Real-time Probabilistic Reachability Forecasting for Gliders in the Gulf of Mexico
Mule, E.M., P.J. Haley, Jr., C. Mirabito, S.F. DiMarco, S. Mahmud, A. Dancer, X. Ge, A.H. Knap, Y. Liu, U.C. Nwankwo, S. Glenn, T.N. Miles, D. Aragon, K. Coleman, M. Smith, M. Leber, R. Ramos, J. Storie, G. Stuart, J. Marble, P. Barros, E.P. Chassignet, A. Bower, H.H. Furey, B. Jaimes de la Cruz, L.K. Shay, M. Tenreiro, E. Pallas Sanz, J. Sheinbaum, P. Perez-Brunius, D. Wilson, J. van Smirren, R. Monreal-Jiménez, D.A. Salas-de-León, V.K. Contreras Tereza, M. Feldman, M. Khadka, and P.F.J. Lermusiaux, 2024. Real-time Probabilistic Reachability Forecasting for Gliders in the Gulf of Mexico. In: OCEANS '24 IEEE/MTS Halifax, 23–26 September 2024, in press.
As part of the Mini-Adaptive Sampling Test Run (MASTR) experiment in the Gulf of Mexico (GoM) region from February to April 2024, we demonstrated real-time deterministic and probabilistic reachability analysis and time-optimal path planning to guide a fleet of four ocean gliders. The governing differential equations for reachability analysis and time-optimal path planning were numerically integrated in real-time and forced by currents from our large-ensemble ocean forecasts. We illustrate the real-time deterministic and probabilistic forward reachability analyses, reachability and path planning for glider pickups, time-optimal path planning for gliders in distress, and planning of future glider deployments. Results show that the actual paths of gliders were contained within our reachable set forecasts and in accord with the dynamic reachability fronts. Our time-optimal headings and paths also predicted real glider motions, even for longer-range predictions of weeks to a month duration. Reachability and time-optimal path planning forecasts were successfully employed for glider recovery. They also enabled exploring options for future glider deployments.