Data assimilation for modeling and predicting coupled physical-biological interactions in the sea
Data assimilation is a modern methodology of relating natural data and dynamical
models. The general dynamics of a model is combined or melded with a set of observations.
All dynamical models are to some extent approximate, and all data sets are
finite and to some extent limited by error bounds. The purpose of data assimilation
is to provide estimates of nature which are better estimates than can be obtained by
using only the observational data or the dynamical model. There are a number of
specific approaches to data assimilation which are suitable for estimation of the state
of nature, including natural parameters, and for evaluation of the dynamical approximations.
Progress is accelerating in understanding the dynamics of real ocean biological-
physical interactive processes. Although most biophysical processes in the sea await
discovery, new techniques and novel interdisciplinary studies are evolving ocean science
to a new level of realism. Generally, understanding proceeds from a quantitative
description of four-dimensional structures and events, through the identification of
specific dynamics, to the formulation of simple generalizations. The emergence of
realistic interdisciplinary four-dimensional data assimilative ocean models and systems
is contributing significantly and increasingly to this progress.