Risk-Optimal Path Planning in Stochastic Dynamic Environments
Subramani, D.N. and P.F.J. Lermusiaux, 2019. Risk-Optimal Path Planning in Stochastic Dynamic Environments. Computer Methods in Applied Mechanics and Engineering, 353, 391–415. doi:10.1016/j.cma.2019.04.033
We combine decision theory with fundamental stochastic time-optimal path planning to develop partial-differential-equations-based schemes for risk-optimal path planning in uncertain, strong and dynamic flows. The path planning proceeds in three steps: (i) predict the probability distribution of environmental flows, (ii) compute the distribution of exact time-optimal paths for the above flow distribution by solving stochastic dynamically orthogonal level set equations, and (iii) compute the risk of being suboptimal given the uncertain time-optimal path predictions and determine the plan that minimizes the risk. We showcase our theory and schemes by planning risk-optimal paths of unmanned and/or autonomous vehicles in illustrative idealized canonical flow scenarios commonly encountered in the coastal oceans and urban environments. The step-by-step procedure for computing the risk-optimal paths is presented and the key properties of the risk-optimal paths are analyzed.