headgraphic
loader graphic

Loading content ...

Real-time Probabilistic Reachability Forecasting for Gliders in the Gulf of Mexico

Mule, E.M., P.J. Haley, Jr., C. Mirabito, S.F. DiMarco, S. Mahmud, A. Dancer, X. Ge, A.H. Knap, Y. Liu, U.C. Nwankwo, S. Glenn, T.N. Miles, D. Aragon, K. Coleman, M. Smith, M. Leber, R. Ramos, J. Storie, G. Stuart, J. Marble, P. Barros, E.P. Chassignet, A. Bower, H.H. Furey, B. Jaimes de la Cruz, L.K. Shay, M. Tenreiro, E. Pallas Sanz, J. Sheinbaum, P. Perez-Brunius, D. Wilson, J. van Smirren, R. Monreal-Jiménez, D.A. Salas-de-León, V.K. Contreras Tereza, M. Feldman, M. Khadka, and P.F.J. Lermusiaux, 2024. Real-time Probabilistic Reachability Forecasting for Gliders in the Gulf of Mexico. In: OCEANS '24 IEEE/MTS Halifax, 23–26 September 2024, in press.

Principled optimal path planning for autonomous marine vehicles made major advances in the past decade. However, rigorous planning theory and schemes are not often used in real-time with vehicles at sea, especially with ocean gliders. In this work, we demonstrate for the first time the use of differential reachability analysis and time-optimal path planning forecasts to help guide a fleet of four ocean gliders in the Gulf of Mexico (GoM) region for more than two months. This real-time effort was part of the Understanding Gulf Ocean Systems (UGOS) program of the U.S. National Academies of Sciences, Engineering, and Medicine.