headgraphic
loader graphic

Loading content ...

Towards Bayesian Ocean Physical-Biogeochemical-Acidification Prediction and Learning Systems for Massachusetts Bay

Haley, Jr., P.J., A. Gupta, C. Mirabito, and P. F. J. Lermusiaux, 2020. Towards Bayesian Ocean Physical-Biogeochemical-Acidification Prediction and Learning Systems for Massachusetts Bay. In: OCEANS '20 IEEE/MTS, 5-30 October 2020, pp. 1-9, doi:10.1109/IEEECONF38699.2020.9389210

Better quantitative understanding and accurate data-assimilative predictions of the three-dimensional and time-dependent ocean acidification (OA) processes in coastal regions is urgently needed for the protection and sustainable utilization of ocean resources. In this paper, we extend and showcase the use of our MIT-MSEAS systems for high-resolution coupled physical-biogeochemical-acidification simulations and Bayesian learning of OA models in Massachusetts Bay, starting with simple empirical and equilibrium OA models. Simulations are shown to have reasonable skill when compared to available in situ and remote data. The impacts of wind forcing, internal tides, and solitary waves on water transports and mixing, and OA fields, are explored. Strong wind events are shown to reset circulations and the OA state in the Bay. Internal tides increase vertical mixing of waters in the shallow regions. Solitary waves propagating off Stellwagen Bank coupled with lateral turbulent mixing provide a pathway for exchange of surface and deep waters. Both of these effects are shown to impact biological activity and OA. A mechanism for the creation of multiple subsurface chlorophyll maxima is presented, involving wind-induced upwelling, internal tides, and advection of near surface fields. Due to the measurement sparsity and limited understanding of complex OA processes, the state variables and parameterizations of OA models are very uncertain. We thus present a proof-of-concept study to simultaneously learn and estimate the OA state variables and model parameterizations from sparse observations using our novel dynamics-based Bayesian learning framework for high-dimensional and multi-disciplinary estimation. Results are found to be encouraging for more realistic OA model learning.

Share

Fish Modeling and Bayesian Learning for the Lakshadweep Islands

Gupta, A., P.J. Haley, D.N. Subramani, and P.F.J. Lermusiaux, 2019. Fish Modeling and Bayesian Learning for the Lakshadweep Islands. In: OCEANS '19 MTS/IEEE Seattle, 27-31 October 2019, doi: 10.23919/OCEANS40490.2019.8962892

In fish modeling, a significant amount of uncertainty exists in the parameter values, parameterizations, functional form of model equations, and even the state variables themselves. This is due to the complexity and lack of understanding of the processes involved, as well as the measurement sparsity. These challenges motivate the present proof-of-concept study to simultaneously learn and estimate the state variables, parameters, and model equations from sparse observations. We employ a novel dynamics-based Bayesian learning framework for high-dimensional, coupled fish-biogeochemical-physical partial-differential equations (PDEs) models, allowing the simultaneous inference of the augmented state variables and parameters. After reviewing the status of ecosystem modeling in the coastal oceans, we first complete a series of PDE-based learning experiments that showcase capabilities for fish-biogeochemical-physical model equations and parameters, using nonhydrostatic Boussinesq flows past a seamount. We then showcase realistic ocean primitive-equation simulations and analyses, using fish catch data  for the Lakshadweep islands in India. These modeling and learning efforts could improve fisheries management from a standpoint of sustainability and efficiency.

Share

Real-time Forecasting of the Multidisciplinary Coastal Ocean with the Littoral Ocean Observing and Predicting System (LOOPS)

Robinson, A.R. and the LOOPS Group, 1999. Real-time Forecasting of the Multidisciplinary Coastal Ocean with the Littoral Ocean Observing and Predicting System (LOOPS). Preprint Volume of the Third Conference on Coastal Atmospheric and Oceanic Prediction and Processes, 3-5 November 1999, New Orleans, LA, American Meteorological Society, Boston, MA.

The Littoral Ocean Observing and Predicting System (LOOPS) concept is that of a generic, versatile and portable system, applicable to multidisciplinary, multiscale generic coastal processes. The LOOPS advanced systems concept consists of: a modular, scalable structure for linking, with feedbacks, models, observational networks and data assimilation and adaptive sampling algorithms; and an efficient and robust, integrated and distributed, system software architecture and infrastructure. LOOPS applications include scientific research, coastal zone management and rapid environmental assessment for naval and civilian emergency operations. The LOOPS design is the scientific and technical conceptual basis of an interdisciplinary national littoral laboratory system. The LOOPS partners include: J.G. Bellingham (MBARI), C. Chryssostomidis (MIT), T.D. Dickey (UCSB), E. Levine (NUWC), N. Patrikalakis (MIT), D.L. Porter (JHU/APL), B.J. Rothschild (Umass-Dartmouth), H. Schmidt (MIT), K. Sherman (NMFS), D.V. Holliday (Marconi Aerospace) and D.K. Atwood (Raytheon). LOOPS objectives and accomplishments are summarized in the final section of this note.
Share