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Abstract Our novel results in two-way embedded (nested) schemes for free-surface

primitive-equation computations with strong tidal forcing are presented. A set of nu-

merical two-way embedding algorithms are compared, focusing on the barotropic veloc-

ity and surface pressure components of the two-way exchanges. The different algorithms

mainly differ in the level of the constraints in the fine-to-coarse scale transfers and in

the interpolations and numerical filtering. We present and illustrate both the schemes

that lead to divergences between grids and those that don’t. We find that embed-

ded schemes with stronger implicit couplings among grids, especially for the velocity

components, work best. Volume-conserving schemes are also discussed for free-surface

primitive-equation computations in large domains but including strong tidal conditions

over shallow seas. Results are presented both in idealized settings such as simplified

Gulf-Stream simulations over flat topography and in realistic multiscale simulations

settings such as the east coast of the USA, the Philippine Archipelago and the Taiwan-

Kuroshio region. For these simulations, we employ our regional modeling system, the

MIT “Multidisciplinary Simulation, Estimation and Assimilation System” (MSEAS).

This system includes the Harvard primitive equation model updated with new free-

surface and stochastic forcing equations as well as other novel computational systems

for biogeochemical and acoustic modeling, nested generalized tidal inversions, coastal

objective analysis, uncertainty prediction, data assimilation and adaptive sampling.

Keywords First keyword · Second keyword · More

1 Introduction

– Review of two-way nesting(embedding) (start with slide 8)
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– MSEAS system and new components (slides 4-6)

2 Formulation of new 2-way nesting scheme for free surface primitive

equation modeling

2.1 continuous free surface Primitive equations

– Rewrite in integral formulation. Consider moving heat and salt equations before

equation of state.

– Add differential form of equations of motion somewhere.

The equations of motion are the primitive equations, derived from the Navier-Stokes

equations under the hydrostatic and Boussinesq approximations (e.g. Cushman-Roisin

and Beckers, 2010). Under these assumptions, the conservation of mass can be expressed

as
∫

S

(u, w) · dA = 0 (1)

where u is the two dimensional, horizontal velocity vector (u, v), S is the surface of

the control volume V, and dA is an infinitesimal area element vector pointing in the

outward normal direction to S . The conservation of momentum can be written as

d

dt

∫

V

u dV + L(u) +

∫

V

fk̂ × u dV = −
1

ρ0

∫

S

p n̂h · dA +

∫

V

F dV (2)

∫

S

p k̂ · dA = −

∫

V

ρg dV (3)

where t is the time variable, f is the Coriolis parameter, k̂ is the unit direction vector

in the vertical direction, ρ0 is the (constant) background density, p is the pressure, n̂h

a matrix comprised of the horizontal unit vectors, F contains the sub-gridscale terms,

ρ is the variable density and g is the acceleration due to gravity. In equation (2) we

have introduced the following notation for the advection terms:

L(u) =

(

L(u)

L(v)

)

; L(φ) =

∫

S

φ (u, w) · dA (4)

To close the system a standard equation of state is introduced

ρ = ρ(z, T, S) (5)

where T is the temperature and S is the salinity. The temperature and salinity are

evolved using conservation equations for heat

d

dt

∫

V

T dV + L(T ) =

∫

V

F
T

dV (6)

and for salt
d

dt

∫

V

S dV + L(S) =

∫

V

F
S

dV (7)

in which FT and FS contain the sub-gridscale terms.
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Finally, since we are considering free surface applications, we need a prognostic

equation for the free surface elevation, η. Following the standard approach of integrating

the differential form of equation (1) over the vertical column and applying the kinematic

conditions at the surface and bottom, we arrive at

∂η

∂t
+ ∇ (HU) = 0 (8)

where U is the vertically averaged velocity and H is the water depth.

2.2 Nonlinear “distributed-σ” discretization of the free surface Primitive equations

– Add the basics of the Arakawa B-grid (what is where).

The equations of motion are discretized on an Arakawa B-grid (Arakawa and Lamb,

1977), the details of which can be found in A.

In the vertical we depart from Bryan (1969) and employ time dependent, terrain-

following coordinates. We first define a set of terrain-following depths for the (undis-

turbed) mean sea level. We then define the time variable model depths such that the

change in cell thickness is proportional to the relative thickness of the original (undis-

turbed) cell. Hence, along model level k, the depths can be found from

zk(x, y, t) = η(x, y, t) +

(

1 +
η(x, y, t)

H(x, y)

)

z
MSL
k (x, y) (9)

We choose to make all the model levels a function of time to simplify the the dicretiza-

tion in shallow regions with large tides (e.g. to avoid making the top level thick enough

to encompass the entire tidal swing).

Since our vertical grid is both terrain-following and time variable we define the

vertical flux velocity, ω, normal to the top, ζ, of finite volume elements as

ω = w − u · ∇ζ −
∂ζ

∂t
(10)

In time, the discretization is mostly leap-frog, with some semi-implicit discretiza-

tions for the Coriolis and free surface terms, following Dukowicz and Smith (1994). A

brief summary of this is given in B.

We decompose the horizontal velocity into a depth averaged (“barotropic”) com-

ponent, U, and a remainder (“baroclinic”), u′

u = u
′ + U ; U =

1

H + η

∫ η

−H

u dz (11)

We also decompose the pressure into a hydrostatic component, ph, and a surface com-

ponent, ps:

p = ps + ph ; ph(x, y, z, t) =

∫ η

z

gρ dζ ; ps(x, y, t) = ρ0gη (12)

Using these definitions, along with the mid-point approximation
∫

V

φdV ≈ φ∆V (13)
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we discretize equations (1)-(4) and (6)-(8) as

∫

Sn
lat

u · dA +

∫

Sn
TB

ω · dA = 0 (14)

δ
(

u′∆V
)

τ
+ fk̂ ×

(

u
′
∆V

)α
= F̂

n,n−1
− F̂n,n−1 (15)

δ (U∆V)

τ
+ fk̂ × (U∆V)α = F̂n,n−1 − g∇η

α
i,j (16)

δ (T∆V)

τ
=

∫

Vn

F
T n

dV − L̂(T )n (17)

δ (S∆V)

τ
=

∫

Vn

F
Sn

dV − L̂(S)n (18)

ηn+1 − ηn

∆t
+ ∇ · (HU

θ) = 0 (19)

where

L̂(u) =

(

L(u)

L(v)

)

; L̂(φ) =

∫

Sn
lat

φu · dA +

∫

Sn
TB

φ ω · dA (20)

F̂
n,n−1 = −

1

ρ0

∫

Sn

p
n
h n̂h · dA− L̂(u)n +

∫

Vn

F
n

dV +

∫

Vn−1

F
n−1

dV (21)

F̂n,n−1 =
1

Hi,j + ηn
i,j

∫ ηn
i,j

−Hi,j

{

−
1

ρ0

∫

Sn

p
n
h n̂h · dA− L̂(u)n +

∫

Vn

F
n

dV

}

dz

+
1

Hi,j + ηn−1

i,j

∫ η
n−1

i,j

−Hi,j

{
∫

Vn−1

F
n−1

dV

}

dz (22)

Sn
lat is the lateral surface of a computational cell and Sn

TB represents the top and

bottom surfaces of the computational cell, τ = 2∆t is twice the time step,

δ(φ) = φ
n+1

− φ
n−1 (23)

is the leap-frog time differencing operator,

φ
α = αφ

n+1 + (1 − 2α)φn + αφ
n−1 (24)

is a semi-implicit time discretization for the Coriolis force suggested by Dukowicz and

Smith (1994) and

φ
θ = θφ

n+1 + (1 − θ)φn
. (25)

is a semi-implicit time discretization for the barotropic continuity, also suggested by

Dukowicz and Smith (1994).

– coherently written portion of paper ends here

– from here start with manipulations to barotropic equations that lead to final

barotropic equations that follow (26-29)
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F
n,n−1 =

1

H

∫ 0

−H

(

F−
1

ρ0

∇ph − L(u) − fk̂ ×
[

(1 − 2α)un + 2αu
n−1

]

)

dz (26)

δ̂U + 2αf∆tk̂ × δ̂U = 2∆t
{

F
n,n−1

− g
[

(1 − 2α)∇η
n + 2α∇η

n−1
]}

, (27)

αθgτ∇ · (H∇δη) −
2δη

τ
= ∇ ·

[

H
(

θÛ
n+1 + U

n + (1 − θ)Un−1
)]

(28)

U
n+1 = Û

n+1
− ατg∇δη (29)

– Note: in this context, “nonlinear” refers to applying the upper boundary conditions

at z = η instead of z = 0. Check MIT-GCM documentation for this terminology

– Note: need to also find term(s) for distributing changes in depths across all levels,

instead of restricting to top level(s)

– describe (final eqs and/or what is new) and refer to B. Look for ways to condense.

– baroclinic volume conservation (text/equations of slide 34). This should be included

in derivation, when rewritten in integral formulation.

– open boundary conditions (take some from surfpresssummary.tex and/or zuvmbcs.tex).

Either a subsubsection or highlighted paragraph.

– Maintaining vertically integrated continuity. Either a subsubsection or highlighted

paragraph.

– http://mseas.mit.edu/group/pjh/Nest/Talk/PFJL/baro cont.ppt

– meeting2 28Aug2001.tex

– paragraph comparing new with Dukowicz and Smith (1994).

2.3 Implicit nesting scheme

– paragraph explaining nesting scheme and relating to slide 25 and slide 26 or equiv-

alent in table form.

– i.e. the final nesting scheme (§3.6)

– implicit vs explicit nesting

3 Ensuring consistency between estimates of barotropic fields in nested

domains

– set-up paragraph on SW06/AWACS domains, topography.

3.1 Explicit Nesting

– have run, generate equivalent to slide 15

– see /projects/awacs/PE/2009/Dec07/PJH10

– since that run has blended topography around perimiter, see /projects/awacs/PE/2009/Dec07/PJH05

for the equivalent final method.
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3.2 Baseline Implicit nesting (mimic rigid-lid nesting)

– slide 15

3.3 Pass Uhat not RHS

– slide 18

3.4 Exchange surface pressure (at lagged time step)

– slide 21

3.5 Update ubaro (at lagged time step) as function of updated surface pressure (in

region where surface pressure updated)

– slide 24

3.6 Pass H*Uhat (”transport”)

– slide 27

4 Examples

– include some relative vorticity plot comparisons of coarse and fine domains to

emphasize the additional small scales resolved in the fine domains.

4.1 Middle Atlantic Bight

– slides 28-31

– improves tidal comparison:

– /projects/awacs/PE/2009/Dec07/PJH05

– /projects/awacs/PE/2009/Dec07/PJH06

– /projects/awacs/PE/2009/Dec07/PJH09

4.2 Philippines

– slides 32-33

4.3 Strait of Taiwan

– slide 34
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5 Conclusions

– slide 35

A Full details of the discretization

Anticipating some repeated averaging operations for midpoint quadrature

〈ui,j,k〉
x =

1

2

(

u
i+ 1

2
,j,k

+ u
i− 1

2
,j,k

)

〈ui,j,k〉
y =

1

2

(

u
i,j+ 1

2
,k

+ u
i,j− 1

2
,k

)

δx
(

ui,j,k

)

= u
i+ 1

2
,j,k

− u
i− 1

2
,j,k

δy
(

ui,j,k

)

= u
i,j+ 1

2
,k

− u
i,j− 1

2
,k

We first define the vertical distribution of depths, zMSL
i,j,k

, with respect to the mean sea level.

We currently employ three different schemes for defining the vertical levels: (a) σ-coordinates

zMSL
i,j,k = −σkHi,j (30)

where 0 ≤ σk ≤ 1; (b) hybrid coordinates (Spall and Robinson, 1989)

zMSL
i,j,k =

{

z̃k if k ≤ kc

−hc − σk (Hi,j − hc) if k > kc
(31)

where z̃k are a set of constant depths and hc is the sum of the top kc (constant) vertical cells;
and (c) double σ-coordinates (Lozano et al, 1994)

zMSL
i,j,k =

{

−σkf̃i,j if k ≤ kc

−f̃i,j − (σk − 1)
(

Hi,j − f̃i,j

)

if k > kc
(32)

f̃i,j =
zc1 + zc2

2
+

zc2 − zc1

2
tanh

[

2α

zc2 − zc1

(

Hi,j − href

)

]

(33)

σk ∈

{

[0, 1] if k ≤ kc

[1, 2] if k > kc
(34)

where f̃i,j is the (variable) interface depth between the upper and lower σ-systems, zc1 and

zc2 are the shallow and deep bounds for f̃i,j , href is the reference topographic depth at
which the hyperbolic tangent term changes sign and α is a nondimensional slope parameter
(||∇f̃ || ≤ α||∇H||). From the

Since our vertical grid is both terrain-following and time variable we define the vertical
flux velocity, ω, normal to the top of finite volume elements as

ω
i+ 1

2
,j+ 1

2
,k− 1

2

= w
i+ 1

2
,j+ 1

2
,k− 1

2

−〈u
i+ 1

2
,j+ 1

2
,k− 1

2

〉z〈δxzn

i+ 1

2
,j+ 1

2
,k− 1

2

〉y
1

∆x
i+ 1

2

−〈v
i+ 1

2
,j+ 1

2
,k− 1

2

〉z〈δyzn

i+ 1

2
,j+ 1

2
,k− 1

2

〉x
1

∆y
j+ 1

2

−

∂zn

i+ 1

2
,j+ 1

2
,k− 1

2

∂t
(35)

Using mid-point quadrature, the conservation of mass is discretized as

0 =

∫

S

u(3) · n̂ dA

= δx

(

〈u
i+ 1

2
,j+ 1

2
,k
〉x〈∆z

i+ 1

2
,j+ 1

2
,k
〉y

)

∆y
j+ 1

2

(36)

– continue with fill discretizations



8

B Review of Dukowicz and Smith Free Surface Algorithm

This appendix provides a brief summary of the free surface algorithm derived by Dukowicz
and Smith (1994) (hereafter referred to as D&S) for the Bryan-Cox-Semtner model (Bryan,
1969; Semtner, 1986). Starting from equations (1-7) they decompose the velocity into a depth-
averaged component, U, and an internal mode, u

′:

u = u
′ + U ; U =

1

H

∫ 0

−H

u dz (37)

where H is the undisturbed depth of the ocean. They also decompose the total pressure into
a surface pressure, ps, and a hydrostatic pressure, ph, evaluated from (3):

p(x, y, z) = ps(x, y) + ph(x, y, z) ; ph(x, y, z) =

∫ 0

z

ρ(x, y, ζ)g dζ (38)

and relate the surface pressure to the free surface elevation, η, through the hydrostatic ap-
proximation

ps = ρ0gη (39)

The internal components are evaluated as in the Bryan-Cox-Semtner model. To solve the
external components, including the surface elevation, average equations (2) and integrate (1)
all in the vertical, then substitute in equations (37-39):

∂U

∂t
+ fk̂ × U = −g∇η + Fav (40)

∂η

∂t
+ ∇ · (HU) = 0 (41)

where Fav now contains the advective fluxes and hydrostatic pressure gradients as well as the
sub-gridscale terms:

Fav =
1

H

∫ 0

−H

(

−
1

ρ0
∇ph − L(u) + F

)

dz . (42)

Next, (D&S) introduce a particular set of time discretizations, which are simplified here fol-
lowing their stability conclusions

δU

2∆t
+ fk̂ × U

α = −g∇ηα + F
n
av (43)

ηn+1 − ηn

∆t
+ ∇ · (HU

θ) = 0 (44)

where the n superscripts indicate that a variable is evaluated at time n∆t, δ refers to the
leap-frog differencing

δU = Un+1 − Un−1 , (45)

and the superscripts α and θ refer to the semi-implicit time discretizations

Uα = αUn+1 + (1 − 2α)Un + αUn−1 , (46)

Uθ = θUn+1 + (1 − θ)Un . (47)

To facilitate the solution of (43-44), (D&S) split the coupling of Un+1 and ηn+1 by introducing

the “augmented velocity”, Û, as

Û = U
n+1 + 2αg∆t∇δη . (48)

Substituting (48) for Un+1 in (43) and introducing the notation

δ̂U = Û − U
n−1 (49)
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results in

δ̂U + 2αf∆tk̂ × δ̂U = 2∆t
{

F
n,n−1 − g

[

(1 − 2α)∇ηn + 2α∇ηn−1
]}

−4α2gf(∆t)2 k̂ ×∇δη , (50)

where
F

n,n−1 = F
n
av − fk̂ ×

[

(1 − 2α)U
n + 2αU

n−1
]

. (51)

(D&S) then observe that the final term in the right-hand side of (50) is the same order,

O
(

(∆t)3
)

, as the discretization error (assuming that δη is O (∆t), a necessary assumption for

bounded first derivatives). Neglecting this term, they arrive at the decoupled equation for Û:

δ̂U + 2αf∆tk̂ × δ̂U = 2∆t
{

F
n,n−1 − g

[

(1 − 2α)∇ηn + 2α∇ηn−1
]}

. (52)

Finally, (D&S) generate an equation for δη by first averaging (44) with itself evaluated one
time step earlier. Then they substitute for Un+1 using (48), resulting in

2αθg∆t∇ · (H∇δη) −
δη

∆t
= ∇ ·

[

H
(

θÛ + U
n + (1 − θ)Un−1

)]

(53)

– Review Dukowicz and Smith (1994) to see if need to keep θ.

C Review of Rigid-Lid nesting algorithm

– slide 10

D Notes on usage of nesting code

– topography and mask matching
– initialization (rigid lid)
– initialization (free surface)
– tides? (B to C grid conversion?)
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