headgraphic
loader graphic

Loading content ...

Dynamics and Lagrangian Coherent Structures in the Ocean and their Uncertainty

Lermusiaux, P.F.J. and F. Lekien, 2005. Dynamics and Lagrangian Coherent Structures in the Ocean and their Uncertainty. Extended Abstract in report of the "Dynamical System Methods in Fluid Dynamics" Oberwolfach Workshop. Jerrold E. Marsden and Jurgen Scheurle (Eds.), Mathematisches Forschungsinstitut Oberwolfach, July 31st - August 6th, 2005, Germany. 2pp.

The observation, computation and study of “Lagrangian Coherent Structures” (LCS) in turbulent geophysical flows have been active areas of research in fluid mechanics for the last 30 years. Growing evidence for the existence of LCSs in geophysical flows (e.g., eddies, oscillating jets, chaotic mixing) and other fluid flows (e.g., separation pro le at the surface of an airfoil, entrainment and detrainment by a vortex) generates an increasing interest for the extraction and understanding of these structures as well as their properties. In parallel, realistic ocean modeling with dense data assimilation has developed in the past decades and is now able to provide accurate nowcasts and predictions of ocean flow fields to study coherent structures. Robust numerical methods and sufficiently fast hardware are now available to compute real-time forecasts of oceanographic states and render associated coherent structures. It is therefore natural to expect the direct predictions of LCSs based on these advanced models. The impact of uncertainties on the coherent structures is becoming an increasingly important question for practical applications. The transfer of these uncertainties from the ocean state to the LCSs is an unexplored but intriguing scientific problem. These two questions are the motivation and focus of this presentation. Using the classic formalism of continuous-discrete estimation [1], the spatially discretized dynamics of the ocean state vector x and observations are described by (1a) dx =M(x; t) + d yok (1b) = H(xk; tk) + k where M and H are the model and measurement model operator, respectively. The stochastic forcings d and k are Wiener/Brownian motion processes,   N(0;Q(t)), and white Gaussian sequences, k  N(0;Rk), respectively. In other words, Efd(t)d T (t)g := Q(t) dt. The initial conditions are also uncertain and x(t0) is random with a prior PDF, p(x(t0)), i.e. x(t0) = bx0 + n(0) with n(0) random. Of course, vectors and operators in Eqs. (1a-b) are multivariate which impacts the PDFs: e.g. their moments are also multivariate. The estimation problem at time t consists of combining all available information on x(t), the dynamics and data (Eqs. 1a-b), their prior distributions and the initial conditions p(x(t0)). Defining the set of all observations prior to time t by yt