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Abstract

Practitioners often aim to infer an unob-
served population trajectory using sample
snapshots at multiple time points. E.g. given
single-cell sequencing data, scientists would
like to learn how gene expression changes over
a cell’s life cycle. But sequencing any cell de-
stroys that cell. So we can access data for
any particular cell only at a single time point,
but we have data across many cells. The deep
learning community has recently explored us-
ing Schrödinger bridges (SBs) and their ex-
tensions in similar settings. However, exist-
ing methods either (1) interpolate between
just two time points or (2) require a single
fixed reference dynamic (often set to Brown-
ian motion within SBs). But learning piece-
wise from adjacent time points can fail to
capture long-term dependencies. And practi-
tioners are typically able to specify a model
family for the reference dynamic but not the
exact values of the parameters within it. So
we propose a new method that (1) learns the
unobserved trajectories from sample snap-
shots across multiple time points and (2) re-
quires specification only of a family of refer-
ence dynamics, not a single fixed one. We
demonstrate the advantages of our method
on simulated and real data.

1 Introduction

Practitioners are often interested in the possible paths
taken by a population of particles moving from one
location to another in a given space. For example,
biologists want to understand how gene expression,
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as measured by mRNA levels, changes when normal
cells transform into cancer cells. A deeper understand-
ing might aid development of methods to prevent or
treat cancer. One can model the dynamics of mRNA
concentration in each cell using a stochastic differen-
tial equation (SDE), and there is extensive theory on
SDEs from trajectories densely sampled in time. How-
ever, scientists cannot measure mRNA concentration
continuously in time, but rather only at certain time
snapshots. Moreover, since measuring mRNA concen-
tration requires destroying the cell, scientists cannot
track the trajectory of one cell across multiple times.

Recent work has demonstrated the potential of us-
ing Schrödinger bridges (SBs) to infer possible trajec-
tories connecting two time snapshots (Pavon et al.,
2021; De Bortoli et al., 2021; Vargas et al., 2021;
Koshizuka and Sato, 2022; Wang et al., 2023). This
approach learns a pair of forward-backward SDEs that
can transport particles between two time points (for-
ward or backward, respectively). One can then use the
learned SDES to numerically sample from the latent
population of trajectories. To extend these methods
to data with multiple time snapshots, one can apply
vanilla SBs separately over each pair of consecutive
time points. But then the connected bridges exhibit
kinks at connection time points, and the learned dy-
namics may fail to capture long-term dependencies,
seasonal patterns, and cyclic behaviors. Lavenant
et al. (2024) show that other natural extensions to
multiple time steps (Chen et al., 2019; Lavenant et al.,
2024) still decompose into vanilla SBs between adja-
cent time steps.

To overcome these issues, Chen et al. (2024) proposed
to instead use the SDE in SBs to govern particles’ ve-
locity, instead of location. As with the methods above,
their method allows the dynamics to pass through mul-
tiple time snapshots. In addition, since their method
generates smooth trajectories, trajectory information
can be shared across time intervals.

A practical issue with all methods above, including
Chen et al. (2024), though, is that they require a sin-
gle pre-defined reference measure. In particular, these
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methods minimize relative entropy between the pro-
cess and the reference. Ideally, the reference dynamics
should be close to the true, latent dynamics. While sci-
entists often have some prior knowledge of how their
system works (e.g., the parametric form of the under-
lying dynamical model, as in Pratapa et al., 2020), it is
rare that they can access all parameter values. Conse-
quently, practitioners often default to using Brownian
motion as the reference dynamic. In fact, Schrödinger
(1932) originally used Brownian motion to model par-
ticles moving under thermal fluctuations in a closed
system; for a historical review, see Léonard (2014). In
this context, solving the SB problem is equivalent to
solving an entropy-regularized optimal transport prob-
lem (Cuturi, 2013). However, this approach may not
be ideal for many open systems with energy intake.
For instance, biological systems are such systems and
do not necessarily adhere to the same entropy laws as
gas molecules under thermal fluctuations. Schrödinger
(1946, Chapter 6) himself famously remarked “What
organisms feed upon is negative entropy.”

Methods beyond the SB literature face similar (and
additional) limitations. For instance, TrajectoryNet
(Tong et al., 2020) combines continuous normalizing
flows with a soft constraint based on dynamic optimal
transport. But it can be interpreted as an SB method
with a single reference; see Tong et al. (2020, sections
3.2 and 4.1). See appendix A for more related work.

Due to the limitations of existing methods, we pro-
pose a new approach that (1) infers the distribution
of trajectories from sample snapshots at multiple time
points and (2) requires the user to specify only a para-
metric family of reference dynamics rather than a sin-
gle one. Our method iterates between two steps. (i)
Given our current best guess of the latent dynamics,
we learn a piecewise SB and sample the resulting tra-
jectories. (ii) We use the learned SB to refine our best
guess of the latent dynamics within the reference fam-
ily. Since the estimate of latent dynamics uses infor-
mation from all times, we expect our method to share
information across time intervals. In our experiments
(section 4), we find that our method is more accu-
rate than both vanilla SBs and alternatives that non-
trivially handle multiple time points. Moreover, our
method is substantially faster than the latter methods
in all experiments, sometimes over 40 times faster.

In concurrent work, Zhang (2024) independently pro-
poses an iterative procedure that allows for a family
of reference dynamics. While in our work we use SBs
to recover continuous-time evolution of the underly-
ing dynamics, Zhang (2024) uses an entropic optimal
transport framework and aims to recover the underly-
ing dynamics solely at points with observations. And
while we allow a general reference family, Zhang (2024)

uses a linear (Ornstein-Uhlenbeck) reference family.
We share the same motivation though: moving away
from a fixed reference dynamic to improve trajectory
inference.

2 Setup and Background

We review the inference problem and existing SB work
that will be relevant to our method. Though our
method is more general, we continue the example
above to motivate the setup; that is, suppose we are
interested in sampling the trajectories of mRNA con-
centration in a population of cells.

Data. We have observations at I time points. At the
ith time, ti, we observe data from Nti(> 0) cells. The
mRNA concentration of the nith cell at ti is Y

ni
ti ∈ Rd.

After gathering data for a cell, the cell dies, so each
cell is observed only once. More generally, we say that
we observe the (i, ni) particle just once, at time ti.
Without loss of generality, we choose the time steps to
be unique, increasing, and starting at 0: 0 = t1 < t2 <
· · · < tI < ∞. They need not be equally spaced. We
let Y all

ti denote all Nti observations at time ti. There

are N =
∑I

i=1 Nti total observations.

Goal. We assume that, if not measured, each cell’s
mRNA concentration would have had a continuous
trajectory in time. X

(i,ni)
t denotes the trajectory

for the nith cell observed at the ith time step. So

Y ni
ti = X

(i,ni)
t=ti . We assume the trajectories are inde-

pendent samples from a latent distribution over tra-
jectories; this assumption implies the observations are
independent as well. Our goal is to generate samples
from the latent distribution over particle trajectories
within t ∈ [0, tI ], given the observations {Y ni

ti }i,ni
.

Model. We model the latent trajectory of the (i, ni)
particle with an SDE driven by a d-dimensional Brow-

nian motion W
(i,ni)
t , independent across particles:

dX
(i,ni)
t = b(X

(i,ni)
t , t)dt+

√
γdW

(i,ni)
t , X

(i,ni)
t=0 ∼ π0.

(1)
We assume that the volatility γ is known.1 We assume
that the drift b(·, ·) : Rd × [0, tI ] → Rd and initial
marginal distribution π0 are unknown.

We assume standard SDE regularity conditions. The
first assumption below ensures a strong solution to the
SDE exists; see Pavliotis (2016, Chapter 3, Theorem
3.1). The second ensures that the process does not

1This assumption is common in the SB literature since
it ensures that the SB problem is well-posed (Chen et al.,
2022; Vargas et al., 2021; Lavenant et al., 2024). In our
experiments, we use the same fixed volatility value as past
SB work, and we find it works well. Estimating volatility
from data is an interesting direction for future research.
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exhibit unbounded variability.

Assumption 1. The drifts are L-Lipschitz; i.e., for
all t ∈ [0, tI ], ∥b(x, t) − b(y, t)∥ ≤ L∥x − y∥, where
∥ · ∥ denotes the usual L2 norm of a vector. And we
have at most linear growth; i.e., there exist K < ∞
and constant c such that ∥b(y, t)∥ < K∥y∥+ c.

Assumption 2. At each time step ti, the distribution
of the Nti particles has bounded second moments.

Generating sample trajectories. One approach to
generating trajectory samples is to first estimate the
unknown drift from data. Using the estimated drift,
we can simulate forward and backward in time starting
from a particle observation to generate an approximate
realization of the SDE solution for t ∈ [0, tI ]. This
approach generates one sample trajectory for each ob-
servation, for a total of N trajectory samples.

More precisely, the drift b in eq. (1) defines the for-

ward dynamics of X
(i,ni)
t . Given eq. (1), the back-

wards process X
(i,ni)
tI−t is described by an analogous

SDE with the same volatility and a new (backward)
drift, bback(·, ·); see Haussmann and Pardoux (1986);
Föllmer (2005); Cattiaux et al. (2023) for details. Sup-

pose we had access to estimates b̂ and b̂back for the
forward and backward drift, respectively. Then given
a particle observed at time ti, we could simulate a tra-
jectory forward in t ∈ [ti, tI ] by using eq. (1) with

(1) b = b̂, (2) the initial distribution equal to a
point mass at the observation, and (3) discretized time
steps of size ∆t. We write the resulting simulated

trajectory as X̂
(i,ni)
ti≤t≤tI

= forwardSDE(b̂,Y ni
ti ,∆t).

Similarly, we can sample the part of the trajectory
within t ∈ [0, ti] using the backward drift and SDE:

X̂
(i,ni)
0≤t≤ti

= backwardSDE(b̂back,Y
ni
ti ,∆t). In our ex-

periments, we use a standard Euler-Maruyama ap-
proach (Särkkä and Solin, 2019, Chapter 3.4); for full
details, see appendix B.2. It remains to estimate the
forward and backward drifts.

Multi-marginal Schrödinger bridges. When we
have some prior knowledge about the system’s la-
tent dynamics, Schrödinger Bridges (SBs, Wang et al.,
2023; Vargas et al., 2021; Lavenant et al., 2024) can be
used to estimate the forward and backward drift. We
next review multi-marginal SBs and how their drift
estimates arise. The general multi-marginal SB prob-
lem (Chen et al., 2019; Lavenant et al., 2024) finds the
bridge distribution q over trajectories that (1) interpo-
lates between specified marginals while (2) being clos-
est — in a Kullback–Leibler divergence (DKL) sense
— to the prior knowledge as expressed in a reference
distribution p. With a slight abuse of notation, we
use q and p to denote not just the distributions over
trajectories but also their respective densities with re-
spect to a Wiener measure. Let the distribution over

trajectory points at time ti implied by q be q̃ti . Let πti

be a desired marginal at time ti. Let [I] := {1, . . . , I}.
Then the multi-marginal SB problem is a constrained
optimization problem:2

argmin
q∈D:q0=p0

DKL(q||p), (2)

where D = {q : ∀i ∈ [I], q̃ti = πti} (3)

is the family of densities over trajectories satisfying
the marginal constraints.

Suppose now that the reference is a distribution over
trajectories implied by an SDE as in eq. (1). Since
we assume the volatility γ is known, we assume the
known volatility is used in the reference. So the refer-
ence is specified by its drift bref. Under assumptions 1
and 2, the resulting probability distribution over tra-
jectories admits a density with respect to the Wiener
measure defined by a Brownian motion with volatility
γ (Oksendal, 2013; Kailath, 1971). The existence of
the density follows from Girsanov’s Theorem; see, e.g.,
Theorem 8.6.3 in Oksendal (2013)) and appendix C.1.
We write p = pbref

for the distribution and its density.
In this case, Kailath (1971) shows that not only must
the optimal q also solve an SDE of the form in eq. (1),
but it must have the same volatility; DKL will be in-
finite for other volatilities. Therefore, the optimal q is
defined by its drift, and we write q = qb. Then solving
eq. (2) is equivalent to finding the best drift for qb:

argmin
b:qb∈D,qb,0=pbref,0

DKL(qb||pbref
), (4)

with D as in eq. (3). Practical SB algorithms take
the marginals to be the (discrete) empirical distribu-
tions of observed data at each time point; that is, πti

is constructed from Y all
ti , where Y all

ti represents the
collection of all the observations available at time ti
(Vargas et al., 2021; De Bortoli et al., 2021).

Even though eq. (4) appears to leverage information
from all time snapshots jointly, Lavenant et al. (2024);
Chen et al. (2019) showed that — under very mild con-
ditions — this SB problem is equivalent to a collection
of I − 1 separate SB problems, each between two ad-
jacent time points. Therefore, practical algorithms for
solving this problem return I − 1 pairs of forward and
backward drifts {b̂i, b̂iback}

I−1
i=1 , where b̂i and b̂iback are

defined over the interval [ti, ti+1]. We can construct

an estimate b̂ of the forward drift in the time span
t ∈ [0, tI ] by concatenating these estimates, with an

analogous estimate b̂back for the backward drift.

2In the SB literature, this KL divergence is often defined
in terms of probability distributions rather than densities.
But implicitly, to compute the KL divergence, one uses the
densities. So here we directly use the densities.
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Challenges. Since this approach performs piece-
wise interpolation between consecutive pairs it does
not share information across different time intervals.
Moreover, this approach requires practitioners to spec-
ify a single reference drift bref. Even when scientists
know a parametric form for the underlying dynamical
system (e.g., Pratapa et al., 2020, for mRNA dynam-
ics), they rarely have access to all parameter values.
So in practice the choice of bref usually corresponds to
Brownian motion (Caluya and Halder, 2021; Vargas
et al., 2021; Chen et al., 2022, 2019, 2024).

3 Our method

Our method allows the specification of a reference fam-
ily rather than requiring a single reference drift. And
it facilitates sharing of information between time in-
tervals. In what follows, we first describe a general
optimization setup allowing a reference family. We
then establish theoretical guarantees for an iterative
approach to solving the optimization. Finally, we pro-
vide a practical algorithm that reflects this approach.

Optimization with a reference family. We first
generalize the optimization problems from eqs. (2)
and (4) to allow a reference family. Let F be the
chosen reference family of densities over trajectories.
Then we replace eq. (2) with:

argmin
q∈D

min
p∈F :
q0=p0

DKL(q||p), (5)

which reduces to eq. (2) when F has a single element.
Next we restrict the elements of the reference family to
be distributions over trajectories implied by the SDE
in eq. (1), with shared volatility γ. As before, it must
be the case that the minimizer of eq. (5) also solves an
SDE of the form in eq. (1), with the same volatility γ.
So we can write p = pbref

and q = qb. Then solving
eq. (5) is equivalent to solving for the optimal drift:

argmin
b:qb∈D

min
bref:pbref

∈F,
qb,0=pbref,0

DKL(q||pbref
) (6)

An iterative approach. To solve the optimization
problem in eq. (6), we propose an iterative approach.
Namely, we propose to iterate between the following

two steps after initializing with some b
(0)
ref and k = 1.

b(k) = argmin
b:qb∈D

DKL(qb∥pb(k−1)
ref

) (7)

b
(k)
ref = argmin

bref:pbref
∈F

DKL(qb(k)∥pbref
) (8)

By construction, this iterative scheme will monotoni-
cally decrease the objective in eq. (6) at each step. Our
next result shows that, under additional assumptions,
the scheme converges to the optimum.

Algorithm 1: Our method iterates between (1)
estimating the forward and backward bridge drifts
given the current best reference guess and (2) using
simulated trajectories from the current bridge drift
estimates to find a new best reference guess.

Input: {Y all
ti }

I
i=1, iteration count K, ∆t

b̂
(0)
ref ← 0, k ← 0

while k < K do
k = k + 1
for i = 1, . . . , I − 1 do

b̂i(k), b̂
i(k)
back =

Forward-Backward-SB(Y all
ti ,Y all

ti+1
||b̂(k−1)

ref )

SampleTrajectories = {}
for i = 1, . . . , I − 1 do

for ni = 1, . . . , Nti do

X̂
(i,ni)
0≤t≤ti

= backwardSDE(b̂
(k)
back,Y

ni
ti ,∆t)

X̂
(i,ni)
ti<t≤tI

= forwardSDE(b̂(k),Y ni
ti ,∆t)

SampleTrajectories.append(X̂
(i,ni)
0≤t≤tI

)

b̂
(k)
ref ← MLEfit(SampleTrajectories)

Output: b̂(K), b̂
(K)
back to generate trajectories

Proposition 1. Suppose F is a convex set of densi-
ties over trajectories implied by the SDE in eq. (1);
suppose all densities have shared volatility γ and the
same marginal distribution at time 0. Suppose that all
SDEs satisfy assumptions 1 and 2. Suppose ∃C < ∞
such that, for every drift b with qb ∈ D or pb ∈ F ,

sup
(x,t)∈Rn×[0,tI ]

∥b(x, t)∥∞ ≤ C

Take any initialization b
(0)
ref . If b(k) and b

(k)
ref are com-

puted by recursively applying eqs. (7) and (8), we have

lim
k→∞

DKL(qb(k)∥p
b
(k)
ref

) = inf
qb∈D

pbref
∈F

DKL(qb∥pbref
)

We prove this result in appendix C by adapting stan-
dard arguments from the theory of iterative projec-
tions (Csiszár, 1975; Csiszár and Shields, 2004; Ben-
amou et al., 2015). Along the way, we prove and use
that D is convex (lemma C.1). We do not necessarily
expect the reference family F to be convex though. In
practice, then, our result guarantees convergence to a
local, rather than global, minimum.

A practical algorithm. We cannot solve eqs. (7)
and (8) exactly. We next detail how we derive approx-

imate solutions, b̂(k) and b̂
(k)
ref . We summarize our full

method in Algorithm 1.

Algorithm step 1. First, consider eq. (7), where
we optimize the bridge model given the current ref-
erence. This step is a multi-marginal SB problem,
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Figure 1: Comparison on the Lotka-Volterra synthetic data (section 4.1) with 5 training times, 4 validation
times, and 50 observations per time. Each plot shows 50 simulated trajectories, originating from particles at one
time end point (three left plots: first time; right plot: final time); see “Measuring Accuracy” in section 4.

with reference dynamic p
b̂
(k)
ref

. As discussed above, the

problem reduces to standard SB problems pairwise be-
tween time points. There are many implementations
that approximately solve the SB problem: e.g., a re-
gression method (Vargas et al., 2021), score matching
(Wang et al., 2021), or a proximal method (Caluya and
Halder, 2021). We denote an implementation’s out-

put between time points ti and ti+1 as b̂i(k), b̂
i(k)
back =

Forward-Backward-SB(Y all
ti ,Y all

ti+1
||b(k−1)

ref ). In our
code implementation, we follow the regression method
of Vargas et al. (2021); see appendix B.1.

Algorithm step 2. The second problem, eq. (8), does
not arise in standard SBs. Our proposed methodol-
ogy for an approximate solution has two parts, which
we detail below: (i) we sample trajectories given the
forward and backward bridge drift estimates from the
first step, and (ii) we solve a maximum likelihood prob-
lem given these sample trajectories.

Algorithm step 2.i. From step 1, we have forward

and backward bridge drift estimates b̂(k), b̂
(k)
back. Recall

section 2, “Generating sample trajectories;” for each
observation Y ni

ti , we can simulate a trajectory in t ∈
[0, tI ] via X̂

(i,ni)
0≤t≤ti

= backwardSDE(b̂
(k)
back,Y

ni
ti ,∆t) and

X̂
(i,ni)
ti<t≤tI

= forwardSDE(b̂(k),Y ni
ti ,∆t). Then we have

N simulated trajectories.

Algorithm step 2.ii. By expanding DKL and drop-
ping terms where pbref

does not appear, we can rewrite
eq. (8) as follows; see appendix B.3 for full details and
derivation of this step of the algorithm.

b
(k)
ref = argmin

bref:pbref
∈F

DKL(qb(k)∥pbref
) (9)

= argmax
bref:pbref

∈F
Eq

b(k)
log pbref

(10)

We can approximate the exact objective in eq. (10)
by replacing the expectation Eq

b(k)
with an empiri-

cal average over the trajectories {X̂(i,ni)
0≤t≤tI

}i,ni
, which

are simulated from qb(k) . The resulting optimization
problem over this approximate objective can be seen
as maximizing the (log) likelihood of the simulated tra-

jectories {X̂(i,ni)
0≤t≤tI

}i,ni
over the choice of bref in pbref

.
Since the simulated trajectories are obtained by a stan-
dard Euler-Maruyama approach with sampling rate
∆t, they can be represented by a Gaussian autoregres-
sive process. We show in appendix B.3 that the opti-
mization problem therefore reduces to a least squares
scheme, where the square errors arise from the Gaus-
sian log likelihoods. Given the connection to maximum
likelihood estimation (MLE), we let MLEfit denote the
function that takes in sample trajectories and outputs

our resulting estimate b̂
(k)
ref of the reference drift b

(k)
ref .

4 Experiments

In simulated and real experiments, we find that our
method gives more accurate predictions than alterna-
tives and is substantially faster than existing methods
that share information across time intervals. Each of
our experiments explores a different application with
a different natural reference family.

Baselines. We compare to three other methods,
all described in section 1. (1) A vanilla multi-
marginal SB (Vanilla-SB) with a Brownian motion ref-
erence. See appendix B.5 for implementation details.
(2) The Deep Momentum multimarginal Schrödinger
bridge (DM-SB) (Chen et al., 2024). We use the au-
thors’ code at https://github.com/TianrongChen/

DMSB; see appendix B.6 for details. (3) TrajectoryNet
(Tong et al., 2020). We use the code at https://

github.com/KrishnaswamyLab/TrajectoryNet; see
appendix B.7. In all SB methods, we set the volatility
γ to 0.1, as suggested by Vargas et al. (2021). See ap-
pendix B.4 for implementation details of our method.

https://github.com/TianrongChen/DMSB.
https://github.com/TianrongChen/DMSB.
https://github.com/KrishnaswamyLab/TrajectoryNet
https://github.com/KrishnaswamyLab/TrajectoryNet
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Figure 2: Comparison on the repressilator synthetic data (section 4.2) with 6 training times, 5 validation times,
and 50 observations per time. Each plot shows 50 simulated trajectories, originating from particles at one time
end point (three left plots: first time; right plot: final time).

Measuring accuracy. In each experiment, we start
with a collection of data at an odd total number of
time points. We train each method using data from
odd-indexed times (including the first and last time
points); we use even-indexed times as held-out valida-
tion data. At a high level, we measure accuracy by how
well the empirical distribution of a method’s simulated
trajectories corresponds to held-out data at each vali-
dation time point. We evaluate the performance both
visually and via numerical summaries of error.

Since all methods estimate drift, it should be possi-
ble to simulate trajectories from all training particles
for all methods. However, the DM-SB code provides
trajectories originating only from the first-time-point
particles, and the TrajectoryNet code provides trajec-
tories originating only from the final-time-point parti-
cles. Therefore, to provide a more direct comparison
of trajectory quality, we plot only the subset of tra-
jectories provided by our method and Vanilla-SB that
arise from the first-time-point particles.

We report numerical summaries for our method both
for these restricted trajectories and also for trajecto-
ries using all particles. In practice, we recommend
practitioners use our full method with all particles; we
consider restricted trajectories only for comparison to
existing, restricted code. While we focus on the Earth
Mover’s Distance (EMD) in the main text, we also
compute the Maximum Mean Discrepancy (MMD) in
appendix D. We discuss these choices in appendix D.1.
In each table entry, we report the mean and standard
deviation of each result across 10 random seeds. We
report results on the restricted set of trajectories in
the first rows of each table, and results over all pos-
sible trajectories in the final rows. We highlight (in
green) the best restricted result (across methods), and
any ties. We highlight (in light blue) any all-trajectory
method that beats or ties the best restricted result. We

provide more details in appendix D.2. Our conclusions
generally agree across all metrics.

4.1 Lotka-Volterra

We generate synthetic data from a stochastic Lotka-
Volterra predator-prey model; we use the same para-
metric dynamical system as the reference family in our
method. We take 5 training and 4 validation time
points, with 50 observations per time point. See ap-
pendix D.3 for more details.

Accuracy. In fig. 1, we see that, since Vanilla-SB
learns drift by interpolating between each pair of time
points, it misses the curvature of the dynamics. Tra-
jectoryNet misses the curvature of the initial time
points. While both DM-SB and our method capture
the overall curvature, the enforced smoothness of DM-
SB’s trajectories lead to substantial mass away from
the validation data (as in the lower left corner) and
worse EMD performance; see table 2.

Runtime. Across the 10 seeds, we find the fol-
lowing runtimes in hours, reported as mean ± one
standard deviation: DM-SB 7.62±3.18, Trajecto-
ryNet 10.96±0.81, ours 0.61±0.12, and Vanilla-SB
0.06±0.01. Of the methods incorporating information
across multiple time intervals, our method is (on aver-
age across runs) 12 times faster than DM-SB and 18
times faster than TrajectoryNet; see table 13. Vanilla-
SB is the fastest due its relative simplicity. Since
Vanilla-SB is a subroutine in our method, we expect
our method to be about K times as expensive. Tra-
jectoryNet is built on constrained continuous normal-
izing flows, which are known to be computationally
intensive (Grathwohl et al., 2019). We conjecture that
DM-SB faces computational challenges due to learn-
ing dynamics in a larger space (velocity and location
vs. just location), with no direct observations in the



Yunyi Shen∗, Renato Berlinghieri∗, Tamara Broderick

Longitude

L
a
ti

tu
d

e

Ours

Longitude

Vanilla-SB

Longitude

DM-SB

Longitude

TrajectoryNet

0.0

2.5

5.0

7.5

10.0

T
im

e

Training data Validation data

Figure 3: Comparison on the Gulf of Mexico data (section 4.3) with 5 training times, 4 validation times, and
approximately 111 observations per time. Each plot shows approximately 111 simulated trajectories, originating
from particles at one time end point (three left plots: first time; right plot: final time).

velocity part of the space. In the context of generative
modeling using diffusion, Dockhorn et al. (2022) also
augment their model with particle velocities and face
increased training time.

4.2 Repressilator

We generate synthetic data based on a model that cap-
tures the circadian rhythm in cyanobacteria (Naka-
jima et al., 2005). Three coupled SDEs model mRNA
levels of three genes that cyclically suppress each
other’s synthesis. We use the same parametric dynam-
ics as the reference family in our method. We take 6
training and 5 validation times, with 50 observations
per time. See appendix D.4 for more details.

Accuracy. In fig. 2, we see that Vanilla-SB, DM-SB,
and TrajectoryNet all fail to capture the cyclic nature
of these dynamics. But our method accurately cap-
tures the curvature. The EMD summaries agree that
our method outperforms the alternatives; see table 4.

Runtime. Across the 10 seeds, we find the following
runtimes in hours (mean ± one standard deviation):
DM-SB 15.63±0.12, TrajectoryNet 9.86±0.43, ours
2.43±0.60, and Vanilla-SB 0.23±0.05. Our method is
(on average across runs) over 6 times as fast as DM-SB
and over 4 times as fast as TrajectoryNet; see table 13.
Again, our method offers substantial accuracy gains at
a much lower computational cost.

4.3 Ocean currents in the Gulf of Mexico

In our remaining two analyses, our reference family is
mis-specified; that is, since we use real data, the refer-
ence family cannot exactly match the data-generating
process. We first use real ocean-current data from
the Gulf of Mexico: we use high-resolution (1 km)
bathymetry data from a HYbrid Coordinate Ocean

Model (HYCOM) reanalysis3 to obtain a velocity field
around what appears to be a vortex feature. We simu-
late particles (representing buoys or ocean debris) that
evolve according to this field. We observe a total of
1000 particles across 5 training and 4 validation times.
In our method, we use a reference parametric family
representing a vortex with unknown center, direction,
and shape. See appendix D.5.2 for full details.

Accuracy. In fig. 3, we see that, due to its strictly
pairwise inference, Vanilla-SB fails to capture the cur-
vature. DM-SB and TrajectoryNet generate smooth
trajectories that are notably far from the data at the
final validation time point. Our method’s trajectories
track the validation data closely. Our EMD results in
table 6 reflect that both our method and DM-SB are
close to the data at the first 3 validation time points.
But DM-SB is about twice as far (in EMD) relative to
our method (or to either method at other validation
points) at the final validation point. We provide re-
sults for an additional experiment on particles farther
from the center of the vortex in appendix D.5.3.

Runtime. Across the 10 seeds, we find the follow-
ing runtimes in hours (mean ± one standard devia-
tion): DM-SB 15.44±0.02, TrajectoryNet 7.44±0.25,
ours 4.67±0.66, and Vanilla-SB 0.43±0.01. Of the
methods sharing information across multiple time in-
tervals, our method is (on average across runs) over
3.3 times as fast as DM-SB and over 1.6 times as fast
as TrajectoryNet; see table 13.

4.4 Single-cell sequencing

We next consider two single-cell sequencing datasets.
We follow Tong et al. (2020); Chen et al. (2024) in
analyzing data from Moon et al. (2019) on embryoid
body (EB) cells. We analyze an additional dataset

3Dataset available at this link.

https://www.hycom.org/data/gomb0pt01/gom-reanalysis
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EB hESC
Method EMD t2 EMD t4 EMD t2 EMD t4
Vanilla-SB: one time 1.49 ± 0.063 1.55 ± 0.034 1.47 ± 0.088 1.97 ± 0.169
DM-SB: one time 1.13 ± 0.082 1.45 ± 0.16 1.10 ± 0.066 1.51 ± 0.11
TrajectoryNet: one time 2.03 ± 0.04 1.93 ± 0.08 1.30 ± 0.04 1.93 ± 0.05
Ours: one time 1.27 ± 0.028 1.57 ± 0.048 1.08 ± 0.12 1.33 ± 0.084
Vanilla-SB: all times 1.12 ± 0.031 1.12 ± 0.023 0.72 ± 0.017 1.27 ± 0.043
Ours: all times 0.96 ± 0.019 1.19 ± 0.017 0.71 ± 0.031 1.25 ± 0.076

Table 1: Earth mover’s distance (mean ± standard deviation) at 2 validation times for the EB and hESC data.
The first four rows use only trajectories generated from one time endpoint. The final two rows use all trajectories.

from Chu et al. (2016) on human embryonic stem cells
(hESC). Both datasets promise insight into the dy-
namic process of stem cell differentiation. We use the
same pre-processing pipeline of Tong et al. (2020) for
the EB data, and we apply this pipeline to the hESC
data. The EB data has 3 training and 2 validation
time points. We subsample it to have 300 cells at each
time. The hESC dataset initially has 6 time points.
We remove the final time point so that we start and
end with training times. The resulting training times
have 92, 66, 138 cells, and the validation times have
102, 172 cells, respectively.

For the reference family input to our method, we use
a gradient field family, following Wang et al. (2011);
Weinreb et al. (2018); Lavenant et al. (2024). This
family is motivated by Waddington’s famous analogy
between cellular differentiation and a marble rolling
down a potential surface (Waddington, 1957). To pa-
rameterize the gradient field in our experiment, we
use a multilayer perceptron (MLP), an architecture
commonly used for gradient field representations (e.g.,
Greydanus et al., 2019; Lin et al., 2023). Our MLP
consists of three hidden layers with sizes 128, 64, and
64, interconnected by ReLU activation functions. We
choose this specific configuration, including sizes and
training hyperparameters, by doing a grid search de-
tailed in appendix D.6.2.

Accuracy. We see from table 1 that, when comparing
the quality of only those trajectories generated from a
single end point in time, DM-SB outperforms the alter-
natives, including our method. However, when allowed
to generate trajectories from all particles, Vanilla-SB
and our method outperform the single-time trajectory
options (as expected) and perform comparably to each
other. Indeed, when we look at the data itself (fig. 6 for
EB, fig. 7 for hESC), it appears that there is not much
pattern in the data on the time scale at which the data
is sampled; the EB data in particular appears to move
in a single direction. In neither the EB nor hESC case
do we see a clear and meaningful visual pattern that
any method picks up. We emphasize that the number
of training time points is only three, so there is not

much pattern that could be picked up. With all of
these considerations in mind, we conjecture that DM-
SB and TrajectoryNet would perform about as well
as the Vanilla-SB method or our method in these two
cases if they were used to generate trajectories from
all training particles; we are not able to confirm with
the existing code.

Runtime. First consider EB. Across the 10 seeds, we
find the following runtimes in hours (mean ± one stan-
dard deviation): DM-SB 15.54±0.41, TrajectoryNet
10.19±0.37, ours 0.38±0.05, and Vanilla-SB 0.03, with
a standard deviation less than 0.01. Of the methods
sharing information across multiple time intervals, our
method is (on average across runs) over 41 times as
fast as DM-SB and about 27 times as fast as Trajec-
toryNet; see table 13.

Next consider hESC. We find the following runtimes in
hours: DM-SB 15.40±0.08, TrajectoryNet 8.00±0.49,
ours 0.56±0.04, and Vanilla-SB 0.05, with a standard
deviation less than 0.01. Of the methods sharing in-
formation across multiple time intervals, our method
is (on average across runs) over 27 times as fast as
DM-SB and about 14 times as fast as TrajectoryNet;
see table 13.

5 Discussion

We demonstrated that our proposed iterative method
is able to reconstruct population trajectories given
sample snapshots at multiple time points, with better
accuracy and a substantially reduced computational
cost relative to existing methods. A number of inter-
esting directions remain. Exactly when a latent SDE is
identifiable from marginal samples is an open problem;
see appendix G for a discussion. One might combine
our method with existing methods (including DM-SB
or TrajectoryNet) to enforce desiderata like smooth
trajectories. While our present method assumes a lack
of observational noise, we might incorporate noise us-
ing ideas from Wang et al. (2023). We also hope to
extend our method to make forecasts, i.e., to predict
beyond the observed times.
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Supplemental Material

A Additional Related Work

In this section, we expand our related work discussion beyond the Schrödinger bridges literature to works that
are closely related to our problem.

Generative modeling. Recently, there has been significant progress in the literature on modeling flows or
transports between probability distributions. These approaches are built on a variety of frameworks, such as
score-based generative modeling (Song and Ermon, 2019; Song et al., 2021), diffusion models (Ho et al., 2020),
Schrödinger bridges (De Bortoli et al., 2021; Pavon et al., 2021; Vargas et al., 2021; Wang et al., 2023), continuous
normalizing flows (Chen et al., 2018; Grathwohl et al., 2019), and flow matching (Lipman et al., 2023). However,
the majority of these works focus on generative modeling, where the goal is to transform a noise distribution,
such as a Gaussian, into a data distribution to generate samples. Moreover, they typically address transport
between distributions at only two time points within one being typically Gaussian. In contrast, our focus is not
on learning how to generate data from noise, but on learning and reconstructing trajectories that capture the
underlying system dynamics as they evolve across multiple time steps.

Trajectory inference. Recent studies have been focused on interpolating the trajectories of individual samples
at multiple time points with optimal transport (Schiebinger et al., 2019; Yang and Uhler, 2019). However in
certain situations just mere interpolation is not enough, since the learned dynamics may fail to capture long-term
dependencies, seasonal patterns, and cyclic behaviors. Other works in the optimal transport literature helped to
overcome this issue: Hashimoto et al. (2016) proposed to reconstruct trajectories using a particular regularized
recurrent neural network (RNN) with Wasserstein gradient flow loss. Bunne et al. (2022) expanded this approach
by modeling the evolution of the trajectories of interest using the Jordan-Kinderlehrer-Otto (JKO) scheme. In
particular, the authors developed JKOnet, a neural architecture that can compute the JKO flow, from which
the energy landscape that governs the population’s dynamics can be learnt. TrajectoryNet by Tong et al. (2020)
combines ideas from dynamic optimal transport with continuous normalizing flows (CNFs). In particular, the
authors use a CNF to generate continuous-time non-linear sample trajectories from multiple time points. And
they also propose a regularization that encourages a straight trajectory based on dynamic optimal transport
theory. Huguet et al. (2022) recently proposed another flow-based method, Manifold Interpolation Optimal-
transport Flow (MIOFlow). The main idea of this work is to solve the flow problem in a manifold embedding.
The authors use a neural ODE (Chen et al., 2018) to transport a sampling of high dimensional data points
between time points such that (1) the transport occurs on a manifold defined by samples, (2) the transport is
penalized to agree with measured time points using Wasserstein, and (3) the transport is stochastic.

All of these methods can be viewed as optimizing an entropy-regularized (unbalanced) optimal transport loss
between observed and simulated samples, requiring backpropagation through optimal transport solvers (Cuturi,
2013; Cuturi et al., 2022). Essentially, these methods solve a Schrödinger bridge problem, each utilizing a specific
reference measure based on the chosen method. For example, Tong et al. (2020) simulates samples using CNFs
with a specific dynamic optimal transport-induced regularization, and this leads to approximately solving a
Schrödinger bridge problem where the volatility term is 0 and the reference is a Brownian motion. Therefore,
similarly to what we discussed in the main text for Chen et al. (2024), all these methods suffer from the fact
that it is as if they need a pre-defined reference measure. And it is very rare that scientists have access to all the
information about the correct reference measure for their problems. Our proposed method directly addresses this
challenge by moving beyond a fixed reference process to improve trajectory inference. We emphasize that our
main contribution lies in the reference refinement step, which, in theory, could be integrated with the methods
discussed here as well as Schrödinger bridge methods outlined in the main text. This is an exciting direction for
future work.

B Implementation details

In this section we discuss the implementation details of our method.
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B.1 First projection at one consecutive pair

In this step, we are interested in estimating I − 1 pairs of forward and backward drifts, {b̂i, b̂iback}
I−1
i=1 , that are

ideally one the time inversion of the other. As explained in the main text, any SB algorithm currently in the
literature could be used for this step. Some potential alternatives are Vargas et al. (2021), Wang et al. (2021)
and Caluya and Halder (2021).

In our implementation, we decided to use the work in Vargas et al. (2021). In particular, we use Algorithm 2 in
the paper4. We use the available code as it is and stick to the authors’ choice for most parameters. The only
difference comes from the fact that in Vargas et al. (2021), the authors have only access to two time steps, t0
and t1, such that t1 − t0 = 1. The authors in the paper pick discretization step ∆t = 0.01, and therefore the
total number of steps in their algorithm is N = 1/∆t = 100. In our method, we also pick ∆t = 0.01, but we
have multiple time intervals, not necessarily all of length 1. Therefore we have a different amount of discretized
steps, Ni = [(ti+1 − ti)/∆t], for each time interval i.

Note that in Vargas et al. (2021) the authors suggested 5 iterations are enough for this algorithm to converge
(see also Fig. 4 of Vargas et al., 2021), but we decided to run their algorithm for 10 iterations, which is the
default in the available code (Vargas, 2021).

B.2 Sampling routine

Assume that we have access to b̂ and b̂back. In practice, as discussed at the end of the “Multi-marginal Schrödinger
bridges” paragraph in section 2, these two drifts are constructed by concatenating I − 1 pairs of forward and
backward drifts, denoted as {b̂i, b̂iback}

I−1
i=1 . Here we are interested in generating trajectories from the underlying

distribution. More precisely, we are interested in approximating one trajectory X̂
(i,ni)
t , 0 < t ≤ tI , for each

observed sample Y ni
ti .

We can do this by numerically solving the SDEs associated to these drifts using a standard Euler-Maruyama

approach (Särkkä and Solin, 2019, Chapter 3.4) with sampling rate ∆t. We can obtain X̂
(i,ni)
t for ti < t ≤ tI ,

by starting from Y ni
ti and simulating forward, with discrete step ∆t, the SDEs with drifts {b̂i, b̂i+1, . . . , b̂I−1}.

We start at ti and use b̂i to simulate forward Y ni
ti to obtain the trajectory at discrete times ti+∆t, ti+2∆t, . . . .

We do this for Li steps, where Li is the smallest integer such that ti+Li∆t ≥ ti+1. That is, we use b̂
i as long as

we are diffusing over the time interval [ti, ti+1]. As soon as our discrete solving routine gives us an observation

beyond time ti+1, we stop using b̂i and start using b̂i+1. In particular, we start using b̂i+1 from X̂
(i,ni)
ti+Li∆t, and

simulate this forward for Li+1 steps, until ti + (Li + Li+1)∆t ≥ ti+2. And we proceed in this way until we
have simulated all the way forward until tI . With this routine, it might happen that in the very last step we

obtain X̂
(i,ni)

ti+
∑I−1

j=i Lj∆t
with ti +

∑I−1
j=i Lj∆t ≥ tI . Since we are assuming A1 and A2, and the trajectories are

continuous, we do not expect the trajectory to vary a lot in the time past tI , so we just consider the trajectory

up to X̂
(i,ni)

ti+
∑I−1

j=i Lj∆t
. In a very similar manner, we obtain X̂

(i,ni)
t for 0 ≤ t ≤ ti, by starting from Y ni

ti and

simulating backward, with discrete step ∆t, the SDEs with drifts {b̂iback, b̂
i−1
back, . . . , b̂

1
back}. We can then obtain

a full trajectory for Y ni
ti by concatenating the backward and forward simulated trajectories. We denote this by

X̂
(i,ni)
0≤t≤tI

. If we do this for all the observations, we obtain the set of trajectories {X̂(i,ni)
0≤t≤tI

}i,ni
.

B.3 Second projection

Here we describe the subroutine we denoted as MLEfit in Algorithm 1.

We first observe that the inverse projection, eq. (8), is equivalent to maximizing the cross entropy between pbref

and qb(k)

4The code implementation is available at https://github.com/franciscovargas/GPSinkhorn

https://github.com/franciscovargas/GP_Sinkhorn
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argmin
bref:pbref

∈F
DKL(qb(k)∥pbref

) = argmin
bref:pbref

∈F
Eq

b(k)
log

qb(k)

pbref

= argmin
bref:pbref

∈F

[
Eq

b(k)
log qb(k) − Eq

b(k)
log pbref

]
= argmax

bref:pbref
∈F

Eq
b(k)

log pbref

That is, the second projection can be viewed as the expected log-likelihood when true data is from qb(k) and
our model is pbref

. We do not have access to the full distribution qb(k) , but only to the time discretized samples

obtained from the previous sampling routine, {X̂(i,ni)
0≤t≤tI

}i,ni
. Therefore, we can approximate the expectation

with a sample mean.

To do so, observe that the likelihood of these time discretized samples under model pbref
can be calculated by an

autoregressive process. Indeed, consider the estimated trajectory at some time ti, X̂
(i,ni)
ti . Under the SDE model

pbref
with drift bref and sampling rate ∆t, the next evaluation for the estimated trajectory, X̂

(i,ni)
ti+∆t is obtained

by sampling from a Gaussian X̂
(i,ni)
ti+∆t|X̂

(i,ni)
ti ∼ N (X̂

(i,ni)
ti + bref(X̂

(i,ni)
ti ,∆t), γ∆t). Therefore, each point in the

trajectory is dependent only on the immediate previous point, with the next value being a normally distributed
variable centered around the previous value adjusted by the drift term bref, with variance γ∆t. This process can
thus be seen as a Markov chain with Gaussian transition kernel.

Therefore, we can approximate Eq
b(k)

log pbref
by the sample mean

Eq
b(k)

log pbref
≈ 1∑I

i=1 Ni

1∑
i Li

I∑
i=1

Ni∑
ni=1

Li−1∑
ℓ=1

− 1

2γ∆t
||(X̂(i,ni)

(ℓ+1)∆t − X̂
(i,ni)
ℓ∆t )− bref(X̂

(i,ni)
ℓ∆t , ℓ∆t)||22 −

1

2
log(γ∆t)

(11)

And so to find the new optimal reference drift b̂ref it is enough to solve the following minimization problem:

b̂ref = argmin
bref:pbref

∈F

1∑I
i=1 Ni

1∑
i Li

I∑
i=1

Ni∑
ni=1

Li−1∑
ℓ=0

1

2γ∆t
||(X̂(i,ni)

(ℓ+1)∆t − X̂
(i,ni)
ℓ∆t )− bref(X̂

(i,ni)
ℓ∆t , ℓ∆t)||22

B.4 Code, hyperparameters, reference choice and training for our method

The code, data, and instructions needed to reproduce the main experimental results are provided at this link.

We can solve the minimization problem described in appendix B.3 by any standard nonlinear least squares routine.
In our implementation, for each experiment we parametrize the reference family of drifts as a neural network
(more precisely, a nn.Module in PyTorch), and train this neural network to predict all the finite differences

X̂
(i,ni)
(ℓ+1)∆t−X̂

(i,ni)
ℓ∆t using an MSE loss and gradient descent. We provide more details for the reference family choice

(and corresponding neural architecture) for each experiment in appendix D.3.2 (Lotka-Volterra), appendix D.4.2
(repressilator), appendix D.6.2 (single cell) and appendix D.5.1 (ocean current). During training, the learning
rate is set to 0.01 and we consider 50 epochs. These hyperparameter values were determined by a grid search on
combinations of learning rates {0.05, 0.01, 0.005, 0.001} and epochs of {20, 50}. The best choice was determined
by visually inspecting generated trajectories passing through training data and quantitatively inspecting the loss
in the second projection eq. (11). We used the parameters that 1) the learned trajectories passes training data
and 2) achieve the smallest second projection loss.

We iterate through our algorithm 10 times (K = 10) to refine the model: we find empirically that this number
of iterations balances efficiency and accuracy, with little improvement beyond this point for all the experiments.

B.5 Vanilla-SB

The Vanilla-SB algorithm can be viewed as using the first step in our algorithm (where we solve the first KL
projection) one time. Therefore, also for this method we decided to stick to Algorithm 2 by Vargas et al. (2021)5.
We apply their code exactly as explained in appendix B.1.

5The code implementation available at https://github.com/franciscovargas/GPSinkhorn

https://github.com/YunyiShen/SBIRR
https://github.com/franciscovargas/GP_Sinkhorn
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B.6 Deep Momentum-SB

For this additional baseline, we use the code provided by the authors of the paper at
https://github.com/TianrongChen/DMSB. The code is released under MIT license (Chen, 2021). We
use their code with default parameters, as in the "gmm" experiment. Since the method seems to produce
non-realistic trajectories with these settings, we performed a small grid search over the (v scale) parameter.
We try values {0.1, 0.01, 0.001, 0.0001, 0.00001} and find that we obtain the best trajectories — both visually
and in terms of EMD — with v scale=0.01. This is aligned with the authors’ choice in the "RNA" experiment.
We also try to run our experiments using all the default parameters in the "RNA" experiment, but find out that
the hybrid combination of "gmm" hyperparameters and v scale = 0.01 is what works best both visually and in
terms of EMD.

B.7 TrajectoryNet

For this baseline, we use the algorithm implemented in the Python package TrajectoryNet (Tong et al., 2024).
This package is licensed under Yale Non-Commercial License. We use the default parameter settings as specified
in Tong et al. (2020). The algorithm returns trajectories starting from the last time step, going backwards to
the first time step. We use these trajectories in our comparison.

C Iterative projections proof details

In this section we provide details on how to prove proposition 1 in the main text. This result follows using
standard theory of iterative projections (Csiszár, 1975; Csiszár and Shields, 2004; Benamou et al., 2015). In
particular, the convergence results in our setting are derived by adapting Theorem 5.3 from Csiszár and Shields
(2004), originally formulated for families of discrete distributions. We have numbered this as theorem C.1,
and modified it to apply to density functions rather than probability mass functions. Once we have stated
theorem C.1, to prove proposition 1 we need to apply this adaptation to the specific case where the divergence
of interest is the KL divergence between SDEs. To do so, we need to verify that the theorem’s conditions on
probability densities are satisfied by our SDEs. To facilitate this, we have established additional lemmas —
lemma C.2, lemma C.3, and lemma C.4. Using these lemmas, we can then apply theorem C.1 in the specific case
of KL divergence between densities defined by SDEs, and establish proposition 1.

This appendix is organized as follows:

• We first briefly discuss the existence and convexity of densities associated to SDEs in our setting — this will
be needed to state and prove the main results in the rest of appendix C. We also prove that the family D
in eq. (3) is always convex.

• We then state and prove theorem C.1, our continuous case adaptation of Theorem 5.3 from Csiszár and
Shields (2004).

• Next, we state and prove lemma C.2 and lemma C.3, continuous setting adaptations of Theorem 3.1 and
3.4 in Csiszár and Shields (2004), which will be needed to verify assumptions in theorem C.1 for the KL
divergence.

• We prove lemma C.4, which is needed to verify the assumptions in lemma C.2, lemma C.3, and theorem C.1
for the KL divergence between densities associated to SDEs.

• And finally, we put everything together and prove proposition 1.

We can now define convexity in our setting.

C.1 Existence of densities and convexity

In our work, we assume that all the SDEs share the same diffusion term
√
γdWt, with fixed γ. When we consider

these SDEs over a finite time horizon, it is well-known that the probability distribution over trajectories admits
a density with respect to the Wiener measure defined by a Brownian motion with volatility γ. This is because of

https://github.com/TianrongChen/DMSB.
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Girsanov’s theorem (see, e.g., Theorem 8.6.3 in Oksendal (2013)). This theorem guarantees that the probability
distribution over trajectories induced by the solution to an SDE with a drift and a Brownian motion component
can be transformed into a probability distribution over trajectories induced by just the Brownian motion (i.e.,
the Wiener measure) through a change of measure. Note that Girsanov’s theorem holds true in this setting since
assumptions A1 and A2 imply Novikov’s condition, equation (8.6.7) in Theorem 8.6.3 in Oksendal (2013).

Having established the existence of densities, we can now define convexity for a set densities. In particular, in
the rest of our work we say that a set of densities, e.g. F , is convex if for all densities p, p′ ∈ F and all ω ∈ [0, 1]
we have (1− ω)p̃+ ωp̃′ ∈ F .

Now we show that the family D in eq. (3) is always convex.

Lemma C.1 (Convexity of D). D is convex, i.e., for any two qb1
, qb2

∈ D, we have for all ω ∈ [0, 1], the density
qb := ωqb1

+ (1− ω)qb2
∈ D.

Proof. Consider the marginal distribution induced by ωqb1
+ (1− ω)qb2

at ti, qb,ti . This can be written as

qb,ti = ωqb1,ti + (1− ω)qb2,ti = ωπti + (1− ω)πti = πti

where in the last equality we use the fact that qb1
and qb2

are in D. Since this holds for all i ∈ [I], we have that
qb ∈ D and therefore D is convex.

C.2 Continuous setting adaptation of Theorem 5.3, Csiszár and Shields (2004)

Now that we have clearly defined what we mean when we talk about convex families, we can state and prove
theorem C.1.

Theorem C.1 (Continuous setting adaptation of Theorem 5.3, Csiszár and Shields (2004)). Let D(q, p) be a
divergence between densities q and p from two convex families of (probability) densities G and H, respectively.
Define p∗(q) := argminp∈H D(q, p) and q∗(p) := argminq∈G D(q, p). Consider the iterative scheme given by
q(k) = q∗(p(k−1)) and p(k) = p∗(q(k)). Assume the existence of a non-negative function δ(q, p) such that the
following conditions are satisfied:

1. Three-Points Property: For all q ∈ G and p ∈ H,

δ(q, q∗(p)) +D(q∗(p), p) ≤ D(q, p). (12)

2. Four-Points Property: For all q′ ∈ G and p′ ∈ H, if minp∈H D(q, p) <∞, then

D(q′, p′) + δ(q′, q) ≥ D(q′, p∗(q)). (13)

3. Boundedness Property: For all p ∈ H, if minq∈G D(q, p) <∞, then

δ(q∗(p), q(1)) <∞. (14)

Then, if minq∈G,p∈H D(q, p) <∞, the iteration converges to the infimum of D(q, p) over G and H:

lim
k→∞

D(q(k), p(k)) = inf
q∈G,p∈H

D(q, p).

Proof. First, from the Three-Points property we have that for all q ∈ G:

δ(q, q(k+1)) +D(q(k+1), p(k)) ≤ D(q, p(k)),

where q(k+1) = q∗(p(k)). Then, using the Four-Points property, we get:

D(q, p(k)) ≤ D(q, p) + δ(q, q(k)).

for all q ∈ G and p ∈ H because p(k) = p∗(q(k)). Combining these results yields:

δ(q, q(k+1)) ≤ D(q, p)−D(q(k+1), p(k)) + δ(q, q(k)).
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This inequality shows the change in the discrepancy measure δ across iterations. By the definition of the iterative
process, the sequence of divergences decreases monotonically:

D(q(1), p(0)) ≥ D(q(1), p(1)) ≥ D(q(2), p(1)) ≥ . . .

Assume for contradiction that limk→∞ D(q(k), p(k)) ̸= infq,p D(q, p). Suppose there exists p and ϵ > 0 such that:

D(q(k+1), p(n)) > D(q∗(p), p) + ϵ, for all k.

Applying the earlier derived inequality to q = q∗(p), we find that for all k:

δ(q∗(p), q(k+1)) ≤ δ(q∗(p), q(k))− ϵ.

Since δ(q∗(p), q(1)) <∞, by assumption the Boundedness property, this recursion results in:

δ(q∗(p), q(k+1)) < 0 for some k,

contradicting the non-negativity of δ. Therefore, our initial assumption must be false, and we conclude:

lim
k→∞

D(q(k), p(k)) = inf
q,p

D(q, p).

C.3 Continuous setting adaptation of Theorem 3.1, Csiszár and Shields (2004)

In order to apply this theorem to prove proposition 1, we need to show that the three properties (eqs. (12)
to (14)) are true when D(q, p) = DKL(q, p), δ(q, p) = DKL(q, p) ≥ 0, and p, q are densities.

To this end, we first state and prove lemma C.2, which is a continuous setting adaptation of Theorem 3.1 of
Csiszár and Shields (2004). This establishes that — under one additional assumption on densities — the three
point property, eq. (12), is satisfied for δ(q, p) = D(q, p) = DKL(q||p).
Lemma C.2 (Continuous setting adaptation of Theorem 3.1 of Csiszár and Shields (2004)). Let G and H be two
convex sets of densities with respect to a base measure µ. For any q, q′ ∈ G and p ∈ H, assume Eq| log(q′/p)| <∞.
Define q∗(p) := argminq∈G DKL(q||p). Then, for any q ∈ G and p ∈ H:

DKL(q||p) ≥ DKL(q||q∗) +DKL(q
∗||p)

Proof. Let qω = (1− ω)q∗ + ωq ∈ G for ω ∈ [0, 1]. By the mean value theorem, ∃ω̃ ∈ (0, 1) such that:

0 ≤ 1

ω
[DKL(qω||p)−DKL(q

∗||p)] = d

dω
DKL(qω||p)|ω=ω̃

The lower bound is 0 as q∗ minimizes KL divergence. We now examine the derivative:

d

dω
DKL(qω||p) =

d

dω

∫
qω log

qω
p
dµ

qω log qω
p is integrable by our initial assumption. To move the derivative inside the integral, we need to show the

partial derivative is integrable. The partial derivative is:

∂

∂ω
qω log

qω
p

= (q − q∗)(log
qω
p

+ 1)

We can bound this expression:

|(q − q∗)(log
qω
p

+ 1)| ≤ (q + q∗)| log qω
p

+ 1|

Now we show this bound is integrable:∫
(q + q∗)| log qω

p
+ 1|dµ ≤ Eq| log

qω
p
|+ Eq∗ | log

qω
p
|+ 2 <∞
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This integrability allows us to apply the Dominated Convergence Theorem (DCT):

d

dω
DKL(qω||p) =

∫
(q − q∗) log

qω
p
dµ

We can now examine the limit as ω approaches 0. Again applying DCT:

lim
ω→0

d

dω
DKL(qω||p) =

∫
(q − q∗) log

q∗

p
dµ ≥ 0

The inequality holds because q∗ minimizes KL divergence. Finally, we expand this expression:∫
(q − q∗) log

q∗

p
dµ = DKL(q||p)−DKL(q||q∗)−DKL(q

∗||p) ≥ 0

This final step proves the stated inequality, completing our proof.

C.4 Continuous setting adaptation of Theorem 3.4, Csiszár and Shields (2004)

Next we show lemma C.3, which is a continuous setting version of Theorem 3.4 of Csiszár and Shields (2004).
This establishes that — under the same additional assumption on densities that we have for lemma C.2 — the
four-point property, eq. (13), is satisfied for δ(q, p) = D(q, p) = DKL(q||p).
Lemma C.3 (modified version of theorem 3.4 of Csiszár and Shields (2004)). Let G and H be two convex sets
of densities with respect to some base measure µ. Assume for all q ∈ G and p, p′ ∈ H, we have Eq[p/p

′] < ∞.
Then, p∗ ∈ H is the minimizer of DKL(q||p) over p ∈ H if and only if for all q′ ∈ G and p′ ∈ H:

DKL(q
′||p′) +DKL(q

′||q) ≥ DKL(q
′||p∗)

Proof. ”If” part: Take q′ = q. The inequality directly implies p∗ is the minimizer.

”Only if” part: We claim that ∫
q(1− p′

p∗
)dµ ≥ 0

. If this holds, then 1−
∫

qp′

p∗ dµ ≥ 0, and ∫
q′(1− qp′

q′p∗
)dµ ≥ 0

Using the inequality log(1/x) ≥ 1− x, we have:

DKL(q
′||p′) +DKL(q

′||q)−DKL(q
′||p∗) =

∫
q′ log

q′p∗

qp′
dµ ≥

∫
q′(1− qp′

q′p∗
)dµ ≥ 0

This proves the main result. Thus, it suffices to prove
∫
q(1− p′

p∗ )dµ ≥ 0.

To prove this claim, set pω = (1 − ω)p∗ + ωp′ ∈ H for ω ∈ [0, 1]. Since p∗ is a minimizer, by the mean value
theorem, ∃ω̃ ∈ (0, 1) such that:

0 ≤ 1

ω
(DKL(q||pω)−DKL(q||p∗)) =

d

dω
DKL(q||pω)|ω=ω̃

To move the derivative inside the integral, we check if it’s absolutely integrable:

d

dω
q log

q

(1− ω)p∗ + ωp′
= q

p∗ − p′

(1− ω)p∗ + ωp′

We show it has finite integral:∫
|q p∗ − p′

(1− ω)p∗ + ωp′
|dµ ≤ Eq

p∗

(1− ω)p∗ + ωp′
+ Eq

p′

(1− ω)p∗ + ωp′
<∞



Yunyi Shen∗, Renato Berlinghieri∗, Tamara Broderick

This is finite by our assumption, as (1− ω)p∗ + ωp′ ∈ H.

Taking the limit as ω → 0:

0 ≤ lim
ω→0

d

dω
DKL(q||pω) = lim

ω→0

∫
q

p∗ − p′

(1− ω)p∗ + ωp′
dµ

By the Dominated Convergence Theorem, we can move the limit inside the integral:

0 ≤
∫

q lim
ω→0

p∗ − p′

(1− ω)p∗ + ωp′
dµ =

∫
q(1− p′

p∗
)dµ

This completes the proof of our claim and thus the lemma.

C.5 Expectation of density ratios

Next, we state and prove lemma C.4. Informally, this lemma says that — in our specific SDE setting — the
assumption on densities needed in lemma C.2 and lemma C.3 is satisfied. The Boundedness Property, eq. (14),
in theorem C.1 is also a direct consequence of this lemma.

Lemma C.4 (Expectation of density ratio). Consider three SDEs that share the same diffusion term
√
γdWt

and have different drift terms bp(·, ·), bq(·, ·), and bq′(·, ·). Let p, q, and q′ be the corresponding densities over
the Wiener measure.

The SDEs are defined as follows:

For density p : dXt = bp(Xt, t)dt+
√
γdWt,

For density q : dXt = bq(Xt, t)dt+
√
γdWt,

For density q′ : dXt = bq′(Xt, t)dt+
√
γdWt.

Assume that the time horizon is finite, i.e., t ∈ [0, T ], and that all drift terms are bounded in the L∞ norm.
Specifically, there exists a constant C such that

∥bi(x, t)∥∞ < C <∞ for i ∈ {p, q, q′} and for all x, t.

Under these conditions, the density ratio between the processes is bounded. In particular, the following expecta-
tions are finite:

1. The expected log density ratio: Eq

[∣∣∣log q′

p

∣∣∣] <∞. (Assumption in lemma C.2)

2. The expected density ratio: Ep

[
q
q′

]
<∞. (Assumption in lemma C.3)

3. The KL divergence between q and p: Eq

[
q
p

]
<∞ (Boundedness Property, eq. (14))

Proof. We first show that the expected density ratio is finite. To this end, note first that since the diffusion terms√
γdWt are shared among the SDEs, the three SDEs define distributions over trajectories that admit densities

over a Wiener measure. By direct application of Girsanov’s theorem (see e.g., Kailath, 1971), the density ratio
between the two measures on a sample path Xt is given by:

q

q′
= exp

[
1

γ

∫ T

0

(bq(Xt, t)− bq′(Xt, t))
⊤dWt −

1

2γ

∫ T

0

∥bq(Xt, t)− bq′(Xt, t)∥22dt

]
.

Next, we consider the expectation of this density ratio when trajectories are from another distribution over
trajectories defined by the SDE with density p. This expectation is:

Ep

[
q

q′

]
= Ep

[
exp

(
1

γ

∫ T

0

(bq(Xt, t)− bq′(Xt, t))
⊤dWt −

1

2γ

∫ T

0

∥bq(Xt, t)− bq′(Xt, t)∥22dt

)]
.
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Using the assumption that the drift terms are bounded, i.e., ∥bi(x, t)∥∞ < C <∞ for i = p, q, q′, we get:

Ep

[
q

q′

]
≤ Ep

[
exp

(
1

γ

∫ T

0

2C1⊤dWt +
1

2γ

∫ T

0

4dC2dt

)]

= exp

(
2dC2T

γ

)
Ep

[
exp

(
2C

γ

∫ T

0

1⊤dWt

)]
.

The last factor, exp
(

2C
γ

∫ T

0
1⊤dWt

)
, is a log-normal random variable, which has a finite expectation. Therefore:

Ep

[
q

q′

]
<∞.

For the first statement regarding the expected log density ratio, we proceed in a similar manner. We need to
show:

Eq

[∣∣∣∣log q′

p

∣∣∣∣] = Eq

[∣∣∣∣∣
∫ T

0

(bq′(Xt, t)− bp(Xt, t))
⊤dWt −

1

2γ

∫ T

0

∥bq′(Xt, t)− bp(Xt, t)∥22dt

∣∣∣∣∣
]
<∞

Using the boundedness of the drift terms, we get:

Eq

[∣∣∣∣log q′

p

∣∣∣∣] ≤ Eq

[∣∣∣∣∣
∫ T

0

|bq′(Xt, t)− bp(Xt, t)|⊤ dWt

∣∣∣∣∣+ 1

2γ

∫ T

0

4dC2dt

]

≤ Eq

[∣∣∣∣∣
∫ T

0

2C1⊤dWt

∣∣∣∣∣
]
+

2dC2T

γ
.

The first term is finite since it is a Gaussian random variable, and the second term is finite by assumption that
C <∞. Thus:

Eq

[∣∣∣∣log q′

p

∣∣∣∣] <∞.

Finally, considering the case q = q′, the KL divergence between q and p is finite under our assumption:

Eq

[
log

q

p

]
≤ Eq

[∣∣∣∣log q

p

∣∣∣∣] <∞.

This completes the proof.

C.6 Proof of proposition 1

We now have all the pieces needed to apply theorem C.1 in the specific case where δ(q, p) = D(q, p) = DKL(q||p),
to restate and prove proposition 1.

Proposition 1. Suppose F is a convex set of densities over trajectories implied by the SDE in eq. (1); suppose
all densities have shared volatility γ and the same marginal distribution at time 0. Suppose that all SDEs
satisfy assumptions 1 and 2. Suppose ∃C <∞ such that, for every drift b with qb ∈ D or pb ∈ F ,

sup
(x,t)∈Rn×[0,tI ]

∥b(x, t)∥∞ ≤ C

Take any initialization b
(0)
ref . If b(k) and b

(k)
ref are computed by recursively applying eqs. (7) and (8), we have

lim
k→∞

DKL(qb(k)∥p
b
(k)
ref

) = inf
qb∈D

pbref
∈F

DKL(qb∥pbref
)
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Proof. We show that this result follows directly from theorem C.1 by verifying all conditions. The convexity of
D follows from lemma C.1. Consider q = qb, p = pbref

. Then let the D divergence in theorem C.1 be the KL
divergence, i.e., D(q, p) = DKL(qb, pbref

) and δ(q, p) = DKL(qb, pbref
) ≥ 0, where p and q are densities.

To apply theorem C.1 in this setting, we need to show that the three properties in theorem C.1 hold true:

1. Three-point property (eq. (12)): This property is established using lemma C.2. The conditions for lemma C.2
are satisfied due to our assumption of bounded drift and lemma C.4.

2. Four-point property (eq. (13)): This property is established using lemma C.3. The conditions for lemma C.3
are satisfied due to our assumption of bounded drift and lemma C.4.

3. Boundedness assumption (eq. (14)): This assumption is directly established by lemma C.4.

Given that all three required properties are satisfied, we can apply theorem C.1 to our setting, which completes
the proof.
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D Further experimental details

In this section we provide experimental details for each experiment, and report the results both visually and in
terms of EMD and MMD.

D.1 Metric choice

We choose to use two metrics that are commonly used in the literature to compare distributions, the Earth
Mover Distance (EMD, Rubner et al. (1998), also known as Wasserstein-1) and the Maximum Mean Discrepancy
(MMD, Gretton et al. (2012)). The EMD between two distributions P and Q can be defined by the maximization
problem

EMD(P,Q) = sup
||f ||L≤1

Ex∼P f(x)− Ey∼Qf(y) (15)

where ||f ||L ≤ 1 constraints the function f to be 1-Lipschitz continuous, i.e. ||∇f || ≤ 1. The EMD intuitively
measures the distance between two probability distributions by computing the minimum cost required to trans-
form one distribution into the other. This metric allows us to quantify the similarity between the inferred and
actual trajectories. This is a valid metric for our experiments, since if the inferred and actual trajectories are
from the same distribution we expect it to converge to 0 (as the amount of trajectories goes to infinity). See
Fournier and Guillin (2015) for more details on this property. The metric can be calculate using the Sinkhorn
algorithm. We use the implementation in the TrajectoryNet package.

The MMD between two distributions is defined in a very similar way. Instead of constraining the optimization
problem to 1-Lipschitz continuous functions, we ask f to be in a reproducing kernel Hilbert space H induced by
a kernel function of choice.

MMD(P,Q) = sup
f∈H

Ex∼P f(x)− Ey∼Qf(y) (16)

In our implementation, we pick the underlying kernel to be the Radial Basis Function (RBF) kernel with a length
scale of 1 across all experiments.

D.2 Experiments tiebreaking details

In the tables across the paper, we highlight in green the method with lowest mean error over the restricted
trajectories; we also highlight any other (restricted) method whose one-standard-deviation confidence interval
overlaps the mean of the best (restricted) method. Separately, we use light blue to indicate any all-trajectory
method whose one-standard-deviation confidence interval either overlaps with or falls below the mean of the best
(restricted) method.

D.3 Lotka-Volterra

D.3.1 Experiment setup

For this experiment, we are interested in learning the dynamics of a stochastic Lotka-Volterra predator-prey
model. The dynamics of the prey and predator populations are given by the following SDEs:

dX = αX − βXY + 0.1dWx

dY = γXY − δY + 0.1dWy

(17)

where [dWx, dWy] is a 2D Brownian motion.

To obtain data, we fix the following parameters: α = 1, β = 0.4, γ = 0.1, δ = 0.4. We start the dynamics at
X0 ∼ U(5, 5.1) and Y0 ∼ U(4, 4.1), and simulate the SDEs for 10 instants of time. The length of each time
interval is 1. We use Euler-Maruyama method to obtain the numeric solutions. We obtain 50 particles for each
snapshot. We set ∆t = 0.01 for every discretization step. We initialize the reference drift to 0, so that the initial
reference SDE is a simple Brownian motion.
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D.3.2 Reference family choice

For this experiment, we have access to the data-generating process, as described in eq. (17). Therefore, we select
the reference family to be the set of SDEs that satisfy this system of equations, eq. (17). We implement this
reference family in practice as a PyTorch nn.Module with four scalar parameters, α, β, γ, δ. These parameters are
to be learned during the optimization phase. Specifically, we use this module to evaluate dX and dY , returning
torch.stack([dX, dY]) in the nn.forward method. The learning process involves optimizing the parameters
using gradient descent, with a learning rate of 0.05 over 20 epochs, as determined by the grid search detailed in
appendix B.3.

D.3.3 Results

We provide a visual representation ot the trajectories in fig. 1 in the main text. In terms of EMD and MMD
metrics, we show the results in table 2 and table 3, respectively. We can see that our method is most of the times
the best on the restricted set of trajectories (first four rows), and always at least as good as the other methods.
When considering results over all possible trajectories (last two rows) our method is even better, especially for
the last time step.

Method EMD t2 EMD t4 EMD t6 EMD t8
Vanilla-SB: one time 0.59 ± 0.28 0.46 ± 0.073 0.40 ± 0.059 0.70 ± 0.10
DM-SB: one time 0.49 ± 0.073 0.38 ± 0.12 0.30 ± 0.11 0.84 ± 0.27
TrajectoryNet: one time 3.41 ± 0.050 1.27 ± 0.030 1.08 ± 0.040 3.99 ± 0.35
Ours: one time 0.22 ± 0.039 0.16 ± 0.026 0.31 ± 0.070 0.74 ± 0.18
Vanilla-SB: all times 0.59 ± 0.29 0.46 ± 0.074 0.38 ± 0.067 0.57 ± 0.072
Ours: all times 0.21 ± 0.039 0.15 ± 0.021 0.30 ± 0.071 0.48 ± 0.055

Table 2: Earth mover’s distance (mean ± standard deviation) in four validation time points in Lotka-Volterra
dataset with 50 particles each snapshot. Results were averaged over 10 seeds.

Method MMD t2 MMD t4 MMD t6 MMD t8
Vanilla-SB: one time 2.73 ±2.08 1.63 ±0.54 0.68 ±0.38 0.78 ±0.26
DM-SB: one time 2.03 ± 0.51 1.06 ± 0.69 0.48 ± 0.36 1.26 ± 0.72
TrajectoryNet: one time 7.27 ± 0.11 6.33 ± 0.33 5.34 ± 0.20 6.35 ± 0.33
Ours: one time 0.40 ±0.16 0.068 ±0.069 0.34 ±0.25 0.80 ±0.44
Vanilla-SB: all times 2.75 ± 2.11 1.63 ± 0.55 0.67 ± 0.39 0.62 ± 0.23
Ours: all times 0.38 ± 0.16 0.05 ± 0.03 0.33 ± 0.25 0.29 ± 0.11

Table 3: Maximum mean discrepancy (mean ± standard deviation) in four validation time points in Lotka-
Volterra dataset with 50 particles. Results averaged over 10 seeds.
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D.4 Repressilator

D.4.1 Experiment setup

The repressilator is a synthetic genetic regulatory network that functions as a biological oscillator, or a genetic
clock. It was designed to exhibit regular, sustained oscillations in the concentration of its components. The
repressilator system consists of a network of three genes that inhibit each other in a cyclic manner: each gene
produces a protein that represses the next gene in the loop, with the last one repressing the first, forming a
feedback loop.

We can model the dynamics of the repressilator using the following SDEs:

dX1 =
β

1 + (X3/k)n
− γX1 + 0.1dW1

dX2 =
β

1 + (X1/k)n
− γX2 + 0.1dW2 (18)

dX3 =
β

1 + (X2/k)n
− γX3 + 0.1dW3

where [dW1, dW2, dW3] is a 3D Brownian motion, and the repressing behavior is quite clear from the drift
equations.

To obtain data, we fix the following parameters: β = 10, n = 3, k = 1, γ = 1. We start the dynamics with initial
distribution X1, X2 ∼ U(1, 1.1) and X3 ∼ U(2, 2.1). We simulate the SDEs for 10 instants of time. At each
time step, we take 50 samples. We use Euler-Maruyama method to obtain the numeric solutions. Also for this
experiment, we set ∆t = 0.01 for every discretization step. We initialize the reference drift to 0, so that the
initial reference SDE is a simple Brownian motion.

D.4.2 Reference family choice

For this experiment, we have access to the data-generating process, as described in eq. (18). Therefore, we
select the reference family to be the set of SDEs that satisfy this system of equations, eq. (18). We imple-
ment this reference family in practice as a PyTorch nn.Module with four scalar parameters β, n, k, γ to be
optimized by gradient descent. Specifically, we use this module to evaluate dX1, dX2, and dX3, returning
torch.stack([dX1, dX2, dX3]) in the nn.forward method. The learning process involves optimizing the pa-
rameters using gradient descent, with a learning rate of 0.05 over 20 epochs, as determined by the grid search
detailed in appendix B.3.

D.4.3 Results.

We provide a visual representation ot the trajectories in fig. 2 in the main text. In terms of EMD and MMD
metrics, we show the results in table 4 and table 5, respectively. We can see that our method is in general
better than all the other methods on the restricted set of trajectories (first four rows), besides the last time point
where Vanilla-SB is the best. When considering results over all possible trajectories (last two rows), our method
becomes even better at some time steps (especially t6. Vanilla-SB shows similar performance.

Method EMD t2 EMD t4 EMD t6 EMD t8 EMD t10
Vanilla-SB: one time 1.87 ± 0.047 1.22 ± 0.12 1.33 ± 0.17 1.20 ± 0.18 1.16 ± 0.14
DM-SB: one time 1.46 ± 0.08 1.08 ± 0.37 3.00 ± 0.54 2.18 ± 0.41 2.54 ± 1.21
TrajectoryNet: one time 3.62 ± 0.05 2.86 ± 0.08 1.67 ± 0.07 3.45 ± 0.09 2.33 ± 0.08
Ours: one time 0.51 ± 0.11 0.76 ± 0.10 0.49 ± 0.10 1.25 ± 0.27 2.18 ± 0.58
Vanilla-SB: all times 1.87 ± 0.05 1.23 ± 0.10 1.27 ± 0.15 1.19 ± 0.13 1.16 ± 0.14
Ours: all times 0.50 ± 0.11 0.87 ± 0.10 0.51 ± 0.09 0.61 ± 0.10 1.49 ± 0.20

Table 4: Earth mover’s distance (mean ± standard deviation) in five validation time points in repres50 dataset,
our method performs better than the baseline SB.
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Method MMD t2 MMD t4 MMD t6 MMD t8 MMD t10
Vanilla-SB: one time 9.33 ±0.059 5.52 ±0.68 4.19 ±0.68 1.87 ±0.62 2.04 ±0.50
DM-SB: one time 8.07 ± 0.29 4.37 ± 1.54 5.75 ± 0.37 3.65 ± 0.97 2.30 ± 0.83
TrajectoryNet: one time 6.86 ± 0.06 6.23 ± 0.13 4.56 ± 0.17 5.40 ± 0.33 4.61 ± 0.26
Ours: one time 1.97 ±0.80 2.70 ±0.66 0.60 ±0.32 1.40 ±0.51 2.20 ±0.96
Vanilla-SB: all times 9.33 ± 0.06 5.31 ± 0.72 3.87 ± 0.75 1.74 ± 0.69 1.70 ± 0.52
Ours: all times 1.96 ± 0.80 3.34 ± 0.50 0.64 ± 0.24 0.51 ± 0.18 0.95 ± 0.23

Table 5: Maximum mean discrepancy (mean ± standard deviation) in five validation time points in repres50
dataset.
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Figure 4: Our two datasets and the underlying ocean current dynamics from which we generated the data (black
arrows). Left: Gulf of Mexico - big vortex experiment. Right: Gulf of Mexico - small vortex experiment.

D.5 Gulf of Mexico vortex data

D.5.1 Experiment setup

In this experiment, we test our method on real ocean-current data from the Gulf of Mexico. We use high-
resolution (1 km) bathymetry data from a HYbrid Coordinate Ocean Model (HYCOM) reanalysis6 (Panagiotis,
2014). This dataset was released by the US Department of Defense, and is thus of public domain. The dataset
provides hourly ocean current velocity fields for the region extending from 98◦E to 77◦E in longitude and from
18◦N to 32◦N in latitude, covering every day since January 1st, 2001. We focus on a specific time point, June
1st 2024 at 5pm at surface level, and a particular spatial region where a vortex is observed. By doing so, we
obtain a unique velocity field with a known general behavior. Using this field, we generate particles that evolve
according to the ocean currents while satisfying our modeling assumptions. Specifically, we select an initial
location near the vortex and uniformly sample 1,000 initial positions within a small radius (0.05) around this
point, representing the starting positions of 1,000 particles. We then evolve these particles over nine time steps
using the ocean current velocity field. The time step size is 0.9. Since the velocity field is defined on a fine
grid, we approximate the velocity at each particle’s position by using the velocity at the nearest grid point when
the particle does not align exactly with a grid point. This approach simulates the particles’ trajectories within
the system. To create data that align with our modeling assumptions, we randomly assign each particle to one
of the nine time steps, ensuring that (1) each particle is observed at only one time point, and (2) each time
step has approximately the same number of particle observations. Specifically, we observe about 111 particles
at each time step (since 1, 000 ÷ 9 ≈ 111). This results in a dataset with sparse observations, where individual
particle trajectories are not fully observed. We perform this data generation task twice, starting at two different
locations around the vortex. See fig. 4 for a visual representation. We refer to the data in the left plot of fig. 4
as Gulf of Mexico - big vortex. And to the data in the right plot as Gulf of Mexico - small vortex. The goal of
this experiment is to assess whether our method and the baseline methods can reconstruct the vortex from these
two sparse particle datasets without access to complete individual trajectories.

D.5.2 Reference family choice

For this real data experiment, we do not have access to the data-generating process. However, we can leverage
domain knowledge about the underlying ocean current vortex dynamics. Specifically, we model the dynamics of
the vortex using the following SDEs:

6Dataset available at this link.

https://www.hycom.org/data/gomb0pt01/gom-reanalysis
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dX1 = scale ·
(
(X2 −Xcenter

2 ) · exp (−logyscale)
)
+ 0.1dW1

dX2 = −scale
(
X1 −Xcenter

1

)
+ 0.1dW2

This is a standard constant curl representation for a vortex of scale scale, centered at dX1, dX2, with a potential
elliptical deformation determined by logyscale. We implement this reference family in practice as a PyTorch
nn.Module with four scalar parameters, Xcenter

1 , Xcenter
2 , logyscale and scale to be learned by gradient descent.

This module is then used to evaluate dX1, dX2, returning torch.stack([dX1, dX2]) in the nn.forwardmethod.
The learning process involves optimizing the parameters using gradient descent, with a learning rate of 0.05 over
20 epochs, as determined by the grid search described in appendix B.3.

D.5.3 Results.

We provide a visual representation ot the trajectories for the small vortex in fig. 3 in the main text and for the
big vortex in fig. 5. In terms of EMD and MMD metrics, we show the results for the small vortex in table 6 and
table 8, respectively. And for the big vortex in table 7 and table 9.

For the small vortex, we can see that our method has similar performance to DM-SB on the restricted set of
trajectories. And these two methods are both better than the other two alternatives. When considering results
over all possible trajectories (last two rows), our method performs even better. If we look at fig. 3, we can see
that Vanilla-SB fails to capture the curvature. DM-SB and TrajectoryNet generate smooth trajectories that are
notably far from the data the final validation time point. Our trajectories track the curvature of the validation
data closely.

Similar results are observed for the big vortex experiment. Our method has similar performance to DM-SB on
the restricted set of trajectories. In particular, according to EMD DM-SB is better for the first time step, similar
for the second, and worse for the last two. By comparing the trajectories visually in fig. 5, we also see that
Vanilla-SB fails to capture the curvature. DM-SB generates smooth trajectories that fail to capture the third
validation time point (and have a slightly unnatural shape in the top right corner of the figure). TrajectoryNet
generate smooth trajectories that fail to capture the first validation time point. Our model generates trajectories
that most closely resembles the shape that we observe in the ocean current in fig. 4.

Method EMD t2 EMD t4 EMD t6 EMD t8
Vanilla-SB: one time 0.27 ± 0.060 0.30 ± 0.056 0.43 ± 0.053 0.42 ± 0.048
DM-SB: one time 0.086 ± 0.011 0.092 ± 0.020 0.088 ± 0.009 0.21 ± 0.027
TrajectoryNet: one time 0.78 ± 0.014 0.77±0.048 1.19±0.15 0.76±0.17
Ours: one time 0.075 ± 0.023 0.080 ± 0.017 0.13 ± 0.037 0.11 ± 0.032
Vanilla-SB: all times 0.27 ± 0.058 0.30 ± 0.056 0.42 ± 0.056 0.41 ± 0.048
Ours: all times 0.073 ± 0.020 0.072 ± 0.012 0.12 ± 0.029 0.094 ± 0.023

Table 6: Earth mover’s distance (mean ± standard deviation) in four validation time points in Gulf of Mexico -
small vortex dataset. Results were averaged over 10 seeds.

Method EMD t2 EMD t4 EMD t6 EMD t8
Vanilla-SB: one time 0.35 ± 0.043 0.55 ± 0.067 0.42 ± 0.047 0.21 ± 0.038
DM-SB: one time 0.074 ± 0.029 0.12 ± 0.027 0.19 ± 0.040 0.17 ± 0.048
TrajectoryNet: one time 1.94 ± 0.015 1.37±0.043 1.27±0.10 1.68±0.11
Ours: one time 0.19 ± 0.044 0.13 ± 0.038 0.092 ± 0.021 0.13 ± 0.020
Vanilla-SB: all times 0.35 ± 0.043 0.55 ± 0.071 0.41 ± 0.050 0.20 ± 0.035
Ours: all times 0.20 ± 0.038 0.13 ± 0.040 0.086 ± 0.020 0.13 ± 0.017

Table 7: Earth mover’s distance (mean ± standard deviation) in four validation time points in Gulf of Mexico -
big vortex dataset. Results were averaged over 10 seeds.
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Figure 5: Comparison on the Gulf of Mexico - big vortex data with 5 training times, 4 validation times, and
approximately 111 observations per time. Each plot shows approximately 111 simulated trajectories, originating
from particles at one time end point (three left plots: first time; right plot: final time).

Method MMD t2 MMD t=2 MMD t4 MMD t=4
Vanilla-SB: one time 0.73 ±0.32 0.86±0.33 1.67±0.37 1.48±0.32
DM-SB: one time 0.07 ± 0.02 0.08 ± 0.04 0.06 ± 0.02 0.34 ± 0.11
TrajectoryNet: one time 4.38 ± 0.25 4.38 ± 0.40 7.36 ± 0.76 4.16 ± 1.28
Ours: one time 0.042 ±0.035 0.043 ±0.031 0.16 ±0.10 0.064 ±0.031
Vanilla-SB: all times 0.72 ± 0.30 0.87 ± 0.34 1.67 ± 0.39 1.44 ± 0.32
Ours: all times 0.04 ± 0.03 0.03 ± 0.02 0.14 ± 0.07 0.05 ± 0.04

Table 8: Maximum mean discrepancy (mean ± standard deviation) in four validation time points in Gulf of
Mexico - small vortex dataset. Results were averaged over 10 seeds.

Method MMD t2 MMD t=2 MMD t4 MMD t=4
Vanilla-SB: one time 1.11 ±0.26 2.52±0.53 1.25±0.32 0.27±0.14
DM-SB: one time 0.05 ± 0.05 0.10 ± 0.07 0.30 ± 0.15 0.19 ± 0.13
TrajectoryNet: one time 9.40 ± 0.04 8.19 ± 0.20 7.72 ± 0.53 8.92 ± 0.17
Ours: one time 0.35 ±0.17 0.15±0.10 0.42±0.031 0.49±0.028
Vanilla-SB: all times 1.14 ± 0.26 2.53 ± 0.55 1.50 ± 0.34 0.27 ± 0.13
Ours: all times 0.37 ± 0.15 0.13 ± 0.09 0.04 ± 0.03 0.06 ± 0.03

Table 9: Maximum mean discrepancy (mean ± standard deviation) in four validation time points in Gulf of
Mexico - big vortex dataset. Results were averaged over 10 seeds.



Yunyi Shen∗, Renato Berlinghieri∗, Tamara Broderick

D.6 Single cell datasets

D.6.1 Experiment setup

We consider two different single cell data for this experiment: the one from Moon et al. (2019) on embryoid body
cells (EB) and the one from Chu et al. (2016) on human embryonic stem cells (hESC). Both datasets are shared
under CC-by-4.0 license. Both datasets offer insights into the dynamic process of stem cell differentiation by
capturing gene expression levels at different stages. Tong et al. (2020) applied a pre-processing pipeline, including
dimensionality reduction via Principal Component Analysis, to the EB data. We use the same pre-processing
for the EB data; we apply the same pipeline to the hESC data as well. The EB dataset consists of five snapshots
that are largely overalapping so we subsampled it to have 300 cells at each snapshot. The hESC dataset initially
consists of six snapshots. Note that we want validation data at every other snapshot, and we also want the
first and last snapshot to serve as training points. Therefore, we want the total number of snapshots to be an
odd number. To meet this desideratum, we choose to ignore the last snapshot of the hESC data. The EB data
already meets this desideratum. To apply our method to this dataset, we set ∆t = 0.01 for every discretization
step involving SDEs. We initialize the reference drift to 0, so that the initial reference SDE is a simple Brownian
motion.

D.6.2 Reference family choice

For this experiment, we do not have access to the data generating process, so we cannot proceed as done for
the synthetic experiments. Nonetheless, scientists have domain knowledge about the underlying dynamics of
cell differentiation process. In particular, following Wang et al. (2011); Weinreb et al. (2018); Lavenant et al.
(2024), we use a gradient field family. This family is motivated by Waddington’s famous analogy between cellular
differentiation and a marble rolling down a potential surface (Waddington, 1957). In practice, we parameterize the
gradient field using a multilayer perceptron, an architecture used for gradient field in literature (e.g., Greydanus
et al., 2019; Lin et al., 2023). We tested several potential models with one hidden layer of size 128, two hidden
layers of size 128 and 64, three hidden layers of sizes 128, 64, and 64, and three hidden layers of sizes 128, 128,
and 64 connected by ReLU activation functions, trained with learning rate 0.01 with 20 epochs. We choose based
on the criteria described in appendix B.3. The final training hyperparameters is set to 0.01 and we trained for
50 epochs, chosen by the grid search criteria described in appendix B.3 after choosing the architecture.

D.6.3 Results.

In terms of visual reconstruction, fig. 6 shows that all the methods perform well in reconstructing trajectories in
the EB experiments. This success can be attributed to the limited number of time steps, which results in restricted
global information. Nonetheless, the trajectories for our method, Vanilla-SB, and TrajectoryNet look more
reasonable at interpolating the data. If we consider instead fig. 7, we can see how for this dataset it is very clear
that both our method, Vanilla-SB, and TrajectoryNet outperform DM-SB. This approach, indeed, unfortunately
seems unable to capture trajectories going through the observations in a meaningful way, whereas the other
methods come up with trajectories that are visually reasonable given the observed data. This contradicts what
we see in table 10 and table 11. Indeed, when comparing the quality of only those trajectories generated from a
single end point in time, DM-SB outperforms the alternatives, including our method, for both EMD and MMD.
However, when allowed to generate trajectories from all particles, Vanilla-SB and our method outperform the
single-time trajectory options (as expected) and perform comparably to each other.

EB hESC
Method EMD t2 EMD t4 EMD t2 EMD t4
Vanilla-SB: one time 1.49 ± 0.063 1.55 ± 0.034 1.47 ± 0.088 1.97 ± 0.169
DM-SB: one time 1.13 ± 0.082 1.45 ± 0.16 1.10 ± 0.066 1.51 ± 0.11
TrajectoryNet: one time 2.03 ± 0.04 1.93 ± 0.08 1.30 ± 0.04 1.93 ± 0.05
Ours: one time 1.27 ± 0.028 1.57 ± 0.048 1.08 ± 0.12 1.33 ± 0.084
Vanilla-SB: all times 1.12 ± 0.031 1.12 ± 0.023 0.72 ± 0.017 1.27 ± 0.043
Ours: all times 0.96 ± 0.019 1.19 ± 0.017 0.71 ± 0.031 1.25 ± 0.076

Table 10: Earth mover’s distance (mean ± standard deviation) in two validation time points in EB and hESC
datasets.
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Figure 6: EB dataset
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Figure 7: hESC dataset

EB hESC
Method MMD t2 MMD t4 MMD t2 MMD t4
Vanilla-SB: one time 0.68 ±0.035 0.65 ±0.066 5.23 ±0.24 5.19 ±0.22
DM-SB: one time 0.24 ± 0.035 0.19 ± 0.038 3.22 ± 0.21 3.23 ± 0.27
TrajectoryNet: one time 0.62 ± 0.02 0.60 ± 0.10 4.03 ± 0.16 4.42 ± 0.17
Ours: one time 0.45 ±0.022 0.54 ±0.081 3.71 ±0.43 3.49 ±0.50
Vanilla-SB: all times 0.19 ± 0.021 0.19 ± 0.017 1.85 ± 0.11 2.77 ± 0.17
Ours: all times 0.14 ± 0.015 0.16 ± 0.011 2.02 ± 0.19 3.35 ± 0.30

Table 11: Maximum mean discrepancy (mean ± standard deviation) in two validation time points in EB and
hESC datasets.
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E Different Baselines Timing

In this section we provide a table reporting the computing times of the four methods when tested on the 6 tasks
of interest. The experiments were run on four cores of Intel Xeon Gold 6248 CPU and one Nvidia Volta V100
GPU with 32 GB RAM.

In table 12 we report the raw times for all the methods over the various tasks. The times are reported in hours.
The format is mean ± standard deviation, where these quantities are obtained by evaluating computing times
over 10 runs with 10 different seeds. We observe that Vanilla-SB is the fastest method, with all tasks finishing in
less than 30 minutes, and as little as few minutes for Lotka Volterra, EB, and hESC. Our method is also efficient.
In general, it takes approximately 10 times longer than Vanilla-SB, and this is because (1) we have to solve an
SB problem K = 10 times, and (2) the MLEFit step is much faster than the SB estimation itself. DM-SB and
TrajectoryNet are much slower. DM-SB takes an average of 15 hours across all experiments, with only Lotka
Volterra being a bit better (but still approximately 8 hours). TrajectoryNet takes a total of 7 to 11 hours across
the various tasks. This is much slower when compared to our own method.

To further analyze how faster our method is, we provide in table 13 the ratios between alternative algorithms
and our method’s elapsed times over the different tasks. Also for this table, we provide average and standard
deviation across 10 seeds. We can immediately notice that Vanilla-SB is 10 times faster, as expected. DM-SB
ranges from being 3 to 41 times slower, with an overall average of 16 times slower across all tasks (see table 14).
TrajectoryNet performs better than DM-SB but remains slower than our method, with ratios ranging from
approximately 2 to 27 times slower, averaging 11 times slower overall. These results show that our method not
only achieves better trajectory inference results in most experiments, but it is also much faster than all the
alternatives that nontrivially handle multiple time points. We include task-specific runtime discussions in the
“Runtime” paragraphs for each experiment in section 4.

algorithm task mean std

DM-SB Lotka Volterra 7.62 3.18
Repressilator 15.63 0.12
Gulf of Mexico - big vortex 15.54 0.23
Gulf of Mexico - small vortex 15.44 0.02
EB 15.54 0.41
hESC 15.40 0.08

Vanilla-SB Lotka Volterra 0.06 0.01
Repressilator 0.23 0.05
Gulf of Mexico - big vortex 0.44 0.05
Gulf of Mexico - small vortex 0.43 0.01
EB 0.03 <0.01
hESC 0.05 <0.01

TrajectoryNet Lotka Volterra 10.96 0.81
Repressilator 9.86 0.43
Gulf of Mexico - big vortex 8.10 0.28
Gulf of Mexico - small vortex 7.44 0.25
EB 10.19 0.37
hESC 8.00 0.49

Ours Lotka Volterra 0.61 0.12
Repressilator 2.43 0.60
Gulf of Mexico - big vortex 4.68 0.75
Gulf of Mexico - small vortex 4.67 0.66
EB 0.38 0.05
hESC 0.56 0.04

Table 12: Tables with raw timing in hours aggregated over 10 seeds.
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algorithm task mean std

DM-SB Lotka Volterra 11.98 6.28
Repressilator 6.71 1.25
Gulf of Mexico - big vortex 3.39 0.45
Gulf of Mexico - small vortex 3.36 0.39
EB 41.17 4.80
hESC 27.43 1.96

Vanilla-SB Lotka Volterra 0.10 0.01
Repressilator 0.10 0.01
Gulf of Mexico - big vortex 0.10 0.01
Gulf of Mexico - small vortex 0.09 0.01
EB 0.09 0.01
hESC 0.09 0.01

TrajectoryNet Lotka Volterra 18.37 3.29
Repressilator 4.25 0.87
Gulf of Mexico - big vortex 1.77 0.25
Gulf of Mexico - small vortex 1.62 0.21
EB 26.97 2.82
hESC 14.26 1.28

Table 13: Table with ratios of timing (rounded to two decimal places). To compute each entry we first evaluate,
for each (seed, algorithm, task) tuple, the ratio between the elapsed time for that experiment and the elapsed
time for the same task and seed when our model is run. We then average these ratios across the 10 seeds and
report mean and standard deviation.

algorithm mean std
DM-SB 16.08 15.13
Vanilla-SB 0.09 0.01
TrajectoryNet 11.21 9.72

Table 14: In this table, we report — for each alternative algorithm — average ratio speedups across all seeds
and tasks. To compute this, we compute the ratios as explained in the caption of table 13, and then for each
alternative algorithm we average these ratios over the 10 seeds and 6 tasks.
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F Computational Limitations for DM-SB and TrajectoryNet

TrajectoryNet uses continuous normalizing flows (CNFs) to model continuous-time dynamics. While CNFs are
powerful for modeling complex distributions, they are often computationally intensive. Several studies have
highlighted the computational challenges associated with CNFs. For example, Grathwohl et al. (2019) discuss
the overhead of integrating neural networks in CNFs and propose methods like FFJORD to improve efficiency.
One of the key issues is that to train these methods the algorithms need to compute the trace of the Jacobian
of the transformation function at each iteration. This operation is computationally expensive, especially in
high-dimensional spaces (Chen et al., 2018). The computational burden increases when regularization terms are
added, as in TrajectoryNet, to enforce desired properties on the flow, further slowing down the training process.

DM-SB goes beyond standard SB frameworks by tailoring the Bregman Iteration and extending the Iteration
Proportional Fitting algorithm to phase space. Rather than modeling particles’ locations directly, this approach
augments the observations with random velocities, modeling particles’ velocity and location jointly through a
Langevin dynamic. We hypothesize that DM-SB faces computational challenges due to learning dynamics in
this expanded space (velocity and location versus location alone), as it deals with (1) the absence of direct
observations for the velocity component and (2) potential inconsistencies between randomly sampled initial
velocities and observed location changes (i.e., the predicted new locations using the sampled velocities may not
align with the observed locations). In the context of generative modeling using diffusion, Dockhorn et al. (2022)
also augment their model with particle velocities and face increased training time.

G Identifiability concerns

In some scenarios, observing marginal samples may not provide enough information to fully understand the
underlying system. One situation where this can occur is when the system starts in equilibrium, such as when
the initial distribution is the system’s invariant measure (if one exists). However, this lack of information can
also arise even when the system is not in equilibrium or when no invariant measure is present. For example,
consider a system where the drift consists of a rotationally symmetric gradient field combined with a constant-curl
rotational component. If the initial sample distribution is also rotationally symmetric, the marginal distribution
would retain this symmetry at every time step, regardless of the angular velocity introduced by the constant-curl
rotation. As a result, by only observing marginal samples, we might miss the rotational component that governs
the angular velocity, preventing us from accurately inferring the system’s trajectories.

A specific example of a rotationally invariant vector field is one with constant curl, starting from an isotropic
Gaussian distribution. Formally, in the context of eq. (1), consider a simple two-dimensional drift b(x) =
[αx2,−αx1]

⊤, where α ∈ R is a parameter. This represents the dynamics of a vector field with constant curl.
When α = 0, the system is purely driven by Brownian motion. Then assume the initial distribution π0 is isotropic
normal, i.e., π0 ∼ N (0, βI2) for some β, where I2 is the 2D identity matrix. For a fixed volatility γ, when α = 0,
the particle distribution at any future time step remains an isotropic normal distribution. Indeed, if we consider
the general form of the Fokker-Planck equation, this can be written as

∂p(x, t)

∂t
= −∇ · (b(x)p(x, t)) + γ∇2p(x, t)

= −p(x, t)(∇ · b(x))−∇p(x, t) · b(x) + γ∇2p(x, t)

= −∇p(x, t) · b(x) + γ∇2p(x, t)

If we adapt this to isotropic Gaussians, we have ∇p(x, t) · b(x) = 0, and therefore we only end up with the
diffusion term for the Brownian motion, meaning that the distribution of the particles at any time step will
always remain isotropic Gaussian with increasing variance. Schroödinger bridges between these Gaussians are in
fact having a unique closed-form (Bunne et al., 2023) that cannot account for all possible rotations.

In general, the identifiability of the drift and trajectories is an interesting question for future research. Lavenant
et al. (2024) showed with marginals sampled arbitrarily dense in time and the underlying vector field is gradient
the trajectories can be identified. However, this is one sufficient condition and requires samples dense in time.
We believe that the identifiability literature of partial differential equations (especially Fokker-Planck equations)
should be useful in this regard.
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