headgraphic
loader graphic

Loading content ...

Time-Optimal Path Planning: Real-Time Sea Exercises

Subramani, D. N., P. F. J. Lermusiaux, P.J. Haley, Jr., C. Mirabito, S. Jana, C. S. Kulkarni, A. Girard, D. Wickman, J. Edwards, J. Smith, 2017. Time-Optimal Path Planning: Real-Time Sea Exercises. In: Oceans '17 MTS/IEEE Aberdeen, 1-10, 19-22 June 2017, DOI: 10.1109/OCEANSE.2017.8084776

We report the results of sea exercises that demonstrate the real-time capabilities of our fundamental time-optimal path planning theory and software with real ocean vehicles. The exercises were conducted with REMUS 600 Autonomous Underwater Vehicles (AUVs) in the Buzzards Bay and Vineyard Sound Regions on 21 October and 6 December 2016. Two tests were completed: (i) 1-AUV time-optimal tests and (ii) 2-AUV race tests where one AUV followed a time-optimal path and the other a shortest-distance path between the start and finish locations. The time-optimal planning proceeded as follows. We first forecast, in real-time, the physical ocean conditions in the above regions and times utilizing our MSEAS multi-resolution primitive equation ocean modeling system. Next, we planned time-optimal paths for the AUVs using our level-set equations and real-time ocean forecasts, and accounting for operational constraints (e.g. minimum depth). This completed the planning computations performed onboard a research vessel. The forecast optimal paths were then transferred to the AUV operating system and the vehicles were piloted according to the plan. We found that the forecast currents and paths were accurate. In particular, the time-optimal vehicles won the races, even though the local currents and geometric constraints were complex. The details of the results were analyzed off-line after the sea tests.