Lermusiaux P.F.J, T. Lolla, P.J. Haley. Jr., K. Yigit, M.P. Ueckermann, T. Sondergaard and W.G. Leslie, 2016. Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of Ocean Vehicles. Chapter 21, Springer Handbook of Ocean Engineering: Autonomous Ocean Vehicles, Subsystems and Control, Tom Curtin (Ed.), pp. 481-498. doi:10.1007/978-3-319-16649-0_21.
The science of autonomy is the systematic development of fundamental knowledge about autonomous decision making and task completing in the form of testable autonomous methods, models and systems. In ocean applications, it involves varied disciplines that are not often connected. However, marine autonomy applications are rapidly growing, both in numbers and in complexity. This new paradigm in ocean science and operations motivates the need to carry out interdisciplinary research in the science of autonomy. This chapter reviews some recent results and research directions in time-optimal path planning and optimal adaptive sampling. The aim is to set a basis for a large number of vehicles forming heterogeneous and collaborative underwater swarms that are smart, i.e. knowledgeable about the predicted environment and their uncertainties, and about the predicted effects of autonomous sensing on future operations. The methodologies are generic and applicable to any swarm that moves and senses dynamic environmental fields. However, our focus is underwater path planning and adaptive sampling with a range of vehicles such as AUVs, gliders, ships or remote sensing platforms.