headgraphic
loader graphic

Loading content ...

Clustering of Massive Ensemble of Vehicle Trajectories in Strong, Dynamic and Uncertain Ocean Flows

Dutt, A., D.N. Subramani, C.S. Kulkarni, and P.F.J. Lermusiaux, 2018. Clustering of Massive Ensemble of Vehicle Trajectories in Strong, Dynamic and Uncertain Ocean Flows. In: Oceans '18 MTS/IEEE Charleston, 22-25 October 2018. doi:10.1109/oceans.2018.8604634

Recent advances in probabilistic forecasting of regional ocean dynamics, and stochastic optimal path planning with massive ensembles motivate principled analysis of their large datasets. Specifically, stochastic time-optimal path planning in strong, dynamic and uncertain ocean flows produces a massive dataset of the stochastic distribution of exact timeoptimal trajectories. To synthesize such big data and draw insights, we apply machine learning and data mining algorithms. Particularly, clustering of the time-optimal trajectories is important to describe their PDFs, identify representative paths, and compute and optimize risk of following these paths. In the present paper, we explore the use of hierarchical clustering algorithms along with a dissimilarity matrix computed from the pairwise discrete Frechet distance between all the optimal trajectories. We apply the algorithms to two datasets of massive ensembles of vehicle trajectories in a stochastic flow past a circular island and stochastic wind driven double gyre flow. These paths are computed by solving our dynamically orthogonal level set equations. Hierarchical clustering is applied to the two datasets, and results are qualitatively and quantitatively analyzed.