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Neural parameterizations and closures of climate and turbulent models have raised a lot of interest in recent
years. In this short paper, we point out two fundamental problems in this endeavour, one tied to sampling issues
due to rare events, and the other one tied to the high-frequency content of slow-fast solutions which constitute
an intrinsic barrier to neural closure of such multiscale systems. We argue that the atmospheric 1980 Lorenz
model, a truncated model of the Primitive Equations—the fuel engine of climate models—serves as a remarkable
metaphor to illustrate these fundamental issues.

I. INTRODUCTION

Atmospheric and oceanic flows constrained by Earth’s rota-
tion satisfy an approximately geostrophic momentum balance
on larger scales, associated with slow evolution on time scales
of days, but they also exhibit fast inertia-gravity wave oscilla-
tions. The problems of identifying the slow component (e.g.,
for weather forecast initialization [1–4]) and of characterizing
slow-fast interactions are central to geophysical fluid dynam-
ics, and the former was first coined as a slow manifold problem
by Leith [5]. The L63 model [6] famous for its chaotic strange
attractor is a paradigm for the geostrophic component, while
the L80 model [7] is its paradigmatic successor both for the
generalization of slow balance and for slow-fast coupling.

The explosion of machine learning (ML) methods provides
an unprecedented opportunity to analyze data and accelerate
scientific progress. A variety of ML methods have emerged
for solving dynamical systems [8–10], predicting [11] or dis-
covering [12] them from data. For larger scale problems,
much effort has been devoted lately to the learning of neural
subgrid-scale parameterizations in coarse-resolution climate
models [13] but yet the lack of interpretability and reliability
prevents a widespread adoption so far [14, 15].

In parallel, the learning of stable neural parameterizations of
small scales or neglected variables has progressed remarkably
for the closure of fluid models in turbulent regimes such as
the forced Navier-Stokes equations or quasi-geostrophic flow
models on a β-plane; see [16–20].

Nevertheless, the case of the Primitive Equations (PE) has
its mysteries yet untouched by neural parameterizations. This
study is aimed at pointing out potential challenges that one
may have to face for the efficient neural closures of the PE. To
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do so, the L80 model, a truncated model of the PE, serves as a
remarkable metaphor to illustrate some fundamental issues in
this task, as explained in this article.

At small Rossby numbers, the solutions to the L80 model
remain entirely slow for all time (i.e. dominated by Rossby
waves) whereas fast oscillations get superimposed to such slow
solutions as the Rossby number is further increased. Such
a spontaneous emergence of fast oscillations, tied to inertia
gravity waves (IGWs) evolving on top of the slow geostrophic
motion, complicate severely the closure problem [21, 22].

Regimes with a multiscale mixture of slow and fast dy-
namics without timescale separation are not only intimate to
the L80 model. They have been observed in PE models ac-
counting for a greater amount of multiscale interactions as
conspicuously generated by fronts and jets [23, 24], and in
cloud-resolving models in which large-scale convectively cou-
pled gravity waves spontaneously develop [25]. Regions of
organized convective activity in the tropics generate also grav-
ity waves leading to a spectrum that contains notable contribu-
tions from horizontal wavelengths of 10 km through to scales
beyond 1000 km [26] and such IGWs have been also identified
from satellite observation of continental shallow convective
cumulus forming organized mesoscale patterns over vegetated
areas [27].

In fact, IGWs can be energetic on surprisingly large scales.
For instance, in certain regions of the oceans too, Rocha et al.
have shown in [28] that IGWs can account for roughly half of
the near-surface kinetic energy at scales between 10 and 40
km. Thus, geophysical kinetic energy spectra can exhibit a
band of wavenumbers within which waves and turbulence are
equally energetic. A painful consequence of this length-scale
overlap is that perturbation methods such as that of Wentzel,
Kramers, and Brillouin (WKB) [29] do not apply to all scales
[30].

In the L80 model, regimes with time-scale overlap in which
the solutions exhibit a mixture of slow motion punctuated by
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bursts of fast IGWs containing a large fraction of the total
energy (referred to as high-low frequency (HLF) solutions)
were shown to be responsible for a severe breakdown of slaving
relationships [21], that occurs at large Rossby numbers.

Only recently, the generic elements for solving such hard
closure problems with a lack of timescale separation, have
been identified [22]. Key to its solution is the Balance Equation
(BE) manifold [31, 32] as rooted in the works of Monin [33],
Charney and Bolin [1, 34], and Lorenz [35]. The BE manifold
has been shown to provide, even for large Rossby numbers, the
slow trend motion of HLF solutions that optimally averages
out the fast oscillations [21, 36], while the fast motions can
be efficiently modeled by means of networks of stochastic
oscillators [22].

In this article we emphasize the fundamental issues encoun-
tered by neural networks to parameterize unequivocally the
slow balance motion and restore the fast oscillations. The
drawbacks shown by neural parameterizations of the L80 slow
motion are discussed in Sec. II. In particular, the sensitiv-
ity displayed by the learnt neural parameterizations is shown
to be attributed to rare event statistics in Sec. III. Finally,
the issues met by neural networks to learn both the slow and
high-frequency content of the L80 model’s solutions and its
damaging consequences for closure, are then pointed out in
Sec. IV.

II. LEARNING SLOW NEURAL CLOSURE: SENSITIVITY

The L80 model, obtained by Lorenz in [7] as a nine-
dimensional truncation of the PE onto three Fourier modes
with low wavenumbers, can be written as:

ai
dxi

dt
= −ν0a

2
ixi − c(ai − ak)xjyk + c(ai − aj)yjxk

+ aibixjxk − 2c2yjyk + ai(yi − zi),

ai
dyi
dt

= −akbkxjyk − ajbjyjxk + c(ak − aj)yjyk

− aixi − ν0a
2
i yi,

dzi
dt

= g0aixi − bkxj(zk − hk)− bj(zj − hj)xk

+ cyj(zk − hk)− c(zj − hj)yk − κ0aizi + Fi,

(1)

whose model parameters are described in [7, 21].
The above equations are written for each cyclic permuta-

tion of the set of indices (1, 2, 3), namely, for (i, j, k) in
{(1, 2, 3), (2, 3, 1), (3, 1, 2)}. The model variables (x,y, z)
are amplitudes for the divergent velocity potential, stream-
function, and dynamic height, respectively.

In this model, the square root of the constant forcing F1

can be interpreted as the Rossby number; see [32] and [21,
Eq. (2.4)]. Transitions to chaos occur as the Rossby num-
ber Ro is increased [21, 32]. As mentioned above, at small
Rossby numbers, the solutions to the L80 model are dominated
by Rossby waves and thus remain entirely slow for all time. As
identified in [21], when the Rossby number is further increased
beyond a critical Rossby number Ro∗, fast IGW oscillations
emerge spontaneously and are superimposed on the slow com-
ponent of the solutions. For such regimes, the aforementioned

BE manifold on which balanced solutions lie [21, 31, 32] is
no longer able to parameterize fully the L80 dynamics since
a substantial portion of it, associated with the IGWs, evolves
transversally to the BE manifold [22, Fig. 3]. These regimes
with energetic bursts of IGWs lie beyond the parameter range
explored by Lorenz in his original 1980 article [7] and beyond
other regimes with exponential smallness of IGW amplitudes
as studied in subsequent Lorenz 86 models [37–40] and the
full primitive equations [41] at smaller Rossby numbers [42].

The HLF solutions considered in this study are obtained for
such a critical parameter regime where Ro > Ro∗. They cor-
respond to those of [22, Fig. 7]); see Appendix A for details.
We first analyze the ability of neural parameterizations to learn
the slow motion of the L80 dynamics in the HLF regime. To
do so, we preprocess the target variables x and z to be pa-
rameterized by applying a low-pass filter in order to extract
the slow motion. In that respect, a simple moving average is
adopted with a window size equal to TGW , the dominant pe-
riod of the gravity waves. The results are shown in Fig. 1A for
the z3-variable for which we observe that the low-pass filtered
solution almost coincides this way with the BE parameteriza-
tion zBE(t) = G(y(t)) with y(t) denoting the y-component
of the HLF solution to the L80 model.

Exploiting the structure of the L80 model, the BE manifold
as built in two consecutive steps—first parameterizing z as a
function G of y and then x as a function of y and G(y)—
was shown to provide very good closure skills for a wide
range of parameter regimes [32]; see Appendix B and [21]
for details. To benefit from this a priori knowledge and to
favor comparison with the BE manifold, we thus parallel this
BE manifold construction to learn our NN parameterizations.
In that respect, we first learn a neural parameterization of z
in terms of y and then learn a neural parameterization of x
that is conditioned on the former. In that respect, a multilayer
perceptron (MLP),Zθ, is learnt withy as input and the filtered
z-variable as output (see (2)). Once this MLP is learnt, a
subsequent MLP, X θ, is learnt with (y,Zθ(y)) as input and
the filtered x-variable as output.

The structure of our MLPs is standard. Each neural param-
eterization, e.g. z in terms of y, is sought by means of an MLP
with L hidden layers of p neurons each. It boils down to find

Zθ(y) = Nout ◦ NL ◦ · · · ◦ N1 ◦ Nin(y), (2)

in which Nin (resp. Nout) constitute the input (resp. output)
layer, while Nk is a mapping from Rp (the space of neurons)
onto itself, given by Nk(ξ) = Ψk(Wkξ+bk) (ξ in Rp) where
Ψk is a p-dimensional elementwise function, i.e. a function that
applies a (scalar) activation function to each of its inputs in-
dividually, and the Wk and bk denote respectively the weight
matrices and bias vectors to be learnt. In (2), the subscript θ
denotes the collection of these parameters. In this work, the
nonlinear activation function is a simple tanh function, and
the input and output layers consist just of linear normalization
and reversal operations. It turns out that NNs with one hidden
layer and 5 neurons are sufficient to obtain loss functions with
a small residual; see Table I.

Based on our approach paralleling the BE manifold con-
struction, we learn our neural parameterizations for the L80
model, through the following consecutive minimizations.
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FIG. 1: Panel A: Illustration, for the z3-variable, of the BE manifold’s ability in capturing the L80 model’s slow motion. See [32] and Appendix B for a
derivation. Panels (B) and (C): Neural parameterizations X 3

θ for the x3-variable, as learnt through random selection (NN1)/predefined selection (NN2).
Visualized here as mappings from (y1, y2) onto the unit sphere in R3. Panels (D): Same visualization adopted for the BE manifold. Panels (E):
High-frequency residual ENN1 (t) for x3 (black) given by (5) and its difference with ENN2 (t) (red).

TABLE I: Loss function evaluations for two neural networks. The loss functions (3) for z and (4) for x, are minimized using two neural networks, NN1 and
NN2 providing each a parameterization (Zθ ,Xθ), differing only in the way the training, validation, and testing sets are selected. In each case, the aspect ratios
between these sets are the same.

Epochs 10 50 100 300 500 1000
NN1 loss for z (random) (×10−3) 11.17 9.26 9.26 9.26 9.26 9.26

NN2 loss for z (predefined) (×10−3) 13.70 10.66 9.28 9.05 9.05 9.05
NN1 loss for x (random) (×10−4) 1.76 1.38 1.35 1.33 1.32 1.32

NN2 loss for x (predefined) (×10−4) 1.62 1.37 1.33 1.31 1.31 1.31

First, given a discrete set of time instants tj , one minimizes

Lθ(z;y) =
∑
j

∥∥ztj −Zθ(ytj )
∥∥2 , (3)

in which z is filtered (in time) while y is not, followed by the
minimization of

Lθ(x; (y,Zθ∗
1
(y)))=

∑
j

∥∥xtj−X θ(ytj ,Zθ∗
1
(ytj ))

∥∥2 ,
(4)

with x filtered and where Zθ∗
1

denotes the optimal parame-
terization obtained after minimization of (3). Note that the
use of the unfiltered y-component of the HLF solution albeit
containing fast oscillations, is key for the discovery of a proper
parameterization of the slow motion. For instance, if one re-
places it with a filtered version of y such as shown in Fig. 2A
by the blue curve for y3, the resulting closure fails to capture
the lobe dynamics by producing an unrealistic quasiperiodic
behavior not even reminiscent to a quasiperiodic behavior that
would lie nearby in the parameter space as documented in [32];
see red curves in Fig. 2.

FIG. 2: False quasiperiodicity produced by a slow neural closure. Here,
the slow neural closure Eq. (6) is driven by Zθ and Xθ that are trained
using a low-pass filtered version of y(t) (blue curve in Panel (A)) unlike in
Eq. (6) where the slow neural closures are trained using y(t), unfiltered.

To assess whether a neural parameterization is successful
in capturing the slow motion, we evaluate also the following
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high-frequency (HF) residual

Ej
NN (t) = xj(t)−X j

θ∗
2
(y(t),Zθ∗

1
(y(t))), (5)

in which the xj(t) andy(t) are both unfiltered. For an NN with
small residual, Ej

NN (t) is typically void of slow oscillations
(see Fig. 1E) with mean ⟨Ej

NN ⟩ ≈ 0 for each 1 ≤ j ≤ 3.
Fig. 1 shows such a situation for two NNs, NN1 and NN2, learnt
through different modalities of selection of training, validation,
and testing sets. The learnt neural parameterizations are thus
able to capture, offline, the slow motion as the BE manifold
does. Noteworthy though is to observe that the underlying
manifolds associated with the neural parameterizations exhibit
noticeable differences with the BE manifold. Denoting byX j

θ∗
2

(resp. Zj
θ∗
1
) the jth component of the neural parameterization

of xj (resp. zj) for 1 ≤ j ≤ 3, we embark into plotting its
level sets on a sphere of radius r in order to reveal some of
the geometric attributes associated with X j

θ∗
2

(resp. Zj
θ∗
1
), as

the latter is a scalar field of R3. The interest of doing so is
that for any given radius r, the level set of X j

θ∗
2

(resp. Zj
θ∗
1
)

on the sphere, y21 + y22 + y23 = r2, can be visualized as a 2D
surface that maps e.g (y1, y2) to xj (resp. zj). The results
are shown in Figs. 1B, C and D, for which r = 1. These
visualizations allow us to reveal noticeable differences in the
minimizers (and thus parameterization formulas) whereas the
loss function evaluations differ only by 1% (Table I) and the
difference between their high-frequency residuals is small (see
red curve in Fig. 1E).

These geometric offline differences hide more profound con-
sequences when the neural parameterizations are used online,
for closure. As explained below, the sensitivity of online pre-

dictions that are tied to sampling issues is indeed observed.
In that respect, recall that a common practice to train NNs is
to divide the dataset into three subsets. The first subset is the
training set, which is used for computing the loss function’s
gradient and updating the network weights and biases.

The second subset is the validation set. It corresponds to
the second dataset over which the prediction skills of the fit-
ted model are assessed. The error on the validation set is
monitored during the training process to provide an unbiased
evaluation while tuning the model’s hyperparameters. When
the network begins to overfit the data, the error on the valida-
tion set typically begins to rise after an initial decrease. The
network parameters are saved at the minimum. It gives then
the ”final model” that is tested over the test set that is typically
a holdout dataset not used as a validation nor a training set.

The parameterization NN1 shown in Fig. 1A is learnt
through a random selection while NN2 through a predefined
selection. In each case, ratios for training, testing, and vali-
dation are 0.7, 0.15, and 0.15, respectively. The total length
of the training is 700 days. Given the same input and target
data, the minimal values of the loss functions (3)-(4) for NN1

and NN2 are reported in Table I, across epochs. Already after
500 epochs, one observes that the loss function evaluations
differ only by 1% between the random or predefined selection
protocol of the training, validation, and testing sets.

We now discuss the sensitivity issue of online predictions
driven by such neural parameterizations close in terms of their
loss function evaluation. This point is illustrated in Fig. 3.
There, we show online prediction corresponding to a given
slow NN-parameterization (X θ∗

2
,Zθ∗

1
) learnt by minimiza-

tion of the loss functions (3)-(4), namely the solution to the
slow neural closure

ai
dyi
dt

= −akbkX j
θ∗
2
(y,Zθ∗

1
(y))yk − ajbjyjX k

θ∗
2
(y,Zθ∗

1
(y)) + c(ak − aj)yjyk − aiX i

θ∗
2
(y,Zθ∗

1
(y))− ν0a

2
i yi, (6)

which is obtained by replacing the xℓ in the y-equation of the
L80 model by its neural parameterization, either NN1 or NN2.

The attractor corresponding to the slow NN1-closure (with
random selection) differs clearly from that of slow NN2-
closure (with predefined selection) in spite of convergence
and closeness of the loss functions at their respective minimal
value; see Fig. 3B. Both predict periodic orbits with different
attributes, one self-intersecting in the (y2, y3)-plane (NN1),
the other without intersection point (NN2).

A closer inspection at these topological differences reveals
in the time domain that the slow NN1-closure is able to capture
more accurately the low-frequency content of certain temporal
patterns exhibited by the HLF solutions of the L80 model com-
pared to the slow NN2-closure; blue vs red curves in Fig. 3A.
We argue next that such a sensitivity between online solutions
takes its root in the rare events tied to the irregular transitions
exhibited by the HLF solutions to the L80 model that spoils
the offline learning.

In contrast, at lower Rossby numbers, for regimes devoid of
fast oscillations such as shown in Fig. 4D below corresponding

to F1 = 6.97 × 10−2 in the L80 model, neural closures of
high-accuracy are easily accessible with skills comparable to
those obtained with the BE manifold; see Fig. 5. As explained
next, the reasons for this success lie in the absence of high-
frequencies in the solutions to parameterize and in the absence
of rare events in the statistics of lobe transitions.

III. IRREGULAR TRANSITIONS, RARE EVENTS AND
LEARNING CONSEQUENCES

The sensitivity in the online capture of the low-frequency
content between two nearby neural parameterizations (as mea-
sured through their loss functions), calls for more understand-
ing. Keeping in mind that the differences pointed out in Fig. 3
are only tied to the way the training, validation, and test sets are
chosen, we perform a statistical analysis of key features of the
L80 dynamics in the HLF regime. In particular, we focus on
the irregular lobes’ transitions exhibited by HLF solutions, and
for comparison, we analyze the lobes’ transitions in the slow
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FIG. 3: Sensitivity of the slow neural closures. Here, NN1 and NN2 differ
only in their training modalities. NN1 is learnt from random selection of the
training, validation, and testing sets, and NN2 from a predefined selection
with the same aspect ratios; see Text. The corresponding loss functions differ
by 1% (see Table I), while the dynamical differences of the online
predictions are substantial.

chaotic regime of Fig. 4D for which neural parameterizations
do not suffer from sensitivity and have no difficulty in learning
the proper closure. Indeed, as shown in Fig. 5 for the slow
chaotic regime of Fig. 4D, neural closures of high-accuracy
are easily accessible with skills comparable to those obtained
with the BE manifold.

To further probe into the statistics of lobes’ transitions in the
slow chaotic and HLF regimes, we perform, for each regime,
a high-resolution and long-term integration of the L80 model
corresponding to a 500-yr simulation (∼ 730, 000 × TGW )
with a time-stepping of 0.75 min.

In either case, the L80 attractor exhibits two lobes as visible
in e.g. the (y2, y3)-projection; see Figs. 4A and D. These
lobes are essentially separated by the vertical line y3 = 0.
Numerical integration of the L80 model reveals that the visit
of the right lobe comes with y3(t) getting greater than some
threshold value yb, while the visit of the left lobe comes with
y3(t) getting smaller than ya = −yb. A close inspection of the
solution in the HLF case reveals that the choice of yb = 0.2
constitutes a good one to identify the sojourn of the dynamics
within one lobe from the other. This choice leads furthermore
to an interval (−yb, yb) that provides a good bound of the
bursts of fast oscillations crossing the vertical line y3 = 0 in
the (y2, y3)-plane (”grey” zone).

To count the transitions from one lobe to the other one thus
proceeds as follows. Given our 500-yr long simulation of
y3(t) we first find the local maxima and minima that are above
yb and below ya, respectively. No transition occurs between
consecutive such local maxima or minima. A transition occurs
only when a local maximum above yb is immediately followed
by a local minimum below ya or vice versa. If a local maximum
is immediately followed by a local minimum, the intermediate
time instant at which the trajectory goes below zero is identified
as the transition instant, and the other way around if a local
minimum is immediately followed by a local maximum. These
transition times characterized this way allow us to count the
sojourn times in a lobe and display the distribution of these
sojourn times shown in Figs. 4C and F.

These lobe sojourn time distributions reveal a striking dif-
ference between the HLF and slow chaotic regimes. In the
HLF case, we observe indeed that the solution can stay in one

lobe for a period of time that can be arbitrarily long (see so-
lution’s segment between t = 763 and t = 893 shown in blue
in Fig. 4B) albeit of probability of occurrence vanishing expo-
nentially as shown in Fig. 4C. As a comparison, the transitions
between the attractor’s lobes occur at a much more regular
pace in the slow chaotic regime (see Fig. 4E) in which the
solutions to the L80 model are void of fast oscillations. In this
case, the distribution of sojourn times drops quickly below a
60-day duration barrier (Fig. 4F).

One can thus argue that such rare events with an exponen-
tial distribution are troublesome for the derivation of a reliable
slow neural closure. They add diversity in the temporal dis-
tribution of the time series patterns that explain the sensitivity
results shown in Fig. 3. Indeed, a random selection of the train-
ing set may contain temporal episodes that are more skewed
towards one lobe than those in a predefined set, confusing this
way the learning procedure.

IV. THE HIGH-FREQUENCY BARRIER TO NEURAL
CLOSURE

We address now the issue of direct parameterizations of HLF
solutions containing a multiscale mixture of slow and fast mo-
tions. To do so, we learn an MLP for x(t), denoted by Vθ,
with (the unfiltered) y(t)-variable of the L80 model (1), as in-
put, and the unfilteredx-component, x(t), as output. Note that
unlike the slow NN-parameterizations above, the parameteri-
zation Vθ aims at parameterizing x(t) directly as a nonlinear
mapping of y(t) without conditioning on z(t) nor filtering
of any sort. The corresponding closure, called a vanilla NN-
closure, consists then of Eq. (6) in which X θ∗

2
(y,Zθ∗

1
(y)) is

replaced by Vθ∗(y), obtained after minimization of the fol-
lowing L2-loss function

Lθ(x;y) =
∑
j

∥∥xtj − Vθ(ytj )
∥∥2 , (7)

for which the target variable x(t) is unfiltered, i.e. containing
a mixture of fast and slow oscillations. To address this more
challenging problem we use MLPs with a larger capacity either
with more neurons and/or layers.

Our experiments reveal that an NN with one hidden layer
and 20 neurons turns out to provide the best closure results.
As a comparison, we show in Fig. 6 the simulated time series
from vanilla NN-closures in four different settings. For the
one with one hidden layer and 20 neurons, the corresponding
vanilla neural closure is able to apprehend to a certain extent
the complexity of the temporal patterns exhibited by the HLF
solution (see Fig. 7A-B), albeit completely failing to predict the
high-frequency content i.e. the physics of IGWs as revealed by
the power spectral density (PSD) comparison shown in Fig. 8.

The failure experienced by vanilla NN-closure in captur-
ing the IGWs dynamics mirrors the spectral bias problem
exhibited by NNs for function fitting [43]; feedforward NNs
prioritizing the learning of the low-frequency features. We
emphasize though that here the difficulty is of next order than
for function fitting. The problem is indeed to properly learn
offline the neglected variables along with their high-frequency
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FIG. 4: Panel A: Attractor in the HLF case. Panel B: The sojourn episodes within one particular lobe are marked by different colours. Here, the parameters are
those used in Lorenz’s original paper [7] except F1 = 0.3027 in Eq. (1). Panel C: Lobe sojourn time distributions. The exponential fit is calculated over 500
yr-long simulation of Eq. (1) and is shown by the black curve f(t) = aebt with a = 2292 and b = −6.05× 10−2 with t in day. The inset in panel C shows a
magnification of the distribution for the rare and large sojourn times. Panels E and F: Same as panels B and C except that F1 = 6.97× 10−2, corresponding
to the slow chaotic regime shown in panel D in which the solutions are void of fast oscillations. In this regime, no rare event statistics emerge.

FIG. 5: The L80 attractor vs. its NN-closure in the slow chaos regime.
Here F1 = 6.97× 10−2 in the L80 model, which corresponds to the slow
chaos case shown in Fig. 4D and in [21, Fig. 7].

content, so that the online solution via neural closure repro-
duces both the slow and fast motions of the original dynamics.
Even global geometric features are misrepresented by vanilla
NN-closures, with e.g. distortion of the attractor and break-
down of symmetry compared to the L80 attractor; see Fig. 7C.

Finally, it is worth mentioning that even larger vanilla NNs
do not necessarily help. Increasing the number of hidden
layers or neurons may drive down the loss function value, but
not necessarily improve the performance of the corresponding
NN closure. For instance, a vanilla NN, Vθ, with 5 hidden
layers and 20 neurons predicts an unrealistic periodic orbit (of
small amplitude) when iterated through time-stepping online in
the neural closure and tends to exaggerate the high-frequency
content of the parameterized solutions offline; see Fig. 9 and

0 20 40 60
-1.5

-1

-0.5

0

0.5

1

FIG. 6: Simulated time series from vanilla NN-closures in four different
settings. Setting I (same as used for the results shown in Fig. 7): one hidden
layer with 20 neurons (thick solid line); Setting II: two hidden layers with 5
neurons in each layer (dashed line); Setting III: two hidden layers with 10
neurons in each layer (light solid line); Setting IV: two hidden layers with 20
neurons in each layer (dash-dotted line). The corresponding loss function
values are given in Table II.

Table II.
These results, tied with the multiscale nature of the L80

regime analyzed with its rare events, show that the L80 model
provides a cautionary illustration for the challenges of using
machine learning for deriving accurate dynamical-system clo-
sures for geophysical fluid dynamics. Because rare events and
extreme statistics are likely to play a more and more dominant
role in a changing climate [44–48], this study shows that in
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A

B

C

FIG. 7: Vanilla NN-closure vs L80 dynamics. Failure to capture the high-frequency content and symmetry of the L80 attractor.
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FIG. 8: Power spectral density (PSD) comparison. This figure compares
the PSD of y2 (Panel (A)) and y3 (Panel (B)) as computed from the L80
model (gray) and from the vanilla NN-closure (blue) corresponding to
Setting I in Fig. 6. Although the solution of this vanilla NN-closure shows a
suitable capture of the spectral background of the L80 solutions, it fails in
capturing the frequencies fGW and fRo (along with their subharmonics)
associated with inertia-gravity and Rossby waves, respectively.

TABLE II: Loss function evaluations. In this table are reported the loss
values corresponding to the vanilla NN-closures shown in Fig. 6. Note that
the underlying loss function is that defined in Eq. (7).

Epochs 10 50 100 300 500
Setting I loss (×10−2) 2.62 2.54 2.52 2.49 2.49
Setting II loss (×10−2) 2.74 2.67 2.66 2.64 2.64
Setting III loss (×10−2) 2.72 2.45 2.44 2.43 2.43
Setting IV loss (×10−2) 2.42 2.33 2.32 2.30 2.30

spite of the recent promises of neural parameterizations, still
a lot of fundamental issues lie in front of us to derive reli-
able parameterizations accounting for rare events in a robust
way. In that respect, rare events algorithms [49–51] could be
of great use to simulate rare events offline in order to better
sample e.g. the distribution’s tails to train the neural networks.

We hope that this study sheds modestly new lights on the

FIG. 9: Panel A: Neural parameterization Vθ with 5 layers and 20 neurons
(referred to as NN5), shown here for x1, by adopting the same visualization
method as for panels (B)-(D) of Fig. 1. Note the sharp gradients that reflect
in this representation high-frequency attributes displayed by this
parameterization. Panel B: Corresponding neural closure solution in the
(Y2, Y3)-plane. Panel C: Compared to vanilla NN1, i.e. the
NN-parameterization (Setting I) showing the best vanilla closure skills (see
Fig. 6), NN5 exaggerates the high-frequency content as shown here offline.

wealth of difficulties revealed by this other model of Lorenz,
regarding its closure using data-driven methods. The L80
model of Lorenz has indeed attracted much less attention for
closure than others of his models such as the Lorenz 96 model
known however to be much less challenging for closure by ma-
chine learning [52]. In this perspective, the recent stochastic
approach of [22] for closing the L80 model in the challeng-
ing regimes corresponding to Ro > Ro∗, could serve as a
meaningful benchmark.
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Appendix A: HLF solutions and the slow motion learning

The high-low frequency (HLF) solutions used in this article
are those associated with [22, Fig. 7]. These solutions are
obtained from the parameters used in Lorenz’s original paper
[7] except F1 chosen to be F1 = 3.027× 10−1 as identified in
[21]; see the Materials and Methods section in [22] for details.

As shown in Fig. 10, for this parameter regime, the HLF
solutions contain a mixture of slow and fast oscillations in
each variable x, y, and z of the L80 model that causes serious
difficulties for closure [22]. The dominant frequency of the
Rossby wave content in the HLF solutions is fRo = 0.31 day−1

(TRo = 3.2 days) and that of the inertia-gravity wave (IGW)
content is fGW = 3.76 day−1 (TGW = 6.3 hours).

To learn a neural parameterization of the slow motion, the
weights and biases of the NNs are updated according to a
Levenberg-Marquardt (LM) optimization [53]. The LM al-
gorithm is known to be efficient for small or medium-scaled
problems [54, Chap. 12], especially when the loss function is
just a mean squared error, which is the case here. This algo-
rithm is sufficient to obtain loss functions with small residuals;
see Table I.

Appendix B: The BE manifold and BE closure

For consistency, we recall from [21] the derivation of the BE
manifold that serves as our parameterization baseline. Mathe-
matically, the BE manifold aims at reducing the L80 model to
a 3D system of ODE, by means of nonlinear parameterization
of the variables x = (x1, x2, x3)

T and z = (z1, z2, z3)
T, in

terms of the variable y = (y1, y2, y3)
T; see [32]. By ana-

lyzing the order of magnitudes of the different terms in the
xi-equations and after rescaling following [21], we arrive to
the following parameterization of the z-variable in terms of
the rotational y-variable

zi = Gi(y) = yi −
2c2

ai
yjyk. (B1)

Further algebraic manipulations show that under an invert-
ibility condition of a matrix M(y, G(y)) conditioned on the
y-variable, one obtains (implicitly) x as a function Φ of y
given by

Φ(y) =
[
M(y, G(y))

]−1

 d1,2,3(y, G(y))

d2,3,1(y, G(y)))

d3,1,2(y, G(y)))

 , (B2)

where the di,j,k are given explicitly; see [21, 32]. The func-
tion Φ(y) = (Φ1(y),Φ2(y),Φ3(y))

T corresponds to the BE
manifold, it is aimed to provide a nonlinear parameterization
between x and y when the latter exists.

The BE closure is then

dyi
dτ

= −a−1
i akbkΦj(y)yk − a−1

i ajbjyjΦk(y)

+ ca−1
i (ak − aj)yjyk − Φi(y)− ν0aiyi,

(B3)

for which (i, j, k) lies in {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.
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