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Abstract—Numerical turbulence simulations typically involve
parameterizations such as Large Eddy Simulations (LES). Appli-
cations to geophysical flows, especially ocean flows, are further
complicated by the presence of complex topography and interior
landforms such as coastlines, islands, and capes. In this work,
we extend pseudo-spectral quasi-geostrophic (QG) numerical
schemes and GPU-based solvers to simulate flows with coastal
boundaries using the Brinkman volume penalization approach.
We incorporate sponging and a splitting scheme to handle inflow
and aperiodic boundary conditions. We evaluate four analyti-
cal sub-grid-scale (SGS) closures based on the eddy viscosity
hypothesis: the standard Smagorinsky and Leith closures, and
their dynamic variants. We show applications to QG flows past
circular islands and capes with the β-plane approximation. We
perform both a priori analysis of the SGS closure terms as
well as a posteriori assessment of the SGS terms and simulated
vorticity fields. Our results showcase differences between the
various closures, especially their approach to phase and feature
reconstruction errors in the presence of coastal boundaries.

Index Terms—Quasi-geostrophic turbulence, oceanic turbu-
lence, Large-Eddy Simulations, closure modeling, pseudo-spectral
method, volume penalization, Lie-Trotter splitting.

I. INTRODUCTION

High-resolution fluid simulations that fully resolve turbu-
lence across all spatiotemporal scales are intractable in large
geophysical domains such as the ocean and atmosphere [1].
These flows range from basin-scales (thousands of kilometers)
to the Kolmogorov scales (a few millimeters) [2, 3]. Since
numerical simulations are limited in resolution, variable count,
and modellable processes, they require additional parame-
terizations to account for unresolved scales and processes
[1, 4]. A common approach used for turbulence simulations
is Large-Eddy Simulation (LES), which filters out subgrid-
scale features, making some simulations tractable, though
sometimes unreliable with solution divergence [5]. To ensure
stable, reliable solutions, these simulations require accurate
subgrid-scale (SGS) parameterizations [6–8].

Since LES performance is determined by the SGS param-
eterization, accurate SGS closure models have been actively
researched since the 1960s [9]. SGS closure modeling began
with the functional approach, based on the eddy viscosity
hypothesis [10]. This approach introduces an artificial vis-
cosity to capture dissipation from filtered fine-scales [11–13],
and can be dynamic, where the eddy viscosity parameters are
learned in real-time [14, 15]. Another approach is the structural
approach [16], which directly reconstructs the SGS forcing via
scale-similarity [17] or local Taylor series expansions [18].
Mixed models combining the two approaches have also been

explored [19]. Recently, data-driven and machine learning
approaches have been developed [20, 21], including various
deep learning SGS closure architectures using Artificial Neu-
ral Networks (ANNs) [22], Convolutional Neural Networks
(CNNs) [23–25], Neural Ordinary and Delay Differential
Equations (NODEs and NDDEs) [26], and generative models
like Generative Adversarial Networks [27].

In the ocean, resolving 100 m-10 km mesoscale and subme-
soscale dynamics [28] is important to study energy, mass, and
tracer transports. High-resolution satellite observations have
also shown the presence of small coastal eddies and jets that
dominate transport near capes [29]. However, direct LES appli-
cation to the coastal ocean is hindered by the presence of com-
plex topography, coastlines and interior landforms [30, 31].
Previous works have evaluated analytical (MOLES, Mesoscale
Ocean Large Eddy Simulations) [32] and [33] benchmarked
machine-learning closures in idealized open ocean flows. Data-
driven closures have also been applied to global ocean models
with coastlines, where these Convolutional Neural Networks
(CNNs) based closures led to bias and unphysical artifacts
near coastal boundaries [34, 35]. Some artifact mitigation was
explored in [36].

In this work, we first extend pseudo-spectral quasi-
geostrophic (QG) numerical schemes and GPU-based solvers
to simulate flows with coastal boundaries and landforms such
as capes. Then, we benchmark four analytical turbulence
closures: the standard Smagorinsky and Leith model, and their
dynamic variants, and study their performance in the presence
of coasts. Our results highlight the differences between the
various models and show the need for the development of
new data-driven or analytical closures.

II. QUASI-GEOSTROPHIC TURBULENCE AND
SIMULATIONS

We now describe the fully-resolved (FR) quasi-geostrophic
turbulence simulations, including modifications that incorpo-
rate coastal boundaries and inflow conditions.
A. Quasi-Geostrophic Dynamics

We use the incompressible two-dimensional (2D) Quasi-
Geostrophic (QG) equations as a common, simple one-layer
linearized-Coriolis approximation to oceanic and atmospheric
turbulence [37, 38]. In vorticity form, the non-dimensional QG
equations can be written as below, where ω is the vorticity,
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our field of interest, ψ is the streamfunction, and (u, v) are
the 2D velocity fields.

∂ω

∂t
+ J(ψ, ω) =

1

Re
∇2ω − µω − β

∂ψ

∂x
+ F

(u, v) = (−∂ψ
∂y

,
∂ψ

∂x
)

ω = ∇2ψ

(1)

In (1), J(ψ, ω) is the nonlinear advection term, Re the
Reynolds number, µ the bottom friction coefficient, and F the
forcing terms. The β-term provides a linear approximation to
the latitudinal variation of the Coriolis force, leading to the
formation of anisotropic zonal jets and striations, prevalent
in Jovian atmospheres and the Earth’s oceans [39, 40]. The
vorticity form satisfies incompressibility by construction and
hence it does not require the computation of pressure [41, 42].

B. Brinkman Volume Penalization Approach

We extend the 2D QG equations to flows past coastal
boundaries such as islands and interior landforms. One way
to numerically simulate these flows is the body-fitted method
(BFM), which introduces complex, unstructured grids [43–
45] and could require additional affine transformations of the
governing equations (1). Another approach is the immersed-
boundary method (IBM), which does not modify the grid but
instead models a larger, simpler domain and modifies the gov-
erning equations in the vicinity of solid boundaries to impose
appropriate boundary conditions [46]. Various modifications to
impose these boundary conditions have been studied including
the discrete forcing and continuous forcing approaches [47].
IBM has been shown to be computationally efficient compared
to BFM when modeling transient wakes past circular islands
and other complex geometries [48].

In this work, we utilize IBM with the Brinkman volume
penalization approach [49]. The Brinkman penalty is physi-
cally motivated and imposes no-slip boundary conditions by
approximating solid obstacles (denoted with subscript obs) as
porous media with porosity tending to zero. This is achieved
by adding a forcing term, Fobs, to the right hand side of (1),

Fobs(χobs,u) = −∇×
(
1

η
χobs(x)(u− uobs)

)
χobs(x) =

{
1 x ∈ Ωobs

0 x ̸∈ Ωobs

(2)

where ∇× is the curl operator, η the porosity, χobs the mask
function which is 1 in obstacle cells (land domain Ωobs) and 0
in fluid cells (ocean), and uobs the velocity of the obstacle in
vector form. Hence, the flow is governed by the QG equations
in the fluid regions, and by Darcy’s law in the coastal regions
[50]. For coastal boundaries, we impose the no-slip boundary
condition and hence uobs = 0.

This approach has been utilized to simulate turbulence in
tube bundles, complex bounded domains and moving obsta-
cles [50–53]. Convergence theorems and error estimates for
applications to incompressible Navier-Stokes equations with
no-slip boundaries have also been studied [54]. However, to
our knowledge, it has not yet been used for QG turbulence
with coastal boundaries.

C. Spatial Discretization

To numerically solve the fully-resolved (FR) QG equations,
(1), (2), we use a Fourier pseudo-spectral spatial discretization
on a square domain of size L × L with NFR × NFR grid
points [55]. We implement our solver in PyTorch to run on
Graphics Processing Units (GPUs), building on [23, 56, 57].
All spatial derivatives are computed in Fourier space, while
nonlinear terms such as advection and Brinkman penalty are
evaluated by collocation in physical space with full 2/3 de-
aliasing to truncate higher-order Fourier coefficients [58]. The
mask function χobs is smoothed with a Gaussian filter to avoid
Gibbs oscillations [59].

D. Boundary and Inflow Conditions

Using a Fourier pseudo-spectral spatial discretization as-
sumes that the computational domain is doubly periodic,
which is not always valid for oceanic flows. Hence, mod-
ifications to handle non-periodic boundary conditions and
inflow conditions are required. One way to incorporate non-
periodic boundaries is to utilize odd or even extensions to the
computational domain using the Discrete Cosine Transform
(DCT) instead of the Discrete Fourier Transform (DFT) [60].
An alternate approach, implemented in this work, is to use
additional penalization for sponging [53, 61]. This is achieved
by adding another forcing term to the right hand side of (1).

Fsponge(χsponge, ω) = −
(

1

ηsponge
χsponge(x)

)
(ω − ωsponge)

χsponge(x) =

1 x ∈ ∂Ω
1− d(x, y)/ds x ∈ Ωs

0 x ∈ Ω− Ωs

(3)
The sponge mask χsponge is here linearly varying between 1
and 0 in a thin sponge region Ωs along the boundaries ∂Ω
of the fluid domain Ω, where d(x, y) is the distance from the
boundary ∂Ω and ds the sponge thickness. The sponge term
(3) and volume penalization term (2) have similar convergence
properties and hence we set ηsponge = η. Applications of
sponge terms to open boundary conditions in the ocean and the
effects of different sponge functions are studied in [62–64].

To apply inflow conditions, a uniform mean flow along the
required direction is added to the zeroth Fourier mode of the
velocities as a gauge condition [65].

E. Time-stepping Schemes

For time-stepping, we use a semi-implicit second-order
Adams-Bashforth-Crank-Nicolson (AB2CN) scheme, treating
the linear terms implicitly (CN) and nonlinear terms explicitly
(AB2) for an IMEX scheme [66]. The explicit treatment leads
to a stability constraint on the numerical timestep ∆t and the
porosity parameter η: η must be larger than ∆t due to numer-
ical stiffness of the volume penalization [67], so the coastal
boundary limit η → 0 is not numerically exact. To prevent
instabilities arising from overlapping coastal boundaries and
sponge layers, we use a splitting scheme [8, 68] where (1)–
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(2) are solved first using the AB2CN scheme followed by (3)
using the AB2 scheme,

ω∗ = ωt +
∆t

2

(
1

Re
∇2(ω∗ + ωt)− µ(ω∗ + ωt)

− β
∂(ψ∗ + ψt)

∂x

)
−∆t

(
3

2
J(ψt, ωt)− 1

2
J(ψt−1, ωt−1)

)
−∇×

(
∆t

η
χobs

(
3

2
ut − 1

2
ut−1

))
ωt+1 = ω∗ − ∆t

η
χsponge

(
3

2
ω∗ − 1

2
ω∗∗

)
(4)

where ω∗ and ω∗∗ are the intermediate vorticity fields for
timesteps t→ t+ 1 and t− 1 → t, respectively.

III. FILTERING AND LARGE-EDDY SIMULATIONS

Next, we describe our filtering operations (.), i.e., the grid
filter, and large-eddy simulations with subgrid-scale closure. In
contrast to the fully-resolved simulations described in Sect. II,
Large-Eddy Simulations (LES) solve filtered equations where
large-scale features are adequately resolved on a coarser grid
with NFR

δ × NFR

δ grid points, where δ is the coarsening scale.
Smaller-scale features are approximated through subgrid-scale
closure terms [69]. Various filters have been explored for LES
in both physical and spectral space, such as the box filter,
Gaussian filter, and spectral cut-off filter [33, 70]. In this work,
we first apply the Gaussian and cut-off filters, HGaussian and
Hcut-off, in spectral space, then interpolate the resulting field
to the coarse grid with resolution ∆FF = 2π×δ

NFR
in physical

space, following [23, 71],

HGaussian(kFR) = exp

(
−k2FR (δ ×∆FR)

6

)
(5)

Hcut-off(k) = 0 , ∀ k > π

∆FF

Hfull ≜ interpolate∆FF
◦ Hcut-off ◦ HGaussian

where kFR is the wavenumber of the fully-resolved grid. The
Gaussian filter smoothly attenuates high wavenumber content,
resembling subgrid-scale energy removal, while the sharp cut-
off filter enforces a strict wavenumber limit. This combination
enables a robust, stable closure [72].

Consider the final fully-resolved QG equations from Sect. II,
∂ω

∂t
+ J(ψ, ω) =

1

Re
∇2ω − µω − β

∂ψ

∂x
+ Fobs(χobs,u) + Fsponge(χsponge, ω)

ω = ∇2ψ

(6)

Assuming the filters commute with the derivative operators,
we obtain the following QG equations for the filtered fields,
∂ω

∂t
+ J(ψ, ω) =

1

Re
∇2ω − µω − β

∂ψ

∂x
+ Fobs(χobs,u) + Fsponge(χsponge, ω) + Π

ω = ∇2ψ
(7)

where Π is the ideal subgrid-scale (SGS) forcing defined as
Π =J(ψ, ω)− J(ψ, ω)

+ Fobs(χobs,u)− Fobs(χobs,u)

+ Fsponge(χsponge, ω)− Fsponge(χsponge, ω)

(8)

The SGS forcing represents momentum and energy exchange
between the resolved and unresolved scales, and consists
of three components: the first related to the vorticity flux
divergence [25], the second related to interactions near the
obstacle mask arising from the Brinkman penalization term,
and the third related to interactions near the sponge. This SGS
forcing, Π, is ideal since it contains variables from unresolved
scales lost due to filtering. For LES, the SGS forcing needs to
be approximated using a closure model that depends only on
the resolved variables, ω, ψ,u [1].

A. Analytical Subgrid-Scale Closures

We now describe analytical closures that parametrize Π
based on the eddy viscosity hypothesis [10]. In a vorticity-
based formulation, unlike momentum-based approaches [25],
Π can be represented directly as follows, where νe is the eddy
diffusivity.

Π = ∇.(νe∇ω) (9)
Various standard and dynamic formulations of the eddy dif-
fusivity for two-dimensional turbulence have been studied in
[73, 74]. We investigate the Smagorinsky, dynamic Smagorin-
sky, Leith, and dynamic Leith models.

1) Smagorinsky Model: The standard Smagorinsky model
[11] is one of the earliest approaches for SGS closure, based on
the forward cascade of energy in three-dimensional turbulence.
Following [73], its eddy diffusivity in the vorticity form is
given by

νe =(cS∆FF )
2|S|

|S| =

√
4

(
∂2ψ

∂x∂y

)2

+

(
∂2ψ

∂x2
− ∂2ψ

∂y2

)2 (10)

where S is the filtered strain-rate tensor, ∆FF = 2π δ
NFR

the
filter width (size of the coarse grid), and cS a parameter to be
tuned. In this case, νe ≥ 0, and hence the closure is purely
dissipative. This implies there is no backscatter, i.e, flow of
energy from unresolved to resolved scales [1].

2) Dynamic Smagorinsky Model: Since the standard
Smagorinsky model assumes cS to be a single universal
constant, this model has been observed to over- or under-
dissipate if incorrectly tuned [75]. Moreover, cS is dynamic
and spatially varying in turbulent flows near solid boundaries
and on rotating frames, thus in geophysical flows with Coriolis
[76]. Hence, [14] proposed a dynamic procedure to estimate
cS using two filters, the grid filter (.) with grid resolution
∆FF (5), and a test filter, (̃.) with resolution typically chosen
to be ∆̃ = 2×∆FF [1]. Using the Germano identity [77], the
following relationship for cS can be obtained,

(cS∆̃)2∇.(|S̃|∇ω̃)−(cS∆FF )
2∇.(|̃S|∇ω) = J(ψ̃, ω̃)−J̃(ψ, ω)

(11)
Though (11) can be solved for cS , it is ill-posed and unstable
in regions where ∇2ω → 0 [75]. To overcome this instability,
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[15] proposed a least-squares estimation technique that pro-
vides a global time-varying dynamic parameter,

(cS∆FF )
2 =

⟨HM⟩
⟨M2⟩

H = J(ψ̃, ω̃)− J̃(ψ, ω)

M =

(
∆̃

∆FF

)2

∇.(|S̃|∇ω̃)−∇.(|̃S|∇ω)

(12)

where ⟨.⟩ denotes spatial averaging and H is related to the
residual stress between the grid-filtered field and the test-
filtered field (resolved stress) [78]. Positive clipping of the
numerator, H , by setting negative values to zero is also
implemented to prevent backscatter [79].

3) Leith Model: Compared to the Smagorinsky model
which is based on the forward cascade of energy, the standard
Leith model was developed based on the forward cascade of
enstrophy [12]. This hypothesis is more appropriate for two-
dimensional turbulence and geophysical flows [80], and has
been implemented in mesoscale ocean simulations [81]. In
contrast to the Smagorinsky model which is based on the
filtered strain-rate tensor, the Leith model is based on the
filtered vorticity gradient |∇ω|,

νe =(cL∆FF )
3|∇ω|

|∇ω| =

√(
∂ω

∂x

)2

+

(
∂ω

∂y

)2 (13)

where cL is a parameter to be tuned. Again in this case, νe ≥ 0,
and there is no backscatter. Modifications to the Leith model
to incorporate backscatter have been tested in [82].

4) Dynamic Leith Model: Similar to the Smagorinsky
model, a global time-varying dynamic Leith parameter cL can
be obtained using least-squares estimation [15, 74],

(cL∆FF )
3 =

⟨HM⟩
⟨M2⟩

H = J(ψ̃, ω̃)− J̃(ψ, ω)

M =

(
∆̃

∆FF

)3

∇.(|∇ω̃|∇ω̃)−∇.( ˜|∇ω|∇ω)

(14)

IV. APPLICATIONS

We now apply the four subgrid-scale closures to idealized
quasi-geostrophic turbulent flows past circular islands and
capes with the β-plane approximation. The two dynamic
models, Dynamic Smagorinsky (12) and Dynamic Leith (14)
compute cS or cL in real-time, and only require specification
of the test-filter as input. For the standard Smagorinsky and
Leith models, we perform a parameter sweep for cS and cL
and analyze the performance a priori and a posteriori.

We quantify performance with the Pattern [83] or Pearson
Correlation Coefficient (PCC, Eq. 15, as defined in [24, 72])
between the analytical closure (ΠLES), true filtered SGS

Fig. 1: Set-up of domain for flow past a cylinder or idealized island.
The computational domain consists of land (grey) and a sponge layer
(yellow). Dotted black lines show the region of interest.

(ΠFF ), and a priori closure (ΠFR) terms.

PCC(X,Y ) =

〈
(X − ⟨X⟩) (Y − ⟨Y ⟩)

〉
√〈

(X − ⟨X⟩)2
〉√〈

(Y − ⟨Y ⟩)2
〉

PCCa-priori ≜ PCC(ΠFF ,ΠFR)

PCCa-post. SGS ≜ PCC(ΠLES ,ΠFF )

PCCa-post. ω ≜ PCC(ωLES , ωFF )

(15)

A. Flow Past Circular Islands

Our first application is for flows past a cylinder or idealized
island with Reynolds number Re = 200 for mild turbulence. It
is used in part for method checks and software implementation
validations. In this case, we use β = 0, i.e, an f -plane
approximation. Fig. 1 shows the set-up of the domain along
with the land masks, sponge, and region of interest. For all
simulations, we use porosity η = 1.025 dt. Following [32], we
use a length-scale of 126

π ×104 m and time-scale of 1.2×106 s,
corresponding to ocean mesoscales. In non-dimensional units,
we use Lx = Ly = 8π, D = 2π

5 , Lupstream = 0.35Lx, with
sponge of width 0.05Lx along all four boundaries. The inlet
velocity is set to be constant at 2.

As a reference solution, we use a fully-resolved (FR)
simulation with grid size NFR × NFR = 1024 × 1024, and
obtain the filtered field (FF) with coarsening scale δ = 2.
The FR simulation is run for a total time of T = 100 with
dt = 10−4. Snapshots are saved every 5000 timesteps. LES
simulations with and without closure are simulated with a
coarsened grid of size 512 × 512 (δ = 2), with dt = 10−3,
i.e., 10× larger than that of FR. Snapshots are saved every
500 timesteps for the LES. We also studied the performance
of closures at filtered resolution of 256 × 256, and observed
similar trends in the results (figures not shown).

1) A Priori Analysis: We first consider an a priori analysis,
where only the estimation of the SGS term Π (8) by the closure
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(a) Evolution of a posteriori SGS correlation
(PCCa-post. SGS) of Π

(b) Evolution of the eddy diffusivity
coefficient c

(c) Evolution of a posteriori correlation
(PCCa-post. ω) of ω

Fig. 2: Evolution of parameters and metrics over time for flow past circular islands with β = 0

(Dynamic) Smagorinsky (Dynamic) Leith
PCC 0.3516 0.4312

TABLE I: Time-averaged a priori correlation (PCCa-priori) of Π for
flow past circular islands with β = 0

model is evaluated using the FR fields and FF, as opposed to
analysis of the simulated LES fields [1].

Table I shows the time-averaged a priori PCC (PCCa-priori)
for the four analytical closures. We note that the values of c
do not affect the a priori analysis, as the analysis only depends
on the FR fields and FF. The Leith model performs slightly
better than the Smagorinsky model, although both models
show moderate-to-weak correlation.

2) A Posteriori Assessment: Fig. 2(a) shows SGS PCC
(PCCa-post. SGS) for the four analytical closures with optimal c.
On average, all four closure models exhibit relatively weak
performance, with the Smagorinsky closures performing twice
as well as the Leith closure. Fig. 2(b) shows the evolution of
the eddy diffusivity coefficient c over time for the dynamic
and standard variants (where c was chosen to minimize
PCCa-post. SGS). Obtained values are close to flow-past-cylinder
literature [84, 85]. As observed in [73], the dynamic values

of c increase to their maximum value at the beginning and
gradually decay to their steady state values. After spin-up
of the simulation (0-18 time units), vortex shedding causes
oscillations with frequency close to the Strouhal number. The
steady state of the dynamic closures varies from the optimal
values of the standard variants, and the larger discrepancy for
Leith affirms the better Smagorinsky performance.

As with the dynamic evolution of c, the SGS PCC also
oscillates post spin-up with frequency close to the Strouhal
number. Both dynamic closures have higher peak-to-peak
variation, but perform slightly worse on average compared to
the standard variants. We now analyze vorticity. While SGS
metrics provide a performance estimate of eddy diffusivity-
based closures, their vorticity performance can be different
[24]. In this application, the values of cS and cL that optimize
for SGS remain optimal for vorticity. We first study the a
posteriori correlation (PCCa-post. ω) of the simulated vorticity
fields (15) and show their temporal evolution in Fig. 2(c).

During spin-up, none of the closures show improvement,
and the effect of shedding oscillation is again visible. The
near-identical, phase-shifted PCC profiles in a priori (figures
not shown) and a posteriori imply limited spatial feature

(a) Filtered Field (b) No Closure (c) Dynamic Smagorinsky

(d) Dynamic Leith (e) Smagorinsky (f) Leith

Fig. 3: Vorticity plot of the filtered field (a), and vorticity fields of LES most similar (minimum phase shift error) to the filtered field (b-f)
for flows past the circular island with β = 0
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No Closure Dyn. Smag. Dyn. Leith Smag. Leith
5.5 -1 2.5 -0.5 -0.5

TABLE II: Phase shift (in non-dimensional time units) between the
filtered field and LES for flow past circular islands with β = 0

modifications by the closures. We quantify these phase shifts
ϕ in 16.

ϕ = argmin
ϕ

∥ωLES(t− ϕ)− ωFF(t)∥2 (16)

Table II indicates that the optimal (non-dynamic) Smagorinsky
and Leith closures are more in-phase with the filtered, fully-
resolved (FF) fields, while the dynamic closures are more in
phase with the unclosed LES. This suggests that while the
dynamic closures appear more accurate in Fig. 2(c), over a
longer predictive horizon, standard closures could be more
effective. We emphasize that phase error is the primary source
of error: in Fig. 3, the phase-corrected plots are close to
indistinguishable. We also analyzed the power spectra of the
vorticity fields, but do not show them here as they are quite
close and any variation is overpowered by vortex shedding
oscillation.

Fig. 4: Set-up of domain for flow past an idealized cape. The
computational domain consists of land (grey) and a sponge layer
(yellow). Dotted black lines show the region of interest.

B. Flow Past Idealized Capes

We now consider flows past idealized capes, once again
at Re = 200. In this application, we also study the effect
of the latitudinal-variation of Coriolis (β). Previous studies
have focused on simulating QG flows past capes and coastal
headlands [86, 87], although closure of these flows has not
yet been studied. Fig. 4 shows the set-up of the domain along
with the land masks, sponge and region of interest. In non-
dimensional units, we again use Lx = Ly = 8π. The inlet
velocity is set to be constant at 2. The idealized cape is defined
as a Gaussian function, y ≤Wcape exp(−[(x−xcenter)/Lcape]

2),
with values Lcape = 1, Wcape = 4, xcenter = 0.2 × Lx and
sponge parameters Lsponge = 0.125×Lx, Wsponge = 0.1×Lx.

We vary β ∈ {0, 0.1, 1} to focus on boundary effects and
vortex shedding rather than statistical turbulence, as shown

(a) β = 0 (b) β = 0.1

(c) β = 1

Fig. 5: Fully-resolved vorticity fields for flows past an idealized cape
with various β, all at the same time instant.

Beta (Dynamic) Smagorinsky (Dynamic) Leith
0 0.3284 0.3697

0.1 0.3315 0.3694
1 0.2980 0.3328

TABLE III: Time-averaged a priori correlation (PCCa-priori) of Π for
flow past an idealized cape with various β

with fully-resolved fields in Fig. 5. The flow progresses from
single-shed vortices to a von-Kármán vortex street and finally
to a shedding zonal jet as β increases.

As before, the LES closures are run with square grid size
512 × 512 (δ = 2), and timestep 10 times larger than that of
the fully-resolved, NFR ×NFR = 1024× 1024 field.

1) A Priori Analysis: As before, in Table III we compare
a priori PCC (PCCa-priori) for the analytical closures. Leith
performs better than Smagorinsky, but due to richer flow
features, the a priori performance is reduced compared to the
flow past circular islands case. Both closures degrade slightly
with higher Coriolis variation (β).

2) A Posteriori Assessment: In Fig. 6, we compare the SGS
PCC (PCCa-post. SGS) for the analytical closures with optimal c
as shown in Fig. 7. Now, dynamic Leith also performs better
than Leith, while Smagorinsky and dynamic Smagorinsky
again show similar PCC values. Temporal variation of the
SGS PCC is extremely similar to the circular case: from
Fig. 6, Smagorinsky shows higher initial correlation and then
all closures oscillate with the vortex shedding. Due to the
more complex cape geometry, the oscillations now have a
unique signature (visible for β = 0) that decorrelates as β
increases. The higher Coriolis variation induces background
Rossby waves and jets, so SGS now differs at more than
just the coastal boundary layer. Closure evaluation is thus
biased toward the open ocean, where the Smagorinsky and
Leith closures are well validated and thus perform better [81],
opposite the simplistic a priori trend. Both dynamic c’s also
show peaks and troughs that follow vortex shedding patterns,
and the oscillations increase in frequency with increasing
Coriolis variation (β). We now consider vorticity. The values
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(a) β = 0 (b) β = 0.1 (c) β = 1

Fig. 6: Evolution of a posteriori SGS correlation (PCCa-post. SGS) of Π for flows past an idealized cape with various β

(a) β = 0 (b) β = 0.1 (c) β = 1

Fig. 7: Evolution of the eddy diffusivity coefficient c over time for flows past an idealized cape with various β

(a) β = 0 (b) β = 0.1 (c) β = 1

Fig. 8: Evolution of a posteriori correlation (PCCa-post. ω) of ω for flows past an idealized cape with various β

No Closure Dyn. Smag. Dyn. Leith Smag. Leith
3 3.5 4.5 0 5

TABLE IV: Phase shift (in non-dimensional time units) between the
filtered field and LES for flow past an idealized cape with β = 1

of cS and cL from the SGS analysis no longer remain optimal
for the reconstruction of the vorticity field. The optimal values
obtained for the vorticity field are cL = 0.2, 0.15 and 0.2
with β = 0, 0.1 and 1, respectively, and cS = 0.15 for
β = 0.1. Fig. 8 shows that the simulated vorticity fields are
correlated for longer times than in the cylinder test case for
β = 0 and 0.1. As in the a priori and SGS analyses, there is
a strong vortex-shedding signature, which again decorrelates
and increases in frequency with increasing β. There is also

an increase in overall vorticity PCC (PCCa-post. ω) with β,
as before, due to the presence of zonal jets. Table IV lists
the phase-shift, which shows that all closures other than
Smagorinsky are equivalent or worse in gross phase error
than the unclosed LES. However, Fig. 9 shows that in this
application, there are also errors arising from incorrect or
missing features such as eddies, and not just phase shift, which
are captured well by the Leith and Dynamic Leith models.

V. CONCLUSIONS AND DISCUSSION

We extended existing pseudo-spectral quasi-geostrophic
(QG) numerical schemes to simulate aperiodic flows with
coastal boundaries. We used the Brinkman volume penaliza-
tion approach to handle land masks and a splitting algorithm
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(a) Filtered Field (b) No Closure (c) Dynamic Smagorinsky

(d) Dynamic Leith (e) Smagorinsky (f) Leith

Fig. 9: (a) Vorticity of the filtered field, and (b-f) vorticity of the LES most similar (minimum phase shift error) to the filtered field, for
flows past an idealized cape with β = 1

for sponging with inflows, outflows, and aperiodic boundary
conditions. With this new GPU-based solver, we evaluated
the performance of four subgrid-scale (SGS) closure models
for Large Eddy Simulation (LES): the Smagorinsky model,
the Leith model, and their dynamic variants. We showcased
applications to periodic eddy shedding past a circular island
and flow past idealized capes in the β-plane. A priori analysis
indicated that correlations between the analytical closures and
the true SGS closure are moderate for flow past circular
islands, and the correlation becomes weaker with larger values
of β for flow past idealized capes. A posteriori assessments
showed much weaker overall correlation, feature reconstruc-
tion and large phase-shift errors in the simulated LES fields,
with the closures failing to capture the correct eddy shedding
frequency in both applications.

Future work could focus on evaluating structural closure
models, such as the Gradient Model [18] or data-driven
closures [36] with coastal boundaries. Since ideal LES is
inherently stochastic [88], evaluation and development of
stochastic models for closure [34, 71, 89] could also be useful.

VI. ACKNOWLEDGMENTS

We thank the members of our MIT-MSEAS group and ML-
SCOPE MURI team for discussions. We also thank Andrew
Horning (RPI/MIT) for discussions on pseudo-spectral meth-
ods. We are grateful to the Office of Naval Research for partial
support under grant N00014-20-1-2023 (MURI ML-SCOPE)
and N00014-24-1-2715 (DRI-RIOT) to the Massachusetts In-
stitute of Technology. ANSB was partially supported by an
MIT Mechanical Engineering MathWorks Fellowship.

REFERENCES

[1] S. B. Pope, “Turbulent flows,” Measurement Science and Tech-
nology, vol. 12, no. 11, pp. 2020–2021, 2001.

[2] C. A. Vreugdenhil, B. Gayen, and R. W. Griffiths, “Trans-
port by deep convection in basin-scale geostrophic circulation:

Turbulence-resolving simulations,” Journal of Fluid Mechanics,
vol. 865, pp. 681–719, 2019.

[3] A. N. Kolmogorov, “A refinement of previous hypotheses
concerning the local structure of turbulence in a viscous in-
compressible fluid at high reynolds number,” Journal of Fluid
Mechanics, vol. 13, no. 1, pp. 82–85, 1962.

[4] A. Gupta and P. F. J. Lermusiaux, “Neural closure models for
dynamical systems,” Proceedings of The Royal Society A, vol.
477, no. 2252, pp. 1–29, Aug. 2021.

[5] Y. Zhiyin, “Large-eddy simulation: Past, present and the future,”
Chinese journal of Aeronautics, vol. 28, no. 1, pp. 11–24, 2015.

[6] V. Armenio and S. Sarkar, “An investigation of stably stratified
turbulent channel flow using large-eddy simulation,” Journal of
fluid mechanics, vol. 459, pp. 1–42, 2002.

[7] P. Puthan, G. Pawlak, and S. Sarkar, “Wake vortices and
dissipation in a tidally modulated flow past a three-dimensional
topography,” Journal of Geophysical Research: Oceans, vol.
127, no. 8, p. e2022JC018470, 2022.

[8] P. F. J. Lermusiaux, “Numerical fluid mechanics,”
MIT OpenCourseWare, May 2015. [Online].
Available: https://ocw.mit.edu/courses/mechanical-engineering/
2-29-numerical-fluid-mechanics-spring-2015/
lecture-notes-and-references/

[9] K. Jakhar, Y. Guan, R. Mojgani, A. Chattopadhyay, and P. Has-
sanzadeh, “Learning closed-form equations for subgrid-scale
closures from high-fidelity data: Promises and challenges,”
Journal of Advances in Modeling Earth Systems, vol. 16, no. 7,
p. e2023MS003874, 2024.

[10] R. H. Kraichnan, “Eddy viscosity in two and three dimensions,”
Journal of Atmospheric Sciences, vol. 33, no. 8, pp. 1521–1536,
1976.

[11] J. Smagorinsky, “General circulation experiments with the
primitive equations: I. the basic experiment,” Monthly weather
review, vol. 91, no. 3, pp. 99–164, 1963.

[12] C. E. Leith, “Diffusion approximation for two-dimensional
turbulence,” Physics of Fluids, vol. 11, no. 3, pp. 671–672, 1968.

[13] B. Baldwin and H. Lomax, “Thin-layer approximation and
algebraic model for separated turbulentflows,” in 16th aerospace
sciences meeting, 1978, p. 257.

[14] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A
dynamic subgrid-scale eddy viscosity model,” Physics of Fluids

8

https://ocw.mit.edu/courses/mechanical-engineering/2-29-numerical-fluid-mechanics-spring-2015/lecture-notes-and-references/
https://ocw.mit.edu/courses/mechanical-engineering/2-29-numerical-fluid-mechanics-spring-2015/lecture-notes-and-references/
https://ocw.mit.edu/courses/mechanical-engineering/2-29-numerical-fluid-mechanics-spring-2015/lecture-notes-and-references/


A: Fluid Dynamics, vol. 3, no. 7, pp. 1760–1765, 1991.
[15] D. Lilly, “A proposed modification of the germano subgrid-scale

closure method,” Physics of Fluids A, vol. 4, no. 3, pp. 633–635,
1992.

[16] A. Prakash, K. E. Jansen, and J. A. Evans, “Invariant data-driven
subgrid stress modeling in the strain-rate eigenframe for large
eddy simulation,” Computer Methods in Applied Mechanics and
Engineering, vol. 399, p. 115457, 2022.

[17] J. Bardina, J. Ferziger, and W. Reynolds, “Improved subgrid-
scale models for large-eddy simulation,” in 13th fluid and
plasmadynamics conference, 1980, p. 1357.

[18] R. A. Clark, J. H. Ferziger, and W. C. Reynolds, “Evaluation
of subgrid-scale models using an accurately simulated turbulent
flow,” Journal of fluid mechanics, vol. 91, no. 1, pp. 1–16, 1979.

[19] A. Leonard and G. Winckelmans, “A tensor-diffusivity subgrid
model for large-eddy simulation,” in Direct and Large-Eddy
Simulation III: Proceedings of the Isaac Newton Institute Sym-
posium/ERCOFTAC Workshop held in Cambridge, UK, 12–14
May 1999. Springer, 1999, pp. 147–162.

[20] L. Zanna and T. Bolton, “Data-driven equation discovery
of ocean mesoscale closures,” Geophysical Research Letters,
vol. 47, no. 17, p. e2020GL088376, 2020.

[21] K. Duraisamy, “Perspectives on machine learning-augmented
reynolds-averaged and large eddy simulation models of turbu-
lence,” Physical Review Fluids, vol. 6, no. 5, p. 050504, 2021.

[22] R. Maulik, O. San, A. Rasheed, and P. Vedula, “Subgrid mod-
elling for two-dimensional turbulence using neural networks,”
Journal of Fluid Mechanics, vol. 858, pp. 122–144, 2019.

[23] H. Frezat, J. Le Sommer, R. Fablet, G. Balarac, and R. Lguen-
sat, “A posteriori learning for quasi-geostrophic turbulence
parametrization,” Journal of Advances in Modeling Earth Sys-
tems, vol. 14, no. 11, p. e2022MS003124, 2022.

[24] Y. Guan, A. Chattopadhyay, A. Subel, and P. Hassanzadeh,
“Stable a posteriori les of 2d turbulence using convolutional
neural networks: Backscattering analysis and generalization
to higher re via transfer learning,” Journal of Computational
Physics, vol. 458, p. 111090, 2022.

[25] K. Srinivasan, M. D. Chekroun, and J. C. McWilliams, “Tur-
bulence closure with small, local neural networks: Forced
two-dimensional and β-plane flows,” Journal of Advances in
Modeling Earth Systems, vol. 16, no. 4, p. e2023MS003795,
2024.

[26] A. Gupta and P. F. J. Lermusiaux, “Generalized neural closure
models with interpretability,” Scientific Reports, vol. 13, p.
10634, Jun. 2023.

[27] P. Perezhogin, L. Zanna, and C. Fernandez-Granda, “Generative
data-driven approaches for stochastic subgrid parameterizations
in an idealized ocean model,” Journal of Advances in Modeling
Earth Systems, vol. 15, no. 10, p. e2023MS003681, 2023.

[28] J. C. McWilliams, “Submesoscale currents in the ocean,” Pro-
ceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 472, no. 2189, p. 20160117, 2016.

[29] P. M. DiGiacomo and B. Holt, “Satellite observations of small
coastal ocean eddies in the southern california bight,” Journal of
Geophysical Research: Oceans, vol. 106, no. C10, pp. 22 521–
22 543, 2001.

[30] D. Haidvogel, J. Blanton, J. Kindle, and D. Lynch, “Coastal
ocean modeling: Processes and real-time systems,” Oceanogra-
phy, vol. 13, no. 1, pp. 35–46, 2000.

[31] F. Roman, G. Stipcich, V. Armenio, R. Inghilesi, and S. Corsini,
“Large eddy simulation of mixing in coastal areas,” Interna-
tional Journal of Heat and Fluid Flow, vol. 31, no. 3, pp. 327–
341, 2010.

[32] J. P. Graham and T. Ringler, “A framework for the evaluation
of turbulence closures used in mesoscale ocean large-eddy
simulations,” Ocean Modelling, vol. 65, pp. 25–39, 2013.

[33] A. Ross, Z. Li, P. Perezhogin, C. Fernandez-Granda, and

L. Zanna, “Benchmarking of machine learning ocean subgrid
parameterizations in an idealized model,” Journal of Advances
in Modeling Earth Systems, vol. 15, no. 1, 2023.

[34] A. P. Guillaumin and L. Zanna, “Stochastic-deep learning
parameterization of ocean momentum forcing,” Journal of
Advances in Modeling Earth Systems, vol. 13, no. 9, p.
e2021MS002534, 2021.

[35] C. Zhang, P. Perezhogin, C. Gultekin, A. Adcroft, C. Fernandez-
Granda, and L. Zanna, “Implementation and evaluation of a
machine learned mesoscale eddy parameterization into a numer-
ical ocean circulation model,” Journal of Advances in Modeling
Earth Systems, vol. 15, no. 10, p. e2023MS003697, 2023.

[36] C. Zhang, P. Perezhogin, A. Adcroft, and L. Zanna, “Address-
ing out-of-sample issues in multi-layer convolutional neural-
network parameterization of mesoscale eddies applied near
coastlines,” Journal of Advances in Modeling Earth Systems,
vol. 17, no. 5, p. e2024MS004819, 2025.

[37] A. Majda and X. Wang, Nonlinear dynamics and statistical
theories for basic geophysical flows. Cambridge University
Press, 2006.

[38] B. Cushman-Roisin and J.-M. Beckers, Introduction to geophys-
ical fluid dynamics: physical and numerical aspects. Academic
press, 2011, vol. 101.

[39] B. Galperin, H. Nakano, H.-P. Huang, and S. Sukoriansky, “The
ubiquitous zonal jets in the atmospheres of giant planets and
earth’s oceans,” Geophysical research letters, vol. 31, no. 13,
2004.

[40] Y. Xia, Y. Du, B. Qiu, X. Cheng, T. Wang, and Q. Xie, “The
characteristics of the mid-depth striations in the north indian
ocean,” Deep Sea Research Part I: Oceanographic Research
Papers, vol. 162, p. 103307, 2020.

[41] J.-L. Guermond, P. Minev, and J. Shen, “An overview of pro-
jection methods for incompressible flows,” Computer methods
in applied mechanics and engineering, vol. 195, no. 44-47, pp.
6011–6045, 2006.

[42] J. Aoussou, J. Lin, and P. F. J. Lermusiaux, “Iterated pressure-
correction projection methods for the unsteady incompressible
Navier–Stokes equations,” Journal of Computational Physics,
vol. 373, pp. 940–974, Nov. 2018.

[43] K.-J. Bathe and H. Zhang, “A mesh adaptivity procedure for
cfd and fluid-structure interactions,” Computers & Structures,
vol. 87, no. 11-12, pp. 604–617, 2009.
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