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Abstract

Our novel results in two-way embedded (nested) schemes for free-surface
primitive-equation computations with strong tidal forcing are presented. A
set of numerical two-way embedding algorithms are compared, focusing on
the barotropic velocity and surface pressure components of the two-way ex-
changes. The different algorithms mainly differ in the level of the constraints
in the fine-to-coarse scale transfers and in the interpolations and numerical
filtering. We present and illustrate both the schemes that lead to diver-
gences between grids and those that don’t. We find that embedded schemes
with stronger implicit couplings among grids, especially for the velocity
components, work best. Volume-conserving schemes are also discussed for
free-surface primitive-equation computations in large domains but including
strong tidal conditions over shallow seas. Results are presented both in ideal-
ized settings such as simplified Gulf-Stream simulations over flat topography
and in realistic multiscale simulations settings such as the east coast of the
USA, the Philippine Archipelago and the Taiwan-Kuroshio region. For these
simulations, we employ our regional modeling system, the MIT “Multidis-
ciplinary Simulation, Estimation and Assimilation System” (MSEAS). This
system includes the Harvard primitive equation model updated with new
free-surface and stochastic forcing equations as well as other novel computa-
tional systems for biogeochemical and acoustic modeling, nested generalized
tidal inversions, coastal objective analysis, uncertainty prediction, data as-
similation and adaptive sampling.

Keywords:

1. Introduction

• Review of two-way nesting(embedding) (start with slide 8)
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• MSEAS system and new components (slides 4-6)

2. Formulation of new 2-way nesting scheme for free surface prim-

itive equation modeling

2.1. continuous free surface Primitive equations

• Rewrite in integral formulation. Consider moving heat and salt equa-
tions before equation of state.

• Add differential form of equations of motion somewhere.

The equations of motion are the primitive equations, derived from the
Navier-Stokes equations under the hydrostatic and Boussinesq approxima-
tions (e.g. Cushman-Roisin and Beckers, 2010). Under these assumptions,
the conservation of mass can be expressed as

∫

S

(~u, w) · dA = 0 (1)

where ~u is the two dimensional, horizontal velocity vector (u, v), S is the
surface of the control volume V, and dA is an infinitesimal area element
vector pointing in the outward normal direction to S. The conservation of
momentum can be written as

d

dt

∫

V

~u dV + ~L(~u) +

∫

V

fk̂ × ~u dV = −
1

ρ0

∫

S

p n̂h · dA +

∫

V

~F dV (2)

∫

S

p k̂ · dA = −

∫

V

ρg dV (3)

where t is the time variable, f is the Coriolis parameter, k̂ is the unit direction
vector in the vertical direction, ρ0 is the (constant) background density, p is

the pressure, n̂h a matrix comprised of the horizontal unit vectors, ~F contains
the sub-gridscale terms, ρ is the variable density and g is the acceleration
due to gravity. In equation (2) we have introduced the following notation for
the advection terms:

~L(~u) =

(

L(u)
L(v)

)

; L(φ) =

∫

S

φ (~u, w) · dA (4)
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To close the system a standard equation of state is introduced

ρ = ρ(z, T, S) (5)

where T is the temperature and S is the salinity. The temperature and
salinity are evolved using conservation equations for heat

d

dt

∫

V

T dV + L(T ) =

∫

V

F T dV (6)

and for salt
d

dt

∫

V

S dV + L(S) =

∫

V

F S dV (7)

in which F T and F S contain the sub-gridscale terms.
Finally, since we are considering free surface applications, we need a prog-

nostic equation for the free surface elevation, η. Following the standard ap-
proach of integrating the differential form of equation (1) over the vertical
column and applying the kinematic conditions at the surface and bottom,
we arrive at

∂η

∂t
+ ∇

(

H ~U
)

= 0 (8)

where ~U is the vertically averaged velocity and H is the water depth.

2.2. Nonlinear “distributed-σ” discretization of the free surface Primitive
equations

• Add the basics of the Arakawa B-grid (what is where).

The equations of motion are discretized on an Arakawa B-grid (Arakawa
and Lamb, 1977), the details of which can be found in Appendix A.

In the vertical we depart from Bryan (1969) and employ time dependent,
terrain-following coordinates. We first define a set of terrain-following depths
for the (undisturbed) mean sea level. We then define the time variable model
depths such that the change in cell thickness is proportional to the relative
thickness of the original (undisturbed) cell. Hence, along model level k, the
depths can be found from

zk(x, y, t) = η(x, y, t) +

(

1 +
η(x, y, t)

H(x, y)

)

zMSL
k (x, y) (9)
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We choose to make all the model levels a function of time to simplify the the
dicretization in shallow regions with large tides (e.g. to avoid making the
top level thick enough to encompass the entire tidal swing).

Since our vertical grid is both terrain-following and time variable we define
the vertical flux velocity, ω, normal to the top, ζ , of finite volume elements
as

ω = w − ~u · ∇ζ −
∂ζ

∂t
(10)

In time, the discretization is mostly leap-frog, with some semi-implicit
discretizations for the Coriolis and free surface terms, following Dukowicz
and Smith (1994). A brief summary of this is given in Appendix B.

We decompose the horizontal velocity into a depth averaged (“barotropic”)

component, ~U , and a remainder (“baroclinic”), ~u′

~u = ~u′ + ~U ; ~U =
1

H + η

∫ η

−H

~u dz (11)

We also decompose the pressure into a hydrostatic component, ph, and a
surface component, ps:

p = ps + ph ; ph(x, y, z, t) =

∫ η

z

gρ dζ ; ps(x, y, t) = ρ0gη (12)

Using these definitions, along with the mid-point approximation
∫

V

φ dV ≈ φ∆V (13)

we discretize equations (1)-(4) and (6)-(8) as
∫

Sn
lat

~u · dA +

∫

Sn
TB

ω · dA = 0 (14)

δ
(

~u′∆V
)

τ
+ fk̂ ×

(

~u′∆V
)α

= F̂n,n−1 − F̂n,n−1 (15)

δ
(

~U∆V
)

τ
+ fk̂ ×

(

~U∆V
)α

= F̂n,n−1 − g∇ηα
i,j (16)

δ (T∆V)

τ
=

∫

Vn

F T n
dV − L̂(T )n (17)
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δ (S∆V)

τ
=

∫

Vn

F Sn
dV − L̂(S)n (18)

ηn+1 − ηn

∆t
+ ∇ · (H~Uθ) = 0 (19)

where

~̂
L(~u) =

(

L(u)
L(v)

)

; L̂(φ) =

∫

Sn
lat

φ~u · dA +

∫

Sn
TB

φ ω · dA (20)

F̂n,n−1 = −
1

ρ0

∫

Sn

pn
h n̂h · dA−

~̂
L(~u)n +

∫

Vn

~F n dV +

∫

Vn−1

~F n−1 dV (21)

F̂n,n−1 =
1

Hi,j + ηn
i,j

∫ ηn
i,j

−Hi,j

{

−
1

ρ0

∫

Sn

pn
h n̂h · dA−

~̂
L(~u)n +

∫

Vn

~F n dV

}

dz

+
1

Hi,j + ηn−1
i,j

∫ ηn−1

i,j

−Hi,j

{
∫

Vn−1

~F n−1 dV

}

dz (22)

Sn
lat is the lateral surface of a computational cell and Sn

TB represents the top
and bottom surfaces of the computational cell, τ = 2∆t is twice the time
step,

δ(φ) = φn+1 − φn−1 (23)

is the leap-frog time differencing operator,

φα = αφn+1 + (1 − 2α)φn + αφn−1 (24)

is a semi-implicit time discretization for the Coriolis force suggested by
Dukowicz and Smith (1994) and

φθ = θφn+1 + (1 − θ)φn . (25)

is a semi-implicit time discretization for the barotropic continuity, also sug-
gested by Dukowicz and Smith (1994).

• coherently written portion of paper ends here

• from here start with manipulations to barotropic equations that lead
to final barotropic equations that follow (26-29)
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~Fn,n−1 =
1

H

∫ 0

−H

(

~F −
1

ρ0
∇ph − ~L(~u) − fk̂ ×

[

(1 − 2α) ~un + 2α~un−1
]

)

dz

(26)

δ̂ ~U+2αf∆tk̂×δ̂ ~U = 2∆t
{

~Fn,n−1 − g
[

(1 − 2α)∇ηn + 2α∇ηn−1
]

}

, (27)

αθgτ∇ · (H∇δη) −
2δη

τ
= ∇ ·

[

H

(

θ
~̂
U

n+1

+ ~Un + (1 − θ)~Un−1

)]

(28)

~Un+1 =
~̂
U

n+1

− ατg∇δη (29)

• Note: in this context, “nonlinear” refers to applying the upper boundary
conditions at z = η instead of z = 0. Check MIT-GCM documentation
for this terminology

• Note: need to also find term(s) for distributing changes in depths across
all levels, instead of restricting to top level(s)

• describe (final eqs and/or what is new) and refer to Appendix B. Look
for ways to condense.

• baroclinic volume conservation (text/equations of slide 34). This should
be included in derivation, when rewritten in integral formulation.

• open boundary conditions (take some from surfpresssummary.tex

and/or zuvmbcs.tex). Either a subsubsection or highlighted paragraph.

• Maintaining vertically integrated continuity. Either a subsubsection or
highlighted paragraph.

– http://mseas.mit.edu/group/pjh/Nest/Talk/PFJL/baro cont.ppt

– meeting2 28Aug2001.tex

• paragraph comparing new with Dukowicz and Smith (1994).

2.3. Implicit nesting scheme

• paragraph explaining nesting scheme and relating to slide 25 and slide
26 or equivalent in table form.

• i.e. the final nesting scheme (§3.6)

• implicit vs explicit nesting
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3. Ensuring consistency between estimates of barotropic fields in

nested domains

• set-up paragraph on SW06/AWACS domains, topography.

3.1. Explicit Nesting

• have run, generate equivalent to slide 15

• see /projects/awacs/PE/2009/Dec07/PJH10

• since that run has blended topography around perimiter, see /projects/awacs/PE/2009/Dec07/PJH05
for the equivalent final method.

3.2. Baseline Implicit nesting (mimic rigid-lid nesting)

• slide 15

3.3. Pass Uhat not RHS

• slide 18

3.4. Exchange surface pressure (at lagged time step)

• slide 21

3.5. Update ubaro (at lagged time step) as function of updated surface pres-
sure (in region where surface pressure updated)

• slide 24

3.6. Pass H*Uhat (”transport”)

• slide 27

4. Examples

• include some relative vorticity plot comparisons of coarse and fine do-
mains to emphasize the additional small scales resolved in the fine
domains.
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4.1. Middle Atlantic Bight

• slides 28-31

• improves tidal comparison:

– /projects/awacs/PE/2009/Dec07/PJH05

– /projects/awacs/PE/2009/Dec07/PJH06

– /projects/awacs/PE/2009/Dec07/PJH09

4.2. Philippines

• slides 32-33

4.3. Strait of Taiwan

• slide 34

5. Conclusions

• slide 35

Appendix A. Full details of the discretization

Anticipating some repeated averaging operations for midpoint quadrature

〈ui,j,k〉
x =

1

2

(

ui+ 1

2
,j,k + ui− 1

2
,j,k

)

〈ui,j,k〉
y =

1

2

(

ui,j+ 1

2
,k + ui,j− 1

2
,k

)

δx (ui,j,k) = ui+ 1

2
,j,k − ui− 1

2
,j,k δy (ui,j,k) = ui,j+ 1

2
,k − ui,j− 1

2
,k

We first define the vertical distribution of depths, zMSL
i,j,k , with respect to

the mean sea level. We currently employ three different schemes for defining
the vertical levels: (a) σ-coordinates

zMSL
i,j,k = −σkHi,j (A.1)

where 0 ≤ σk ≤ 1; (b) hybrid coordinates (Spall and Robinson, 1989)

zMSL
i,j,k =

{

z̃k if k ≤ kc

−hc − σk (Hi,j − hc) if k > kc
(A.2)

8



where z̃k are a set of constant depths and hc is the sum of the top kc (constant)
vertical cells; and (c) double σ-coordinates (Lozano et al., 1994)

zMSL
i,j,k =

{

−σkf̃i,j if k ≤ kc

−f̃i,j − (σk − 1)
(

Hi,j − f̃i,j

)

if k > kc

(A.3)

f̃i,j =
zc1 + zc2

2
+

zc2 − zc1

2
tanh

[

2α

zc2 − zc1

(Hi,j − href)

]

(A.4)

σk ∈

{

[0, 1] if k ≤ kc

[1, 2] if k > kc
(A.5)

where f̃i,j is the (variable) interface depth between the upper and lower σ-
systems, zc1 and zc2 are the shallow and deep bounds for f̃i,j , href is the
reference topographic depth at which the hyperbolic tangent term changes
sign and α is a nondimensional slope parameter (||∇f̃ || ≤ α||∇H||). From
the

Since our vertical grid is both terrain-following and time variable we define
the vertical flux velocity, ω, normal to the top of finite volume elements as

ωi+ 1

2
,j+ 1

2
,k− 1

2

= wi+ 1

2
,j+ 1

2
,k− 1

2

−〈ui+ 1

2
,j+ 1

2
,k− 1

2

〉z〈δxzn
i+ 1

2
,j+ 1

2
,k− 1

2

〉y
1

∆xi+ 1

2

−〈vi+ 1

2
,j+ 1

2
,k− 1

2

〉z〈δyzn
i+ 1

2
,j+ 1

2
,k− 1

2

〉x
1

∆yj+ 1

2

−
∂zn

i+ 1

2
,j+ 1

2
,k− 1

2

∂t
(A.6)

Using mid-point quadrature, the conservation of mass is discretized as

0 =

∫

S

~u(3) · n̂ dA

= δx
(

〈ui+ 1

2
,j+ 1

2
,k〉

x〈∆zi+ 1

2
,j+ 1

2
,k〉

y
)

∆yj+ 1

2

(A.7)

• continue with fill discretizations

Appendix B. Review of Dukowicz and Smith Free Surface Algo-

rithm

This appendix provides a brief summary of the free surface algorithm
derived by Dukowicz and Smith (1994) (hereafter referred to as D&S) for
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the Bryan-Cox-Semtner model (Bryan, 1969; Semtner, 1986). Starting from
equations (1-7) they decompose the velocity into a depth-averaged compo-

nent, ~U , and an internal mode, ~u′:

~u = ~u′ + ~U ; ~U =
1

H

∫ 0

−H

~u dz (B.1)

where H is the undisturbed depth of the ocean. They also decompose the
total pressure into a surface pressure, ps, and a hydrostatic pressure, ph,
evaluated from (3):

p(x, y, z) = ps(x, y) + ph(x, y, z) ; ph(x, y, z) =

∫ 0

z

ρ(x, y, ζ)g dζ (B.2)

and relate the surface pressure to the free surface elevation, η, through the
hydrostatic approximation

ps = ρ0gη (B.3)

The internal components are evaluated as in the Bryan-Cox-Semtner model.
To solve the external components, including the surface elevation, average
equations (2) and integrate (1) all in the vertical, then substitute in equations
(B.1-B.3):

∂~U

∂t
+ fk̂ × ~U = −g∇η + ~Fav (B.4)

∂η

∂t
+ ∇ · (H~U) = 0 (B.5)

where ~Fav now contains the advective fluxes and hydrostatic pressure gradi-
ents as well as the sub-gridscale terms:

~Fav =
1

H

∫ 0

−H

(

−
1

ρ0

∇ph − ~L(~u) + ~F

)

dz . (B.6)

Next, (D&S) introduce a particular set of time discretizations, which are
simplified here following their stability conclusions

δ~U

2∆t
+ fk̂ × ~Uα = −g∇ηα + ~F n

av (B.7)

ηn+1 − ηn

∆t
+ ∇ · (H~Uθ) = 0 (B.8)
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where the n superscripts indicate that a variable is evaluated at time n∆t, δ

refers to the leap-frog differencing

δU = Un+1 − Un−1 , (B.9)

and the superscripts α and θ refer to the semi-implicit time discretizations

Uα = αUn+1 + (1 − 2α)Un + αUn−1 , (B.10)

Uθ = θUn+1 + (1 − θ)Un . (B.11)

To facilitate the solution of (B.7-B.8), (D&S) split the coupling of ~Un+1 and

ηn+1 by introducing the “augmented velocity”,
~̂
U , as

~̂
U = ~Un+1 + 2αg∆t∇δη . (B.12)

Substituting (B.12) for ~Un+1 in (B.7) and introducing the notation

δ̂ ~U =
~̂
U − ~Un−1 (B.13)

results in

δ̂ ~U + 2αf∆tk̂ × δ̂ ~U = 2∆t
{

~Fn,n−1 − g
[

(1 − 2α)∇ηn + 2α∇ηn−1
]

}

−4α2gf(∆t)2k̂ ×∇δη , (B.14)

where
~Fn,n−1 = ~F n

av − fk̂ ×
[

(1 − 2α) ~Un + 2α~Un−1
]

. (B.15)

(D&S) then observe that the final term in the right-hand side of (B.14) is
the same order, O ((∆t)3), as the discretization error (assuming that δη is
O (∆t), a necessary assumption for bounded first derivatives). Neglecting

this term, they arrive at the decoupled equation for
~̂
U :

δ̂ ~U + 2αf∆tk̂ × δ̂ ~U = 2∆t
{

~Fn,n−1 − g
[

(1 − 2α)∇ηn + 2α∇ηn−1
]

}

.

(B.16)
Finally, (D&S) generate an equation for δη by first averaging (B.8) with itself

evaluated one time step earlier. Then they substitute for ~Un+1 using (B.12),
resulting in

2αθg∆t∇ · (H∇δη) −
δη

∆t
= ∇ ·

[

H
(

θ
~̂
U + ~Un + (1 − θ)~Un−1

)]

(B.17)

• Review Dukowicz and Smith (1994) to see if need to keep θ.
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Appendix C. Review of Rigid-Lid nesting algorithm

• slide 10

Appendix D. Notes on usage of nesting code

• topography and mask matching

• initialization (rigid lid)

• initialization (free surface)

• tides? (B to C grid conversion?)
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