loader graphic

Loading content ...

Adaptive Rapid Environmental Assessment

Ding Wang, 2007. Adaptive Rapid Environmental Assessment. Ph.D. Thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering, September 2007 (Co-supervised with Prof. Henrik Schmidt).

In shallow water, a large part of underwater acoustic prediction uncertainties are in- duced by sub-meso-to-small scale oceanographic variabilities. Conventional oceano- graphic measurements for capturing such ocean-acoustic environmental variabilities face the classical conflict between resolution and coverage. The Adaptive Rapid En- vironmental Assessment (AREA) project was proposed to resolve this conflict by optimizing the location of in-situ measurements in an adaptive manner. In this thesis, ideas, concepts and performance limits in AREA are clarified. Both an engineering and a mathematical model for AREA are developed. A modularized AREA simulator was developed and implemented in C++. Philosophies in AREA are discussed. Presumptions about the ocean are made to bridge the gap between the viewpoint in the oceanography community, where the ocean environment is consid- ered to be a deterministic but very complicated system, and that of the underwater acoustic community, where the ocean environment is treated as a random system. At present, how to optimally locate the in-situ measurements made by a single AUV carrying a CTD (conductivity, temperature and depth) sensor is considered in AREA. In this thesis, the AUV path planning is modeled as a Shortest Path problem. However, due to the sound velocity correlation effect, the size of this problem can be very large. A method is developed to simplify the graph for a fast solution. As a significant step, a linear approximation for acoustic Transmission Loss (TL) is investigated numerically and analytically. In addition to following a predetermined path, an AUV can also adaptively gener- ate its path on-board. This adaptive on-board AUV routing problem is modeled using Dynamic Programming (DP) in this thesis. A method based on an optimized prede- termined path is developed to reduce the size of the DP problem and approximately yet efficiently solve it using Pattern Recognition. As a special case, a thermocline- oriented AUV yoyo control and control parameter optimization methods for AREA are also developed. 2 Finally, some AUV control algorithms for capturing fronts are developed. A frame- work for real-time TL forecasts is developed. This is the first time that TL forecasts have been linked with ocean forecasts in real-time. All of the above ideas and methods developed were tested in two experiments, FAF05 in the northern Tyrrhenian Sea in 2005 and MB06 in Monterey Bay, CA in 2006. The latter MB06 sea exercise was a major field experiment sponsored by the Office of Naval Research and the thesis compiles significant findings from this effort.