RPK19, BBC+21].
Unlike standard numerical methods which use meshes and thus are prone to the curse of dimensionality, the
partial derivatives of the NN approximation to the PDE solution, which, combined with the NN’s natural
ability in representing high-dimensional functions, provides a powerful framework to overcome the curse
[HJW18, BBC+21]. Still, challenges remain as each class of problems requires its own variational formulation
that often takes into account prior knowledge about the problem’s solutions through specific cost functionals
and penalty terms [ROL+20, NZGK21], along with its proper neural representation of the minimizers.

In spite of the recent compelling success of neural networks in representing high-dimensional PDE solutions
with remarkable accuracy, the possibilities of NN-solvers for eigenvalues problems of differential operators
have been mainly explored in rather specific contexts [HLZ20, WY18, ZLS21], although innovative ideas have
emerged. For instance, Han et al. [HLZ20] propose to treat the eigenvalue problem of linear and semilinear
second-order differential operators by reformulating it as a fixed point problem for the semigroup associated with
the operator, exploiting the Feynman-Kac representation formula and forward-backward stochastic differential
equations (FBSDEs). There, the eigenfunctions approximation is obtained via optimisation, through a neural-
network ansatz, of a cost functional exploiting this representation. Operating in high dimensions, their algorithm
allows for estimating the first eigenpair with an optional second eigenpair given some mild prior estimate of the
eigenvalue.

In many works involving NN parametrizations, the diffusive coefficients are often large, yielding benchmark
tests involving very smooth solutions. Diminishing diffusive effects is notoriously difficult to handle especially
in the context of deep NNs. The problem is not so much related to the capacity of NNs to represent less
regular solutions but rather to the difficulty of minimizing very stiff cost functionals. We indeed show below
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that the expressivity of fully-connected NNs is often underestimated, once the proper cost functional and
minimization strategy are set. In particular, we show that nearly-singular solutions of diffusion problems—
linear and nonlinear—can indeed be approximated with basic NNs.

In many applications such as described below, the computation of eigenmodes beyond the dominant ones
is often very informative. Nevertheless, several intrinsic difficulties are tied to the eigenvalue problem of
differential operators in high dimensions, calling for tempering the ambitions and focus to specific classes
of problems. Among these difficulties one can mention the explosion of the number of eigenvalues with
the dimension whose symptomatic behaviour is embodied by the asymptotic Weyl’s formula describing the
distribution N(λ) of (large) eigenvalues for various diffusion operators. This is the case e.g. of the Dirichlet
Laplacian in a bounded domain Ω of RN [Wey11, Wey12], the Laplace-Beltrami operator [Zwo12, Theorem
14.11] or Schrödinger operators [ANPS09, Ivr16, DZ19]. This combinatorial explosion is the spectral signature
of the curse of dimensionality. It may be furthermore amplified when a small parameter ε is present in front of
the higher-derivatives; see [DZ19, Theorem 7.4]. For instance such a pathological behaviour is observed in the
case for Schrödinger operators−ε∆+V (x), under certain assumptions on the potential, for which the existence
of ∼ ε−n/2 resonances in specific bounded subsets of the complex plane is known to hold; see [Sjö96, Sjö14].

Aware of these difficulties, we focus in this article on three classes of diffusion problems, whose spectral
investigations are on a few but yet meaningful eigenpairs beyond the dominant ones. Denoting byM either
a smooth N -dimensional Riemannian manifold without boundary or the Euclidean space RN itself, our first
focus is on the spectrum on Kolmogorov operators of the form

Kψ = Tr(Q(x)D2ψ) + F(x) · ∇ψ, x ∈ M, (1.1)

where Q = (qij) is a smooth mapping fromM taking values in the space of nonnegative symmetric n × n
matrices, F = (F i) is a (smooth) vector field onM, and Tr denotes the trace operator while “·” denotes the
inner product endowing M.

Our second focus is on the spectrum of Schrödinger operators of the form

Lψ = −Tr(Q(x)D2ψ) + V (x)ψ, x ∈ M, (1.2)

with M denoting the n-dimensional torus, and V , a potential function. For these problems, we are interested
in situations where Q is is taken constant and scales like ε > 0, with ε small.

Finally, our third focus is on the so-called nonlinear eigenvalue problems of the form

−∆u = λf(u), in Ω,

u = 0, on ∂Ω,
(1.3)

where Ω is a bounded domain in RN having a smooth boundary ∂Ω, λ is real, and f is a superlinear positive
function. Such problems have a long history and a strong mathematical basis [Rab71, Ama76, Lio82, BV97]
and arise in a wide range of disciplines, like in gas combustion theory [Gel63, BE13, FK15], plasma physics
[Cha57, Tem75], or the theory of gravitational equilibrium of polytropic stars [Cha57, Fow31, Hop31]. Here
the goal is to determine the multiplicity of solutions to (1.3) as λ is varied, namely to compute the bifurcation
diagram.

Classical continuation or pseudo-arclength methods for computing the bifurcation diagram associated with
Eq. (1.3) may become challenging already in dimension 3. This is for instance the case when the Laplacian of the
solution grows in a superlinear, e.g. exponential, way. It thus calls for specific high-resolution local treatments
and for handling the inversion of very large and ill-conditionned sparse matrices. An additional difficulty is due
to the possible existence of an unbounded connected component of solutions bifurcating from infinity [Kie11]
associated with infinitely many turning points. Such situations are known to occur in dimension 3 ≤ N ≤ 9 for
certain nonlinearities and domain geometries [JL73]. Obviously, the use of classical methods becomes hopeless
as soon asN ≥ 4. Furthermore, many theoretical problems remain open in term of the dimension. For instance,
many theoretical problems are still open for N ≥ 3, whether small bounded perturbations of f can generate a
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discontinuity in the minimal branch through the appearance of a new fold-point; see [Che18, Theorem 3.1 &
Sec. 5].

In this work, we propose a frontal approach for solving the eigenvalues problems described above, in a fully
unsupervised way. The idea is to translate first the eigenproblems as minimization problems involving only the
Rayleigh quotient together with ad-hoc normalisation constraints. We then parameterize the eigensolutions by
simple feedforward NNs (FFNNs). In order to solve the optimisation problems, we adopt standard machine
learning tools. We randomly sample points in the domain in order to estimate the cost functional gradients and
perform a stochastic gradient descent until a statistical equilibrium is reached. By doing so, the neural network
learns the unknown function, bypassing the computational bottleneck inherent to grid-based methods. In the
case of the Kolmogorov eigenvalue problem, we do not exploit simulation-based data for instance [LLR19], or
importance sampling technics [YTR22]. This means that in the context of e.g. rare events calculation, no data is
needed but only the knowledge of the governing equations. All the computational burden is on the minimization
of ad-hoc cost functionals parametrized by FFNNs. It is noteworthy that our approach is sufficiently general to
handle other type of eigenvalue problems involving e.g. higher-order derivatives, provided the eigensolutions
have enough regularity.

2. Ruelle-Pollicott (RP) resonances in higher dimensions

2.1. Context. The eigenvalues of the Kolmogorov operator (1.1) are also known as the Ruelle-Pollicott (RP)
resonances [CTDN20]. These are encountered in many branches of physics (scattering resonances, statistical
mechanics) and mathematics (zeta functions, dynamical systems); e.g. [Rue86, Pol86, Bal00, Gas05, FS11,
LM13, CAM+13, GLP13, DZ19].

For deterministic systems whenQ = 0 in (1.1), these resonances correspond to the eigenvalues of the transfer
operator [SHD01] or its adjoint, the Koopman operator [BMM12]. They characterize fundamental properties of
dynamical systems, such as power spectra, mixing properties and decay of correlations [Pie94, Bal00, MG07,
BMM12, LM13, EFHN15], coherent structures [FPET07, BMM12, Fro13, FPG], metastability [MS81, SS13,
Pav14], critical slow down [TvdBD15, TLLD18] or sensitivity to perturbations [CNK+14, Luc16, SGL20].
Recently, RP resonances of stochastic systems [CTDN20, TCDN20] have shown their usefulness in the design
of stochastic parameterizations to solve challenging closure or data-driven model discovery problems issued
from geophysical turbulence; see [CLM21, SGLCG21, KCB18].

Different methods that have been developed over the last decades to compute RP resonances from finite-
dimensional data-driven approximations of these infinite-dimensional operators, suffer from the curse of di-
mensionality. This is the case for instance of methods rooted in the Ulam’s approach. There, the underlying
transfer operator is approximated by Markov matrices giving an estimation of the transition probabilities from
many short-term trajectories or a single long-term trajectory; see [DJ99, SFHD99, SHD01, FLQ10, CNK+14,
TvdBD15, KNK+18, CTDN20, TCND20]. Alternative approaches based on the infinitesimal generator while
avoiding brute-force trajectory calculations, suffer from the same dimensionality restrictions as exploiting
discretization and spectral collocation methods [FJK13].

In parallel, the extended dynamicmode decomposition (EDMD) has been proposed as an alternative approach
to approximate the spectral elements of the Koopman operator from multiple short bursts of simulation data
[WKR15]. The EDMD improves upon the classical dynamicmode decomposition (DMD) [RMB+09, Sch10] by
the inclusion of a flexible choice of dictionary of observables to enrich the diversity of the spanning elements of
the finite dimensional subspace from which the Koopman operator is approximated. Although the convergence
of the EDMD has been established, applying the method in practice requires a careful choice of the observables
to improve convergence towards Koopman’s eigenfunctions with just a finite number of elementary bricks
[TRL+14, WKR15].

This is especially difficult to achieve for high-dimensional and highly nonlinear systems. In this case, the
appropriate choice of observables remains a challenge. Due to the presence of Koopman eigenfunctions with



4 E. SIMONNET AND M. D. CHEKROUN

arbitrarily complex structures, it may involve a large basis set to adequately represent them and their typical
sharp gradients lying over the dynamics’ separatices or unstable manifolds. Such features call for dictionaries
that are often manually curated, requiring problem-specific knowledge and painstaking tuning.

More recently, iterative approximation algorithms which couples the EDMD approach with a trainable
dictionary represented by an artificial neural network have been proposed to address this issue; see e.g. [LDBK17,
YKH19]. These machine-learning improvements of the EDMD enhances in essence the applicability of EDMD-
based algorithms to approximate the spectral elements of the Koopman operator, from simulated data. The
basic idea is to lift measurements to a higher-dimensional space where nonlinear problems tend to become more
linear due to higher-dimensional embeddings (Cover’s theorem [MMR97, LBK21]). Alternatively, autoencoder
networks have been proposed to approximate Koopman eigenfunctions [LKB18]. The advantage is that of a
low-dimensional latent space, which may promote interpretable solutions.

In spite of the great promises of these data-informed approaches and their recent deep learning directions,
still open questions remain about how the choice of observables impacts the computation of the spectrum
[BBKK21]. Even with the choice of “good” observables, the question of feeding the right regions of the phase
space with the right amount of data constitute another practical barrier in applications. This is for instance the
case of metastable systems perturbed by a small noise for which the proper sampling of rare events constitute
an intrinsic challenge, especially in high dimension [BRS19].

Instead, we present below a simulation-free approach, attacking directly the computation of eigenfunctions
of the Kolmogorov operator without relying on data but rather exploiting its differential formulation whose
coefficients depend on the governing equations.

2.2. Eigenmodes ofN -dimensional Kolmogorov operators. Thus, we consider Kolmogorov operators given
in Eq. (1.1) that we rewrite in coordinate form,

Kε = εqij(x)∂i∂j + F i(x)∂i, ∂i = ∂/∂xi, (2.1)

where the summation is taken over all repeated indices, and ε > 0 is a small parameter.
To simplify the presentation, we restrict ourselves to the case of the N -dimensional torus M = (−π, π)N ,

but our approach can be easily adapted to Kolmogorov operators on more general manifolds and with other
boundary conditions.

We consider the Hilbert inner product 〈a, b〉 =
∫
M ab̄dx with L2-norm ‖a‖ =

√
〈a, a〉, and the Rayleigh

quotient,

Rq =
〈Kεφ, φ〉
‖φ‖2

, Rq ∈ C. (2.2)

Solutions to the eigenvalue problem
Kεφ = λφ, (2.3)

satisfies ‖Kεφ− λφ‖ = 0. A natural way is therefore to minimize this norm with respect to φ and λ. Although
perfectly valid, we propose an alternative approach which is equivalent and avoid having to handle in a separate
fashion λ and φ by noting that λ = Rq(φ), once φ is an eigenfunction. In that respect, let us first remark
that ‖Kεφ− λφ‖2 = ‖Kεφ‖2 − |Rq|2 ‖φ‖2. Naturally we also impose a norm constraint on the solution, here
‖φ‖ = 1. Let µ be a user-defined complex number. We then consider the following cost functional:

Cµ(φ) = γcs

Cs(φ)︷ ︸︸ ︷(
‖Kεφ‖2

‖φ‖2
− |Rq|2

)
+γn(‖φ‖2 − 1)2

+γbc Cbc + γQ |Rq − µ|2 .

(2.4)

The first term, Cs(φ), is always positive by the Cauchy-Schwarz inequality and is zero if and only if φ is a
solution of (2.3), the second term normalizes the squared norm to be one, and the third term accounts for the
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boundary conditions. Here,

Cbc =

N∑

`=1

‖φ(· · · , x`, · · · )− φ(· · · , x` + 2π, · · · )‖H1(M) , (2.5)

where ‖·‖H1(M) denotes the norm of the Sobolev space on the torus; see [Bré11, Chap. 9]. The last term
|Rq − µ|2 constrains the eigensolution to stay in a particular user-defined region of the complex plane C. As
mentioned above, points in the domain are sampled randomly so that, in the course of optimizing (2.4), the
solution does not depend upon a coordinate mesh.

The cost functional Cµ(φ) given in Eq. (2.4) is minimized by means of FFNNs (see Material & Method)
according to the following two-step procedure:

S1. Initial training of the NN. It amounts to impose the NN-minimizer to have (i) a large enough L2-norm
and (ii) a Rayleigh quotient close enough to the targeted complex value µ. This translates into having
the coefficients γn and γQ to dominate the other penalty parameters.

S2. Find the eigenpair (λ, φ) with λ closer to µ. Once the NN has reached a statistical equilibrium, the
NN-minimizer is relaxed by setting γQ = 0, while continuing the descent of the cost functional Cµ(φ).
This can be done abruptly like in this work or gradually.

Step S1 must be thought as an optimal initialisation of the NN parameters for searching eigenfunctions having
eigenvalues close to µ. It is therefore necessary to check whether the NN actually converges or not, given
the state reached from Step S1. It might happen for instance that the NN can drift away, sometimes to
another eigenfunction, sometimes to some less relevant place of the landscape, e.g. towards the trivial constant
eigenmode with eigenvalue λ = 0. It is therefore a good practice to reduce the training rate during Step S2.

2.3. The multivalued deep learning of eigenstates. This approach extends naturally to the case of the si-
multaneous computation of multiple and distinct eigenpairs. The generalization consists then simply to form a
new cost functional obtained by summing up the cost functionals Cµ(φ) over a few targeted µ’s. Steps S1 and
S2 above are then followed, and at the end of the procedure, a single but multivalued FFNN is learned with a
dimension output matching the number of targeted µ’s.

More precisely, we solve the following optimization problem

min
Φ(·,θ)

N∑

j=1

Cµj ([Φ(·,θ)]j), (2.6)

in which [Φ(·,θ)]j denotes the jth component of the multivalued NN’s output Φ(·,θ); see Fig. 8 in Material &
Method. Here, the real (resp. imaginary) part of [Φ(·,θ)]j is aimed at approximating the real (resp. imaginary)
part of an eigenmode φj whose eigenvalue λj is the closest to µj . During the decent, the penalty parameters
γQj for which the Rq have first converged, are successively turned to zero.

Noticeable practical advantages are drawn from the usage of a single multivalued NN to compute several
eigenmodes simultaneously. Indeed, not only this approach is simpler to implement than a counterpart that
would consist of operating successively Steps S1-S2 for distinct µ’s, it leads to eigenmodes approximated in a
much faster way. The reason lies in a higher discriminant learning capability in this simultaneous, multiple-target
setting, compared to the single-target setting. In fact, since in the single-target setting the convergence depends
on the targeted eigenmode with convergence faster for certain modes than for others, in the multiple-target
setting those that are found with fast convergence help constrain the FFNN to learn the others with less efforts.

This property can be interpreted as an intrinsic source of parallelism: it is likely faster to use a single NNwith
a multivalued output layer–one component per eigenmode to be approximated—rather than several independent
scalar-valued NNs. We do not know however what is a reasonable upper bound of the size of the output layer,
i.e. how many eigenmodes can be computed simultaneously by this approach.
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Finally, we mention that such a multivalued deep learning of eigenmodes allows for avoiding fastidious
grid search in the complex plane when e.g. no spectral estimates are available by instead sampling randomly
initial Rayleigh quotient values. The efficiency of such an approach is illustrated below on a 10-dimensional
Kolmogorov eigenproblem.

2.4. RP resonances of N -dimensional stochastic mixing flows. We address in this section the computation
by our NN-solver of RP resonances associated with a stochastic mixing flow on the 10-dimensional torus. The
later is a stochastic perturbation of a 2-D Stepanov flow [Oxt53], embedded within a 10-dimensional stochastic
flow on the torus. The 2-D embedded flow (variables x1 and x6) forces the other eight variables but not
reciprocally; see (A.2) in Material & Methods. It is an instance of a one-way coupled system. Of course such a
construction is somehow artificial but provides at the same time a dynamically challenging benchmark in terms
of Kolmogorov spectrum. We explain why.

First, recall that deterministic Stepanov flows are prototypes of flows that are topologically mixing on the
torus [Oxt53], that exhibit already for 2-D flows a complicated temporal variability; see Fig. 1 below. In this
case, a non-trivial arrangement of the RP resonances is expected in the complex plane [CTDN20, Sec. 2.3]
associated with eigenmodes of singular structures exhibiting many sharp gradients distributed over thin confined
regions, reminding those of a strange eigenmode [Pie94]. Such complicated structures although smoothed out
by noise, are expected to survive to a certain degree in small-noise regimes. Already in 2-D, these structures
are hard to approximate by Ulam’s methods, requiring in particular a large amount of data to resolve the modes’
fine structures [FGTW16].

Figure 1. Panel A: A (segment of a) trajectory of the 2-D deterministic Stepanov flow solving (2.8) on the torus.
The unstable fixed point is shown by a red dot. Panel B: Same when (2.8) is perturbed by an additive white noise
ε(Ẇt

2
, Ẇt

6
), with ε = 10−2. In both cases, α =

√
20. Panel C: Power spectra of these flows (x1-variable); blue

for deterministic flow, brown for the stochastic flow. Note that the noise smooths out the multiple bumps exhibited
in the deterministic case.

These difficulties get severely amplified in dimensions higher than two. However, due to the one-way coupling
in (A.2), a useful, low-dimensional characterization of certain eigenmodes of the 10-D Kolmogorov operator
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associated with (A.2), allows for testing our NN-solver’s ability in resolving these issues. The proposition below
summarises this point, whose proof is a simple exercise.

Proposition 2.1. Let y = (x1, x6) and z = (xj)j∈I with I denoting the set of the first 10 positive integers
to which {1, 6} is substracted. Let us write the Kolmogorov operator Kε associated with the 10-D stochastic
system (A.2) as

Kε = ε∆y,z + F1(y) · ∇y + F2(y, z) · ∇z, (2.7)
where F2(y, z) denotes the drift part in the RHS of (A.2) associated with the z-variable and where F1(y)
denotes the 2-D vector field associated with the 2-D Stepanov system:

ẋ1 = α(1− cos(x1 − x6)) + (1− α)(1− cosx6)
ẋ6 = α(1− cos(x1 − x6)).

(2.8)

Then the spectrum of Kε contains eigenfunctions of the type (φ2D(y), c), for any scalar c, where φ2D denotes
any eigenfunction of the 2-D Kolmogorov operator

Ky
ε = ε∆y + F1(y) · ∇y. (2.9)

The goal is thus to test whether our NN-solver is able to recognise the 2-D embedded patterns in they-variable
exhibited by such eigenmodes of the 10-D Kolmogorov operator Kε, in spite of the nonlinear coupling terms
contained in F2. In that respect, the 2-D patterns found by our NN-solver are benchmarked against the genuine
2-D eigenmodes obtained by solving the Kolmogorov eigenvalue problem associated with (2.9) using a standard
method. Here, these 2-Dmodes are obtained over a 200×200 finite-difference using a power iteration algorithm
for ε = 10−1. Finer resolutions are considered below for smaller ε.

The results shown in Fig. 2 demonstrate a striking success for the eigenmodes computation viaminimization of
(2.4) by using simple FFNNs. Not only the correct eigenmodes’ patterns are found but also the two-dimensional
feature of these modes are inferred, whether they are the dominant ones i.e. close to the imaginary axis, or
not. In that respect, the underlying FFNN is able to identify on its own the essential variables governing the
dynamics here x1 and x6, and the eigenmodes associated with these variables. Such attributes are particularly
relevant for dimensionality reduction, and will be discussed elsewhere. We focus next on another important
challenge for applications, namely situations that are closer to the zero-noise limit.

2.5. Approaching the zero-noise limit. We illustrate here that our framework allows for the computation of
eigenmodes close to the zero-noise limit, and located “deep” into the spectrum. Typically, the smaller ε is, the
harder the computation of such an eigenmode gets, even in low dimension, as mentioned above. The reason is
that already for basic normal forms perturbed by noise (e.g. pitchfork, Hopf) the limit is singular and in many
instances the Liouville eigenmodes (ε = 0) do not exist in a classical sense. They become Schwartz distributions
and must be considered against smooth test functions/observables [GT01, Gas02, TCDN20]. The case of a 1-D
pitchfork bifurcation is in that respect very informative. In this case, the eigenmodes are singular as involving
the first derivatives of Dirac’s distributions supported by the unstable equilibria [GNPT95].

For instance, by minimizing adiabatically (2.4) for the full 10-D Kolmogorov operator Kε with ε = 5×10−3,
our NN-solver is able to recover the 2-D embedded eigenmode’s fine structures; cf. Fig. 3-(d). The latter is
obtained as eigenmode of the 2-D operator (2.9) using a power iteration algorithm that exploits a high-resolution
2000 × 2000 grid. Noteworthy is the much lower amount of parameters of the NN’s architecture to achieve
success here, namely about 17,000 parameters.

The thin and stretched structures encompassing a blue bulb-like pattern located around the unstable equi-
librium in the center of Fig. 3-(b) are actually intimately related to the topological mixing properties of the
unperturbed flow. Although the deterministic Stepanov flow is ergodic, it has been indeed numerically observed
that a very long integration time is necessary for the dynamics to fill a small neighborhood of the unstable
equilibrium (not shown). Over finite-time integrations, this phenomenon is accompanied by a dynamics’ or-
ganization along “strips” of variable densities (see Fig. 1-(A)), before reaching uniformity in the asymptotic
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Figure 2. Four eigenmodes of Kε given by (2.7) for ε = 0.1 and associated with the 10D stochastic Stepanov
flow (A.2). These are obtained by minimizing (2.6) using simultaneous multivalued deep learning. Only the
moduli are shown for a L2-norm equals to one. The central panel shows the benchmark eigenvalues (blue stars)
and the ones obtained at the end of the learning process (red marks). The lower-left panel shows the total cost
behavior associated with γcs (blue curve) and γbc (green curve). There are three stages. Stage I:
(γcs, γn, γbc, γQ) = (15, 2, 10, 10) imposes the NN to stay within some prescribed region of the complex plane
with learning rate α, and batch size n such that (α, n) = (3 · 10−3, 1024). Stage II:
(γcs, γn, γbc, γQ) = (15, 0.1, 5, 0) corresponds to a relaxation where the NN converges to the nearby
eigensolutions with (α, n) = (10−3, 1024). Stage III is a final “precision run” with a smaller training rate
α = 10−4 and larger batches n = 4096 (same penalisation coefficients). The NN has 14 hidden layers with 25
neurons per layers using swish activation function, resulting into 9,583 parameters. The right panel is the relative
L2-error compared with high resolution 2-D solutions evaluated on each random batches. The mean relative
L2-errors over the last precision run are 0.3% (blue: leading mode shown to the upper-rightmost panel), 2.4%
(black: low-frequency mode shown in the second upper-left), 2.6% (red: mode shown to the upper-leftmost panel)
and 1% (green: mode shown in the second upper-right).

limit. The mode shown in Fig. 3-(b) while located “deep” into the spectrum—corresponding to the green marks
in Fig. 2—is thus still very informative about the weak-noise limit. As ε is further decreased, the landscape
exhibits sharper valleys leading eventually the NN to escape the neighborhood of the targeted eigenmode.

3. Eigenmodes of N -dimensional Schrödinger operators

The next example we consider is inspired from [HLZ20]. It consists of the following N -dimensional
Schrödinger operator with periodic boundary conditions on the box D = [−2, 2]N ,

Lεψ = −ε∆ψ + V (x)ψ, (3.1)

where the potential is given by

V (x) =
N∑

j=1

(
−
x2
j

2
+
x4
j

4
+ cjxj

)
,
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Figure 3. Adiabatic minimization of (2.4) using NN. Starting from the eigenmode shown in Panel (a) for
ε = 0.1 corresponding to the eigenpair marked in green in Fig. 2, we slowly decreases ε during the minimization
of (2.4) on a logarithmic scale; typically in 50, 000 iterations. The eigenmode found this way by the NN for
ε = 5 · 10−3 is shown in Panel (b), for its modulus. The NN’s architecture has 18 layers, 30 neurons, with swish
activation functions. During the precision run, the batch size is n = 4096 with a training rate αr = 10−4. The
2-D benchmark eigenmode has its modulus shown in Panel (d) as obtained by the MKL-Pardiso solver using a
2000× 2000-grid approximation of K(y)

ε given in (2.9). The corresponding eigenvalues are shown on the y-axis
of Panels (a), (b) and (d). Panel (c) displays the mode shown in Panel (b) on the 2-D torus, using another color
coding.

with cj a scalar parameter.
The interest of this example is that the potential V uncouples the variables, and is thus profitable for

benchmark. The full eigenvalue problem reduces indeed to solving N disjoint eigenvalue problems for a 1-D
Schrödinger operator, namely by solvingN -times, −εψ′′k + (−x2

j/2 + x4
j/4 + cjxk) = λkψk. The eigenvalues

λ of Lε are then obtained as sums of the λk, i.e. λ =
∑N

k=1 λk, and the eigenmodes are given as product of the
1-D eigenmodes ψk, namely

ψ(x) =

N∏

k=1

ψk(xk), x = (x1, · · · , xN ) ∈ D. (3.2)

It is this tensorial property that makes interesting to submit to our NN-solver the N -dimensional eigenvalue
problem Lεψ = λψ. This way, one can test whether our framework allows for the NN to learn accurately the
tensorial structure of the eigenmodes given by (3.2). To do so, given an eigeinpair (λ, ψ) obtained via (3.2) and
its NN-approximation (λNN, φNN), it is thus sufficient to compare the ψk’s in (3.2) with the marginals φ̄(k) of
φ, given by

φ̄(k)(xk) =

∫

D
φNN(x1, · · · , xn) dx(k), dx(k) =

N∏

j=1,j 6=k
dxj . (3.3)

To test accuracy, the ψk’s are obtained by solving the corresponding 1-D Schrödinger eigenvalue problems,
using 1000 grid points. The results are shown in Fig. 4 for N = 5, and for an eigenvalue that is located “deep”
into the spectrum, namely the 45th eigenvalue of Lε.
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Figure 4. A 5-D eigenmode (marginals shown) for the Schrodinger operator Lε given in (3.1) with
c = [ 1

2
1 3

2
2 5

2
] and ε = 0.2, “deep” into its eigenspectrum shown in the right panel, here the 45th-eigenvalue

from the rightmost eigenvalue. The exact targeted eigenvalue is λ = 0.203 (red circle in right panel). Its
approximation by our NN-solver is λNN = 0.201. The left panel shows a visual comparison of the NN marginals
φ̄(k) obtained from (3.3) with the ψk (red curves) obtained from a high-precision finite-difference scheme. The
underlying FFNN counts 12 hidden layers and 30 neurons per layer together with swish activation functions,
resulting into 11,371 parameters. The batch size is n = 2048 during the relaxation stage and the ADAM’s
learning rate is 2× 10−3.

4. Gelfand problem: High-dimensional bifurcations

We conclude this article by considering the nonlinear eigenvalue problem, known as the Gelfand problem,
namely (1.3) with f(u) = eu over a compact domain Ω in RN . In the case of the unit ball Ω = B(0, 1), due
to the classical result of Gidas, Ni and Nirenberg [GNN79], every solution to (1.3) is radially symmetric and
radially decreasing. The bifurcation diagram of the Gelfand problem—that provides the dependence on λ of
the solution set to (1.3)—is known to depend on the dimension, with in particular an infinite number of positive
solutions for λ = 2(N − 2), when 3 ≤ N ≤ 9; see [JL73].

In a first step, we benchmark the ability of our NN-solver to learn the radial symmetry of the solutions to
(1.3) and the underlying bifurcation diagram with its first few turning points in dimension N = 3 for the case
Ω = B(0, 1). The challenge is here, for the sake of generality, to do not rely on the radial symmetry which
allows for transforming (1.3) into the 1D-problem

u′′ =
N − 1

r
u′ + λeu, u(1) = u′(0) = 0, (4.1)

satisfied by the profile u(r) = u(‖x‖); see again [JL73].
Rather we aim at attacking the problem frontally in its original formulation (1.3), to confront the ability of

our NN-appraoch to handle the case of “exotic” geometries for which the transformation to (4.1) does not apply.
This is the case of domains exhibiting e.g. cavities that break the symmetry for which much less is known
theoretically with only partial results in special geometry like the annulus [NS94].

4.1. The benchmark case: Ω = B(0, 1) for N = 3. Traditionally, the bifurcation diagram for the Gelfand
problem is shown in the (λ, ‖u‖∞)-plane. By the maximum principle [GT77] every solution to this problem
is positive. By the Gidas-Ni-Nirenberg symmetry result [GNN79], every solution uλ is radial and radially
decreasing and thus its norm, ‖u‖∞, is attained at the center of the unit ball in the case Ω = B(0, 1),
i.e. ‖u‖∞ = u(0).
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It is well-known that there exists an extremal value λ∗ such that the nonlinear eigenvalue problem (1.3) has no
solution, even in a weak sense for λ > λ∗; see [BCMR96]. It is also well-known that the solution set {(λ, uλ)}
forms an unbounded continuum in [0, λ∗) × C2(Ω) that can be parameterized by a scalar τ , with infinitely
many turning points as λ approaches the critical value λs = 2(N − 2), 3 ≤ N ≤ 9; see Material & Methods.
In this case, there exists for λ = λs a singular solution Us(x) = −2 log ‖x‖; see [JL73]. More precisely, for
3 ≤ N ≤ 9, the set of turning points, Tk = (λτk , uλτk ), is infinite and uλτk converges to Us in a weak sense as
k → ∞. As a consequence, the solution uλτk takes large values and develops sharp gradients near the origin
x = 0 as k →∞, which makes extremely difficult the direct numerical computation of the bifurcation diagram
by any standard continuation method for N = 3 as one progresses across and above the turning points. Even if
one uses the problem’s radial symmetry and rely on the 1D-problem (4.1) to compute the bifurcation diagram
by a continuation method such difficulties survive as the solution’s second derivative becomes exponentially
large as k →∞.

To handle such difficulties, Joseph and Lundgren [JL73] proposed an alternative two-step approach in which
the boundary value problem (4.1) is treated by a shooting argument combined with an Emden’s transformation
facilitating a phase plane analysis to infer the bifurcation diagram; see Material and Methods. This approach
does not extend however to situations in which the domain’s symmetry is broken such as considered below.

Thus, to address the bifurcation diagram computation for general situations within a variational approach
suitable to an NN-treatment, we proceeds as follows. A first idea is to set a target value A of the norm ‖u‖∞
and find the corresponding (λ, uλ) by minimizing the cost functional

C(u) = ρg

∫

Ω
|∆u+ λeu|2 dx+ ρ0|u(0)−A|2 + B.Cs, (4.2)

where ρg and ρ0 are positive free coefficients. Denoting by 〈·, ·〉 theL2-inner product, the eigenvalue to be found
is then λ = −〈∆uλ, ϕ〉/〈euλ , ϕ〉 where ϕ can be any reasonable test function (e.g. ϕ = 1). The free parameter
A controls the energy level in the L∞-norm of the solution uAλ that the NN is aimed at approximating. This
parameter plays a similar role than the constraint on the L2-norm for the Stepanov eigenvalue problem, i.e. the
γn-penalty term in (2.4). Also, by setting a few distinct A-values, a multivalued approach may be adopted to
approximate the corresponding “eigenpairs” (λ, uAλ ). Nevertheless, the obtention of good approximations of
uAλ by minimization of (4.2) is becoming more and more challenging as A→∞.

Indeed, the presence of a log-singular solution causes the second-order derivatives of any regular solution uAλ
to scale as O(eA) as

∥∥uAλ
∥∥
∞ = A→∞, near the ball’s center. This phenomenon manifests into a saturation of

the NN ability to approximate correctly these derivatives, and in fine the uAλ with high energy. The problem’s
stiffness encountered in the direct computation of the bifurcation diagram via a continuation method for (1.3)
(or (4.1)) is here transposed into the minimization of an ill-conditioned problem (4.2).

Thus, the idea to revise (4.2) by relying on an Emden-type transformation to “blow-out” the log-singularity.
This idea parallels Joseph and Lundgren’s approach [JL73] albeit in a more general setting; see Material &
Methods. The change of coordinates we retain here is of the form

X =
g(‖x‖)
‖x‖ x, (4.3)

where g is defined by g(r) = c log
(
r
ε + 1

)
with ε > 0 is small, and c is chosen such that g(1) = 1, namely

c = 1/ log(1 + ε−1). Note that g is invertible and given by r = g−1(R) = ε
(
eR/c − 1

)
. This transformation

allows us to map the unit ball onto itself and to alleviate the singular behavior at R = ‖X‖ = 0 in the
minimization of the revised cost functional; see (4.5) below.
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To rewrite the cost functional (4.2) in this new coordinate system, one needs to express the corresponding
Laplacian which takes the form

∆X =

N∑

k=1

∆Xk
∂

∂Xk
+

N∑

i,j=1

∇Xi · ∇Xj
∂2

∂Xk
2 , (4.4)

where ∆Xk and∇Xi involve partial derivatives with respect to x, but expressed in the new coordinates X. The
coefficients in (4.4) are not radial and are moreover singular at X = 0. Exact expressions of these coefficients
are given in Material & Methods.

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

0

5

10

15

Figure 5. Bifurcation diagram obtained in 3-D by minimization of (4.5) using a deep NN, following the steps
(G1) and (G2) (black circles). Along this bifurcation diagram are shown cross-sections in the plane z = 0 of four
solutions obtained this way at the critical value λ = 2 (N = 3), from low- to high-energy. The benchmark red
curve is obtained by using a high resolution 10,000-grid pseudo-arclength code solving the 1-D (radial) problem
(4.1). See Material & Methods for the NN’s configuration.

The Dirichlet boundary conditions on S2 are handled using a simple lift idea. We thus write u(X) =
AΘ(‖X‖)v(X)with Θ(R) = cos(πR/2)for instance. The function v is the one parametrized by our NN. The
usage of this lift makes the problem unconstrained. Combined with the inverse of the transformation (4.3) it
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leads us finally to revise the minimization of (4.2) into the minimization of:

GA(v) = ρg

∫

Ω

∣∣∆X(Θv) + λeAΘv
∣∣2w2(R) dX

+ ρ0|v(0)− 1|2,

with λ = −A〈∆X(Θv), ϕ〉
〈eAΘv, ϕ〉 , ϕ(X) = w(‖X‖).

(4.5)

Here, the function w is chosen to be w(R) = g−1(R). Our minimization of (4.2) is then organized in two
consecutive steps:
(G1) Fix A > 0 and set ρ0 � ρg to enforce the NN-approximation N to satisfy N (0) ≈ 1, while GA � 1.
(G2) Set ρ0 = 0: We relax the NN-approximation to solve only the nonlinear eigenvalue problem.

This approach allows us to compute a large portion of the bifurcation diagramwith high precision. The approach
can be understood as a poor-man continuation approach using previously computed solutions as initial condition
without the need to actually compute the tangent to the branch solution. It enables us nevertheless to reach
high-energy solutions with very sharp gradients near the ball center; see Fig. 5. Of course many other types of
cost functionals exploiting an a priori knowledge (radially decreasing solutions, etc.) could have been imagined
and we do not claim for “optimal choice.”

In comparison, mesh-based methods in 3-D for computing the bifurcation diagram directly from (1.3) would
involve very important resources. We expect that the number of degrees of freedom (e.g. grid size) needed here
would be of order 106. In contrast, our results are obtained with NNs involving about 3000 degrees of freedom.
Of course, in dimension N ≥ 4, no mesh-based method is able to cope with such a problem. We address next
this challenge within our neural network framework.

4.2. The case of domains with holes in dimension N = 4. In the previous case we demonstrated the ability
to compute the bifurcation diagram by exploiting an a priori knowledge on the problem, using a transformation
allowing for smoothing out the singular behavior near the ball’s center. Here, we consider the unit ball in
dimension 4 with cavities that break the radial symmetry and that thus prevent us to use such an an a priori
knowledge. For these domain configurations with f(u) = eu, a few properties are known about the global
shape of the bifurcation diagram, but not about its details. The known features include the existence of a
critical 0 < λ∗ < ∞, a branch of minimal solutions u#

λ in H1
0 (Ω) ∩ L∞(Ω) such that λ 7→ u#

λ is increasing
over (0, λ∗), and that the full solution set {(λ, uλ)} forms an unbounded continuum in [0, λ∗) × C2(Ω); see
[Rab71, Ama76, Lio82, Caz06] and [Che18, Appendix A] for a self-contained expository of the latter point.
Very little is known however about the shape of the solutions that populate such a continuum and if the latter
has, as in the case of the ball in dimension four, many (possibly infinite) turning points.

Our approach allows us to provide the first numerical hints in 4-D in the case Ω = B(0, 1)\Br(xs), where
Br(xs) is the closed ball centred at xs in B(0, 1) of radius r < 1−‖xs‖. Our results show indeed that at least
two turning points exist for this case and that, as in the case of the full ball, the solution becomes more and more
singular as one “climbs” along the bifurcation diagram; see Fig. 6.

These results are obtained by minimizing (4.2) in which the Dirichlet boundary conditions are handled here
again via a lift procedure which consists of using the ansatz u(x) = AΘ(x)v(x) with Θ(x) = cos(π‖x‖2/2)

for computing the branch of minimal solutions u#
λ , and Θ(x) = u#

λ (x), after the first turning point has been
crossed. The reason of changing of lift function after the first turning point is that it enables for encoding the
sharp solutions’ gradients that develop within B(0, 1) near the hole’s boundary. By doing so, the NN-solver is
able to reach a mean-square error of 10−6 on the “internal and external” domain’s boundaries for the solutions
shown in Fig. 6. A comparison with the case of the four-dimensional ball (without hole), shows that the
bifurcation diagram in the case Ω = B(0, 1)\Br(xs) shares a similar shape albeit with a first turning point
stretched to the right; compare blue and red curves in Fig. 6.
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Figure 6. Bifurcation diagram in 4-D for the case Ω = B(0, 1)\Br(xs), i.e. the ball with a hole. This diagram is
obtained by minimizing (4.2). Here xs ∈ B2/3(0) and r = 1/4. The cross-sections in the plane x3 = x4 = 0 of
the solutions marked by 1,2, and 3 on this bifurcation diagram are shown in the left panels marked respectively by
1,2, and 3. As a comparison, the solutions obtained by minimizing (4.2) in the case of the (full) ball Ω = B(0, 1)
are represented by blue dots, while the blue curve is obtained by using a high resolution pseudo-arclength code
solving the 1-D problem (4.1).

Transformations inspired by (4.3) exploiting estimates about the location of the singularity could be used
to reach out higher-energy solutions, but this requires more work. The approach is any way versatile enough
to handle more complex geometries in dimensions higher than three. In that respect, Figure 7 shows 3-D and
2-D sections of a solution to the Gelfand problem in 4-D over a domain with two holes of different size. It
corresponds to a energy-level of type 2, i.e. after the first turning point, shown in Fig. 6 in the case of a single
hole.

5. Discussion and Outlook

Thus, we provided a flexible machine learning framework using simple FFNNs, geared toward high-
dimensional eigenvalues problem of diffusion operators, linear and nonlinear, that are beyond reach with
mesh-based methods. It opens up a wide range of applications and extensions for further research.

For instance, in computer vision problems involving partial shape similarities, it is known that matching
similar regions in 3D can be formulated as an alignment of k eigenvalues of operators closely related to the
Laplace-Beltrami operator (LBO) [RTO+19]. As the number k is getting large (k > 100) to favor a better
shape discrimination, high-precision discretization schemes of the LBO operator are however required to avoid
artifacts related to mesh tessellation; see [RTO+19, Fig. 11]. The NN-approach proposed here allowing for the
simultaneous computation of eigenvalues of such operators, could provide a natural mesh-free remedy to this
problem.



DEEP SPECTRAL COMPUTATIONS 15

x
3

=x
4

=0

-1 -0.5 0 0.5 1

x
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
2

0

0.5

1

1.5

2

2.5

3

3.5

Figure 7. Three-dimensional (left panel) and a two-dimensional (right panel) sections of a solution to the Gelfand
problem in 4-D over the unit ball with two cavities.

As mentioned above, the approach presented here is not limited to second-order differential operators. In that
respect, the computation of bifurcation diagrams for Gelfand-type problems involving the p-Laplacian operator
[JS02] in non spherical geometries and in higher dimensions could be addressed in a similar fashion.

Finally, in the vast topic of light scattering, vector Helmholtz equations with a small parameter or discon-
tinuous coefficients are known to play a prominent role (e.g. polarization) [GG11]. Certain eigensolutions
may exhibit very complicated shapes which require already in 2D intensive computations on a supercomputer
[GD15, Fig. 10] and are out of reach by the traditional series expansions used in the field [GG11, HW12]. We
hope that addressing such Helmholtz problems within our NN-framework could provide an alternative approach
for computing such eigenmodes with much less computational efforts, including in 3D.

In these problems or those considered in this work, the proper handling of eigenmodes’ many possible
sharp gradients over small regions is key to resolve. A natural idea for improving the performance of the
proposed NN-approach consists of adaptively sampling more points in locations where the residual is large or
use generative adversarial neural network to figure out where the NN is likely to be incorrect. We leave these
important practical aspects for future investigations.
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Appendix A. Material and Methods

A.1. Neural network parametrisation. Our neural network model is aimed at mapping the input vector x in RN onto
the vector (φ1(x), · · · , φk(x)), made of k eigenmodes evaluated at x. The sizes of the input and output features is
respectively determined by the dimension N of the ambient space and the number k of eigenpairs (λ, φ) we target to
approximate.

We denote our model output by Φ(x,θ), where θ is the vector of network parameters including weights and biases. In
the case of e.g. the Kolmogorov operator, these are found by solving the optimization problem (2.6) in the case k > 1 and
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by minimizing the cost functional (2.4) in the case k = 1. The derivatives are represented by finite differences on the NN
parameterization.

The neural network processes the input features using a number of layers, each of which combines basic operations
such as affine transformations and element-wise nonlinearities.

There is flexibility in choosing the size of the hidden layers, which is also called their widths, while the number of
layers is called the network depth. Altogether, the depth, width, and design of the layers are referred to as the network’s
architecture. In this article, we work with standard feedforward neural networks (FFNNs).

Thus, our multivalued neural network parametrisation of k eigenmodes to e.g. (2.3), takes the form

Φ(x;θ) = N out ◦ NL ◦ · · · ◦ N 1 ◦ N in(x), (A.1)

with N k(y) = σk(W(k)y + b(k)) and θ = {(W(k), b(k)), 1 ≤ k ≤ L}, L denoting the number of layers. Here ◦
denotes the composition operator. The terms W(k) and b(k) are the aforementioned weight matrices and bias vectors and
can have possible variable sizes. Figure 8 shows a schematic of such a standard FFNN architecture to approximate the
solutions to e.g. (2.3) via minimization of (2.6) in the case k > 1.

It is important to note that the use of the neural network renders the minimization problem (2.6) non-convex. Due to
this property, standard optimisation technics do not operate, even more so when the input dimension becomes large. This
is the reason why stochastic gradient descent algorithms are so popular: there are efficient in filtering out the fine-grained
nonconvex structures, in a statistical sense. Here, a diagnostic is taken only when the NNs have reached some statistical
equilibrium. In essence, stochastic gradient descent is simply the integration through many iterations of a system of the
form θ̇ = −1/p

∑p
k=1∇C(θ, ξk) where ξk are random points distributed according to a given probability measure, C is

the cost functional to minimize, and θ are the NN parameters.

A.2. A quick guide for the practitioner. We provide here several remarks of practical importance. Unlike supervised,
data-based approaches relying on large-dimensional input vectors, in our unsupervised, equation-based approach the
dimension input is much smaller, typically in the rangeO(1–100). Spatial derivatives in the course of the optimisation are
approximated by second-order finite differences with a very small increment of size√εmachine, where εmachine is the machine
precision. The derivatives of NN-parameters are computed with automatic differentiation. The integrals are computed via
simple Monte-Carlo empirical means:

∫
M f(x) dx ≈ 1/N

∑N
k=1 f(xk) where xk are sampled uniformally inside the

domain. Other strategies are possible including adaptiveMonte-Carlo (VEGAS), [Lep78], cubature and quasi-Monte-Carlo
formulas [CDLL20].

The optimization of the NN is prescribed by the choice of ad-hoc hyperparameters. The better this choice, the more
efficient the optimization. There are three classes of hyperparameters which most often couple together in complicated
and sometimes unexpected ways. The first one is the structure of the neural network, which depth, which capacity, which
activation functions? In our case, since we deal with the most simple building blocks (FFNNs), this question is mostly
related to the depth and capacity of the network. The second class is related to the descent algorithm, in particular the
training rate and the batch size and more generally, properties of the descent algorithm itself. The third important class is
composed of all the penalty parameters.

• Training rate. In case it is too small, the descent may occur at an undesirable, too slow pace. On the other hand,
a training rate that is too large drives the NN to display some spurious behaviours (e.g. blow-up). One can this
way identify relatively easily a reasonable range of training rates.

• Batch size. The rule of thumb is that the larger it is, the smaller is the variance. Dealing with large batches has the
drawback to be time consuming. Moreover, one can easily be trapped in unwanted regions of the landscape due
to the small variance. However, in higher dimension, too small batches have the drawback to make the descent
too slow.

• Penalty coefficient. The larger it is, the stiffer is the corresponding part of the cost functional which in turn
imposes to use a smaller training rate. In some situations, it can be tricky to find some relevant ad-hoc range of
values as particularly encountered to handle boundary conditions. This is one of the reasons why a lift procedure
is often preferred at this stage; see Gelfand problem.

• Capacity. In principle, the larger it is, the more accurate is the NN. In practice, however, we tend to favour deep
NNs with a “narrow” capacity. In our experiments, we observed that using a capacity larger by an order than the
effective dimension of the problem is often helpful.
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Figure 8. Schematic of the FFNN architecture used to minimize (2.6), i.e. to deal with the simultaneous
approximation of k eigenmodes to (2.3) in dimension N . Here the input is a point x = (x1, · · · , xN ) in RN and
three hidden layers are represented, each containingm neurons. The k-dimensional output Φ(x,θ) is aimed at
approximating k distinct eigenmodes evaluated at x, i.e. (φ1(x), · · · , φk(x)). Such an architecture is actually
used in practice for the real and imaginary parts of the targeted eigenmodes.

A.3. The 10-D embedded stochastic Stepanovflow. The 10-D embedded stochastic Stepanovflowon the 10-dimensional
torus is written as:

ẋ1 = α(1− cos(x1 − x6)) + (1− α)(1− cosx6) + ε dW 1
t

ẋ2 = sinx7 sinx10 + 2 cos 2x4 − cos(x3 − x5 + x1) + εdW 2
t

ẋ3 = cosx8 sin(x4 + x7)−3 cos 3x5+3 sin(x1 − 2x6)+εdW 3
t

ẋ4 = sinx5 sin(x7 − x6) + 2 cos 2x4+cosx10 cosx1+εdW 4
t

ẋ5 = −2− 2 cosx4 sin 2x2 + cos2 x5 + cos 2x8 + εdW 5
t

ẋ6 = α(1− cos(x1 − x6)) + ε dW 6
t

ẋ7 = 3 cosx7 sin 2x3 − cos2 x2 + cos(x2 − x1) + ε dW 7
t

ẋ8 = 1 + cosx9 sin 2x10 − cos2(x8 − x3) + εdW 8
t

ẋ9 = cosx7 sin 2x6 − cos2 x8 + 2 sinx3 + ε dW 9
t

ẋ10 = sin(2x3−x2)−cos(x10−x6 +x1)+sinx1cosx6+εdW10
t

(A.2)

where theW j
t are mutually independent standard Brownian motions and α, ε > 0.

A.4. Gelfand problem in the radial case: Joseph & Lundgren treatment. We recall here the phase plane method of
[JL73] to study the bifurcation diagram of the nonlinear eigenvalue problem (4.1) allowing us to conclude easily to the
existence of infinitely many turning points approaching a singular solution. First, consider the associated initial value
problem (IVP) u′′ = N−1

r u′ + λeu, where u(0) = a and u′(0) = 0, with, a, a free parameter to be found such that
u(1) = 0. Then, every solution to this IVP is obtained via the following Emden’s transformation:

u(r) = w(t)− 2t+ a, r =

√
2(N − 2)

λea
et,

in which w solves w′′ + (N − 2)w′ + 2(N − 2)(ew − 1) = 0. A phase plane analysis of this problem reveals that
(w,w′) = 0 is a stable focus for 3 ≤ N ≤ 9, with eigenvalues given by 2µ = −2−N ± i

√
(N − 2)(10−N). Note that

u(1) = 0 translates to w(τ)− 2τ + a = 0 which is equivalent to find τ such that w(τ) = ln(λ/2(N − 2)). Now since the
orbit O(t) = (w(t), w′(t)) is spiralling towards 0, we find at least k solutions (for any k) for λ close enough to 2(N − 2),
and infinitely many when λ = 2(N − 2).
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The orbit O(t) crosses the w-axis infinitely many times. One denotes by τk the crossing times for which w′(τk) = 0.
Then w(t) achieves either a local maximum or minimum at t = τk, and the Tk = (λτk , uλτk ) corresponds to the turning
points mentioned in the Main Text.

A.5. Gelfand problem: Neural network configuration. In the case Ω = B(0, 1) for N = 3, the minimization of (4.5)
following steps (G1) and (G2) has been operated by means of FFNNs with 12 hidden layers with 15 neurons for each layer
giving rise to 2956 free parameters. The activation functions are swish [RZL17] except for the output layer. The batch size
has 512 points uniformly distributed on the 3-D unit ball (after the blow-up transformation (4.3). The descent is executed
using ADAM with a learning rate between 5 · 10−4 and 10−4 depending on the value of A: typically, the larger A, the
smaller the training rate. In step (G1), the penalisation coefficients are ρg = 10 and ρ0 = 50. The parameter A has been
varied from A = 0.1 to A = 14 to obtain the results shown in Fig. 5. The parameter ε in (4.3) is chosen to be ε = 10 on
the branches below the second turning point, ε = 10−2 on the branch right below the third one, and ε = 10−3, after.

A.6. Gelfand problem: Radially-scaled change of coordinates. We provide here for the reader’s convenience, the
change-of-variable formulas used for transforming theGelfand problem. By introducingX = X(x), withX(x) sufficiently
smooth, we have trivially

∆X =

N∑

k=1

∆Xk∂k +

N∑

i,j=1

(∇Xi · ∇Xj) ∂ij ,

where ∆ and ∇ are taken with respect to x.
Assume that

X(x) =
g(r)

r
x, with r = ‖x‖ ,

with g some smooth invertible function of the real line. In this case, the inverse transformation is trivially given by

x =
g−1(R)

R
X, with R = ‖X‖ .

Then, by introducing R = g(r), r = f(R) (i.e. f = g−1), we get after simplifications that

∇Xi · ∇Xj =

(
1

R2(f ′(R))2
− 1

f2(R)

)
XiXj + δij

R2

f2(R)
. (A.3)

Similarly, by expressing the 2nd-order derivatives of the variable Xi = (g/r)xi, we arrive at

∆Xi =
g′′

r
xi +

N − 1

r

(g
r

)′
xi.

Thus, we have that:
• In coordinates xi with ()′ denoting d/ dr:





∆Xi =
g′′
r xi + N − 1

r

(
g
r

)′
xi

∇Xi · ∇Xj =

(
g′2

r2
− g2

r4

)
xixj + δij

g2

r2
,

with r = g−1(R) = f(R) and xi = (f(R)/R)Xi.
• In coordinates Xi with ()′ denoting d/ dR, we have:





∆Xi = − f ′′

f ′3R
Xi + N − 1

Rf ′

(
R
f

)′
Xi

∇Xi · ∇Xj =

(
1

f ′2R2 − 1
f2

)
XiXj + δij

R2

f2
.
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