headgraphic
loader graphic

Loading content ...

Stochastic Oceanographic-Acoustic Prediction and Bayesian Inversion for Wide Area Ocean Floor Mapping

Ali, W.H., M.S. Bhabra, P.F.J. Lermusiaux, A. March, J.R. Edwards, K. Rimpau, and P. Ryu, 2019. Stochastic Oceanographic-Acoustic Prediction and Bayesian Inversion for Wide Area Ocean Floor Mapping. In: OCEANS '19 MTS/IEEE Seattle, 27-31 October 2019, doi:10.23919/OCEANS40490.2019.8962870

Covering the vast majority of our planet, the ocean is still largely unmapped and unexplored. Various imaging techniques researched and developed over the past decades, ranging from echo-sounders on ships to LIDAR systems in the air, have only systematically mapped a small fraction of the seafloor at medium resolution. This, in turn, has spurred recent ambitious efforts to map the remaining ocean at high resolution. New approaches are needed since existing systems are neither cost nor time effective. One such approach consists of a sparse aperture mapping technique using autonomous surface vehicles to allow for efficient imaging of wide areas of the ocean floor. Central to the operation of this approach is the need for robust, accurate, and efficient inference methods that effectively provide reliable estimates of the seafloor profile from the measured data. In this work, we utilize such a stochastic prediction and Bayesian inversion and demonstrate results on benchmark problems. We first outline efficient schemes for deterministic and stochastic acoustic modeling using the parabolic wave equation and the optimally-reduced Dynamically Orthogonal equations and showcase results on stochastic test cases. We then present our Bayesian inversion schemes and its results for rigorous nonlinear assimilation and joint bathymetry-ocean physics-acoustics inversion.