Time-Optimal Multi-Waypoint Mission Planning in Dynamic Environments
Ferris, D.L., D.N. Subramani, C.S. Kulkarni, P.J. Haley, and P.F.J. Lermusiaux, 2018. Time-Optimal Multi-Waypoint Mission Planning in Dynamic Environments. In: Oceans '18 MTS/IEEE Charleston, 22-25 October 2018. doi:10.1109/oceans.2018.8604505
The present paper demonstrates the use of exact equations to predict time-optimal mission plans for a marine vehicle that visits a number of locations in a given dynamic ocean current field. This problem bears close resemblance to that of the classic “traveling salesman”, albeit with the added complexity that the vehicle experiences a dynamic flow field while traversing the paths. The paths, or “legs”, between all goal waypoints are generated by numerically solving the exact time-optimal path planning level-set differential equations. Overall, the planning proceeds in four steps. First, current forecasts for the planning horizon is obtained utilizing our data-driven 4-D primitive equation ocean modeling system (Multidisciplinary Simulation Estimation and Assimilation System; MSEAS), forced by high-resolution tidal and real-time atmopsheric forcing fields. Second, all tour permutations are enumerated and the minimum number of times the time-optimal PDEs are to be solved is established. Third, due to the spatial and temporal dynamics, a varying start time results in different paths and durations for each leg and requires all permutations of travel to be calculated. To do so, the minimum required time-optimal PDEs are solved and the optimal travel time is computed for each leg of all enumerated tours. Finally, the tour permutation for which travel time is minimized is identified and the corresponding time-optimal paths are computed by solving the backtracking equation. Even though the method is very efficient and the optimal path can be computed serially in real-time for common naval operations, for additional computational speed, a high-performance computing cluster was used to solve the level set calculations in parallel. Our equation and software is applied to simulations of realistic naval applications in the complex Philippines Archipelago region. Our method calculates the global optimum and can serve two purposes: (a) it can be used in its present form to plan multiwaypoint missions offline in conjunction with a predictive ocean current modeling system, or (b) it can be used as a litmus test for approximate future solutions to the traveling salesman problem in dynamic flow fields.