headgraphic
loader graphic

Loading content ...

Generalized Neural Closure Models for Chaotic Dynamical Systems

Most learning results are limited in interpretability and generalization over different computational grid resolutions, initial and boundary conditions, domain geometries, and physical or problem-specific parameters.  We review how we simultaneously address these challenges using our novel and versatile methodology of unified neural partial delay differential equations with applications to idealized ocean and chaotic systems. We augment existing/low-fidelity dynamical models directly in their partial differential equation (PDE) forms with both Markovian and non-Markovian neural network (NN) closure parameterizations. The melding of the existing models with NNs in the continuous spatiotemporal space followed by numerical discretization automatically allows for the desired generalizability. The Markovian term is designed to enable extraction of its analytical form and thus provides interpretability. The non-Markovian terms allow accounting for inherently missing time delays needed to represent the real world. Our flexible modeling framework provides full autonomy for the design of the unknown closure terms such as using any linear-, shallow-, or deep-NN architectures, selecting the span of the input function libraries, and using either or both Markovian and non-Markovian closure terms, all in accord with prior knowledge. We obtain adjoint PDEs in the continuous form, thus enabling direct implementation across differentiable and non-differentiable computational physics codes, different ML frameworks, and treatment of nonuniformly-spaced spatiotemporal training data. We first demonstrate the generalized neural closure models (gnCMs) framework using sets of experiments based on advecting nonlinear waves, shocks, and ocean acidification models. We then discuss and highlight applications to progressively more chaotic systems, emphasizing the need for adapted learning schemes. Our learned gnCMs discover missing chaotic physics, find leading numerical error terms, discriminate among candidate functional forms in an interpretable fashion, achieve generalization, and compensate for the lack of complexity in simpler models.